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Abstract
Consider patch attacks, where at test-time an adversary manipulates a test image with a patch in order1

to induce a targeted mis-classification. We consider a recent defense to patch attacks, Patch-Cleanser2

(Xiang et al., 2022). The Patch-Cleanser algorithm requires a prediction model to have a “two-mask3

correctness” property, meaning that the prediction model should correctly classify any image when4

any two blank masks replace portions of the image. To this end, Xiang et al. (2022) learn a prediction5

model to be robust to two-mask operations by augmenting the training set by adding pairs of masks6

at random locations of training images, and performing empirical risk minimization (ERM) on the7

augmented dataset. However, in the non-realizable setting when no predictor is perfectly correct on8

all two-mask operations on all images, we exhibit an example where ERM fails. To overcome this9

challenge, we propose a different algorithm that provably learns a predictor robust to all two-mask10

operations using an ERM oracle, based on prior work by Feige et al. (2015a) .11

1. Introduction12

Patch attacks (Brown et al., 2017; Karmon et al., 2018; Yang et al., 2020) are an important threat13

model in the general field of test time evasion attacks (Goodfellow et al., 2014). In a patch attack, the14

adversary replaces a contiguous block of pixels with an adversarially crafted pattern. Patch attacks15

can realize physical world attacks to computer vision systems by printing and attaching a patch into16

an object. To secure performance of computer vision systems against patch-attacks, there has been17

an active line of research for providing certifiable robustness against them (see e.g., McCoyd et al.,18

2020; Xiang et al., 2020; Xiang and Mittal, 2021; Metzen and Yatsura, 2021; Zhang et al., 2020;19

Chiang et al., 2020).20

Xiang et al. (2022) recently proposed a state-of-the-art algorithm called Patch-Cleanser that can21

provably defend against patch attacks. The high level idea of the Patch-Cleanser algorithm is to22

robustly remove all adversarial pixels of an input image in order to obtain accurate predictions. The23

main difficulty is that the patch location is unknown. One naive solution is to place a mask at all24

possible locations of an input image. As long as the masks are large enough, at least one of the masks25

would cover the patch and remove the adversarial effects of the patch so that the prediction model can26

induce a correct classification on the input image. However, it is challenging to distinguish between27

this correct prediction and the predictions on the other masked images. To overcome this challenge,28

they use a second mask. For each of the one-masked images produced in the first step, they add a29

second mask at all possible locations. For each one-masked image, if for all possible locations of the30

second mask, the prediction model outputs the same classification, it means that the first mask was31

removing the patch, and the agreed-upon prediction is correct. Also, any disagreements implies the32

contrary.33

Crucially, the Patch-Cleanser algorithm relies on a two-mask correctness assumption of the prediction34

model that is defined as follows: for a given input (x, y), if for any pair of masks applied to x, a35

prediction model F outputs the correct prediction y, then F has two-correctness property on (x, y)36

(see Xiang et al. (2022, Definition 2)). They show as long as the two-mask correctness property holds,37

their double-masking algorithm guarantees robustness against patch attacks on the input image (x, y).38

In order to train a model with the two-mask correctness property, Xiang et al. (2022) use a heuristic39

data-augmentation approach as follows. They add pairs of masks at random locations to train-40

ing images and learn a model that predicts correctly on the masked-images using empirical risk41

minimization.42

However, we argue that in the non-realizable setting, when no predictor achieves zero robust loss, this43

approach can fail. Intuitively, an ERM oracle does not distinguish between distributing error over44

a few perturbations (i.e. masked-out variations) of many input images versus concentrating many45

mistakes on the perturbations of few input images. However, in the latter case, the robust loss can be46
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much higher than the former case. To wit, to obtain high robust loss the adversary only needs one47

successful perturbation per clean image. If some input images have many perturbations that fool the48

classifier, but most input images have none, then the adversary cannot obtain high robust loss. We49

want to be in the second case. We have included a schematic demonstrating this failure mode in A.4.50

Our main contribution is an algorithm to learn a predictor that is robust to a set of masking operations51

(resulting from the two-mask), using an ERM oracle. The algorithm is based on prior work due to52

Feige et al. (2015b), but the analysis and application are novel in this work. Combining our algorithm53

with Patch-Cleanser yields a predictor that is provably robust to adversarial patch attacks.54

Setup and Notation Let X denote the instance space and Y denote the label space. Our main55

objective is to be robust against adversarial patches A : X → 2X , where A(x) represents the56

(potentially infinite) set of adversarially patched images that an adversary might attack with at57

test-time. Xiang et al. (2022) showed that even though the space of adversarial patches A can be58

exponential or infinite, one can consider a “covering” set U : X → 2X of masking operations on59

images where |U(x)| is polynomially finite.60

Thus for the remainder of the paper, we focus on the task of learning a predictor robust to a perturbation61

set U : X → 2X , where U(x) ⊆ X is the set of allowed masking operations that can be performed62

on x. We assume that U(x) is finite where |U(x)| ≤ k. Let H ⊆ YX be a hypothesis class, and63

denote by vc(H) its VC dimension. Let ERMH be an ERM oracle forH. For any set arbitrary set64

W , denote by ∆(W ) the set of distributions over W . OPTH is defined as follows:65

OPTH ≜ min
h∈H

E
(x,y)∼D

max
z∈U(x)

1 [h(z) ̸= y] . (1)

2. Main Result: Minimizing Robust Loss Using an ERM Oracle66

In this section, we present our main contribution: an algorithm to learn a predictor that is simulta-67

neously robust to a set of (polynomially many) masking operations, using an ERMH oracle. The68

algorithm is based on prior work due to Feige et al. (2015b), but the analysis and application are novel69

in this work. The main interesting feature of this algorithm is that it achieves stronger robustness70

guarantees in the non-realizable regime when OPTH ≫ 0, where the approach of Xiang et al. (2022)71

— as we highlighted in the introduction — of calling ERMH on the inflated dataset: original training72

points plus all possible perturbations resulting from the allowed masking operations, can provably73

fail (see e.g., A.4).74

Algorithm 1: Feige, Mansour, and Schapire (2015b)
Input: weight update parameter η > 0, number of rounds T , and training dataset

S = {(x1, y1), . . . , (xm, ym)}.
1 Set w1(z, (x, y)) = 1, for each (x, y) ∈ S, z ∈ U(x).
2 Set P 1(z, (x, y)) = w1(z,(x,y))∑

z′∈U(x) w1(z′,(x,y)) , for each (x, y) ∈ S, z ∈ U(x).
3 for each t← 1 to T do
4 Call ERM on the empirical weighted distribution:

ht = argminh∈H
∑

(x,y)∈S

∑
z∈U(x)

1
mP t(z, (x, y))1 [ht(z) ̸= y].

5 for each (x, y) ∈ S and z ∈ U(x) do
6 wt+1(z, (x, y)) = (1 + η1 [ht(z) ̸= y]) · wt(z, (x, y)).
7 P t+1(z, (x, y)) = wt(z,(x,y))∑

z′∈U(x) wt(z′,(x,y)) .

Output: The majority-vote predictor MAJ(h1, . . . , hT ).

75

Theorem 1. Set T (ϵ) = 32 ln k
ϵ2 and m(ϵ, δ) = O

(
vc(H)(ln k)2

ϵ4 ln
(
ln k
ϵ2

)
+ ln(1/δ)

ϵ2

)
. Then, for any76

distribution D over X × Y , with probability at least 1− δ over S ∼ Dm(ϵ,δ), running Algorithm 177

for T (ϵ) rounds produces h1, . . . , hT (ϵ) satisfying:78

E
(x,y)∼D

[
max

z∈U(x)
1
[
MAJ(h1, . . . , hT (ϵ))(z) ̸= y

]]
≤ 2OPTH + ϵ.
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Comparison with prior related work As presented, Feige et al. (2015b) only considered finite79

hypothesis classes H and provided generalization guarantees depending on log |H|. On the other80

hand, we consider here infinite classes H with bounded VC dimension and provide tighter robust81

generalization bounds. The robust learning guarantee (Attias et al., 2022, Theorem 2) assumes access82

to a robust ERM oracle, which minimizes the robust loss on the training dataset. On the other hand,83

at the expense of higher sample complexity, we provide a robust learning guarantee using only an84

ERM oracle in the challenging non-realizable setting. Prior work due to Montasser et al. (2020)85

considered using an ERM oracle for robust learning but only in the simpler realizable setting (when86

OPTH = 0).87

Before proceeding with the proof Theorem 1, we describe now at a high-level the proof strategy. The88

main insight is to solve a finite zero-sum game. In particular, our goal is to find a mixed-strategy over89

the hypothesis class that is approximately close to the value of the game:90

OPTS,H ≜ min
h∈H

1

m

m∑
i=1

max
zi∈U(xi)

1 [h(zi) ̸= yi] .

We observe that Algorithm 1 due to (Feige et al., 2015b) solves a similar finite zero-sum game91

(see Lemma 3), and then we relate it to the value of the game we are interested in (see Lemma92

2). Combined together, this only establishes that we can minimize the robust loss on the empirical93

dataset using an ERM oracle. We then appeal to uniform convergence guarantees for the robust loss94

in Lemma 4 to show that, with large enough training data, our output predictor achieves robust risk95

that is close to the value of the game.96

Lemma 2. For any data set S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m,97

OPTS,H = min
h∈H

1

m

m∑
i=1

max
zi∈U(xi)

1 [h(zi) ̸= yi] ≥

min
Q∈∆(H)

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi] .

Lemma 3 (Feige, Mansour, and Schapire (2015b)). For any data set S =98

{(x1, y1), . . . , (xm, ym)} ∈ (X ×Y)m, running Algorithm 1 for T rounds produces a mixed-strategy99

Q̂ = 1
T

∑T
t=1 ht ∈ ∆(H) satisfying:100

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi] ≤

min
Q∈∆(H)

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi] + 2

√
ln k

T
.

Lemma 4 (VC Dimension for the Robust Loss (Attias et al., 2022)). For any class H and any U101

such that supx∈X |U(x)| ≤ k, denote the robust loss class ofH with respect to U by102

LU
H =

{
(x, y) 7→ max

z∈U(x)
1 [h(z) ̸= y] : h ∈ H

}
.

Then, it holds that vc(LU
H) ≤ O(vc(H) log(k)).103

We are now ready to proceed with the proof of Theorem 1.104

Proof Let S ∼ Dm be an iid sample from D, where the size of the sample m will be determined105

later. By invoking Lemma 3 and Lemma 2, we observe that running Algorithm 1 on S for T rounds,106

produces h1, . . . , hT satisfying107

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi] ≤ OPTS,H +
ϵ

4
.
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Next, the average robust loss for the majority-vote predictor MAJ(h1, . . . , hT ) can be bounded from108

above as follows109

1

m

m∑
i=1

max
zi∈U(xi)

1 [MAJ(h1, . . . , hT )(zi) ̸= yi]

≤ 1

m

m∑
i=1

max
zi∈U(xi)

2 E
t∼[T ]

1 [ht(zi) ̸= yi]

= 2
1

m

m∑
i=1

max
zi∈U(xi)

1

T

T∑
t=1

1 [ht(zi) ̸= yi]

≤ 2 max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi]

≤ 2OPTS,H +
ϵ

2
.

Next, we invoke Lemma 4 to obtain a uniform convergence guarantee on the robust loss. In particular,110

we apply Lemma 4 on the convex-hull of H: HT = {MAJ(h1, . . . , hT ) : h1, . . . , hT ∈ H}. By a111

classic result due to Blumer, Ehrenfeucht, Haussler, and Warmuth (1989), it holds that vc(HT ) =112

O(vc(H)T lnT ). Combining this with Lemma 4 and plugging-in the value of T = 32 ln k
ϵ2 , we get113

that the VC dimension of the robust loss class ofHT is bounded from above by114

vc(LU
HT ) ≤ O

(
vc(H)(ln k)2

ϵ2
ln

(
ln k

ϵ2

))
.

Finally, using Vapnik’s “General Learning” uniform convergence (Vapnik, 1982), with probability at115

least 1− δ over S ∼ Dm where m = O
(

vc(H)(ln k)2

ϵ4 ln
(
ln k
ϵ2

)
+ ln(1/δ)

ϵ2

)
, it holds that116

∀f ∈ HT : E
(x,y)∼D

[
max

z∈U(x)
1 [f(z) ̸= y]

]
≤ 1

m

m∑
i=1

max
zi∈U(xi)

1 [f(zi) ̸= yi] +
ϵ

4
.

This also applies to the particular output MAJ(h1, . . . , hT ) of Algorithm 1, and thus117

E
(x,y)∼D

[
max

z∈U(x)
1
[
MAJ(h1, . . . , hT (ϵ))(z) ̸= y

]]
≤ 1

m

m∑
i=1

max
zi∈U(xi)

1 [MAJ(h1, . . . , hT )(zi) ̸= yi] +
ϵ

4

≤ 2OPTS,H +
ϵ

2
+

ϵ

4
.

Finally, by applying a standard Chernoff-Hoeffding concentration inequality, we get that118

OPTS,H ≤ OPTH + ϵ
8 . Combining this with the above inequality concludes the proof.119

120

3. Conclusion121

Per the call for papers, we discuss the scalability of our method, which depends on multiple factors.122

As is argued/demonstrated empirically in the original Patch-Cleanser paper, their original defense123

scales to high resolution images. An additional strength of this research direction initiated by Patch-124

Cleanser and maintained by our approach is that it is agnostic to the network/structure of the model,125

and can be applied as a module on top of any state-of-the-art model. The complexity of Algorithm 1126

has two components, the complexity of the ERM Oracle and the number of iterations T . As noted127

in Section 2, our algorithm makes T = Ω( ln k
ϵ2 ) oracle calls where ln k is the bit-complexity of the128

perturbations and thus we are oracle-efficient.129

In order to modify Xiang et al. (2022) to handle the case where two-mask correctness is not realizable,130

we exhibit polynomial time algorithms for learning a classifier that satisfies the two-mask property131

and analyze the provable robustness of this approach, based upon prior work by Feige et al. (2015a).132

The key future work that we intend for the full version of this work includes an empirical evaluation133

of this method and extensions to a new multi-group robustness notion.134
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Appendix A. Missing Proofs135

A.1 Proof of Lemma 2136

Proof By definition of OPTS,H, it follows that137

OPTS,H = min
h∈H

1

m

m∑
i=1

max
zi∈U(xi)

1 [h(zi) ̸= yi]

≥ min
h∈H

max
z1∈U(x1),...,zm∈U(xm)

1

m

m∑
i=1

1 [h(zi) ̸= yi]

≥ min
Q∈∆(H)

max
z1∈U(x1),...,zm∈U(xm)

1

m

m∑
i=1

E
h∼Q

1 [h(zi) ̸= yi]

≥ min
Q∈∆(H)

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

1

m

m∑
i=1

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi] .

138

139

A.2 Proof of Lemma 3140

Proof By the minimax theorem and (Feige, Mansour, and Schapire, 2015b, Equation 3 and 9 in141

proof of Theorem 1), we have that142

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

m∑
i=1

E
zi∼Pi

1

T

T∑
t=1

1 [ht(zi) ̸= yi] ≤

min
Q∈∆(H)

max
P1∈∆(U(x1)),...,Pm∈∆(U(xm))

E
zi∼Pi

E
h∼Q

1 [h(zi) ̸= yi] + 2

√
L∗m ln k

T
,

where L∗ =
∑m

i=1 maxz∈U(xi)

∑T
t=1 1 [ht(z) ̸= y]. By observing that L∗ ≤ mT and dividing both143

sides of the inequality above by m, we arrive at the inequality stated in the lemma.144

145

A.3 Proof of Lemma 4146

Proof By finiteness of U , observe that for any dataset S ∈ (X × Y)m, each robust loss vector in the
set of robust loss behaviors:

ΠLU
H
(S) =

{
(f(x1, y1), . . . , f(xm, ym)) : f ∈ LU

H
}

maps to a 0-1 loss vector on the inflated set SU ={
(z11 , y1), . . . , (z

k
1 , y1), (z

1
2 , y2), . . . , (z

k
2 , y2), . . . , (z

1
m, ym), . . . , (zkm, ym)

}
,

ΠH(SU ) =
{
(h(z11), . . . , h(z

k
1 ), h(z

1
2), . . . , h(z

k
2 ), . . . , h(z

1
m), . . . , h(zkm)) : h ∈ H

}
.

Therefore, it follows that
∣∣∣ΠLU

H
(S)

∣∣∣ ≤ |ΠH(SU )|. Then, by applying the Sauer-Shelah lemma, it147

follows that |ΠH(SU )| ≤ O((mk)vc(H)). Then, by solving for m such that O((mk)vc(H)) ≤ 2m,148

we get that vc(LU
H) ≤ O(vc(H) log(k)).149

150

A.4 ERM failure Example151

Appendix B. Risk Analysis152

Per the call for papers for this workshop, in this section we will include our risk analysis, which is a153

novel contribution for the authors. Some of this analysis is general to theory papers in robustness and154
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x1 x2

x3 x4

x1 x2

x3 x4

h1 h2

Figure 1: {xi} are natural data points in blue and each is surrounded by their perturbed points in
purple. Red means mis-classified points. The approach in this section is to solve the ERM
on an inflated data-set consisting of natural points and their perturbations. Observe that
both h1 and h2 have the same 0− 1 loss on this toy data-set with four points but h2 has
much lower robust loss since it can correctly classify 3/4 of the original examples no
matter what the adversary does, while for h1 the adversary can perturb any point to induce
a mis-classification

some of it is specific to our work. Some of our risk analysis is based on discussion in Hendrycks and155

Mazeika (2022). This work attempts to mitigate existing risks due to patch attacks.156

B.1 Short Term Risk of Patch Attacks157

First, some discussion of the short term vulnerability of learned systems. Adversarial attacks of this158

nature lend themselves immediately to targeted attacks by malicious actors. For instance, if adversarial159

patch attacks remain a systemic flaw of vision models, and self driving cars with vulnerable vision160

systems are widely deployed, malefactors could dangerously target specific vehicles. Alternatively,161

if software to design universal adversarial patches continues to proliferate, then lone wolves could162

spread patches widely without a specific target and pose an acute and hard to mitigate risk to any163

driver.164

In addition to acute harms caused by attackers using these systems, they could also delay or prevent165

the beneficial use of AI systems. This type of vulnerability could limit the reliance of automakers166

on vision systems or delay the implementation of self driving technology. While some of the safety167

benefits of self driving technology remain conjectural, something on the order of 50,000 Americans168

die per year in automotive accidents (NHTSA) and on the order of 1 million people annually WHO.169

There is a plausible argument that self driving technology can mitigate these risks by achieving170

super-human performance and consistent driving behavior.171

Our work mitigates some of this patch risk by exhibiting an algorithm that can learn a classifier that172

competes with the global optima for this problem.173

The most important limitation currently is we have not yet implemented an empirical evaluation. This174

is intended for a future version of this work.175

B.2 Long Term Risk of Patch Attacks176

We observe a key long term concern, the risk of catastrophic failures due to AI/ML based controllers177

subject to patch attacks or other perturbations. For instance while the author was writing this, they178

observed an advertisement in an undisclosed airport for ‘AI for Air Traffic Control’. Safety critical179
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systems increasingly have possibly vulnerable AI sub-systems. There are some efforts to integrate180

AI/ML techniques into nuclear command and control systems Lowther and McGiffin (2019).181

Some of the hypothetical benefits of AI include possibly simplifying decision making for human actors182

by reducing information overload and giving them the time to make thoughtful choices Lowther and183

McGiffin (2019). If AI systems are too vulnerable Klare (2020), these benefits would be unrealized184

and some decision makers may remain stuck with sub-optimal choices. If patch attacks/adversarial185

attacks remain a credible threat and these control systems are deployed, that could have extreme186

consequences. For instance, if an early launch warning system had a satellite based vision component187

focused on missile silos, a patch attack could prevent early detection.188

Alternatively, there is also a risk to continuing to use legacy and non-AI systems in that we may be189

stuck with poor human decision making or static systems.190

Moving out in terms of generality, there are also questions raised by adversarial robustness about191

whether or not models can be relied upon to perform consistently, when subject to natural perturbations192

of distribution shift, and our work is progress in this direction.193
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