
Proceedings of Machine Learning Research 1:1–13, 2022 GeoMedIA

Eigenvector Grouping for Point Cloud Vessel Labeling

Patryk Rygiel patryk.rygiel@hemolens.eu
Hemolens Diagnostics, Wroclaw University of Science and Technology

Maciej Zieba maciej.zieba@pwr.edu.pl
Wroclaw University of Science and Technology, Tooploox

Tomasz Konopczynski tomasz.konopczynski@hemolens.eu

Hemolens Diagnostics

Abstract

Segmentation of coronary arteries from Coronary Computed Tomography Angiography
(CCTA) is an essential step in developing various noninvasive diagnostic methods. In this
work, we tackle the task of vessel labeling on coronary artery voxel-based prediction by use
of point cloud artificial neural network. We propose a novel point aggregation technique
Eigenvector Grouping (EVG), tailored to the analysis of tubular-like structures. We further
utilize a specifically designed post-processing technique Component-Wise Majority Point
Voting (CMPV), to refine point cloud segmentation by enforcing class consistency among
connected components. We show that our solution outperforms previously proposed meth-
ods in the vessel labeling task on a CCTA dataset especially, in the presence of disrupted
segmentations.

Keywords: point clouds, vector grouping, medical image segmentation, coronary artery
segmentation

1. Introduction

Coronary artery disease (CAD) is one of the most common types of heart disease in the
European Union and the United States. Therefore, it is essential to perform computed
tomography (CT) scans to support diagnosing a range of cardiovascular conditions such as
CAD. To asses patient’s condition noninvasively, accurate segmentation of coronary arteries
(CA) from CT scans is required.

Segmentation of coronary arteries from 3D CCTA scans is often done with convolution-
based 3D U-Net architecture proposed by Ronneberger et al. (2015); Cicek et al. (2016).
Due to the large size of 3D CCTA scans and heavy computational cost of 3D convolutions,
a single volume cannot be processed at once - volumes need to be divided into local patches.
There are two main patching techniques used in literature: cube patching used by Huang
et al. (2018); Chen et al. (2019); Kjerland (2017) and slice patching used by Pan et al. (2021);
Cheung et al. (2021); Mirunalini et al. (2019). Even though, those approaches yield good
results in the coronary arteries segmentation task, they cause some common errors. First
of all, due to the lack of global context in a local patch, U-Net tends to detect large amount
of false positive (FP) vessels and tubular-like structures which are not coronary vessels.
Secondly, due to patching, coronary branches are prone to be disconnected from the main
component - this mainly occurs in the areas where two patches meet. Disruption are also
caused by common coronary artery tomography (CTA) issues such as calcified plaques, not

© 2022 P. Rygiel, M. Zieba & T. Konopczynski.

Rygiel Zieba Konopczynski

evenly distributed contrast and noise. Therefore, the process of further refinement of U-Net
predictions is required to obtain high-quality segmentation masks.

He et al. (2020) propose to use a point cloud based neural network to perform U-Net
predictions refinement with the task vessel labeling. It is defined as the segmentation task,
where each point, predicted as a CA by U-Net, is being assigned one of the following labels:
LCA (left coronary artery), RCA (right coronary artery) and FP vessel. This task has
three main goals: (I) removal of FP vessels and other objects incorrectly predicted by U-
Net; (II) distinction of LCA and RCA vessels; (III) detection of disconnected coronary
vessel branches. He et al. (2020) use PointNet++ by Qi et al. (2017) and DGCNN by Wang
et al. (2019) architectures with the proposed geometry-aware grouping (GAG) strategy to
perform this task. In this work we tackle the problem of vessel labeling and propose a
novel grouping strategy for PointNet++ architecture which we call eigenvector grouping
(EVG). EVG is designed to exploit vascular tree topology by grouping points with vectors
that approximate vessel direction. Such approach is robust at finding disconnected CA
branches and discriminating between FP and CA vessels. To further refine point cloud
segmentations to facilitate class consistency among connected components, we propose a
post-processing algorithm component-wise majority point voting (CMPV). Our proposed
approach is evaluated on our internal dataset composed of segmentation maps obtained from
a 3D U-Net with a 3D cube patching and compared with reference methods. Moreover, we
show that our method works significantly better for predictions with disrupted lumen in
two additional experiments.

Our contributions: (I) We propose a new point grouping method, EVG which utilizes
a prior knowledge of a vessel shape. (II) We propose a post-processing algorithm CMPV
which further refines segmentation results by enforcing class consistency among connected
components. (III) We report accuracy of 97.88% on CA using a skeleton metric on our
internal dataset - thus surpassing current best performing approach to this task by He et al.
(2020). (IV) We show that EVG has better generalization capabilities than other methods
on disrupted segmentations.

2. Method

We propose a novel approach to the problem of vessel labeling described in Figure 1. Below
we briefly describe each of the components of this method.

CA segmentation. During the initial segmentation stage the input 3D scan I is trans-
formed to a binary segmentation mask Y , where u(I) = Y , and yi,j,k = 1 if the point at
(i, j, k) is classified as vessel, and yi,j,k = 0 otherwise. The operation u(·) can be performed
by any segmentation procedure – we utilize 3D cube patching together with 3D U-Net for
sake of efficiency and memory limitations.

Conversion to a point cloud representation. To perform task of vessel labeling to
remove artifact and keep disconnected CA vessels from the segmentation results we apply
further processing using efficient point cloud representation. We create the set of 3D coor-
dinates (point cloud representation) X = {(i, j, k) : yi,j,k = 1} for which the segmentation
mask returned positive values.

2

Eigenvector Grouping for Point Cloud Vessel Labeling

Output Vessel labeling

CA segmentation

3D U-Net

U-Net prediction (volume)

Conversion to a point
 cloud representation

U-Net prediction (point cloud)

PointNet++ (EVG)Component-wise
majority point voting

CA segmentation (point cloud)CA segmentation (volume)

Input

3D CCTA volume

3D Cube
patching

Patched 3D CCTA volume

Figure 1: Method diagram. The CA segmentation step utilizes a 3D U-Net architecture
with 3D cube patching. The next step vessel labeling, on which we focus in this
work, performs point cloud segmentation with a PointNet++ and proposed EVG
grouping strategy. Results are later refined with CMPV algorithm and converted
back to the volumetric representation.

Point cloud processing. Following the procedure described in He et al. (2020) we pro-
cess each point xn from X using a PointNet++ architecture. The encoder block of Point-
Net++ architecture extracts set of representatives Z ⊆ X with FPS algorithm by Eldar
et al. (1997). For each zm ∈ Z grouping operation g(·) is performed to extract a set of
representative’s neighbours Qzm . Neighbourhoods extracted in such manner are then pro-
cessed with a PointNet to perform feature extraction. Features are later aggregated onto
the set of representative points Z to reduce data dimensionality. As a grouping operation
g(·), PointNet++ utilizes multi-scale grouping (MSG) which is based on computing Eu-
clidean distance and then querying points with the KNN or the ball query defined in Qi
et al. (2017). A multi-scale feature is a process of defining more than one grouping area per
representative point zm and can be used for any grouping strategy we discuss in this work.
He et al. (2020) propose geometry-aware grouping (GAG) which facilitates class consistency
among vessels by being more likely to group points belonging to the same connected com-
ponent. The Euclidean distance metric is modified by multiplying it by a parameter λ (set
to 0.25 by the authors) when two points are from the same connected component and by
(1 − λ) otherwise. Visual comparison between these approaches is showcased at Figures
2(a), 2(b). Neither of these approaches leverages topological relationships between discon-
nected CA vessels and the fact that direction of the vessel provides meaningful information.
Disconnections are most often caused by the occurrence of plaques. Since only the plaque
neighbouring segmentation is missing, the disconnected vessel part can be easily traced by
following the main vessel direction. Moreover, GAG in its design inherently works against
finding disconnected vessels, since points belonging to different components are less likely to

3

Rygiel Zieba Konopczynski

be grouped together. We propose to use an alternative, novel strategy named Eigenvector
grouping (EVG) which is designed to exploit vessel direction.

(a) MSG (b) GAG (c) EVG

Figure 2: Visual comparison of the points grouping strategies with a ball query. Points
belonging to the same components are marked with the same color. (a) MSG:
The grouping is performed with a ball of a given radius around the root point;
(b) GAG: The smaller ball groups all the points present in it and the larger one
only those which are of the same component as the root point; (c) EVG: The
grouping areas stretch along the vessel direction grouping points of disconnected
vessel branches while omitting artefact points.

Eigenvector Grouping (EVG). Our proposed solution is based on finding the first
eigenvector (one with the largest eigenvalue) of local point neighbourhood and performing
point aggregation with it. The top eigenvector defines direction of the most variance in a
local point cloud, which corresponds to the vessel’s direction. First, for each representative
zm ∈ Z, we identify K nearest neighbours in the input point cloud set X . The identified
nearest neighbours are stored in rows of matrix Nzm of size K × 3. The mean point µzm
is further calculated, and each of the points stored in Nzm is centred by subtracting the
calcualted mean value. In the next step a covariance matrix Czm of Nzm is calculated:

Czm =
1

K
·NT

zmNzm (1)

To calculate the top eigenvector of the given matrix Czm many different methods can
be used. Common eigendecomposition algorithms: Francis (1961); Jacobi (1846); Cuppen
(1981) compute all eigenpairs and thus are too time-consuming to be used repeatedly in
a training loop. Since our approach requires only an eigenvector with the top eigenvalue
we utilize a power iteration algorithm by Müntz (1913) which is an efficient choice for
approximating the top eigenvector. The top eigenvector is computed in a following iterative
manner:

b
(i+1)
zm =

Czmb
(i)
zm

||Czmb
(i)
zm ||2

(2)

4

Eigenvector Grouping for Point Cloud Vessel Labeling

where b
(0)
zm is a random vector with a norm of 1. With each iteration vector b

(i)
zm better

approximates the top eigenvector since b
(i)
zm −−−→

i→∞
ezm . For our purposes 20 iterations were

enough to obtain desired approximation of ezm .

For each zn ∈ Z we construct a grouping line segment szm which direction is defined
by the computed eigenvector ezm . The line segment is centered at the root point zn and
its length is specified by the method hyperparameter λ. For each xn ∈ X the Euclidean
distance to the line segment szm is calculated. The set of neighbours Qsm of the line segment
szm can then be queried via the KNN or the ball query which defines distance threshold
(radius) for grouping. The queried set Qsm is later processed with a PointNet.

Our proposed EVG strategy is more likely to group points along the vessel direction to
robustly discriminate between disconnected CA vessel and FP ones (see Figure 2(c)).

Component-wise majority point voting (CMPV). To further refine segmentation
results we design a post-processing algorithm CMPV, which enforces class consistency
among components by assigning one class to all points belonging to the same connected
component. The set of unique components C = {c1, c2, ..., cM} is obtained from segmen-
tation mask Y from prior segmentation procedure u(·), by application of connected com-
ponents labeling algorithm (CCL) by Park et al. (2000) (CCL operates on voxels thus we
utilize a prior voxel segmentation mask). For each component cm ∈ C we identify the points
Xm ⊆ X , that belong to cm and calculate their corresponding class labels Ŷm returned by
PointNet++. The most frequently observed class in Ŷm identified and all members of Xm

are re-labelled with this majority class. This procedure is applied to all unique components.

3. Experiments & Results

Our dataset consists of 100 CCTA volumes gathered from five different medical centers. It
consists of 42 volumes of female and 58 volumes of male patients who are on average 70.41
years old. Images are acquired from six kinds of scanners: Siemens SOMATOM Force,
Siemens Sensation Cardiac 64, Canon Medical Systems Aquilion ONE, and GE Medical
Systems Discovery CT750 HD. Volumes have a size of 512×512× (130−420), with spacing
0.4−0.6 mm and a typical pixel size of around 0.332 mm2. The dataset example is showcased
in Figure 1, more examples are included in the supplementary Appx. A. For the task of
vessel labeling we split the dataset into 80 training and 20 test samples. To avoid data
leakage between the two training modules, we use the same data split during training for
both U-Net and PointNet++.

For a fair comparison between grouping methods we use the same backbone for each
task. We train a standard 3D U-Net on the CCTA dataset with the DiceLoss. Each
point cloud X consists of 200, 000 to 400, 000 points. During training we downsample
them randomly to 20, 000 points. PointNet++ is trained for 200 epochs with batch size
of 4. As an optimizer we use Adam and for learning rate (lr) scheduler OneCycleLR by
Smith (2018) with a max lr set to 0.0025. As a loss function we use classic CrossEntropy

and for data augmentation small rotations up to 30 degrees in each axis, translations and
jittering. Architectures details and their running times are provided in the supplementary
Appx. B. During inference we adopt scheme proposed by Balsiger et al. (2019). The

5

Rygiel Zieba Konopczynski

point cloud is split into chunks of 20, 000 and inference is run for each chunk seperately
to obtain segmentation result for each point in the original point cloud. This procedure
is repeated five times with random chunks. The segmentation scores are computed via
majority voting. Implementation is done with use of PyTorch 1.8.1 Paszke et al. (2019),
pytorch-lightning Falcon and MONAI Consortium (2020) libraries. For the PointNet++
architecture we use the Pointnet++ PyTorch Wijmans library and extend it with GAG
and EVG grouping strategies implementation.

Table 1: Qualitative results using the skeleton metric - mean (± std). Results for MSG,
GAG and EVG grouping strategies with different query methods. Each method is
further evaluated with CMPV.

Grouping Query + post-processing Metrics (%)

Accuracy F1-score Precision Recall

MSG knn 96.08 (± 4.60) 92.53 (± 10.12) 93.18 (± 10.50) 92.78 (± 9.18)

knn + CMPV 96.80 (± 3.58) 93.55 (± 9.56) 94.46 (± 8.99) 93.49 (± 10.41)

radius 97.36 (± 2.11) 95.20 (± 4.12) 95.20 (± 5.67) 95.59 (± 4.45)

radius + CMPV 97.73 (± 1.79) 95.75 (± 3.52) 95.89 (± 5.27) 96.09 (± 3.62)

GAG knn 96.63 (± 3.27) 93.16 (± 9.08) 94.89 (± 5.99) 92.56 (± 12.02)

knn + CMPV 96.72 (± 3.32) 93.06 (± 10.12) 94.15 (± 9.86) 92.68 (± 11.84)

radius 97.55 (± 1.82) 95.48 (± 3.59) 96.01 (± 4.25) 95.38 (± 3.93)

radius + CMPV 97.64 (± 1.94) 95.66 (± 3.49) 96.35 (± 3.87) 95.53 (± 4.13)

EVG knn 96.18 (± 3.49) 92.33 (± 9.59) 93.08 (± 9.44) 92.19 (± 10.97)

knn + CPMV 97.14 (± 3.02) 93.99 (± 9.04) 94.86 (± 8.57) 93.71 (± 10.26)

radius 97.73 (± 1.62) 95.90 (± 3.05) 96.35 (± 3.63) 95.85 (± 3.24)

radius + CMPV 97.88 (± 1.76) 96.10 (± 3.20) 96.77 (± 3.31) 96.00 (± 3.19)

We compare our proposed approach EVG with MSG by Qi et al. (2017) and GAG by He
et al. (2020) grouping strategies. For all methods, we experiment with both the ball query
(denoted ”radius”) and k-nearest-neighbours (KNN) as point query methods. Models are
tested with and without our post-processing algorithm CMPV. We evaluate the performance
either by sampling from the entire region of an artery (denoted ”dense metric”) or from a
skeleton of an artery (denoted ”skeleton metric”). We consider the skeleton metric to be
more meaningful as it better conveys correct cardiovascular tree topology as vessel width.

Evaluation on CCTA Table 1 showcases results on our internal CCTA dataset that
represents good prior U-Net performance. For all grouping strategies, methods using the
ball query outperform the KNN query. Our proposed approach achieves the highest results
with both the post-processing and without it for the accuracy, F1-score and the precision
metric. The highest result for the recall metric is obtained by MSG. CMPV enforces the
class consistency among components. Methods utilizing it achieve slightly better results.
Additional experiment using the dense metric is included in the supplementary Appx. C.

Undersegmented predictions We evaluate robustness of methods toward underseg-
mented predictions by reducing the threshold values of U-net predictions. Table 3(a) show-
cases methods performance for 5 different threshold values (Fig 3(b) shows U-Net segmen-

6

Eigenvector Grouping for Point Cloud Vessel Labeling

tation for different thresholds). With higher thresholds CA disruptions are more prevalent
and larger. For higher thresholds performance of MSG and GAG degrades while EVG
maintains mean F1-score results of > 0.9. Figure 4 shows a qualitative example in which
the superiority of EVG for highly undersegmented vessels is clearly visible. Additional
statistical significance tests are in the Appx. C.

Threshold F1-score (%)
MSG GAG EVG

0.5 95.20 95.48 95.90
(± 4.12) (± 3.59) (± 3.05)

0.8 95.16 94.76 95.90
(± 3.56) (± 2.76) (± 3.23)

0.9 94.62 93.23 95.42
(± 4.03) (± 7.77) (± 4.40)

0.95 90.06 83.65 94.20
(± 9.12) (± 21.51) (± 6.38)

0.97 76.53 67.88 90.88
(± 20.24) (± 27.40) (± 9.88)

(a) Undersegmentation results (radius methods)
- mean (± std). Evaluated on point clouds
created from prior U-Net segmentation with
different binarization thresholds.

(b) U-Net segmentations with differ-
ent binarization thresholds: or-
ange - 0.5, blue - 0.8, green - 0.97

Figure 3: Undersegmantation benchmark

(a) MSG (radius) (b) GAG (radius) (c) EVG (radius) (d) GT

Figure 4: Qualitative example on undersegmented vessel point clouds with threshold 0.97:
RCA (blue), LCA (orange), FP artefacts (grey).

Artificially disrupted vessels To further evaluate EVG robustness and generalization
capabilities in more comprehensive benchmark we construct a dataset with artificially dis-
rupted vessels that simulate disruptions caused by pathologies such as calcification or coro-
nary artery stenosis. The datasets are created by generating discontinuities along arteries
by choosing at random root points from artery skeletons and discarding all points in the
specified radius around the point. Points are discarded only from CA vessels and for each

7

Rygiel Zieba Konopczynski

artery, there is the same number of disruptions generated. To control the process of gener-
ating disruptions, two parameters were introduced: radius specifying the size of disruption
and number of disruptions. Point clouds are normalized to the interval [−0.5, 0.5] and radii
of disruptions are given as the values in the same space.

0.01 0.03 0.05
Radius

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Number of disruptions per artery = 2

MSG (radius)
MSG (knn)
GAG (radius)
GAG (knn)
EVG (radius)
EVG (knn)

0.01 0.03 0.05
Radius

Number of disruptions per artery = 6

0.01 0.03 0.05
Radius

Number of disruptions per artery = 10

Artificial disruptions benchmark

Figure 5: Artifical disruptions benchmark. F1-score is computed on skeletonized point
clouds from datasets with varying values of radii and number of disruptions.

Figure 5 showcases how F1-score (skeleton metric) for each grouping strategy changes
for different radii and numbers of disruptions. For the smallest number of disruptions,
all methods achieve comparable results, although we can see that with larger radii EVG
tends to behave better - ball query methods are better than KNN ones. With the number
of disruptions set to 6, EVG with the ball query outperforms all other methods with F1-
score not dropping below 87%. Other grouping strategies using the ball query decrease in
performance drastically while the radius gets larger and drop to 75% F1-score or even lower.
For the max radius, the KNN query for both MSG and GAG performs better, while still
being worse than EVG with the ball query. For the largest disruption size and the most
amount of them, methods using the KNN query perform better. Among them, EVG is the
best method achieving over 72% F1-score. With more and larger disruptions the sparseness
of a point cloud increases, thus the KNN, which adapts to such changes inherently, is more
robust. GAG is outperformed by both MSG and EVG for almost all experiments. It can be
caused by the fact that GAG is designed to facilitate class consistency among components
while inherently being less robust towards finding disconnected artery components.

4. Summary

In this work, we tackle the post-processing task in CA segmentation called vessel labeling.
We propose a novel grouping strategy on point clouds EVG, designed to perform point ag-
gregation along vessels’ direction. To further refine results and facilitate class consistency
among connected components we propose to use a novel post-processing algorithm CMPV.
Our approach outperforms previously proposed GAG and native PointNet++ MSG group-
ing strategies by achieving 97.88% accuracy on CA skeletons on our CTA dataset. Moreover,
the proposed method shows greater generalization capabilities in the undersegmentation and
artificial disruptions benchmarks.

8

Eigenvector Grouping for Point Cloud Vessel Labeling

Acknowledgements

The work conducted by Maciej Zieba was supported by the National Centre of Science
(Poland) Grant No. 2020/37/B/ST6/03463. For the purpose of Open Access, the author
has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM)
version arising from this submission.

References

Fabian Balsiger, Yannick Soom, Olivier Scheidegger, and Mauricio Reyes. Learning
shape representation on sparse point clouds for volumetric image segmentation. CoRR,
abs/1906.02281, 2019.

Yo-Chuan Chen, Yi-Chen Lin, Ching-Ping Wang, Chia-Yen Lee, Wen-Jeng Lee, Tzung-Dau
Wang, and Chung-Ming Chen. Coronary artery segmentation in cardiac ct angiography
using 3d multi-channel u-net, 2019.

Wing Keung Wing Keung Cheung Cheung, Robert Robert Bell Bell, Arjun Arjun Nair
Nair, Leon J. Leon J. Menezes Menezes, Riyaz Riyaz Patel Patel, Simon Simon Wan Wan,
Kacy Kacy Chou Chou, Jia Chen Chen, Ryo Ryo Torii Torii, Rhodri H. Rhodri H. Davies
Davies, James C. James C. Moon Moon, Daniel C. Daniel C. Alexander Alexander, and
Joseph Joseph Jacob Jacob. A computationally efficient approach to segmentation of the
aorta and coronary arteries using deep learning. Ieee Access, 9:108873 – 108888, 2021.

Ozgun Cicek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: Learning dense volumetric segmentation from sparse annotation,
2016.

The MONAI Consortium. Project monai, December 2020. URL https://doi.org/10.

5281/zenodo.4323059.

J.J.M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numerische Mathematik. 36, page 177–195, 1981.

Y. Eldar, M. Lindenbaum, M. Porat, and Y.Y. Zeevi. The farthest point strategy for
progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–1315,
1997. doi: 10.1109/83.623193.

WA et al. Falcon. Pytorch lightning. URL https://github.com/PyTorchLightning/

pytorch-lightning.

J.G.F Francis. The qr transformation, i. The Computer Journal, 4(3), pages 265–271, 1961.
doi: 10.1093/comjnl/4.3.265.

Jiafa He, Chengwei Pan, Can Yang, Ming Zhang, Yang Wang, Xiaowei Zhou, and Yizhou
Yu. Learning hybrid representations for automatic 3d vessel centerline extraction. Lec-
ture Notes in Computer Science, page 24–34, 2020. ISSN 1611-3349. doi: 10.1007/
978-3-030-59725-2\ 3. URL http://dx.doi.org/10.1007/978-3-030-59725-2_3.

9

https://doi.org/10.5281/zenodo.4323059
https://doi.org/10.5281/zenodo.4323059
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
http://dx.doi.org/10.1007/978-3-030-59725-2_3

Rygiel Zieba Konopczynski

Weimin Huang, Lu Huang, Zhiping Lin, Su Huang, Yanling Chi, Jiayin Zhou, Jun-Mei
Zhang, Ru San Tan, and Liang Zhong. Coronary artery segmentation by deep learning
neural networks on computed tomographic coronary angiographic images. volume 2018,
pages 608–611, 07 2018. doi: 10.1109/EMBC.2018.8512328.

C.G.J. Jacobi. Über ein leichtes verfahren, die in der theorie der säkularstörungen vorkom-
menden gleichungen numerisch aufzulösen. Crelle’s Journal (30), pages 51–94, 1846. doi:
10.1515/crll.1846.30.5.

Øyvind Kjerland. Segmentation of coronary arteries from ct-scans of the heart using deep
learning. 2017.

Palaniappan Mirunalini, Chandrabose Aravindan, A. Thamizh Nambi, S. Poorvaja, and
V Pooja Priya. Segmentation of coronary arteries from cta axial slices using deep learning
techniques. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pages 2074–
2080, 2019.

Herman Müntz. Solution directe de l’équation séculaire et de quelques problèmes analogues
transcendants. Compte Rendu Acad, Paris, pages 43–46, 1913.

LS. Pan, CW. Li, and SF. Su. Coronary artery segmentation under class imbalance using
a u-net based architecture on computed tomography angiography images. Sci Rep 11,
14493, 2021. doi: https://doi.org/10.1038/s41598-021-93889-z.

Jungme Park, Carl Looney, and Hui-Chuan Chen. Fast connected component labeling
algorithm using a divide and conquer technique. 01 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 -
learning rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds, 2019.

Erik Wijmans. Pointnet++ pytorch. URL https://github.com/erikwijmans/

Pointnet2_PyTorch.

10

https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch

Eigenvector Grouping for Point Cloud Vessel Labeling

Appendix A. Data

Figure 6: Examples of axials slices from the CCTA dataset.

Appendix B. Architecture details

Table 2: PointNet++ architecture that is used for all grouping methods. All groupings
utilize the multi-scale grouping approach by defining more than one grouping area
per block (radii, nsamples). Parameter radii defines radii of ball queries and
nsamples numbers of neighbours to aggregate with KNN.

Architecture Parameters Encoder
Block 1 Block 2 Block 3 Block 4 Block 5

PointNet++ (radius) npoint 2048 1024 256 64 32
radii [0.05, 0.1] [0.1, 0.2] [0.2, 0.4] [0.4, 0.6] [0.4, 0.8]

PointNet++ (knn) npoint 2048 1024 256 64 32
nsamples [256, 512] [64, 128] [32, 64] [16, 32] [8, 16]

11

Rygiel Zieba Konopczynski

Table 3: EVG parameters. The parameter prior nsamples defines how many neighbours
are aggregated with an initial KNN to estimate the eigenvector. The parameter
vector lengths defines the length of grouping vectors.

Parameters Encoder
Block 1 Block 2 Block 3 Block 4 Block 5

prior nsamples [64, 64] [16, 16] [8, 8] [8, 8] [4, 4]
vector lengths [0.01, 0.02] [0.01, 0.02] [0.01, 0.02] [0.01, 0.02] [0.01, 0.02]

Table 4: Training (inference) time comparison between methods. All models were trained
on the NVIDIA GeForce RTX 3060 12 GB (require 11.5 GB of RAM).

Query MSG GAG EVG

knn 2h 41min 3h 15min 5h 14min
radius 1h 7min (4.93s) 1h 10min (4.94s) 2h 25min (9.65s)

Appendix C. Additional results

Table 5: Dense metrics - mean (± std) for the evaluation on the CCTA dataset. Dense
metrics are computed on point clouds sampled from the entire region of an artery.

Grouping Query + post-processing Metrics (%)

Accuracy F1-score Precision Recall

MSG knn 98.07 (± 3.37) 94.78 (± 10.13) 95.72 (± 9.62) 94.79 (± 9.20)

knn + CMPV 98.54 (± 2.41) 95.57 (± 9.82) 96.59 (± 8.39) 95.14 (± 10.79)

radius 99.10 (± 0.90) 97.56 (± 2.95) 97.52 (± 4.01) 97.72 (± 2.51)

radius + CMPV 99.24 (± 0.86) 98.00 (± 2.24) 98.30 (± 2.70) 97.86 (± 2.38)

GAG knn 98.55 (± 2.02) 95.56 (± 8.08) 97.28 (± 4.43) 94.79 (± 11.00)

knn + CMPV 98.53 (± 2.22) 95.15 (± 10.07) 96.24 (± 9.22) 94.64 (± 11.65)

radius 99.20 (± 0.80) 97.74 (± 2.73) 98.23 (± 2.65) 97.47 (± 3.12)

radius + CMPV 99.22 (± 0.82) 97.88 (± 2.61) 98.57 (± 2.10) 97.48 (± 3.26)

EVG knn 98.30 (± 2.14) 94.74 (± 9.22) 95.78 (± 7.94) 94.34 (± 11.03)

knn + CPMV 98.78 (± 1.98) 95.95 (± 9.13) 97.13 (± 7.20) 95.27 (± 10.75)

radius 99.24 (± 0.74) 97.98 (± 2.34) 98.45 (± 2.14) 97.70 (± 2.65)

radius + CMPV 99.30 (± 0.78) 98.05 (± 2.54) 98.75 (± 1.85) 97.67 (± 2.87)

12

Eigenvector Grouping for Point Cloud Vessel Labeling

Table 6: Wilcoxon signed-rank test on F1-score of GAG vs EVG and MSG vs EVG for
the experiment on the undersegmented predictions. The results are presented in
p-values for the ball query (radius) methods. The higher threshold, the higher
significance.

F1-score p-value

Threshold 0.5 0.8 0.9 0.95 0.97

EVG vs MSG 0.116 0.013 5.7e-4 1.2e-6 3e-7

EVG vs GAG 0.144 0.263 0.017 0.003 1.7e-5

13

	Introduction
	Method
	Experiments & Results
	Summary
	Data
	Architecture details
	Additional results

