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Abstract

While current deep learning algorithms have been successful for a wide variety of ar-
tificial intelligence (AI) tasks, including those involving structured image data, they
present deep neurophysiological conceptual issues due to their reliance on the gradi-
ents that are computed by backpropagation of errors (backprop). Gradients are re-
quired to obtain synaptic weight adjustments but require knowledge of feed-forward
activities in order to conduct backward propagation, a biologically implausible pro-
cess. This is known as the “weight transport problem”. Therefore, in this work, we
present a more biologically plausible approach towards solving the weight transport
problem for image data. This approach, which we name the error-kernel driven ac-
tivation alignment (EKDAA) algorithm, accomplishes through the introduction of
locally derived error transmission kernels and error maps. Like standard deep learn-
ing networks, EKDAA performs the standard forward process via weights and ac-
tivation functions; however, its backward error computation involves adaptive error
kernels that propagate local error signals through the network. The efficacy of EK-
DAA is demonstrated by performing visual-recognition tasks on the Fashion MNIST,
CIFAR-10 and SVHN benchmarks, along with demonstrating its ability to extract
visual features from natural color images. Furthermore, in order to demonstrate its
non-reliance on gradient computations, results are presented for an EKDAA-trained
CNN that employs a non-differentiable activation function. Our library implemen-
tation can be found at: https: // github. com/ tzee/ EKDAA-Release .
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1 Introduction

One of the most daunting challenges still facing neuroscientists is the understanding of how the
neurons in the complex network that underlies the brain work together and adjust their synapses
in order to accomplish goals (Südhof & Malenka, 2008). While artificial neural networks (ANNs)
trained by backpropagation of errors (backprop) present a practical, feasible implementation of
learning by synaptic adjustment, it is largely regarded by neuroscientists as biologically implausible
for various reasons, including the implausibility of the direct backwards propagation of error deriva-
tives for synaptic updates. Furthermore, this form of learning breaks a fundamental requirement for
biologically-plausible (bio-plausible) learning; backprop requires access to the feed-forward weights
in order pass back error signals to previous layers. This property, known as the weight transport
problem (Grossberg, 1987), renders backprop to be a poor candidate base learning rule for building
realistic bio-inspired neural modeling frameworks. In terms of bio-plausibility, it is more likely that
differences in neural activity, driven by feedback connections, are used in locally effecting synap-
tic changes (Lillicrap et al., 2020). Such difference-based networks overcome some of backprop’s
major implausibilities in a way that is more naturalistic and more compatible with the current
understanding of how brain circuitry operates. Although a few classes of algorithms have been
proposed to address the specific challenge of error gradient propagation in training ANNs, fewer
still have been proposed to handle the highly structured data found in large-scale image datasets.
Current-day convolutional neural networks (CNNs) and Visual Transformeres (ViTs) continue to
set the benchmark standards for difficult vision problems (Mnih et al., 2013; He et al., 2016; Doso-
vitskiy et al., 2020), and they do so using backprop, with symmetric weight matrices in both the
feedforward and feedback pathways.

1.1 Bio-plausible Machine Learning

In this work, we create a learning rule that addresses the weight transport problem for image data,
leveraging spatial relationships with convolution. As a result, we introduce a more bio-plausible
error synaptic feedback mechanism that we deem the (learnable) error-kernel, which generates
target activities for feature maps within a CNN to “align” to. We call this learning mechanism
error-kernel driven activation alignment (EKDAA).

The Weight Transport Problem. In our learning scheme, the forward pathway relies on tradi-
tional weight matrices/tensors whereas the backward pathway focuses on error kernels and maps,
thus eliminating two-way symmetric weight structure inherent to backprop-trained networks. This,
in effect, resolves the weight transport problem.

While currently known bio-plausible methodologies have not reached the modeling performance of
backprop and have yet to be scaled to large datasets such as ImageNet (Deng et al., 2009), we
believe investigating bio-plausible learning rules are key in the future of neural modeling. EKDAA
notably opens the door to a wider variety of neural structures, potentially enabling lateral neural
connections, where forward/backward propagation no longer carry the traditional meaning. We
successfully train a convolutional network on image data, using the signum function (which has a
derivative of zero everywhere except at zero, i.e., its derivative is a Dirac delta function). Learning
with the signum showcases how EKDAA facilitates the use of bio-plausible activation functions.
The signum function behaves similarly to the action potential of a biophysical neuron, i.e., it acts
as a hard activation where the incoming signal is either propagated or killed, abiding to Dale’s law
for neurons (Eccles, 1976; Lillicrap et al., 2020).
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(a) Backpropagation (b) EKDAA

Figure 1: The signal flow for backprop and EKDAA. The forward pass (solid blue arrows), the
backward pass (solid orange arrows), and the weight update (gray dashed lines). For layer N , HN

denotes its pre-activation while ZN represents its post-activation. e is the convolutional error kernel,
and E is used to transpose the error signal to the appropriate size when propagating backwards.

Bio-plausibility and Convolution. The convolution operator is a powerful mechanism for ex-
tracting spatial features from images and video, exhibiting key properties for signal updates that
can be integrated into a bio-plausible convolutional network. In a backprop model, deconvolution is
used for both layer-wise gradient updates and deconvolution of filter updates, and can be computed
by differentiating each value of the filter with respect to every element of the matrix that the filter
touches during the convolution pass. However, gradient updates can also be computed without
the need to take direct derivatives on elements by directly employing a convolution of the same
matrices that the derivatives would be taken on. As a result, the update signals are computed as:

∆Wℓ
m,n,:,: ← Xℓ

m,:,: ∗∆Xℓ+1
m,:,: (1)

∆Xℓ
m,n,:,: ←∆Xℓ+1

m,n,:,: ∗ Flip(Wℓ
m,n,:,:) (2)

where, Wℓ
m,n,:,: is the weight matrix for a layer l with feature map element [m, n], Xℓ

m,:,: is the
corresponding model layer output. ∆Wℓ

m,n,:,: is the error signal weight matrix for layer l, ∆Xℓ
m,:,:

is the error signal from the output of layer l, and Flip is the transpose of a matrix with respect
to both the x and y axis. The convolution operator is represented with ∗. Therefore, convolution
works within a Hebbian model and can be used as a powerful feature extractor without the need
for computed derivatives. The symmetrical process of convolution in the inference and training
passes may further be considered to be a more bio-plausible means of processing visual information
in comparison to the dense transforms used in standard feed-forward models. Convolution and
deconvolution also are operators that are agnostic as to whether a learning rule is or is not weight
symmetric. In essence, there are no inherent rules that dictate that deconvolution must deconvolve
on the exact same weight matrices that are convoluted on in a system’s forward pass.

2 Related Work

Although Hebbian learning (Hebb, 1949) is one of the earliest and simplest biologically plausible
learning rules for addressing the credit assignment problem, extending them to the CNN has not
yet been well-developed. Our proposed approach aims to fill this gap.
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In addition to Hebbian-based learning, other work includes alternative convolution-based schemes,
such as those found in (Akrout et al., 2019), that are based on the Kollen-Pollack (KP) method,
which have yielded promising results on larger, more extensive benchmarks without the need for
weight transport. These schemes create weight mirrors based on the KP method and incorporate
it into the convolutional framework. Other training approaches are based on local losses (Nøkland
& Eidnes, 2019; Grinberg et al., 2019; Guerguiev et al., 2017; Schmidhuber, 1990; Werbos, 1982;
Linnainmaa, 1970); are methods that take the sign of the forward activities (Xiao et al., 2018);
are schemes that utilize noise-based feedback modulation (Lansdell et al., 2019); or use synthetic
gradients (Jaderberg et al., 2017) to stabilize learning for deeper networks. These approaches have
demonstrated better or comparable performance (to backprop) on challenging benchmarks that
require the use of convolution. However, there are significant dependencies in the model’s forward
activities used to guide the backward signal propagation, hence, these approaches belong to a
different class of problems/algorithms than what we address in this work.

The Bottleneck Approach. Another key effort in this area, inspired by information theory, is the
Hilbert-Schmidt independence criterion (HSIC) bottleneck algorithm (Ma et al., 2019), based on the
Information Bottleneck (IB) principle (Tishby et al., 2000). HSIC performs credit assignment locally
and layer-wise, seeking hidden representations that exhibit high mutuality with target values and
less mutuality with inputs (presented) to that layer, i.e., this scheme is not driven by the information
propagated from the layer below. Approaches based on the bottleneck mechanism are considered to
be the least bio-plausible. Other efforts (Salimans et al., 2017) utilize an evolutionary strategy to
search for optimal weights without gradient descent. Although powerful, these approaches exhibit
slow convergence, requiring many iterations in order to find optimal solutions.

Feedback Alignment. Notably, an algorithm named Random Feedback Alignment (RFA) was
proposed in (Lillicrap et al., 2016), where it was argued that the use of the transpose of the forward
weights (Wℓ for any layer ℓ) in backprop, meant to carry backwards derivative information, was
not required for learning. This work showed that network weights could be trained by replacing
the transposed forward weights with fixed, random matrices of the same shape (Bℓ for layer ℓ),
ultimately side-stepping the weight transport problem (Grossberg, 1987).

Direct Feedback Alignment (DFA) .(Nøkland, 2016), and its variants (Han et al., 2020; Crafton
et al., 2019; Chu et al., 2020), was inspired by RFA (Lillicrap et al., 2016), but, in contrast, DFA
directly propagates the error signal; it creates a pathway directly between the output layer to
internal layers as opposed to a layer-wise wiring format, as in RFA. Notably, across multiple ar-
chitectures, it was observed that networks trained with DFA showed a steeper reduction in the
classification error when compared to those trained with backprop. To compare these bio-plausible
feedback alignment-based training paradigms with EKDAA, we extended the corresponding pub-
lished efforts and implemented CNN versions of FA, DFA, and other related variants. Details of
their performance on the several benchmark image datasets investigated in this study are provided
in Section 4.

Target Propagation. Target propagation (target prop, or TP) (Lee et al., 2015) is another
approach to credit assignment in deep neural networks, where the goal is to compute targets that
are propagated backwards to each layer of the network. Target prop essentially designs each layer
of the network as an auto-encoder, with the decoder portion attempting to learn the inverse of
the encoder, modified by a linear correction to account for the imperfectness of the auto-encoders
themselves. This corrected difference (between encoder and decoder) is then propagated throughout
the network. This process allows difference target prop (DTP) (Lee et al., 2015) and variants
(Bartunov et al., 2018; Ororbia & Mali, 2019) (e.g., DTP-σ) to side-step the vanishing/exploding
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gradient problem. However, TP approaches are expensive and can be unstable, requiring multiple
forward/backward passes in each layer-wise encoder/decoder in order to produce useful targets.

Representation Alignment. Local Representation Alignment (LRA) (Ororbia et al., 2018) and
recursive LRA (Ororbia et al., 2023) represent yet another class of credit assignment methods,
inspired by predictive coding theory (Rao & Ballard, 1999; Clark, 2015; Salvatori et al., 2023)
and is similar in spirit to target prop. Under LRA, each layer in the neural network has a target
associated with it such that changing the synaptic weights in a particular layer will help move
layer-wise activity towards better matching a target activity value. LRA was shown to perform
competitively to other local learning rules for fully-connected models, but extending/applying it to
vectorized natural images like CIFAR-10 resulted in significant performance degradation.

3 Error Kernel Credit Assignment

In implementing the EKDAA algorithm, desirably, the forward pass in the CNN remains the same.
However, the backward pass uses a form of Hebbian learning that creates targets for each layer (as
shown in Figure 1) which results in an error signal that can be used to make weight adjustments.
In convolutional layers, locally computed error kernels transmit signals by applying the convolution
of the error kernel with the pre-activation of that layer, aiming to align the forward activations
accordingly. In the fully connected case, an error matrix is multiplied by the pre-activation layer to

Figure 2: Kernel update to learn the
filters Wℓ

m,n,:,: with EKDAA. zℓ−1
n,:,:,

the nth post-activation of layer ℓ−1,
is deconvolved on the mth error ker-
nel eℓ

m,:,: of layer ℓ, propagating the
error signal to update ∆Wℓ

m,n,:,:.

generate targets allowing for the computation of pseudo-
gradients that can be used to train the forward activations.
While EKDAA is similar to TP in that it creates targets
to optimize towards in an encoding/decoding fashion, EK-
DAA introduces the novel idea of encoding an error signal
with a learned kernel. Similar to FA, EKDAA finds suc-
cess with using random weights for projecting error signal
changing layer-wise dimensionality as weight matrices in the
forward and backward pass are asymmetric. In contrast to
TP and LRA approaches, with our proposed algorithm, EK-
DAA, the forward and backward activities share as minimal
information as possible; this helps the model to better over-
come poor initialization and stabilization issues. In this sec-
tion, we describe the forward pass in our notation and then
present the details of the EKDAA learning approach.

Notation. We denote standard convolution with the sym-
bol ∗ and deconvolution with symbol ⟲. Hadamard product is denoted by ⊙ while · represents
a matrix/vector multiplication. ()T denotes the transpose operation. Flip(X) is a function for
flipping a tensor and is defined as taking the transpose of X over both the x-axis and y-axis such
that the value of an element Xi,j after flipping results in the location Xn−i,n−j . Flatten(z) means
that the input tensor z is converted to a column vector with a number of rows equal to the number
of elements that it originally contained while UnFlatten(z) is its inverse (i.e., it converts the vector
back to its original tensor shape). We use the notation : to indicate extracting a slice of a certain
dimension in a tensor object, i.e., Vj,:,: means that we extract all scalar elements in the jth slice of
the three dimensional tensor V. Finally, = denotes equality while ← denotes variable assignment.

Inference Dynamics. Given an input (color) image x, inference in a CNN consists of running
a feedforward pass through the underlying model, computing the activities (or nonlinear feature
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maps) for each layer ℓ, where the model contains LC convolutional layers in total. The CNN is
parameterized by a set of synaptic tensors Θ = {W1, W2, ..., WLC , Wy} where the last parameter
Wy is a two-dimensional tensor (or matrix) meant to be used in a softmax/maximum entropy classi-
fier. All other tensors Wℓ, ℓ = 1, 2, ..., L are four-dimensional and of shape Wℓ ∈ RNℓ×Nℓ−1×hℓ×wℓ .
This means that any tensor Wℓ houses Nℓ sets of Nℓ−1 filters/kernels of shape hℓ×wℓ. The bottom
tensor W0, which takes in as input an image, would be of shape W1 ∈ RN1×N0×h1×w1 where N0 is
the number of input color channels, e.g., three, for images of size h0 × w0 pixels.

The mth feature map of any convolutional layer ℓ is calculated as a function of the Nℓ−1 feature
maps of the layer below (n ∈ Nℓ−1 – there are Nℓ−1 input channels to the mth channel of layer ℓ).
This is done, with hℓ

:,:,m initialized as hℓ
:,:,m = 0, in the following manner (bias omitted for clarity):

hℓ
m,:,: ← hℓ

m,:,: + Wℓ
m,n,:,: ∗ zℓ−1

n,:,:, ∀n (3)
zℓ

m,:,: = ϕℓ(hℓ
m,:,:) (4)

where Wℓ
m,n,:,: denotes the specific filter/kernel that is applied to input channel n when computing

values for the mth output channel/map. Note that ϕℓ is the activation function applied to any
output channel in layer ℓ, e.g., ϕℓ(v) = max(0, v). Max (or average) pooling is typically applied
directly after the nonlinear feature map/channel has been computed, i.e., zℓ

m,:,: ← Φmp(zℓ
m,:,:).

Learning Dynamics. Once inference has been conducted, we may then compute the values
needed to adjust the filters themselves. To calculate the updates for each filter in the CNN, EKDAA
proceeds in two steps: 1) calculate target activity values for each feature map in each layer (shown in
Figure 2) which this is then used to compute the error neuron maps, a type of neuron specialized for
computing mismatch signals inspired by predictive processing brain theory (Clark, 2015; Salvatori
et al., 2023), and, 2) calculate the adjustments to each filter given the error neuron values. To do
so, we introduce a specific set of filter parameters that we call the error kernels, each denoted as
Eℓ

m,n,:,:, for every map and layer in the CNN. This means that including the error kernels as part of
the EKDAA-learned CNN parameters yields Θ = {W1, E1, W2, E2, ..., WLC , ELC , Wy, Ey}. Each
error kernel is the same shape as its corresponding convolutional filter, i.e., Eℓ ∈ RNℓ×Nℓ−1×hℓ×wℓ

(except Ey, which has the same shape as the transpose of Wy).

Assuming that the tensor target activity yℓ is available to layer ℓ, we compute each channel’s
error neuron map as eℓ

m,:,: = −(yℓ
m,:,: − zℓ

m,:,:). Using this mismatch signal, we then work our way
down to layer ℓ − 1 by first convolving this error neuron map to project it downwards, using the
appropriate error kernel. Once the projection is complete, if pooling has been applied to the output
of each convolutional layer, we then up-sample the projection before computing the final target.
This process proceeds formally as follows:

eℓ
m,:,: = −(yℓ

m,:,: − zℓ
m,:,:) (5)

dℓ−1
n,:,: ← dℓ−1

n,:,: + Eℓ
m,n,:,: ⟲ eℓ

m,:,:, ∀m ∈ Nℓ (6)
dℓ−1

n,:,: ← Φup(dℓ−1
n,:,:) // (If max-pooling used) (7)

yℓ−1
n,:,: = ϕℓ−1(hℓ−1

n,:,: − βdℓ−1
n,:,:) (8)

where we see that Φup() denotes the up-sampling operation (to recover the dimensionality of the
map before max-pooling was applied). If pooling was not used in layer ℓ − 1, then Equation 7 is
omitted in the calculation of layer ℓ−1’s target activity. Notice that the update rule has a recursive
nature; it requires the existence of yℓ which in turn would have been created by applying Equations
5-8 to the layer above, ℓ + 1. Thus, the base case target activity yL, which would exist at the very
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Algorithm 1 EKDAA for a CNN with max-pooling and fully-connected maximum entropy output.
// Feedforward inference
Input: sample (y, x) and Θ
function Infer(x, Θ)

// Pass data thru convolution stack
// Get image input channels
z0

n,:,: = xn,:,:, ∀n ∈ N0
for ℓ = 1 to LC do

// Calculate feature maps for layer ℓ
hℓ

m,:,: = 0,∀m ∈ Nℓ

for m = 1 to Nℓ do
hℓ

m,:,: ← hℓ
m,:,: + Wℓ

m,n,:,: ∗ zℓ−1
n,:,:, ∀n

zℓ
m,:,: = ϕℓ(hℓ

m,:,:),
zℓ

m,:,: ← Φmp(zℓ
m,:,:)

hy = Wy · Flatten(zLC ), zy = σ(hy)
Λ = {(h1, ..., hLC , hy), (z0, ..., zLC , zy)}
Return Λ

// Calculate weight updates via EKDAA
Input: Statistics Λ, target y, β, and Θ
function CalcUpdates(Λ, y, Θ)

h1, ..., hLC , hy, z0, ..., zLC , zy ← Λ, yL = y
// Compute softmax weight updates
ey = −(y− zy)
∆Wy = ey ·

(
Flatten(zLC )

)T ,
∆Ey = −γ(∆Wy)T

yLC = ϕLC
(
Flatten(hLC )− β(E · ey)

)
// Compute convolutional kernel updates
yLC ← UnFlatten(yLC )
for ℓ = LC to 1 do

for m = 1 to Nℓ do
eℓ

m,:,: = −(yℓ
m,:,: − zℓ

m,:,:)
dℓ = 0,∀n ∈ Nℓ−1
for n = 1 to Nℓ−1 do

for m = 1 to Nℓ do
dℓ−1

n,:,: ← dℓ−1
n,:,:+

(Eℓ
m,n,:,: ⟲ eℓ

m,:,:)
yℓ−1

n,:,: = ϕℓ−1(hℓ−1
n,:,: − βΦup(dℓ−1

n,:,:))
for m = 1 to Nℓ do

for n = 1 to Nℓ−1 do
∆Wℓ

m,n,:,: = zℓ−1
n,:,: ∗ Flip(eℓ

m,:,:)
∆Eℓ

m,n,:,: = −γ(∆Wℓ
m,n,:,:)T

∆ = {∆W0, ∆E0, ..., WLC , ∆ELC , Wy, Ey}
Return ∆

top (or highest level) of the CNN, and, in the case of supervised classification, which is the focus
of this paper, this would be the target label vector y associated with input image x.

Once targets have been computed for each convolutional layer, the adjustment for each kernel in
each layer requires a specialized local rule that entails convolving the post-activation maps of the
level below with the error neuron map at ℓ. Formally, this means:

∆Wℓ
m,n,:,: = zℓ−1

n,:,: ∗ Flip(eℓ
m,:,:) (9)

∆Eℓ
m,n,:,: = −γ(∆Wℓ

m,n,:,:)T (10)

which can then subsequently be treated as the gradient to be used in either a stochastic gradient
descent update, i.e., Wℓ

m,n,:,: ← Wℓ
m,n,:,: − λ∆Wℓ

m,n,:,:, or a more advanced rule such as Adam
(Kingma & Ba, 2017) or RMSprop (Tieleman & Hinton, 2012).

In Algorithm 1, we provide a mathematical description of how EKDAA would be applied to a deep
CNN specialized for classification. Note that, while this paper focuses on feedforward classification,
our approach is not dependent on the type of task that the CNN is required to solve. For example,
one could readily employ our approach to construct unsupervised convolutional autoencoders, to
craft alternative convolutional architectures that solve other types of computer vision problems,
e.g., image segmentation, or to build complex models that process time series information, i.e.,
temporal/recurrent convolutional networks. One key advantage of the above approach is that the
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Algorithm 2 EKDAA for fully-connected and maximum entropy output layers.
// Feedforward inference
Input: sample (y, x) and Θ
function Infer(x, Θ)

z0 = x ▷ x could be Flatten(zLC )
// Calculate fully-connected layers
for ℓ = 1 to LF C do

hℓ = Wℓ · zℓ−1

zℓ = ϕℓ(hℓ),
// Calculate softmax outputs
hy = Wy · (zLF C ), zy = σ(hy)
Λ = {(h1, ..., hLF C , hy), (z0, ..., zLF C , zy)}
Return Λ

// Calculate weight updates via EKDAA
Input: Statistics Λ, target y, β, and Θ
function CalcUpdates(Λ, y, Θ)

h1, ..., hLF C , hy, z0, ..., zLF C , zy ← Λ, yL = y
// Compute softmax weight updates
ey = −(y− zy)
∆Wy = ey ·

(
zLF C

)T , ∆Ey = −γ(∆Wy)T

yLF C = ϕLF C
(
hLF C − β(E · ey)

)
// Compute fully-connected weight updates
for ℓ = LF C to 1 do

eℓ = −(yℓ − zℓ)
yℓ−1 = ϕℓ−1

(
hℓ−1 − β

(
(Eℓ · eℓ)

))
∆Wℓ = eℓ · (zℓ−1)T , ∆Eℓ = −γ(∆Wℓ)T

∆ = {∆W0, ∆E0, ..., WLC , ∆ELC , Wy, Ey}
Return ∆

test-time inference of an EKDAA-trained CNN is no slower than a standard backprop-trained
CNN, given that the forward pass computations remain the same. EKDAA also benefits from
model stabilization in comparison to BP. Even if the incoming pre-activations contain extreme
values due to poor initialization, EKDAA credit assignment will still give usable error signals to
learn from; this is due to the fact that such signals merely represent difference between target and
actual activities (subtractive Hebbian learning) rather than differentiable values as in backprop.

Fully-Connected Synaptic Updates. As made clear before, EKDAA trains systems composed
of convolution/pooling operators (Algorithm 1); however, it can also be used to train fully/densely-
connected transformations. Specifically, for fully-connected layers, EKDAA recovers an LRA-based
scheme Ororbia & Mali (2019) as shown in Algorithm 2, i.e., EKDAA is a generalization of LRA
(LRA was developed for fully-connected layers). In general, like backprop, EKDAA converges to
loss function minima because its pseudo-gradients, which are a function of the error signals, satisfy
the condition that for a given weight matrix, Wn: ∆Wn ≤ |∆W̃n − 90◦|, where ∆W̃n is the exact
calculated derivative for matrix Wn. Although the approximate gradients are almost never equal
to backprop’s exact gradients, they are always within 90 degrees and, thus, they tend towards the
direction of backprop’s (steepest) gradient descent. Note that EKDAA’s pseudo-gradients do not
take steps towards the loss surface minima as greedily as backprop’s gradients do; however, over
many training iterations, they converge to loss surface points similar to those found by backprop.

4 Experimental Setup and Results

4.1 Datasets and Experimental Tasks

To understand learning capacity for model fitting and generalization under EKDAA, we design and
train several models and test them against three standard datasets, Fashion MNIST (Xiao et al.,
2017) (FMNIST), CIFAR-10 (Krizhevsky et al., 2014), and SVHN (Netzer et al., 2011).

Fashion MNIST, while only being a single channel (gray-scale) image dataset at a [28 × 28] res-
olution, has a more complicated pixel input space than MNIST, facilitating a better analysis of
the convolutional contribution to overall network performance. SVHN and CIFAR-10 images are
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Dataset/Algorithm Memory Required (MB) Computation Time (Sec)
FMNIST/BP 1517.29 96.36 +/- 1.79
FMNIST/EKDAA 2574.25 96.39 +/- 9.16
SVHN/BP 4723.84 316.84 +/- 19.91
SVHN/EKDAA 4728.03 268.95 +/- 54.56
CIFAR-10/BP 4723.84 319.72 +/- 13.59
CIFAR-10/EKDAA 4728.03 271.99 +/- 11.58

Table 1: Memory and computation time required for backprop and EKDAA models. GPU memory
and average computation time with variance is recorded per 1000 updates with 10 trial runs.

of shape [32× 32] pixels and are represented in three color channels, containing more complicated
patterns and motifs compared to the gray scale Fashion MNIST (SVHN even contains many im-
ages with distractors at the sides of the character that the image is centered on). Fully-connected
layers are not strong enough to learn the spatial relationships between pixels, and, as a result,
convolutional filters will be required to learn the key patterns within the data that would help in
distinguishing between the various classes.

Taken together, the FMNIST, CIFAR-10, and SVHN datasets allow us to study how well EKDAA
learns filters (when engaged in the process of data fitting) and also how effective it is in creating
models that generalize on visual datasets. Additionally, we show that our networks can be trained
using non-differentiable activations, such as the signum function, or, more formally: signum(x) =
1 if x > 0, 0 if x = 0,−1 if x < 0. In this case, we train all convolutional and fully-connected layers
using signum as the activation function, except for the softmax output layer, in order to investigate
how well an EKDAA-driven network handles non-differentiable activity without specific tuning.

Technical Implementation. We design CNNs for the Fashion MNIST, CIFAR-10, and SVHN
datasets. The FMNIST CNN consists of three convolutional layers before flattening and propagat-
ing through one fully-connected softmax layer. The filter size is [3× 3] for all convolutional layers
with the first layer starting with one channel, expanding to 32, then to 64, and ending at 128 filters.
The fully-connected layers start after flattening the filters, which are then propagated through 128
fully-connected nodes before ending at 10 outputs (one per image class). Max-pooling with a kernel
of [2× 2] and a stride of 2 was used at the end of the first and second layers of convolution.

The CIFAR-10 and SVHN models use six layers of convolution and are inspired by the blocks of
convolution and pooling layers used in the VGG family of networks (Simonyan & Zisserman, 2014).
First, two convolutional layers are used before finally passing through a max-pooling layer with a
kernel of [2× 2] and a stride of two. Three of these mini-blocks of two convolution layers, followed
by a max-pooling layer, are used to build the final network. The first three layers of convolution
use 64 filters while the last three layers use 128 filters. All layers use a filter size of [3 × 3].
After traversing through the last convolutional layer, the final neural activities are flattened and
propagated through a single 128-node, fully-connected layer before shrinking down to 10 output
nodes (which are subsequently run through a softmax nonlinearity). Both Fashion MNIST, SVHN,
and CIFAR-10 models use a very small amount of fully-connected nodes and instead use multiple
large filter layers to learn and extract distributed representations (see Appendix for details).

Each model was tuned for optimal performance and several hyper-parameters were adjusted, i.e.,
batch size, learning rate, filter size, number of filters per layer, number of fully-connected nodes per
layer, weight initialization, optimizer choice, and dropout rate (details can be found in Appendix).
The same architecture was used for both the EKDAA model and the other learning mechanisms that
it was compared against. Models were optimized using stochastic gradient descent with momentum
and Pascanu re-scaling (Pascanu et al., 2013) was applied to all layer-wise weight updates.
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FMNIST SVHN CIFAR-10
Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc

BP 95.31± 0.18 89.97± 0.14 90.98± 0.23 88.52± 0.10 83.33± 0.22 71.08± 0.08
BP (FC) 92.91± 0.39 87.02± 0.41 84.36± 0.12 79.81± 0.22 57.05± 0.34 55.03± 0.29
LRA-E (FC) 93.59± 0.26 87.58± 0.33 80.17± 0.08 73.24± 0.19 58.10± 0.28 55.51± 0.42
EKDAA 95.83± 0.33 90.01± 0.11 84.31± 0.21 82.27± 0.19 75.05± 0.27 63.38± 0.12
EKDAA, Sig. 94.00± 0.14 88.69± 0.06 79.43± 0.09 76.87± 0.13 64.22± 0.12 59.71± 0.08
HSIC (Ma et al., 2019) 88.30±−− 59.50±−−
FA 95.30± 0.51 89.10± 0.18 79.18± 00.22 76.50± 00.18 77.50± 0.25 58.80± 0.11
DFA 93.99± 0.32 88.90± 0.10 82.50± 00.24 80.30± 00.21 79.50± 0.20 60.50± 0.08
SDFA 94.10± 0.28 89.00± 0.10 84.50± 00.23 81.40± 00.19 80.00± 0.19 59.60± 0.06
DRTP 93.50± 0.40 87.99± 0.15 85.21± 00.21 81.90± 00.20 79.50± 0.22 58.20± 0.14

Table 2: Train and test accuracy on the selected datasets. Mean and standard deviation over 10
trials reported. Note: The signum (sig.) function is included to demonstrate that we are able to
successfully train a non-differentiable activation with EKDAA and obtain reasonable performance.
BP results are shown to serve as a best case scenario when training with optimal gradients.

All models were trained on the original datasets, at the original resolutions, without any augmenta-
tion or pre-training. Unlike backprop, EKDAA did not benefit from extensive heuristic knowledge
on optimal parameterization, making a grid search for parameters ineffective as the hyperparam-
eter tuning limits would be significantly wider than with backprop. As a result, for tuning, the
learning rate was tuned from the range 1e−1 to 1e−4, number of filters were tuned from the range
32 to 128, dropout was tuned from 0 to 0.5, and the activation function was evaluated to be either
the hyperbolic tangent (tanh) or the linear rectifier (relu). The final meta-parameter setting for
EKDAA was a learning rate of 0.5e−3, 0.9 momentum rate, tanh for activation, and a dropout
rate of 0.1 for filters and 0.3 for fully-connected layers (complete model specifications are in the
Appendix). All model weights were randomly initialized with system time as a seed. For EKDAA,
the error kernels were randomly initialized with the Glorot uniform weight initialization scheme
(Glorot & Bengio, 2010). Furthermore, all models were trained on a single Tesla P4 GPU with 8GB
of GPU RAM and ran on Linux Ubuntu 18.04.5 LTS, using Tensorflow 2.1.0. The code for this
work has been designed in a novel library that allows for defining convolutional and fully-connected
models with the ability to quickly change the learning mechanism between BP and EKDAA. The
library also allows for defining new custom learning rules for analysis. While this codebase offers an
advantage for analyzing learning mechanisms, it has been custom written without the optimization
techniques that common libraries have implemented. This codebase takes advantage of Tensorflow
tensors when possible but has a custom defined forward and backward pass that is not nearly as
memory or computationally efficient as it could be. Our library implementation can be found at:
https: // github. com/ tzee/ EKDAA-Release .

In addition to train and test accuracy, we compare the GPU memory usage and computation time
required to train EKDAA and backprop. Results for this are shown in Table 1. Overall, EKDAA
shows a slight improvement in computation time as models become larger and, overall, only results
in a minor increase in required memory to run the same model than backprop. Overall, EKDAA’s
architecture does not exhibit worse computational requirements than those of backprop.

4.2 Results and Discussion

We analyzed EKDAA by comparing it to several bio-inspired learning schemes such as HSIC (Ma
et al., 2019), RFA (Lillicrap et al., 2016), DFA (Nøkland, 2016), sparse direct feedback alignment
(SDFA) (Crafton et al., 2019), and direct random target projection (DRTP) (Frenkel et al., 2021)
(see Appendix for baseline details). The results are presented in Table 2 (we also added two fully-
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Epoch 0 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Figure 3: t-SNE visualization depicting the learned representations of EKDAA, shown for Epoch
0 (initial weights) through and up to the final training epoch for FMNIST.

connected baselines – an MLP trained by backprop and one trained by LRA-E (Ororbia & Mali,
2019)). Comparable BP results are shown only to provide intuition on how well the constructed
models could perform if trained with precise gradients. We find EKDAA performs competitively
with the other algorithms and exhibits both increased train and test accuracy on the natural color
images, i.e., SVHN and CIFAR-10. Additionally, when testing EKDAA with the signum activation,
we find the resulting CNN operates with the non-differentiable function successfully on FMNIST.

Figure 4: FMNIST train and test accuracy
curves for BP and EKDAA.

Figure 3 shows the t-SNE plots of the outputs of the
last layer of a CNN across epochs, to demonstrate
how EKDAA disentangles the feature space of Fash-
ion MNIST. The t-SNE plots were generated every
10th epoch and visualized using default t-SNE pa-
rameters (i.e. no tuning) with a perplexity value of
30 and the maximum number of iterations set to
1000. Qualitatively, we find EKDAA successfully
learns to group features together with primarily con-
volutional layers, indicating the error kernels learned
are indeed benefiting the CNN. Figure 4 shows the
train and test learning curves of BP and EKDAA
(plotting accuracy as a function of epoch for the best
configuration of the model using each algorithm).

While many biologically-plausible alternatives have also been developed to learn models of natural
images, many of them incorporate error derivatives as part of the process and the architectures they
are generally applied to have been designed with multiple, large fully-connected layers with only a
few convolutional layers. We argue adding many fully-connected layers corrupts the input signal
such that the model is engaged in a greedy optimization resulting in fitting to noise rather than
extracting useful features. The role of convolution in such models is still debatable and, as a result,
it is difficult to determine if model performance results from the bio-plausible learning mechanism
or from the fully-connected layers. In contrast, EKDAA emphasizes the role of convolutional filters
in extracting useful features while reducing fully-connected elements. Our results on the three
datasets examined above validate that this approach still yields models that generalize well.

Limitations. The main limitation of the proposed EKDAA algorithm is currently its scalability
to massive datasets, especially when compared with highly optimized tensor computations imple-
mented in standard deep learning libraries that support backprop-based convolution/deconvolution
operations. Due to the current lack of advanced optimizations compared to frameworks such as
TensorFlow and PyTorch, supported by large tech companies, EKDAA is not as efficient, thus
requiring more computational resources than the established frameworks. Based on our practical
experience with our custom library that implements EKDAA, it does not scale easily to very large
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networks with many filters given our constrained computational budget and hardware. Specifically,
we used one Ubuntu 18.04 server with 8GB Tesla P4, an Intel Xeon CPU E5-2650, and 256GB
of RAM. Future work includes further modularizing our EKDAA library, focusing to improve the
algorithm’s ability to scale to datasets like ImageNet (Deng et al., 2009), despite limited resources.

Broader Impacts. Backprop generally works well on a carefully parameterized network, yet it
has a few drawbacks. For example, it requires computing gradients layer-by-layer, enforcing strict
requirements on information flow, i.e. needing to propagate in only a feed-forward fashion (lateral
connections make no sense for backprop). Local learning mechanisms do not have these restrictions,
facilitating the exploration of novel network structures and exotic forms of propagation flow.

We introduce a novel framework for training images without the need for backprop. While our pro-
posed scheme is limited with scale and speed compared to the highly optimized tensor computations
implemented in modern deep learning libraries, this work serves as a foundation for exploring local
learning for images. We introduce EKDAA, which learns error kernels from local layers to better
represent image data in a backprop-free manner. While various bio-plausible methodologies have
been developed in recent years, their learning rules tend to focus on fully-connected layers. Some
methods use convolution, but often fix randomly initialized filters or use backprop to train those
layers. With learnable error kernels, we introduce a way to transfer error signals through a model’s
convolutional layers while not requiring gradient information like backprop. EKDAA updates are
local and circumvent the weight transport problem. Continued work in this area may have pro-
found impacts on future model development by alleviating backprop’s severe restrictions while still
providing the ability to model highly complex, high-dimensional data such as natural color images.

5 Conclusion

We have presented an initial exploration of a back-propagation-free convolutional neural network
learning algorithm. We implemented a local feedback mechanism that transmits information across
layers to compute target activity values and relevant error neuron maps (independent of activa-
tion function type), resulting in Hebbian-like update rules for the convolutional filters of a CNN.
Specifically, this credit assignment process was made possible by introducing a mechanism that
we call the error kernel, which provides a means to reverse filter error neuron activity signals and
complements the normal filters used to extract features in convolutional models. We refer to our
proposed process as the error-kernel driven activation alignment (EKDAA) method.

We compared various algorithms in training a small CNN and found that EKDAA outperforms
other bio-inspired alternatives on natural color images for classification on the datasets tested. No-
tably, our method offers several benefits: 1) it resolves the major bio-implausibility of the weight
transport problem, 2) works with non-differentiable activities, and 3) is relatively computationally
efficient since it can operate in a layer-wise parallel/asynchronous fashion. Our experiments demon-
strate that EKDAA learns “good” representations during training and, furthermore, we found that
an EKDAA-trained CNN acquires latent representations that improve over time (epochs) as train-
ing evolves. In addition, we find that EKDAA has similar computational and memory requirements
as backprop, while exhibiting similar convergence behavior. While there is still much to explore in
future work, we have successfully presented an analysis of the novel EKDAA algorithm, yielding
promising evidence that it can train convolutional networks without backprop. Future directions
to expand this work involve expanding to larger, more complex architectures and imaging data, as
well as a study of the properties a Hebbian-based algorithm like EKDAA offer over backprop. The
implication of this could have far-reaching effects in the future designs of CNN architectures.
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Appendix

A Experimental Setup Details

We performed a grid search for all of the models investigated in this work in order to find opti-
mal meta-parameters and extract optimal behavior for each. Primarily, tuned hyper-parameters
included: batch size, learning rate, filter size, number of filters per layer, number of fully-connected
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nodes/units per layer, weight initialization, choice of optimizer, and the dropout rate. Note that
this work does not aim to obtain state-of-the-art image classification results. Rather, its intent is
to present a method that efficiently tackles the credit assignment issues in a convolution neural net-
work (CNN) by effectively operating with our proposed error kernel mechanism. Furthermore, our
method offers additional flexibility in design choices (such as permitting the use of non-differentiable
activation functions).

Meta-parameter Tuning: We report our grid search ranges for each model’s meta-parameters
in Tables 2 (EKDAA), 7 (DFA), 6 (FA), 9 (RDFA), and 8 (SDFA), respectively. Furthermore, in
the “Best” column, we report the final values selected/used for the models reported in the main
paper.

Architecture Design: In Table 4, we present the architectures used across the learning algo-
rithms investigated in this paper, i.e., the proposed EKDAA, feedback alignment (FA, also referred
to as RFA in the main paper), direct feedback alignment (DFA), sparse direct feedback alignment
(SDFA), and random direct feedback alignment (RDFA). We built the models for Fashion MNIST,
SVHN, and CIFAR-10 to include several layers of convolution (conv), with a sizeable amount of
filters, and only small (in terms of dimensionality) fully-connected (fc) layers to focus the learning
process on adapting/using the model kernels/filters to extract useful features from the input image
signals. In particular, the model for SVHN and CIFAR-10 had multiple layers with 128 filters per
layer and, before flattening the activities for the fully-connected layers, the image size was reduced
using three max pooling layers in order to propagate forward the image to obtain a [4×4] resolution.

General Comments/Discussion: With respect to the main paper’s results, what is significant
about our findings is that EKDAA demonstrates that adjusting the synaptic weight parameters of a
CNN is possible using recurrent error synapses formulated as error kernels themselves. This means
that the target feature map values (and the error neuron maps that calculate the distance between
the original feature maps and these targets) inherent to our backprop-free computational process
provide useful teaching signals that facilitate the learning of useful neural vision architectures. The
main results of our paper provide promising initial evidence that EKDAA can serve as a potentially
useful bio-inspired alternative to backprop for training CNNs on natural images.

B Asset Usage

We build our codebase on top of TensorFlow 2.0 for fundamental functionality. TensorFlow is
open-source with an Apache license. In addition, for analysis we use the publicly available Fashion-
MNIST, SVHN, and CIFAR-10 datasets, all of which have licenses permitting unlimited use and
modification. In addition, none of the datasets used in this study entail any data that could be
considered sensitive (thus not requiring data consent) or offensive.
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C Notation

Variable Definition
Xl input to layer l
∆Xl error signal from the output of layer l
Y ground truth corresponding to X
Hl pre-activation of layer l
Zl post-activation for layer l
Wl weights for layer l
W l

m,n,:,: weights for a layer l with feature map [m, n]
∆Wl weight updates for layer l
Vj,:,: extract all scalar elements in the jth slice of the 2nd order Tensor V
el convolutional error kernels for layer l
∆el error signal update for error kernels for layer l
El error weights or matrix for layer l
∆El error signal update for error weights or matrix for layer l
λ learning rate for learnable parameter updates
Θ complete set of trainable parameters {W0 : Wl, E0 : El, e0 : el}
Λ complete set of pre- and post- activations {h0 : hl, z0 : zl}
β tuneable parameter to control error signal strength through layers
γ tuneable parameter to control error signal strength for ∆E
Operator Definition
= equality
← variable assignment
|X| absolute value of X
: a slice of a tensor object
∗ convolution operator
⟲ deconvolution operator
⊙ Hadamard product
· matrix/vector multiplication
()T transpose
ϕ activation function
σ softmax activator
Φmp max pooling operator
Φup up-sampling to pre-pooling size
F lip(X) transpose of X across x and y axis
F latten(X) X is converted to an equivalent column vector
UnF latten(X) X is reshaped into its pre-flattened shape

Table 3: Table of all notations with their respective definitions.

D Model and Training Specifications

Layer Fashion MNIST Fashion MNIST Output SVHN/CIFAR-10 SVHN/CIFAR-10 Output
L0 Input [:, 28, 28, 1] Input [:, 32, 32, 3]
L1 Conv1 (1, 32) [3 x 3] [:, 28, 28, 32] Conv1 (3, 64) [3 x 3] [:, 32, 32, 64]
L2 MaxP1 (2, 2) [:, 14, 14, 32] Conv2 (64, 64) [3 x 3] [:, 32, 32, 64]
L3 Conv2 (32, 64) [3 x 3] [:, 14, 14, 64] MaxP1 (2, 2) [:, 16, 16, 64]
L4 MaxP2 (2, 2) [:, 7, 7, 64] Conv3 (64, 64) [3 x 3] [:, 16, 16, 64]
L5 Conv3 (64, 128) [3 x 3] [:, 7, 7, 128] Conv4 (64, 128) [3 x 3] [:, 16, 16, 128]
L6 Flatten() [:, 6272] MaxP2 (2, 2) [:, 8, 8, 128]
L7 FC1 (6272, 128) [:, 128] Conv5 (128, 128) [3 x 3] [:, 8, 8, 128]
L8 Softmax (128, 10) [:, 10] Conv6 (128, 128) [3 x 3] [:, 8, 8, 128]
L9 - - MaxP3 (2, 2) [:, 4, 4, 128]
L10 - - Flatten() [:, 2048]
L11 - - FC1 (2048, 128) [:, 128]
L12 - - Softmax (128, 10) [:, 10]

Table 4: Model architectures that were trained on Fashion MNIST, SVHN, and CIFAR-10. The
layers of each model are defined as well as the outputs from each layer.
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Parameter Range Min Range Max Interval Activation Functions Best
batch_size 50 250 50 - 50
learning_rate 1e-5 1e-2 0.5 - 5e-4
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_uniform
optimizer - - - tanh, relu, signum tanh
dropout 0.0 0.5 0.1 - 0.1 conv, 0.3 fc

Table 5: Hyper-parameter tuning ranges and best found parameters for EKDAA.

Parameter Range Min Range Max Increment Activation Functions Best
batch_size 32 256 64 - 64
learning_rate 5e-5 3e-2 0.5 - 5e-4
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_normal
optimizer - - - tanh, relu relu
dropout 0.0 0.5 0.1 - 0.1 conv, 0.3 fc

Table 6: Hyper-parameter tuning ranges and best found parameters for FA.

Parameter Range Min Range Max Increment Activation Functions Best
batch_size 32 256 64 - 64
learning_rate 5e-5 3e-2 0.5 - 5e-3
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_uniform
optimizer - - - tanh, relu relu
dropout 0.0 0.5 0.1 - 0.1 conv, 0.2 fc

Table 7: Hyper-parameter tuning ranges and best found parameters for DFA.

Parameter Range Min Range Max Increment functions Best
batch_size 32 256 64 - 64
learning_rate 5e-5 3e-2 0.5 - 3e-3
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_uniform
optimizer - - - tanh, relu tanh
dropout 0.0 0.5 0.1 - 0.1 conv, 0.1 fc

Table 8: Hyper-parameter tuning ranges and best found parameters for SDFA.

Parameter Range Min Range Max Increment functions Best
batch_size 32 256 32 - 32
learning_rate 5e-5 3e-2 0.5 - 4e-3
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_normal
optimizer - - - tanh, relu relu
dropout 0.0 0.5 0.1 - 0.2 conv, 0.3 fc

Table 9: Hyper-parameter tuning ranges and best found parameters for RDFA.
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