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ABSTRACT

In this paper, we investigate the generalization error of deep physical models with
latent variables. Deep physical models, such as Hamiltonian Neural Networks,
are neural network models for learning equations of motion from observational
data of physical phenomena and have attracted much attention in recent years. In
particular, in such cases, the data are not completely random, but rather given as
random trajectories. We provide an error bound for the case where the training
data are given in such a way. Our results show that it is important to collect
data from many trajectories, rather than simply collecting a large number of data,
to improve generalization performance. In addition, an important application of
the combination of deep physics models with latent variables is the interpolation
of images from videos while preserving the laws of physics, such as the energy
conservation law. However, when the frame interval of the video is large, it can be
difficult to preserve the laws of physics. In this paper, we show that it is possible
to interpolate the images from videos so that the laws of physics are preserved,
provided that the generalization error is sufficiently small.

1 INTRODUCTION

Recently, deep learning methods have attracted much attention for learning the equations of motion
from observational data of physical phenomena. In this paper, we investigate the generalization
error of such models when the models are trained with the random trajectory data. In addition,
an important application of deep physical models is the interpolation of images from videos while
preserving the laws of physics, such as the energy conservation law. As an application of the error
analysis, we also show that it is possible to interpolate the images from videos so that the laws of
physics are preserved, provided that the generalization error is sufficiently small.

Although neural networks have been applied not only to modeling physical phenomena but also to
other important tasks that include solving partial differential equations such as physics-informed
neural networks (Raissi et al., 2019) and neural operators (Li et al., 2020; Kovachki et al., 2023; Lu
et al., 2021), in this paper we focus on the neural network models for modeling and call them deep
physics models for simplicity.

Typically behind the physical phenomena is analytical mechanics, which is the theory of classical
mechanics that allows the modeling of complex and non-linear dynamical systems. There are two
theories of analytical mechanics, the Lagrange and the Hamilton mechanics. Most of the deep
physical models are based on the Hamilton equation, which is the equation of motion of Hamiltonian
mechanics:

du

dt
= S

∂H

∂u
, (1)

where u : t ∈ R 7→ u(t) ∈ RN , H : u ∈ RN 7→ H(u) ∈ R. Typically, u is given as (q, p), where q
represents the state variables and p the generalized momenta. S is a skew-symmetric matrix andH is
a real-valued function of u, which represents the total energy of the system. The most representative
model for extracting the equation of motion is the Hamiltonian neural networks (HNNs, Greydanus
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Figure 1: Overview of the research. Interpolation is performed on a sequence of images repre-
senting a physical phenomenon while respecting the laws of physics. If the modeling error of the
learned model is small enough, the difference between the true Hamiltonian and the model can be
approximated by a Hamiltonian system with very high accuracy. This can be used to construct a
Hamiltonian system that approximates the model.

et al. (2019))
du

dt
= S

∂HNN

∂u
, (2)

where HNN is a neural network, and various extensions of this model have been proposed. Based
on the theory of physics, these models are designed so that the laws of physics, such as the energy
conservation law, are maintained.

On the other hand, theoretical analysis is limited and, in particular, no error analysis has been per-
formed in the practical situations where the models are trained with trajectory data. A generalization
error bound of HNNs is investigated in Chen et al. (2021a), in which the training data are assumed to
be given completely at random. However, when these models are used, the data are not completely
random, but rather given as random trajectories. In addition, a typical application of such models is
the interpolation of the images from videos while preserving the laws of physics. For this applica-
tion, the models are combined with the autoencoder; however, to the best of the authors’ knowledge,
there are no theoretical analyses of the performance of such models. In particular, as explained in
Section 3.2, it is not obvious whether the trained models in fact preserve the laws of physics or not.

In this study, first, we present a generalization error bound for the deep physical models including
HNNs with and without the autoencoder. Theoretical analysis of generalization error is typically
based on statistical learning theory, in which it is usually assumed that the data are random samples
from a certain probability distribution, thereby evaluating the difference between the loss function
for the training data and the expected value of the loss function. However, as explained above, when
neural networks for modeling the equation of motion are used, the training data are given as trajec-
tory data. More precisely, the initial values of the data are given randomly, but the subsequent data
are generated according to the laws of physics. Therefore, only the initial value of each trajectory
can be given at random; as far as we know, this problem setting has not been considered yet in the
existing theoretical analyses for such models.

Second, as an application of the generalization error analysis, we prove that the so-called Hamilto-
nian interpolation is possible by combining the autoencoder and symplectic neural network models.
As is demonstrated in the original paper of HNN (Greydanus et al., 2019), an important applica-
tion of these models is learning the equation of motion from images by combining the autoencoder,
thereby interpolating the images while preserving the laws of physics. For example, when creating
an animation, if several images with large time intervals can be prepared and interpolated between
them, the animation can be created efficiently. To avoid unnaturalness, it is desirable to interpolate
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Table 1: Comparison with other theoretical results for deep physical models.
SympNet
(Jin et al.,

2022)

GFINNs
(Zhang et al.,

2022)

KAM
(Chen et al.,

2021a)
Our Results

Universal Approximation Theorem yes yes yes
Generalization Error Analysis yes yes
Learning from Pixels yes
Random Trajectory Data yes

the images while respecting the laws of physics. In such an application, whether the interpolated
images follow a Hamiltonian equation is very important. Meanwhile, the problem of determining
if a given function is obtained from a Hamiltonian equation or not has been studied in the fields
of symplectic geometry and numerical analysis. By combining the generalization error bound and
these theories, particularly the so-called splitting method, we will show that if the number of data is
sufficient, with a high probability the interpolation is possible while preserving the laws of physics.

The main contributions of this paper are as follows (see also Figure 1 and Table 1.)

• We establish a theoretical framework for analyzing the generalization error when the initial
values of each trajectory in the data can be given at random. As far as we know, there is
no theoretical analysis performed in this setting. It is shown that the generalization error
depends on the number of trajectories, not on the total number of the data.

• By combining this generalization error analysis with the theory of symplectic geometry
and the error analysis of a numerical integrator called the splitting method, we theoretically
prove that with a high probability, there exists a Hamiltonian system that interpolates the
given image sequences with large time intervals. This result presents a new direction in the
theoretical analysis of deep physical models in the sense that it is a combined study of three
fields: statistical learning theory, symplectic geometry, and numerical analysis.

2 RELATED WORK

Since ordinary differential equations describe general dynamical systems, Neural Ordinary Differ-
ential Equation (NODE, Chen et al. (2018)) is a general model for modeling ordinary differential
equations. However, due to the generality of neural networks, this method does not necessarily work
well for modeling physical phenomena. Most of the existing deep learning models for physics are
based on analytical mechanics. For example, the Lagrangian Neural Networks (LNN, Cranmer et al.
(2020)) learns the Lagrangian from data and derives the equation of motion as the Euler–Lagrange
equation. Hamiltonian Neural Networks (HNN, Greydanus et al. (2019)) is a neural network model
for Hamiltonian systems, in which the Hamiltonian, the energy function, is modeled using neural
networks. There are many extensions of HNNs, for example, symplectic ODE-Net (Zhong et al.,
2019), Variational Integrator Networks (Saemundsson et al., 2019), DGNet(Matsubara et al., 2019),
neural symplectic forms (Chen et al., 2021b), Poisson Neural Networks (Jin et al., 2022).

At the same time, these deep physical models are applied to derive equations of motion from ani-
mations. The currently available method includes the Hamiltonian Generative Network (Toth et al.,
2019), which is capable of learning Hamiltonian dynamics from high-dimensional observations (e.g.
images.) Similarly, KeyCLD(Daems et al., 2022) is a framework for learning Lagrangian dynamics
from images. Khan & Storkey (2021) focused on a deep generative model utilizing Hamiltonian
Latent Operators to reliably disentangle content and motion information in image sequences. Ma-
son et al. (2022) presented a physics-informed neural network model to estimate and predict 3D
rotational dynamics from image sequences with a multi-stage prediction pipeline. Hofherr et al.
(2022) proposed to combine neural implicit representations for appearance modeling with neural
ordinary differential equations for modeling physical phenomena to obtain a dynamic scene repre-
sentation from visual observations. Jatavallabhula et al. (2021) proposed gradsim which addressed
visuomotor control tasks without relying on state-based supervision.
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From the perspective of theoretical research, Jin et al. (2020) proposed SympNet along with the
universal approximation theorem for the proposed model. HNNs were shown to have the universal
approximation property in Chen et al. (2021a) along with an application to the KAM theory. Zhang
et al. (2022) proposed the GENERIC formalism informed neural networks that obey the degeneracy
conditions of the GENERIC formalism, and proved the universal approximation theorem for their
models.

As far as we know, no theoretical analysis of deep learning models trained with trajectory data
has been performed. In addition, the Hamiltonian interpolation using these models has not been
investigated.

3 BRIEF INTRODUCTION OF DEEP PHYSICAL MODELS WITH LATENT
VARIABLES AND SUMMARY OF EXISTING THEORIES

3.1 DEEP PHYSICAL MODEL BASED ON HAMILTONIAN MECHANICS WITH LATENT
VARIABLES

In this paper, we consider the combination of deep physical models based on Hamiltonian mechanics
and the autoencoder for modeling the equation of motion from images. We call these models deep
physical models with latent variables. Note that such models include the deep physical models alone
because the encoder and the decoder of the autoencoder can be the identity map.

In deep physical models with latent variables the features extracted by the autoencoder are used as
the state variables of the deep physical models. More precisely, we consider typical models that
have the architecture shown in Figure 2. To train these models, first, the features of the images are
extracted by the encoder. Then the extracted features are sent directly to the decoder to compute the
loss function between the output results and the original data. On the other hand, the extracted fea-
tures are also input into the deep physical model to compute the loss function between the prediction
by the deep physical model and the features of the next image computed by the autoencoder.

Obviously, as the deep physical model, arbitrary neural network models for physics can be em-
ployed. In this paper, we perform a generalization error analysis and a theoretical analysis on the
Hamiltonian interpolation. In the generalization error analysis, we do not place any restriction on
the type of the neural network models; for example, the models for energy-dissipative phenomena
(e.g., pendulum with friction) can be used. For the latter part, we only consider Hamiltonian systems
and assume that deep physical models define a symplectic map.

3.2 SYMPLECTIC INTEGRATORS

As is well known in the field of numerical analysis, symplectic numerical integrators are useful for
numerically computing solutions to Hamiltonian equations. Symplectic integrators are designed so
that the time evolution map given by the integrators is a symplectic map. For such an integrator, it
is known that there exists a so-called shadow Hamiltonian, which defines a Hamiltonian system that
approximates the symplectic map corresponding to the integrator. Motivated by this fact, several
methods have been proposed to learn the discrete-time Hamilton equation in such a way that the
neural network model becomes a symplectic map when learning a time-stepping map.

However, a symplectic map is guaranteed to be related to the Hamilton equation if it is close to the
identity map (Benettin & Giorgilli, 1994; Reich, 1999). This is guaranteed for symplectic integrators
when the time-step sizes are small enough; however, particularly in the case where the time-step
sizes are not so small, it is not necessarily guaranteed that the symplectic map corresponds to the
Hamilton equation.

Meanwhile, in the case of learning from video images, the time increments are not always small,
and this assumption is generally not satisfied. Therefore, even if the model is constructed to be a
symplectic map, it may not be possible to interpolate the images using the Hamilton equation.
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3.3 HAMILTONIAN INTERPOLATION OF SYMPLECTIC MAPPINGS

As explained in the above, although any trajectory of a Hamilton equation defines a symplectic map,
a symplectic map does not necessarily correspond to a Hamilton equation (Benettin & Giorgilli,
1994). It is known that if a symplectic map is close to the identity map, then there exists a Hamilton
equation that approximates this map to a very high degree of accuracy.

Theorem 3.1 (Benettin & Giorgilli (1994) ) For any symplectic mapping ϕε that is analytic and
ε-close to the identity, there exists an analytic autonomous Hamiltonian system, Hε such that the
difference between the time-one mapping and ϕε is O(ε exp(−1/ε)).

This theorem has been applied by Reich to evaluate the long-term performance of symplectic nu-
merical integrators (Reich, 1999). In Reich (1999), it is shown that the numerical solutions by the
symplectic numerical integrators can be practically regarded as a solution to a Hamilton equation.
The Hamiltonian for this Hamilton equation is often called the shadow Hamiltonian. In fact, the
symplectic numerical integrators define a symplectic map that is close to the identity map if the
time-step size is sufficiently small. Thus, the above theorem is applicable, and the existence of
a Hamiltonian system that approximates the symplectic map with an exponentially small error is
guaranteed. However, the symplectic map learned by the neural network does not have a parameter
corresponding to the time-step size. Therefore, the map may not be sufficiently close to the iden-
tity map, and even if the neural network model is symplectic, the existence of the corresponding
Hamiltonian system is not obvious.

3.4 SPLITTING METHOD

In the following section, we show that the Hamiltonian interpolation is certainly possible under
certain conditions. The proof of this statement relies on the splitting method, which is a technique of
numerical analysis. The splitting method is a numerical method for ordinary differential equations,
particularly for Hamiltonian systems. Suppose that the Hamiltonian H of a Hamiltonian system is
represented by the sum of two Hamiltonians H1 and H2:

H(u) = H1(u) +H2(u).

Then, the time-1 mapping of the Hamiltonian system with respect to H can be approximated by
using the time-1 mapping of the Hamiltonian system with respect to H1 and H2. This method is
known as the splitting method. As is well known, the difference between these two mappings is
shown to be O(|H1||H2|) by the Campbell–Baker–Hausdorff lemma (Hairer et al., 2006).

3.5 TOOLS FOR GENERALIZATION ERROR BOUNDS

In statistical learning theory, generalization error bounds are obtained by using the Rademacher
complexities or the covering number. See, e.g., Bousquet et al. (2004); Giné & Nickl (2016); Shalev-
Shwartz & Ben-David (2014); Steinwart & Christmann (2008) for details.

Definition 3.2 For a set V ⊂ Rn,

Rn(V ) :=
1

n
Eσ∼{−1,1}n sup

v∈V

n∑
i=1

σivi

is called the Rademacher complexity of V .

Lemma 3.3 Let X , Y be arbitrary spaces, F ⊂ {f : X → Y } be a hypotheses class, and L :
Y × Y → [0, c] be a loss function. For a given data set (xi, yi) ∈ X × Y (i = 1, . . . ,m), let G be
defined by {(xi, yi) ∈ X×Y 7→ L(yi, h(xi)) ∈ R | h ∈ F , i = 1, . . . ,m}. Then for any δ > 0 and
any probability measure P , we have with a probability at least (1− δ) with respect to the repeated
sampling of Pm-distributed training data

E[L(Y, h(X))] ≤ 1

m

m∑
i=1

L(yi, h(xi)) + 2Rm(G) + 3c

√
2 ln 4

δ

m

for all h ∈ F .
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An estimate of the Rademacher complexity can be obtained by using the covering number.

Definition 3.4 Let V, V ′ be subsets of Rn. V is r-covered by V ′ with respect to the metric function
defined by the norm ∥ · ∥ if for all v ∈ V there exists a v′ ∈ V ′ such that ∥v− v′∥ < r. The covering
number N(r, V, ∥ · ∥) of V is the minimum number of the elements of a set that r-covers V .

We also denote N(r, V, ∥ · ∥) by N(r, V ) when the norm is clear from the context.

Lemma 3.5 For V ⊂ Rm it holds that

R(V ) ≤ 6c

m

∞∑
k=1

2−k
√

log(N(c2−k, V )),

where c is the radius of the set V : c = minv0∈V maxv∈V ∥v − v0∥. For example, if√
logN(c2−k, V ) ≤ α+ kβ for some α and β, then Rn(V ) ≤ 6c

n (α+ 2β).

Thus, if the covering number is estimated for neural networks models, the bound on the generaliza-
tion error is obtained. To estimate the covering number, the following lemmas are often used.

Lemma 3.6 Let BρB be a ball with the radius ρB in Rm. Then it holds that N(r,BρB , ∥ · ∥2) ≤(
2ρB
r + 1

)m
.

Lemma 3.7 For any V ⊂ Rm, c > 0, v ∈ Rm, r > 0, it holds that N(cr, {cv + v0 | v ∈ V }) ≤
N(r, V ).

Lemma 3.8 Suppose that functions ϕi : R → R, i = 1, 2, . . . ,m are ρ-Lipschitz continuous. For
v ∈ Rm, let ϕ⃗(v) be defined by

ϕ⃗(v) := (ϕ1(v1), . . . , ϕm(vm)), ϕ⃗ ◦ V := {ϕ⃗(v) | v ∈ V }.

Then it holds that N(ρr, ϕ⃗ ◦ V ) ≤ N(r, V ), or equivalently, N(r, ϕ⃗ ◦ V ) ≤ N( rρ , V ).

4 MAIN RESULTS

In the following sections, we perform a generalization error analysis of a model with the structure
shown in Figure 2, which combines the autoencoder and a deep physics neural network model,
particularly in the case where the model is trained with trajectory data. Note that this model includes
the deep physical model alone because the encoder and the decoder in the autoencoder can be the
identity map. Hence our generalization error bound can be applied to the deep physical models
without the autoencoder.

In addition, if the physics model defines a symplectic map, we also show that this model can be
used for interpolating the images while preserving laws of physics even when the time intervals are
quite large. By combining the results of the generalization error analysis, Hamiltonian interpola-
tion of near-identity symplectic maps and the error analysis of the splitting method for Hamiltonian
systems, we show that the model with this structure can interpolate images while satisfying a Hamil-
tonian equation even when the time interval is large.

4.1 GENERALIZATION ERROR ANALYSIS OF THE MODELS TRAINED WITH TRAJECTORY DATA

We first show a generalization error bound. We suppose that the model consists of three dense neural
networks:

fNN : Rnd → Rnh , gNN : Rnh → Rnd , hNN : Rnh → Rnh .

fNN and gNN define an autoencoder: fNN ◦ gNN ≃ Id. hNN is assumed to be a symplectic map if it
is used for Hamiltonian interpolation. As for the neural networks, for simplicity, we consider simple
networks with one hidden layer:

fNN(x) = σenc(Aencx+ benc), gNN(x) = σdec(Adecx+ bdec), hNN(x) = σsymp(Asympx+ bsymp).

The extension to deeper networks and/or deep physics neural networks like HNNs is straightforward.
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Figure 2: Architecture of the model.

Assumption 4.1 The data set is given as X = {x(1)j , . . . , x
(mstep)
j | j = 1, . . . ,morbit} ⊂

Rnd×mstep×morbit , where x(1)j ’s are i.i.d. samples from an unknown distribution D. For each j,

x
(1)
j , x

(2)
j , . . . , x

(mstep)
j are samples from an orbit starting from x

(1)
j . morbit is the number of the

orbits. More precisely, we assume that there exists a ρψ-Lipschitz continuous map ψ : Rnd → Rnd

such that for each j and n, x(n+1)
j = ψ(x

(n)
j ). We also assume that x(n)j ’s are uniformly bounded

so that there exists a compact set B ⊂ Rnd such that x(n)j ∈ B for any j and n.

We suppose that the model is trained by minimizing the following loss functions:

minimize
1

morbit

morbit∑
j=1

L({x(1)j , . . . , x
(mstep)
j }),

L = L1 + L2, L1({x(1)j , . . . , x
(mstep)
j }) = 1

mstep

∑
n

l1(gNN(fNN(x
(n)))− x(n+1)),

L2({x(1)j , . . . , x
(mstep)
j }) = 1

mstep

∑
n

l2(hNN(fNN(x
(n)))− fNN(x

(n+1)))

where l1 and l2 are loss functions.

Assumption 4.2 We assume that there exist a latent variable z(t) ∈ Rnh , functions f : Rnd → Rnh

and g : Rnh → Rnd that reconstruct the data x(n)j ’s from z. nh is the dimension of the latent space.
We also assume that z satisfies a Hamiltonian equation, and for its existence, we assume that nh is
even. More precisely, we assume that for any x(n)j ∈ X , it holds that

x
(n)
j = g(f(x

(n)
j )), f(x

(n)
j ) = z((n− 1)∆t),

dz

dt
=

(
O I
−I O

)
∇H(z)

with an analytic Hamiltonian H . ∆t is the sample time interval.

Assumption 4.3 We assume that the matrices in the neural networks are uniformly bounded and
hence the set of the neural networks is given as

H = {fNN(x) = σenc(Aencx+ benc), gNN(x) = σdec(Adecx+ bdec),

hNN(x) = σsymp(Asympx+ bsymp) | ∥Asymp∥ < cenc, ∥Asymp∥ < cdec, ∥Asymp∥ < csymp}.
We also assume that the activation functions σenc, σdec and σsymp are analytic and Lipschitz con-
tinuous and the Lipschitz constants are bounded by ρenc, ρdec, ρsymp, respectively.
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Assumption 4.4 For normed spaces X1, X2, . . . , Xm, we assume that the norm of the product
space X1 ×X2 × · · · ×Xm is defined by the sum of the norms: ∥ · ∥X1

+ · · ·+ ∥ · ∥Xm
.

Assumption 4.5 The loss function L can be regarded as a function that maps(
fNN(x

(1)
j ), . . . , fNN(x

(mstep)
j ), gNN(x

(1)
j ), . . . , gNN(x

(mstep)
j ), hNN(x

(1)
j ), . . . , hNN(x

(mstep)
j ),

(x
(1)
j , . . . , x

(mstep)
j )

)
to a real number for each jth orbit. We assume this function is ρL-Lipschitz continuous.

The following are the main results of this paper.

Theorem 4.6 Under the above Assumptions, the covering number of the model is bounded by

N(r/ρL(cdecρdec + csympρsymp + 1)(cdecρdec + csympρsymp + 1)(mstep max{1, ρmstep

ψ })),
Bmorbit).

For the proof of this theorem, see Appendix A.1. Since Bmorbit is a compact set in a Euclid space
from Assumption 4.1, the estimation of its covering number has been established. For example, its
covering number in the 2-norm is estimated by using Lemma 3.6. The covering number in m-norms
form’s other than 2 can be estimated in the same way by using the equivalence of the norms in finite-
dimensional spaces. Then, the application of Lemma 3.3 and Lemma 3.5 gives a generalization error
bound. If the 2-norm is employed, the Rademacher complexity is shown to be O(1/

√
morbit) by

using Lemma 3.6. Note that Rademacher complexity mainly depends on the number of trajectories,
not on the total number of the data. In fact, in the problem set-up of this study, only the initial values
of the trajectories are chosen at random. Therefore, the generalization error depends on the number
of the initial values of the trajectories, which means that for the models to be accurate, it is not
enough to simply have a large number of data; there should be a large number of randomly sampled
trajectory data.

Note also that the estimation of this theorem holds not only for Hamiltonian systems, but also for
general physical systems, such as those involving friction. In particular, the physical model does
not need to define a symplectic map. In addition, this theorem also holds for data with small time
intervals.

Numerical Experiments We performed an experiment to see how the number of trajectories af-
fects the efficiency of learning. The experiments are identical to the 3body problem shown in the
original HNNs paper Greydanus et al. (2019). See Greydanus et al. (2019) for the details of the
experiments. We used the officially released codes1 of HNN for this experiment. Regarding the data
in this code, the trajectory data are given. More precisely, given the number of time steps mstep

and the number of trajectories morbit, numerical solutions of the target differential equation from
random initial conditions are computed numerically andmstep snapshots are sampled for each orbit.
We only changed mstep and morbit and the other settings were unchanged. In the experiments of
Greydanus et al. (2019), mstep and morbit are set to mstep = 20 and morbit = 5000. In our exper-
iments, we changed the number of orbits morbit to 5000, 2500, 1250 and 625. The number of time
steps mstep is determined so that the number of the total data is unchanged.

The results are shown in Table 2. As expected, the accuracy of the neural network models becomes
worse when the number morbit of the orbits becomes smaller; however, although, theoretically, it
was expected that the generalization error would be proportional to 1/

√
morbit, in practice, when

the number of orbits is not large enough, the training error did not decrease sufficiently. This should
be because reducing the number of orbits increases the time steps, which makes the time period
required to predict each orbit longer and the prediction task more difficult; however, this must be
investigated in more detail in future work.

4.2 HAMILTONIAN INTERPOLATION

Second, we investigate whether the interpolated images follow a Hamilton equation or not. An
important application of deep physical models is the interpolation of images from videos while

1https://github.com/greydanus/hamiltonian-nn
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Table 2: Training results of Hamiltonian neural networks for the 3-body problem. Although the
total number of data is constant, the accuracy improves as the number of trajectories increases.

morbit mstep TRAINING ERROR TEST ERROR DIFFERENCE

625 160 8.3945E+01 ± 1.4453E+02 2.3640E+01 ± 1.5563E+01 6.0305E+01
1250 80 3.9873E+00 ± 2.8671E+00 9.9912E+00 ± 1.5279E+00 6.0039E+00
2500 40 1.6950E+00 ± 1.4612E+00 2.2142E+00 ± 1.5869E+00 0.5192E+00
5000 20 8.5064E-02 ± 3.0044E-02 4.6424E-01 ± 4.2729E-01 3.7918E-01

preserving the laws of physics. As an application of the error analysis, we show that it is certainly
possible to interpolate the images from videos so that the laws of physics are preserved, provided
that the generalization error is sufficiently small.

Assumption 4.7 We assume that hNN is symplectic.

Assumption 4.8 For the loss function l2, we assume that the following holds: if the expectation
value of l2 is sufficiently small, then the map determined by hNN is close enough to the time ∆t map
ψ∆t of the Hamilton equation satisfied by the latent variable z. More precisely, we assume that ψ−1

∆t
exists, and that there exists a constant cl2 such that the operator norm of the difference between the
two operators is bounded by

∥hNN ◦ ψ−1
∆t − Id∥ ≤ cl2E[L2].

For Assumption 4.8, for example, a sufficiently high order Sobolev norm can be used as the loss
function. In fact, if the order is sufficiently large than nh, the Sobolev embedding theorem gives a
bound of the error in L∞ norm. Thus, since the error is uniformly bounded in the domain of hNN,
the map defined by hNN is close enough to the time ∆t map of the Hamilton equation satisfied by
the latent variable z. Besides, the existence of ψ−1

∆t is not a strong assumption because Hamiltonian
systems are typically inversible. On the other hand, note that we do not place the assumption that
the time interval of the images to be interpolated is sufficiently small. Rather, we suppose that the
time intervals may be quite large.

Theorem 4.9 Suppose that the loss function L for the training data satisfies L ≤ ε1. Then, under
the above Assumptions, for arbitrary ε2 > 0, there exists 0 < δ < 1 such that with probability 1− δ

there is an Hamiltonian Ĥ : Rnh → R that defines Hamiltonian system of which the time-1 map is
an O(cl2(ε1 + 2Rmorbit

) + ε2) approximation to the symplectic map hNN.

For the proof, see Appendix A.2. Roughly, as seen in Figure 1, first, the map hNN is decomposed into
a composition of two maps that are related to Hamiltonian systems, and then the splitting method is
applied. Theorem 4.9 means that with a certain probability the trained model admits a Hamiltonian
interpolation which is close to the true Hamiltonian system.

5 CONCLUSION

Recently, neural network methods for learning the equations of motion from observational data
have attracted much attention. Although the theoretical analysis of such models has been gradually
developed, a generalization error for such models trained with trajectory data has not yet been in-
vestigated. To the best of our knowledge, this paper is the first work on the error analysis for such a
case. Our analysis shows an error bound that is dependent on the number of trajectories, not on the
number of the whole data.

A possible application of these models is to interpolate images while preserving the laws of physics.
Such interpolation is called Hamiltonian interpolation. In this paper, we also consider this appli-
cation and show that under certain assumptions Hamiltonian interpolation is certainly possible by
combining the autoencoder and a deep physical model that defines a symplectic map.
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