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Abstract

Designing realistic multi-object scenes requires not only generating images, but
also planning spatial layouts that respect semantic relations and physical plau-
sibility. On one hand, while recent advances in diffusion models have enabled
high-quality image generation, they lack explicit spatial reasoning, leading to un-
realistic object layouts. On the other hand, traditional spatial planning methods
in robotics emphasize geometric and relational consistency, but they struggle to
capture semantic richness in visual scenes. To bridge this gap, in this paper, we
propose LayoutAgent, an agentic framework that unifies vision-language reasoning
with compositional diffusion for layout generation. Given multiple input images
with target objects in them, our method first employs visual-language model to
preprocess the inputs through segmentation, object size estimation, scene graph
construction, and prompt rewriting. Then we leverage compositional diffusion—a
method traditionally used in robotics—to synthesize bounding boxes that respect
object relations encoded in the scene graph for spatial layouts. In the end, a
foreground-conditioned image generator composes the complete scene by render-
ing the objects into the planned layout guided by designed prompts. Experiments
demonstrate that LayoutAgent outperforms other state-of-the-art layout generation
models in layout coherence, spatial realism and aesthetic alignment.

1 Introduction

Generating realistic multi-object scenes requires not only producing high-quality images but also
planning spatial layouts that adhere to semantic relations and physical plausibility [21} 27]. While
recent text-to-image models excel at photorealistic image generation [33}, 123, [1, 5], they often lack
explicit spatial reasoning, leading to implausible arrangements such as overlapping or mis-scaled
objects. In contrast, traditional spatial planning methods in robotics emphasize geometric and
relational consistency [30], but they struggle to capture the semantic richness and visual fidelity
needed for complex scene synthesis.

This gap motivates the need for a framework that unifies semantic reasoning with structured spatial
planning. We propose LayoutAgent, an agentic framework integrates vision-language reasoning with
compositional diffusion for layout generation (see Figure[T)). Given multiple input object images, a
Visual-Language Model (VLM) agent preprocesses the inputs by performing segmentation, object
size estimation, scene graph construction, and prompt rewriting. The enriched prompt and scene
graph provide semantic and relational structure for subsequent layout generation. To generate layouts,
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Figure 1: Qualitative results of the generated bedroom scenes with 2, 3 and 4 objects.

we adapt compositional diffusion [[12] from robotics field to generate bounding boxes that
respect object relations and estimated sizes. Each pairwise relationship is modeled by an individual
diffusion model, enabling fine-grained spatial reasoning. In the end, a foreground-conditioned image
generator renders the complete scene, combining realistic object appearances with planned layouts.

Our contribution can be summarized as the following points:

» We propose LayoutAgent, an agentic framework integrates vision-language reasoning with
compositional diffusion for layout generation.

» Experimental results on structured scene generation benchmarks demonstrate that LayoutA-
gent significantly improves Layout Coherence, Spatial Realism, and Aesthetic Alignment
over strong baselines.

* The ablation studies confirm the complementary benefits of compositional diffusion and
scene graph planning. In case studies, we illustrate its systematic, multi-stage planning for
scene generation.

2 Methodology

In this section, we present LayoutAgent, a unified framework that combines vision-language reasoning
with compositional diffusion to generate spatial layouts that are both visually realistic and physically
plausible across diverse scenes. As shown in Figure 2] our approach integrates high-level reasoning
and spatial planning with generative modeling through three core components: (1) a Vision-Language
Agent that interprets input objects and produces high-level layout plans in the form of scene graphs;
(2) a compositional diffusion model that refines the scene graph using estimated object sizes and
predicts precise spatial positions; and (3) a foreground-conditioned image generator that synthesizes
coherent and realistic scenes by rendering objects according to the planned layout. We formalize the
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Figure 2: Our Overall Framework.

problem addressed by LayoutAgent and provide a detailed breakdown of each component, including
implementation specifics and design rationale.

2.1 Problem Formulation

The user input to LayoutAgent consists of a natural language description of the target scene (e.g., “in
a modern living room”), and N object images I = {4, %1,...,in—1} to be placed within the scene.
With a Visual-Language Model (VLM) agent, it localize and extract objects O = {0, 01,...,0n_1}
with alpha layer from the images and generates the sizes of objects S = {so, s1, ..., sy—1} including
their physical dimensions (w;, l;, h;), which denote width, length, and height (in inches) and other
attributes of objects A = {ag,a1,...,an_1}, and constructs a scene graph G that encodes a set of
spatial relationships R among objects. This scene graph serves as an intermediate representation for
predicting object placements. Based on the constructed scene graph G, VLM agent refine the target
scene to detailed natural-language prompts prompt. Next, a compositional diffusion model learns the
spatial positions of objects P = {po, p1, . . ., PN—1}, Where each p; corresponds to the bounding box
position of object o;. Finally, a composed image C' integrates the given objects and the generated
background.

In LayoutAgent, the task of generating object poses for a given scene is decomposed into four
subproblems: (1) processing input object images and representing them as objects; (2) estimating
object sizes and constructing a scene graph with spatial relationships among objects and refine prompt
based on the generated scene graph; (3) predicting object positions conditioned on the scene graph;
and (4) generating a composed image with a background guided by the predicted positions.

2.2 Vision-Language Agent for Scene Planning

Given an abstract scene specification and a set of object images, the goal is to produce coherent
final compositions with realistic backgrounds. This task is inherently challenging because scene
descriptions are often ambiguous and object images are unprocessed. To address the randomness and
flexibility of the input, we introduce a VLM agent that automates the scene planning process and
enables precise spatial reasoning.

Concretely, to transform raw object inputs and abstract scene descriptions into coherent compositions,
our vision-language agent need to decompose the scene planning into four sub-tasks and complete
in a sequence: 1.) object extraction, where the VLM agent utilize tools to localize relevant
objects O from images with an open-vocabulary detector (Grounding-DINO [13])), and applies
segmentation (Segment-Anything [9] for multi-object images or BiRefNet [34] for single-object
images) followed by cropping and overlaying to produce clean objects. 2.) Building on these
extracted inputs, VLM agent performs attribute estimation, inferring geometric and appearance



attributes A such as real sizes S, aspect ratio, and texture and. These attributes serve as symbolic
constraints that guide composition. 3.) The agent then performs spatial planning, jointly reasoning
over the scene description and the attribute-augmented object set to infer plausible layouts. This
process is formalized as a scene graph G that captures both pairwise relations and global structure,
serving as an explicit guidance for downstream composition. To ensure fidelity, the scene graph is
iteratively evaluated and refined through inspection of the visualization tool. 4.) VLM agent performs
prompt refinement, integrating the scene graph with the original description to produce detailed
natural-language prompts prompt. These refined prompts incorporate object attributes and spatial
relations, yielding fine-grained background descriptions for the final image composition.

2.3 Compositional Diffusion for Layout Generation

Directly utilizing VLM to generate precise position of objects given complex scene graph and infer
their relations has two main issues: first, for VLM based prediction, due to highly complexity of
scene graph and lack of capacity of spatial understanding, VLM tends to predict unprecise location
like floating objects and unreal relative size; second, different sizes and scenes typically require a lot
of training data for optimal model performance.

To address the aforementioned issues, we employ compositional diffusion, which leverages individ-
ual diffusion-based generative models for each relation type » € R and combines their respective
denoising gradients to sample P from high-scoring regions of the distribution [31]. Given a set
of relationships R, position of objects P, and size of objects .S, our goal is to find a position P
that satisfies all relationships. We model the conditional distribution of the position under a single
relationship r using a diffusion model. A valid assignment P, corresponds to the maximizer of the
joint distribution formed by the product of all single diffusion models. Each single diffusion model
takes the form of an energy-based model,

p(P- | S,) x e*E(P"|S"),

so maximizing the joint likelihood reduces to minimizing the total energy:

Py = arg max g%pc(Pr | S;) = arg m};n EZRE(PT | Sy).

We solve this optimization using the annealed unadjusted Langevin algorithm (ULA) [29] 24], a
variant of Langevin Monte Carlo that updates samples by following the gradient of the energy function
while injecting noise at each step.

During training, we learn a noise-prediction model ¢; for each relationship 7. Given sizes of objects
S, and a noisy version of P,, €; predicts the applied noise. While one could train individual diffusion
models for each relationship, we instead train them jointly: each training example corresponds to a
scene graph, and we optimize all instantiated relationships together. Importantly, training and testing
graphs do not need to match exactly; they only need to be composed of the same basic relationships.

Formally, our dataset consists of scene graphs with object sizes and corresponding positions of each
object, (G = (S, P, R), S, Py). For each relationship, we initialize a denoising function €;, and
compute the denoising loss by summing over relationships in the graph:
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2.4 Final Scene Generation

To construct the final composed images, we adopt a two-stage generation process. In the first stage,
we place each object instance into its predicted bounding box on a uniform background canvas,
thereby ensuring that the spatial layout faithfully reflects the structural plan inferred by compositional
diffusion model. This intermediate composition serves as a spatially grounded scaffold for subsequent
generation. In the second stage, to achieve foreground-conditioned image generation, we leverage a
foreground-conditioned image generation model that takes the structured layout as input and renders
coherent, high-fidelity images in which objects and background are seamlessly integrated.



3 Experiments

In this section, we provide an extensive evaluation of our framework to verify its effectiveness. An
ablation study is conducted to demonstrate the effect of compositional diffusion models compared
to VLM prediction. We also test generalization of our framework under novel scenes and different
objects. Then we showcase qualitative results and application scenarios of our method.

3.1 Experiment Setup

Baselines. Since we focus on layout generation task, we compare our framework against state-of-the-
art frameworks: LayoutGPT [6] with different VLMs (GPT-40 and Gemini-2.5), an image layout
framework; SpatialRGPT [4], a grounded spatial reasoning enhanced VLM; Visual sketchpad [7], a
visual tools to sketch image thinking in VLM our layoutAgent with different VLMs(GPT-40 and
Gemini-2.5).

Training Setup. We use GPT—4 and Gemini—2. as the VLM and Imagerﬂ for background
generation model. Compositional diffusion models are implemented with PyTorch. Experiments
are run on two L4 GPUs. We adopt 1000 diffusion timesteps for all models. For input encoding,
object dimensions and positions are normalized with respect to the image size. Our compositional
diffusion model employs separate encoders for object sizes and positions, projecting them into a
shared 256-dimensional latent space, consistent with the time embedding. Each diffusion model
produces outputs of the same dimensionality as the position embedding. For each object, the predicted
position is obtained by averaging the outputs of all diffusion models in which the object appears,
followed by a position decoder that reconstructs the noise added to the position. The encoders,
diffusion models, and the position decoder are jointly trained using an L2 reconstruction loss between
predicted and ground-truth noise.

Since our experiments focus on indoor scenes, we collected 300 training images from a design
website, covering a variety of interior settings. For each image, we manually label the attributes of
each main object, and utilize GroundingDINO [[13]] to detect the position of each object to train the
compositional diffusion model.

Evaluation Setup. Our framework is capable of generating both indoor and outdoor scenes. However,
since the compositional diffusion models are trained exclusively on indoor scenes, we treat outdoor
scenes as out-of-domain data to evaluate the generalization ability of our framework. Specifically, we
evaluate our framework across four indoor scene categories: living room, bedroom, billiard room, and
a combined warehouse/garage category (due to their similarity in object settings). For each category,
we manually select 50 object combinations containing 2 to 4 objects. For each combination, we
generate three distinct composite images to compute the evaluation metrics.

Metrics. To evaluate each component of our framework comprehensively, we design metrics scores
for each module and overall framework. Specifically, to evaluate LayoutAgent for scene planning,
we adopt two metrics: the success rate, which measures whether the VLM agent can generate the
required images and scene graphs with estimated attributes for subsequent modules, and the IoU
score [20]], which assesses the accuracy of the estimated object sizes in Section Besides, to
evaluate the scene graph built by LayoutAgent, we propose relationship coverage measuring the rate
of relations in each scene graph, and degree of each nodes measuring the average edges per node in a
scene graph to evaluate the complexity and expressiveness of scene graphs. We also evaluate conflict
of selected relationships(‘in’, ‘in-front-of’,‘away-from’, ‘close-to’, ‘left-of) in the scene graph. For
example, if ( A, ‘left-of” B) exist, then ( B, ‘left-of’, A) lead to conflict, and if (A, ‘close-to’, B) exist,
(A, ‘away-from’, B) lead to conflict.

To evaluate the predicted positions (bounding boxes) following scene graphs, we evaluate each
relationship in the generated scene graphs following the corresponding rules shown in Table[T} The
final score is calculated by the percentage of rules satisfied.

To quantitatively evaluate the visual quality and spatial realism , we use three metrics: CLIP
Score [18]] measuring cosine similarity between image and text features from CLIP [18], BLIP

>https://openai.com/index/hello-gpt-4o/
3https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
*https://deepmind.google/models/imagen/



Score [10] measuring image-text alignment using BLIPv2 model and VQA Score [11]] measuring
image caption alignment, which utilizes a VLM to evaluate the final generated image.

Since visual quality and spatial realism are also subjective, we let VLM to judge the final image based
on three aspects: (1) Layout Coherence — whether object positions and orientations follow common
sense. (2) Spatial Realism — the extent to which diverse spatial relationships are present (e.g., on top
of, inside, under). (3) Aesthetic Alignment — how well object categories and visual styles align with
the scene type. (4) overall performance: the overall visual performance from the generated images.

Table 1: Unary and binary spatial relationships and their implementations.

Relationship

Description

Implementation of hr

in(Obj_A, scene)

Obj_A must lie completely inside
the image boundary.

The four corners of Obj_A’s bounding box must
be within the background size (e.g., 1024 X
1024).

right-in(Obj_A,
scene)

Obj_A lies in the right half of scene.

The right edge of Obj_A is within the right
boundary of scene and also within the right half
of scene.

left-in(Obj_A,
Obj_B)

Obj_A lies in the left half of scene.

The left edge of Obj_A is within the left bound-
ary of scene and also within the left half of
scene.

in(Obj_A, Obj_B)

Obj_A is fully contained within
Obj_B.

All edges of Obj_A are inside the boundaries
of Obj_B.

left-of(Obj_A,

Obj_A is to the left of Obj_B.

The horizontal center of Obj_A is less than the

Obj_B) horizontal center of Obj_B.
top-of(Obj_A, Obj_A is above Obj_B. The vertical center of Obj_A is less than the
Obj_B) vertical center of Obj_B.

close-to(Obj_A,
Obj_B)

Obj_A is spatially close to Obj_B.

The Euclidean distance between the centers of
Obj_A and Obj_B is smaller than a threshold.

away-from(Obj_A,
Obj_B)

Obj_A is spatially far from Obj_B.

The Euclidean distance between the centers of
Obj_A and Obj_B is larger than a threshold.

overlapping(Obj_A,

Obj_B)

Obj_A and Obj_B overlap in space.

The intersection of their bounding boxes has
positive width and height.

in-front-of(Obj_A,
Obj_B)

Obj_A appears in front of Obj_B
(vertical ordering).

The vertical center of Obj_A is smaller (higher
up) than the vertical center of Obj_B.

3.2 Main Results

Tables [2] compares scene graph generation, positional accuracy, visual-text alignment and VLM
based evaluation across baseline methods. Plain VLM-based approaches, which are prompted to
directly produce scene graphs and bounding boxes, achieve only modest scores across all dimensions.
Their outputs often exhibit incomplete relational structures and imprecise spatial grounding, which in
turn leads to weaker performance in downstream evaluations of layout coherence and realism. This
suggests that direct prompting is insufficient for capturing the complexity of multi-object interactions.

LayoutGPT provides an improvement by retrieving similar layout as few-show learning. While this
yields better relational coverage than plain VLM prompting, the resulting relationships between
objects remain shallow and the associated bounding boxes exhibit frequent mis-alignments in complex
scenes. Consequently, while LayoutGPT produces moderate gains in text-image alignment, its overall
image quality metrics remain limited by the lack of robust spatial reasoning.

SpatialRGPT and Visual Sketchpad both enhance text-image alignment as well as layout coherence
and spatial realism under VLM-based evaluation. SpatialRGPT, by emphasizing spatial reasoning,
yields higher spatial realism than plain VLMs; however, it remains inferior to our LayoutAgent
across these metrics, suggesting that spatial reasoning alone is insufficient for producing satisfactory



Table 2: Quantitative evaluation on baselines and our LayoutAgent (1 higher is better). Bold marks
the best for text control measurement.

Method & ‘ Pos. Score ‘ Text-Image Align ‘ VIM Eval
Rel Cov 1 Degt Conf | ‘ ‘ CLIP1T BLIPT VQAT ‘ Layout Coh T Spatial T Aest Align 1 Overall T

Plain GPT-40 - - - 0.37 20.12  54.23 0.43 0.47 0.44 0.46 0.45
Plain Gemini-2.5 - - - 0.36 19.69 5343 041 0.45 0.42 0.47 0.44
Plain Gemini-2.5pro - - - 0.39 21.05 54.78 0.42 0.48 0.43 0.49 0.51
LayoutGPT + GPT-40 - - - 0.51 2377 6210  0.61 0.62 0.61 0.63 0.60
LayoutGPT + Gemini-2.5 - - - 0.49 2320 61.72 0.59 0.58 0.61 0.61 0.57
LayoutGPT + Gemini-2.5pro - - - 0.52 2432 6248  0.61 0.60 0.62 0.64 0.61
SpatialRGPT - - - 0.54 26.52 6432 0.67 0.63 0.68 0.69 0.62
Visual Sketchpad - - - 0.52 2580 6350  0.66 0.64 0.66 0.68 0.63
LayoutAgent + GPT-40 0.59 2.84 0 0.68 29.74  70.40 0.79 0.71 0.75 0.76 0.71
LayoutAgent + Gemini-2.5 0.57 255 0.07 0.64 2846 6857  0.77 0.68 0.77 0.72 0.69
LayoutAgent + Gemini-2.5pro 0.61 3.05 0 0.72 31.62 7423 081 0.72 0.82 0.79 0.73

layouts. Visual Sketchpad benefits from its use of visual tools, which improves overall scores, yet
in the absence of scene graphs and compositional diffusion models it struggles to reliably capture
fine-grained spatial positions and generate coherent layouts.

Our LayoutAgent leverages the spatial realism by explicitly conditioning on structured scene graphs
and relational constraints. It substantially improves bounding box accuracy, producing layouts that
are both coherent and spatially consistent across diverse scenes, which proves the effectiveness of
compositional diffusion models on precise layout generation. VLM-based evaluation further confirms
the advantage: compared to baselines, scene graphs generated by our visual-language agent achieves
significantly higher scores on layout coherence, spatial realism, and overall quality. Importantly, the
improvements in aesthetic alignment stem from our agent modules, including prompt refinement and
background generation, which ensure that scene structure and visual fidelity are jointly optimized.

Collectively, these results demonstrate that integrating a VLM agent generating structured scene graph
representations with diffusion-based composition yields the most reliable and diverse scene layouts,
outperforming prompt-driven and tool-only baselines on both structural and perceptual dimensions.

3.3 Ablation Study

In our framework, two key components drive performance: scene graph construction and the com-
positional diffusion model. To assess their contributions, we conduct ablation studies. Since these
experiments isolate the effect of each module on the final image quality, we adopt the text-alignment
metrics and VLM-based evaluation introduced in Section 3.1} As shown in Table [3} the scene
graph significantly improves text alignment, layout coherence, and aesthetics alignment in the VLM
evaluation, demonstrating its ability to encode concrete spatial relationships that align with hu-
man preferences. Moreover, the compositional diffusion model further improves spatial realism,
highlighting its capacity to generate more precise spatial placements compared to VLM-only methods.

Table 3: Ablation study on VLM evaluation metrics, Scene graphs and Text Alignment Scores. (1
higher is better, | lower is better). CD is abbreviation of Compositional Diffusion.

Method ‘ VLM Overall Score ‘ Scene Graph ‘ Text Align Score

| | RelCovt  Degt  Conf| | CLIPT BLIPT  VQA®
VLM 0.56 - - - 26.54 72.45.3 0.68
VLM + Scene Graph 0.62 0.61 3.05 0 27.68 73.25 0.72
VLM + Scene Graph + CD 0.73 0.61 3.05 0 31.62 74.23 0.81

3.4 Generlizability

In this section, we further analyze generalization across different scene settings, including generaliza-
tion to novel scenes, as well as more objects to plan.

Novel scene Since the training data is limited to indoor scenes, we evaluate our framework under an
out-of-domain setting by testing on an outdoor beach scene. As shown in Table @] our framework
achieves the best performance among all baselines, with only a minimal decrease compared to



in-domain results. This demonstrates that our approach is more robust than the baselines when
faced with out-of-domain inputs, suggesting that the scene graph component helps bridge semantic
gaps between indoor and outdoor scenes. Furthermore, because the compositional diffusion model
does not rely on domain-specific visual cues during training, it exhibits strong generalization across
different object sizes and scene types.

Complex Scene with Lots of Objects To evaluate our framework in complex scenarios with more
objects, we conduct experiments on 4-object scenes and compare the results with baseline methods.
As shown in Table[5] our framework exhibits the smallest performance degradation as the number
of objects increases. This demonstrates the effectiveness of scene graphs in handling richer object
interactions and highlights the robustness of compositional diffusion models when generating images
with more objects and complex spatial relationships.

Table 4: Performance comparison for Beach Scene

Model Deg Pos Score VLM Overall Score
Plain GPT-40 - 0.37 0.41
Plain Gemini-2.5 - 0.36 0.40
Plain Gemini-2.5pro - 0.36 0.42
LayoutGPT + GPT-40 - 0.46 0.49
LayoutGPT + Gemini-2.5 - 0.43 0.49
LayoutGPT + Gemini-2.5pro - 0.45 0.51
SpatialRGPT - 0.49 0.54
Visual Sketchpad - 0.52 0.58
LayoutAgent + GPT-40 3.0 0.63 0.67
LayoutAgent + Gemini-2.5 29 0.62 0.65
LayoutAgent + Gemini-2.5pro 3.1 0.63 0.67

Table 5: Performance comparison for 4 Objects Scene

Model Deg Pos Score VLM Overall Score
Plain GPT-40 - 0.35 0.41
Plain Gemini-2.5 - 0.34 0.40
Plain Gemini-2.5pro - 0.37 0.43
LayoutGPT + GPT-4o - 0.48 0.52
LayoutGPT + Gemini-2.5 - 0.46 0.51
LayoutGPT + Gemini-2.5pro - 0.47 0.51
SpatialRGPT - 0.54 0.57
Visual Sketchpad - 0.51 0.55
LayoutAgent + GPT-40 34 0.63 0.66
LayoutAgent + Gemini-2.5 34 0.62 0.65
LayoutAgent + Gemini-2.5pro 3.6 0.64 0.68

3.5 Agent Completion Analysis

In this section, we explore the effect of different VLM backbones on our agent framework. We
compare GPT-40, Gemini-2.5, and Gemini-2.5 pro by evaluating complexity and conflict of generated
scene graphs, the success rate of completing tasks generating intermediate results for later modules,
and IoU [20] between predicted size and real size of objects in weight, height and length. From
Table[6] we find Gemini-2.5pro achieves the highest success rate of completing tasks, best performance
on scene graph generation and attributes estimation. This implies that Gemini-2.5pro is more suitable
for our agent framework compared to other VLMs, and shows better generalized spatial understanding
and planning capability.

3.6 Case Studies

To demonstrate the effectiveness of our LayoutAgent, the case studies in Figure [I]and [3]illustrate
its systematic, multi-stage planning for scene generation. The process begins when the VLM Agent
analyzes the input objects and formulates a coherent plan as a symbolic Scene Graph, which estab-
lishes logical spatial relationships between objects. Following this plan, our compositional diffusion
model translates these abstract relationships into a precise spatial arrangement, predicting the exact



Table 6: Comparison of different VLM backbones on scene graph metrics, task success rate, and IoU.

Method Scene Graph ‘ Success Rate 1 IToU 1
Rel Covt Deg?t Conf | |

LayoutAgent + GPT-40 0.59 2.84 0 0.91 0.75

LayoutAgent + Gemini-2.5 0.57 255 0.07 0.88 72

Ours + Gemini-2.5pro) 0.61 3.05 0 0.92 0.78

bounding box locations for each object as shown in the Planed Object Composition. Finally, a
foreground-conditioned image generator uses this structured layout and a refined prompt from the
agent to render the Final image generation, seamlessly integrating the objects by synthesizing a
realistic and semantically consistent. The novel beach scene is outside the training data distribu-
tion, which is primarily for indoor settings. Our LayoutAgent can understand the logical spatial
relationships between objects and plan the scene layout. This step-by-step approach, validated across
diverse indoor and outdoor scenes, shows the unique strength of LayoutAgent in unifying high-level
reasoning with precise generative control to produce realistic and well-structured final images.

[ Scene Graph ] [ Planed Object Composition ][ Final image generation ] [ Scene Graph ][ Planed Object Composition ] [ Finalimage generation ]
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Figure 3: Case studies on the spatial planning and scene generation

4 Conclusion

We presented LayoutAgent, a vision-language guided compositional diffusion framework that unifies
symbolic spatial reasoning with generative modeling for scene planning. Our approach produces



spatially plausible and semantically coherent layouts, surpassing conventional planning methods.
This work highlights a promising direction toward controllable and interpretable scene generation for
applications in robotics, AR/VR, and autonomous agents.
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