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Abstract

Phonemes are defined by their relationship to001
words: changing a phoneme changes the word.002
Learning a phoneme inventory with little su-003
pervision has been a longstanding challenge004
with important applications to under-resourced005
speech technology. In this paper, we bridge006
the gap between the linguistic and statistical007
definition of phonemes and propose a novel008
neural discrete representation learning model009
for self-supervised learning of phoneme inven-010
tory with raw speech and word labels. Under011
mild assumptions, we prove that the phoneme012
inventory learned by our approach converges013
to the true one with an exponentially low er-014
ror rate. Moreover, in experiments on TIMIT015
and Mboshi benchmarks, our approach consis-016
tently learns a better phoneme-level represen-017
tation and achieves a lower error rate in a zero-018
resource phoneme recognition task than previ-019
ous state-of-the-art self-supervised representa-020
tion learning algorithms.021

1 Introduction022

Thanks to recent developments in self-supervised023

speech representation learning (van den Oord et al.,024

2017, 2019; Chorowski et al., 2019; Baevski et al.,025

2020), there is new hope for the development of026

speech processing systems without the need for027

full textual transcriptions. Supervised speech pro-028

cessing systems for tasks such as automatic speech029

recognition (ASR) rely on a large amount of tex-030

tual transcriptions, but self-supervised systems can031

be applied to under-resourced languages in which032

such annotation is either scarce or unavailable. A033

key task of the self-supervised system is to learn a034

discrete representation. While it is possible to dis-035

cretize the speech solely on the basis of its acoustic036

properties, a more desirable discrete representa-037

tion would serve as a bridge from the continuous038

acoustic signal toward higher-level linguistic struc-039

tures such as syntax and semantics. Such a rep-040

resentation would make it possible to repurpose041

algorithms developed for written languages so that 042

they could be used for unwritten languages in tasks 043

such as speech translation and spoken language 044

understanding. Words are the obvious choice for 045

a discrete, semantic-driven speech representation, 046

but a practical speech understanding system needs 047

at least thousands of words; learning them in an un- 048

supervised manner may be challenging. Phonemes 049

may be a more learnable representation. According 050

to the standard linguistic definition, phonemes are 051

closely linked to words: 052

Definition 1. (Linguistic definition of 053

phonemes (Swadesh, 1934)) Phonemes are 054

the smallest units in speech such that given a 055

correct native word, the replacement of one or 056

more phonemes by other phonemes (capable of 057

occurring in the same position) results in a native 058

word other than that intended, or a native-like 059

nonsense word. 060

For example, the sentences “he thinks” and “he 061

sinks” differ by exactly one phoneme but have very 062

different meaning. The optimal compactness of a 063

phoneme inventory as specified in the definition 064

leads to three advantages. First, learning phonemes 065

requires lower sample complexity than learning 066

words since the number of distinct phonemes is 067

much smaller than the number of distinct words in 068

a language. Second, the phonemes are much more 069

abundant and more balanced in classes than words 070

within a speech corpus, which makes sample com- 071

plexity less of an issue when learning phonemes. 072

Third, phonemes are more generalizable in the 073

sense that knowing the phoneme inventory allows 074

the learner to memorize previously unseen words 075

as sequences of phonemes, and, having memo- 076

rized them, to begin seeking clues to their mean- 077

ing. Motivated by the semantic-driven definition of 078

phonemes, we formulate the problem of learning 079

a phoneme inventory as a self-supervised learning 080

problem, where a small amount of semantic su- 081

pervision is available. The required supervision 082
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specifies which acoustic segments are instances of083

the same word, and which are instances of differ-084

ent words. Such supervision might be acquired in085

a naturalistic setting by asking native speakers to086

name objects in a set of standardized images, as is087

commonly done in primary education classrooms,088

or by asking for the translations of common words089

in a second language, a common baseline approach090

in dialectology and historical linguistics (Swadesh,091

1952). Our contributions are threefold: (1) we092

propose a computationally tractable definition of093

phoneme that is almost equivalent to the linguistic094

definition. (2) We propose a finite-sample objec-095

tive function for learning phoneme-level units and096

prove that under mild conditions, the empirical risk097

minimizer (ERM) of this objective will find the098

correct phoneme inventory with exponentially low099

error rate. (3) We propose a novel class of neural100

networks called information quantizers to optimize101

the proposed objective, which achieve state-of-the-102

art results in the phoneme inventory discovery task103

on the TIMIT and low-resourced Mboshi bench-104

marks with much less training data than previous105

approaches.106

2 Related works107

Due to the challenge of learning phonemes, early108

works on unsupervised speech representation learn-109

ing (Park and Glass, 2005; Lee and Glass, 2012;110

Ondel et al., 2016) focus on learning speech111

segments sharing similar acoustic properties, or112

phones, without taking into account the meaning of113

the speech they are part of. There are two main ap-114

proaches in this direction. One approach is to learn115

discrete phone-like units without any textual labels116

by modeling phone labels of the speech segments117

as latent variables. In particular, (Park and Glass,118

2005; Jansen et al., 2010) first detect segments with119

recurring patterns in the speech corpus followed by120

graph clustering using the similarity graph formed121

by the segments. (Lee and Glass, 2012; Ondel122

et al., 2016; Kamper et al., 2016) develop prob-123

abilistic graphical models to jointly segment and124

cluster speech into phone-like segments. An exten-125

sion to the latent variable approach is to introduce126

additional latent variables such as speaker iden-127

tity (Ondel et al., 2019) or language identity (Yusuf128

et al., 2020) and develop mechanisms to disentan-129

gle these variables.130

With the advance of deep learning, neural net-131

work models have also been proposed to learn132

unsupervised phone-level representation either by 133

first learning a continuous representation (Chung 134

et al., 2019; Feng et al., 2019; Nguyen et al., 2020) 135

followed by off-line clustering, or by learning a 136

discrete representation end-to-end with Gumbel 137

softmax (Eloff et al., 2019b; Baevski et al., 2020) 138

or vector-quantized variational autoencoder (VQ- 139

VAE) (van den Oord et al., 2017; Chorowski et al., 140

2019; Baevski et al., 2019). However, codebooks 141

learned by the neural approaches tend to be much 142

larger than the number of phonemes (Baevski et al., 143

2020), leading to low scores in standard phoneme 144

discovery metrics. The second approach utilizes 145

weak supervision such as noisy phone labels pre- 146

dicted by a supervised, multilingual ASR system 147

trained on other languages. Along this direction, 148

(Żelasko et al., 2020; Feng et al., 2021a) systemati- 149

cally study the performance of zero-shot crosslin- 150

gual ASR on 13 languages trained with interna- 151

tional phonetic alphabet (IPA) tokens and found 152

that the system tends to perform poorly on unseen 153

languages. Instead, (Feng et al., 2021b) is able to 154

discover phone-like units by clustering bottleneck 155

features (BNF) from a factorized time-delay neural 156

network (TDNN-f) trained with phone labels pre- 157

dicted by a crosslingual ASR (Feng et al., 2021a). 158

Several works have since shifted focus toward 159

the more challenging phoneme discovery prob- 160

lem by formulating it as a self-supervised learn- 161

ing problem where the semantics of the speech 162

are known, such as from translation, phoneme- 163

level language models or other sensory modali- 164

ties such as vision. (Jansen, 2013) has studied 165

the use of pairwise word identity labels for train- 166

ing phoneme discovery models based on Gaus- 167

sian mixture models (GMM); (Harwath and Glass, 168

2019) analyzes the hidden layers of a two-branch 169

neural network trained to retrieve spoken captions 170

with semantically related images and finds strong 171

correlation between segment representation and 172

phoneme boundaries. (Harwath et al., 2020) adds 173

hierarchical vector quantization (VQ) layers in the 174

same retrieval network and is able to find a much 175

smaller codebook than the unsupervised neural ap- 176

proach (Baevski et al., 2020), and achieve high cor- 177

relation with the phoneme inventory. (Godard et al., 178

2018; Boito et al., 2019) has studied the possibility 179

of learning semantic units using an attention-based 180

speech-to-text translation system, though the units 181

appear to correlate more with words. Works on un- 182

supervised speech recognition (Chen et al., 2019) 183
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attempt to learn to recognize phonemes by lever-184

aging the semantic information from a phoneme185

language model unpaired with the speech, typi-186

cally by matching the empirical prior and posterior187

distributions of phonemes either using cross en-188

tropy (Yeh et al., 2019) or adversarial loss (Chen189

et al., 2019; Baevski et al., 2021).190

Figure 1: Illustration of semantic-driven phoneme dis-
covery

3 Semantic-driven Phoneme Discovery191

3.1 Notation192

Throughout the paper, we use P{·} to denote proba-193

bility. We use capital letters to denote random vari-194

ables and lower-case letters to represent samples of195

random variables. We use PX := P{X = x} to de-196

note both probability mass and density functions of197

random variableX , depending on whether it is con-198

tinuous or discrete. Further, denote PY |X(y|x) :=199

P{Y = y|X = x} as the true conditional proba-200

bility distribution of random variable Y = y given201

random variable X = x. The probability simplex202

in Rd is denoted as ∆d.203

3.2 Statistical Definition of Phonemes204

The linguistic definition of phonemes can be205

rephrased as follows. Define X to be the set of206

all physical acoustic segments that can ever be pro-207

duced as instances of the phonemes of a given lan-208

guage. Definition 1 can be phrased as follows:209

Two sequences of segments x = [x1, · · · , xT ] and210

x′ = [x1:t−1, x
′
t, xt+1:T ], differing only in that211

x′t 6= xt, are instances of different words, y′ 6= y,212

if and only if x′t and xt are instances of different213

phonemes. In order to design effective algorithms,214

we will work with a relaxation of this definition,215

which we call the statistical definition of phonemes.216

Definition 2. (Statistical definition of phonemes) 217

Let X be the set of all speech segments in a lan- 218

guage, and let X be a random vector taking val- 219

ues in X and Y be a random variable represent- 220

ing the word of which X is one segment. The 221

phoneme inventory of a language is the minimal 222

partition Z = {Z1, · · · ,ZK} of X (i.e., X = 223

∪Kk=1Zk,Zj ∩ Zk = ∅, ∀1 ≤ j, k ≤ K), such 224

that if a speech segment pair (x, x′) ∈ X2 satisfies 225

(x, x′) ∈ Z2
k for some k ∈ {1, · · · ,K}, then their 226

conditional distributions satisfy 227

PY |X=x = PY |X=x′ . (1) 228

In other words, given only the knowledge that two 229

acoustic sequences contain instances of the same 230

phoneme, the resulting conditional distributions 231

across possible word labels are the same. 232

The fundamental intuition of Definition 2 is 233

that different phonemes have different distributions 234

across the words of the language. Two instances 235

of the same phoneme, x and x′, might have dif- 236

ferent likelihoods PX=x|Y and PX=x′|Y , e.g., be- 237

cause of allophony; but their posteriors PY |X=x 238

and PY |X=x′ cannot be different without violating 239

Definition 1. The relationship between Definition 1 240

and Definition 2 is given by the following proposi- 241

tion, whose proof is in Appendix A.3. 242

Proposition 1. Let Z = ∪Kk=1Zk be a partition of 243

X. If, for all possible {PY |X=xs}s 6=t, for any spo- 244

ken word x = [x1, · · · , xT ], and for any segment 245

pairs (xt, x
′
t) ∈ Z2

k, k ∈ {1, · · · ,K}, changing xt 246

to x′t does not alter the identity of the word, i.e., 247

248

arg max
y

PY |X1:T
(y|x1:t−1, x

′
t, xt+1:T ) 249

= arg max
y

PY |X1:T
(y|x), (2) 250

but for any segment pairs xt ∈ Zk, x′′t ∈ Zl for 251

k 6= l, changing xt to x′t alters the identity of the 252

word, i.e., 253
254

arg max
y

PY |X1:T
(y|x1:t−1, x

′′
t , xt+1:T ) 255

6= arg max
y

PY |X1:T
(y|x), (3) 256

then Z is a phoneme inventory from Definition 2. 257

Define the phoneme assignment function z : 258

X → {1, · · · ,K} such that z(x) = k if x ∈ Zk. 259

Suppose a segment X is randomly chosen from X 260

with probability distribution PX and its phoneme 261
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Figure 2: Network architecture of information quantizer

label is another random variable Z := z(X), then262

by Definition 2, for any pair x, x′ ∈ X such that263

z(x) = z(x′), we have PY |X=x = PY |X=x′ =264

PY |Z=z(x). The phoneme inventory is thereby com-265

pletely characterized by the phoneme label function266

z(·) as well as the set of distributions associated267

with each class PY |Z .268

3.3 Problem Formulation269

Let z(·) be the phoneme assignment function from270

Definition 2 and assume the size of the phoneme271

inventory is known to be K.272

Given a training set D = {(x(i), y(i))}ni=1,273

where each x(i) is an acoustic segment extracted274

from a spoken word, and each y(i) ∈ Y is the cor-275

responding word label, a semantic-driven phoneme276

discovery (SPD) system tries to find an assign-277

ment function that minimizes the token error rate278

(TER):279

PTER(ẑ) := min
π∈Π

P{z(X) 6= π(ẑ(X))}, (4)280

where Π is the set of all permutations of length281

K, which is used because the problem is unsuper-282

vised and z(·) is not available during training. An283

assignment function ẑ is said to achieve exact dis-284

covery if PTER(ẑ) = 0. It can be easily shown that285

TER is equivalent to standard evaluation metrics286

for phoneme discovery such as normalized mutual287

information (NMI) (Yusuf et al., 2020; Harwath288

et al., 2020; Feng et al., 2021b) and token F1 (Dun-289

bar et al., 2017), as presented in Appendix A.2.290

Thus, to provide guarantees for NMI and token F1,291

it suffices to provide a guarantee for TER.292

4 Information Quantizer293

We solve the SPD problem using a novel type294

of neural network called an information quan-295

tizer (IQ), depicted in Figure 2. An IQ (θ, q) ∈296

Θ×QK consists of four main components: A pre- 297

segmentation network, a speech encoder eθ1(·), a 298

word posterior cθ2(·) and a quantizer q : ∆|Y| → 299

C = {Q1, · · · , QK}, where [θ1, θ2] = θ and C is 300

the distribution codebook and Qk’s are called the 301

code distributions of q. 302

4.1 Phoneme inventory discovery with IQ 303

IQ performs phoneme discovery in three stages. 304

The pre-segmentation stage takes a raw speech 305

waveform as input and extracts phoneme-level 306

segments x = [x1, · · · , xT ] in a self-supervised 307

fashion (Kreuk et al., 2020). Afterwards, in the 308

joint distribution learning stage, the speech encoder 309

extracts phoneme-level representations eθ1(x) = 310

[eθ1(x1), · · · , eθ1(xT )] before passing them into 311

the word posterior network to estimate the distri- 312

bution of word labels, Y , given the presence in the 313

word of acoustic phonetic segment X = x: 314

P θY |X=xt
= cθ2(eθ1(xt)), 1 ≤ t ≤ T. (5) 315

Note that it is crucial that no recurrent connection 316

exists between segments since our goal is to learn 317

the probability of a word label given the presence of 318

one phoneme segment. Finally, in the quantization 319

stage, the quantizer creates the phoneme inventory 320

by assigning each segment xt an integer index via 321

codeword assignment function ẑ(xt) such that 322

ẑ(xt) = k if q(P θY |X=xt
) = Qk. 323

4.2 Training 324

The loss function that IQ minimizes has two goals: 325

learn a good estimator for the conditional distribu- 326

tion PY |X and learn a good quantization function 327

q(·). The first goal is achieved by minimizing the 328

cross entropy loss: 329

LCE(Pn, θ) := − 1

n

n∑
i=1

logP θY |X(y(i)|x(i)), (6) 330
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where Pn is the empirical joint distribution. The331

second goal is achieved by minimizing the KL-332

divergence between the estimated conditional dis-333

tribution before and after quantization:334

LQ(P̃n, θ, q) :=
1

n

n∑
i=1

DKL(P θ
Y |X=x(i)

||q(P θ
Y |X=x(i)

)),

(7)

335

where P̃n := 1
n

∑n
i=1 δx(i)P

θ
Y |X=x(i)

is the336

smoothed version of the empirical distribution. The337

final loss function of IQ for SPD is then:338

LIQ(Pn, θ, q) := LCE(Pn, θ) + λLQ

(
P̃n, θ, q

)
,

(P1)

339

where λ > 0 is some hyperparameter set to ap-340

proximately 1 for most experiments. Further, we341

restrict q to be nearest-neighbor so that:342

q(P ) = arg min
Qk:1≤k≤K

DKL(P ||Qk). (8)343

This restriction does not increase the loss (P1) and344

serves as a regularization during phoneme discov-345

ery, as shown in Appendix A.3.346

4.3 Theoretical Guarantee347

We show that under mild assumption, IQ is able348

to achieve exact discovery of phoneme inventory.349

First, let us state the main assumptions of the paper.350

Assumption 1. (boundedness of the density ra-351

tio) There exist universal constants Cl < Cu352

such that ∀θ ∈ Θ, ∀q ∈ QK , ∀(x, y) ∈ X ×353

Y, log
PY |X(y|x)

P θ
Y |X(y|x)

∈ [Cl, Cu], log
PY |X(y|x)

q(P θ
Y |X(y|x))

∈354

[Cl, Cu].355

Assumption 2. (log-smoothness of the density356

ratio) There exists ρ > 0 such that ∀θ1, θ2 ∈357

Θ, x, y ∈ X× Y,
∣∣∣∣log

P
θ1
Y |X(y|x)

P
θ2
Y |X(y|x)

∣∣∣∣ ≤ ρ‖θ1 − θ2‖.358

Assumption 3. (realizability) There exists a359

nonempty subset Θ∗ ⊂ Θ such that P θY |X =360

PY |X , ∀θ ∈ Θ∗.361

Assumption 4. The true prior of the phoneme in-362

ventory is known to be PZ(z) = 1
K , 1 ≤ z ≤ K.363

The first two assumptions are similar to the ones364

in (Tsai et al., 2020). Assumption 3 assumes that365

the true probability measure is within the function366

class, which combined with Assumption 1 requires367

the true distribution to share the same support as the368

estimated one. However, such assumption can be369

relaxed so that DKL(P θ
∗

Y |X ||PY |X) ≤ ν, ∀θ∗ ∈ Θ∗ 370

for some small enough ν > 0, which does not 371

affect the essential idea behind our analysis and 372

can be achieved by some rich class of universal ap- 373

proximators such as neural networks (Hornik et al., 374

1989). The last assumption ensures the inventory 375

to be identifiable by assuming knowledge of the 376

prior of the phoneme inventory. 377

Next, we will state the theoretical guarantee be- 378

fore giving some intuitive explanation. 379

Theorem 1. Given Assumption 1-4, let the infor- 380

mation quantizer (θ̂, q̂) with assignment function ẑ 381

be an empirical risk minimizer (ERM) of (P1): 382

LIQ(Pn, θ̂, q̂) = min
θ∈Θ,q∈QK

LIQ(Pn, θ, q). (9) 383

For any δ ∈ (0, 1], with probability at least 1 − 384

δ, the cluster assignment function ẑ of the ERM 385

information quantizer q̂ achieves PTER(ẑ) = 0 if 386

the sample size n satisfies: 387

n ≥ O

(
log 1

δ

min{ε∗2, log K
K−1}

)
, (10) 388

where

ε∗ = min
z1,z2:z1 6=z2

c(z1, z2)DJS(PY |Z=z1 ||PY |Z=z2)2

for some constants c(z1, z2) > 0, 1 ≤ z1, z2 ≤ K 389

independent of n, δ, O(x) is such that O(x) ≤ 390

αx for some α > 0 and DJS(P ||Q) := 391
1
2DKL

(
P ||P+Q

2

)
+ 1

2DKL

(
Q||P+Q

2

)
is the 392

Jensen-Shannon divergence. 393

The bound in Theorem 1 captures two main fac- 394

tors determining the sample complexity of exact 395

phoneme discovery: the first factor is how close 396

the word distributions of phonemes are from each 397

other as measured by their Jensen-Shannon (JS) 398

divergence, and the second factor is how hard it 399

is for the training data to cover all the phonemes. 400

The theorem works essentially because (P1) can 401

be viewed as an approximation of the mutual in- 402

formation between the codeword ẑ(X) and word 403

type Y , I(ẑ(X);Y ). Suppose P θ̂Y |X ≈ PY |X and 404

let H(·|·) denotes conditional entropy, we have: 405

LIQ(Pn, θ̂, q̂) ≈ H(Y |X) +DKL(PY |X ||q̂(PY |X)) 406

∝ −I(X;Y ) +DKL(PY |X ||q̂(PY |X)) = −I(ẑ(X);Y ), 407

which is minimized if q̂(PY |X) = PY |z(X). In fact, 408

we prove that ẑ for such q̂ is equivalent to z(·) up 409

to a permutation in Appendix A.3. 410
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Flickr Audio Librispeech

↑Token F1 ↑NMI ↑Token F1 ↑NMI

Continuous Representation

(Nguyen et al., 2020) 35.7±0.6 40.9±0.4 48.6±1.1 60.0±0.4
CPC+MLP+k-means, K=44 49.4±0.8 52.2±0.7 67.5±0.9 71.8±1.1
CPC+MLP+k-means, K=100 40.6±0.5 51.7±0.7 61.3±0.5 71.8±0.6
CPC+MLP+k-means, K=256 28.5±0.4 51.0±0.4 48.4±1.7 68.8±0.7

Discrete Representation

(Alemi et al., 2017) 43.6±0.7 36.1±1.9 51.0±2.1 56.2±0.9
(Strouse and Schwab, 2016), K=44 49.4±1.0 52.2±0.2 68.3±1.3 72.8±1.0
(Strouse and Schwab, 2016), K=100 41.7±0.7 52.8±0.1 60.3±0.0 71.0±0.5
(Strouse and Schwab, 2016), K=256 31.6±0.1 51.8±0.2 49.1±0.7 68.8±0.2
IQ (Ours), K=44 53.2±1.3 55.4±1.1 65.9±2.0 73.0±1.2
IQ (Ours), K=100 51.3±0.4 56.5±0.5 68.4±1.5 75.0±1.0
IQ (Ours), K=256 48.2±0.7 53.0±1.9 69.7±2.0 75.8±1.0

Table 1: Phoneme discovery results using segmented
words extracted from Flickr audio and Librispeech.

TIMIT ↑Token F1 ↑NMI ↑Boundary F1

(Yusuf et al., 2020) - 40.1±0.1 76.6 ±0.5
(Harwath et al., 2020) - 35.9 54.2
(Feng et al., 2021b) - 36.8 70.5
+ gold segmentation - 51.2 97.8

(Ours) IQ, |Y|=224, K=39 37.9±1.2 38.6±0.7 77.1±0.1
+ training on TIMIT 50.9±0.8 43.4±0.9 78.6±0.4
+ gold segmentation 62.8±0.8 59.4±0.8 96.9±0.3
(Ours) IQ, |Y|=524, K=39 42.4±0.1 43.0±0.5 79.4±0.1
+ training on TIMIT 53.9±0.3 46.7±0.2 80.4±0.2
+ gold segmentation 64.3±0.4 63.4±0.4 98.3±0.3
(Ours) IQ, |Y|=824, K=39 43.9±0.1 44.3±0.2 79.2±0.0
+ training on TIMIT 54.4±0.4 47.5±0.2 80.5±0.1
+ gold segmentation 65.7±0.7 65.2±0.6 98.6±0.3

Figure 3: The overall phoneme discovery results of all
models on TIMIT.

5 Experimental Setup411

Datasets We construct four training datasets412

consisting of spoken words only. The vocabu-413

lary set with |Y| = 224 is selected from head414

words of noun phrases from the Flickr30kEntities415

dataset (Hodosh et al., 2010) that appear at least416

500 times. For the Flickr audio word dataset, spo-417

ken words in the vocabulary are extracted from418

Flickr audio dataset (Harwath and Glass, 2015).419

For the Librispeech and TIMIT word dataset with420

|Y| = 224, spoken words are extracted from Lib-421

rispeech (Vassil et al., 2015) 460-hour train-clean422

subset, resulting in a dataset of about 6 hours and423

0.1 hours; for Librispeech and TIMIT word dataset424

with |Y| = 524 and |Y| = 824, we supplement the425

dataset with the speech for the top 300 frequent426

words and top 600 frequent words respectively (ex-427

cluding the visual words) in Librispeech, resulting428

in datasets of about 15 and 21 hours. For Mboshi429

dataset, we found only about 20 actual words occur430

more than 100 times, so instead we use all n-grams431

except uni- and bigrams or bigrams+trigrams that432

occur more than 100 times as “words”, resulting in433

(4a) (4b)

Figure 4: Left: Manner-level t-SNE plot by IQ with
|Y| = 824 and gold segmentation on TIMIT. Right:
Distribution of codeword assignment for each phoneme
by IQ with |Y| = 824 and predicted segmentation
on TIMIT. Each row of the plot is the empirical dis-
tribution for PẐ|Z(·|z), 1 ≤ z ≤ K, where the
phonemes are sorted top-to-bottom with decreasing
maxz′ PẐ|Z(z′|z).

a vocabulary size of 161 and 377 respectively. Note 434

that the amount of labeled data we need is much 435

lower than previous works (Yusuf et al., 2020): 436

around 30 hours, (Feng et al., 2021b): around 600 437

hours) and the vocabulary size used is much smaller 438

than the total vocabulary size in the language. More 439

details of the sets can be found in Appendix B. We 440

also test our models on two standard phoneme dis- 441

covery benchmarks, which contain whole-sentence 442

utterances with many words unseen during train- 443

ing. The first dataset is TIMIT (Garofolo et al., 444

1993), an English corpus consisting of about 5 445

hours speech and Mboshi (Godard et al., 2017), 446

which contains about 2.4 hours speech from a low- 447

resource language. For both datasets, we follow 448

the split in (Yusuf et al., 2020), (Feng et al., 2021b) 449

Baselines For phoneme discovery from seg- 450

mented words, we compare our model (IQ) with 451

four baselines. The first two baselines use con- 452

tinuous representation: the CPC+k-means model 453

performs k-means clustering on the segment-level 454

CPC features and the k-means model performs 455

k-means clustering after the model is trained on 456

the word recognition task. The last two baselines 457

use discrete representations: the Gumbel varia- 458

tional information bottleneck (Alemi et al., 2017) 459

(Gumbel VIB) is a neural model with a Gumbel 460

softmax (Jang et al., 2016) layer to approximate 461

the codebook assignment function z(·), and we 462

set β = 0.001 and decay the temperature of the 463

Gumbel softmax from 1 to 0.1 linearly for the first 464

300000 steps, keeping it at 0.1 afterwards, which 465

works best in our experiments; the deterministic 466
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information bottleneck (DIB), a generalization of467

(Strouse and Schwab, 2016) for continuous feature468

variable X , which assumes the same deterministic469

relation between speech X and codebook unit Z as470

ours, but optimizes the models in a pipeline fashion471

(first the speech encoder and then the quantizer) by472

performing clustering on the learned conditional473

distributions. All models share the same speech474

encoder as IQ. For the whole-sentence datasets, we475

compare our models three phoneme discovery sys-476

tems, namely, the unsupervised H-SHMM trained477

with multilingual speech (Yusuf et al., 2020), the478

ResDAVEnet-VQ (Harwath et al., 2020) with vi-479

sual supervision and the TDNN-f system by (Feng480

et al., 2021b) trained with multilingual speech. To481

study how well our model performs in extreme482

low-resource speech recognition compared to other483

neural speech representation learning models, we484

compare our models with wav2vec (Schneider485

et al., 2019), wav2vec 2.0 (Baevski et al., 2020),486

vq-wav2vec with Gumbel softmax and k-means487

as discretization strategies (Baevski et al., 2019),488

CPC (van den Oord et al., 2019) and VQ-CPC (van489

Niekerk et al., 2020), using the pretrained models490

released by the authors. Implementation details of491

the baselines and our models are in Appendix C.492

Evaluation metrics Standard metrics are used493

such as NMI and boundary F1 for the quality of494

codebook and segmentation respectively with the495

same implementation as in prior works (Yusuf496

et al., 2020; Feng et al., 2021b). In addition, token497

F1 (Dunbar et al., 2017) is also reported. To exam-498

ine the benefit of using our discovered phoneme499

inventory for low-resource speech recognition, we500

also evaluate using equivalent phone error rate501

(equiv. PER: Ondel et al. 2019). This metric can502

be viewed as a proxy for phone error rate (PER)503

applicable beyond supervised speech recognizers.504

6 Results505

6.1 Word-level Phoneme Discovery506

The results on visual word-only test sets of Flickr507

audio and Librispeech are shown in Table 1 and508

the convergence plot during training is shown in509

Figure 8. On both datasets, IQ outperforms both510

Gumbel VIB and DIB in terms of all metrics, espe-511

cially on Flickr audio, which has more phonemes512

than Librispeech and a larger test set. Moreover,513

the performance of IQ is very robust to the code-514

book size, achieving good results even when the515

↑Token F1 ↑NMI ↑Boundary F1

(Ondel et al., 2019) - 38.4±1.0 59.5±0.8
(Yusuf et al., 2020) - 41.1±1.1 59.2±1.5
(Feng et al., 2021b), 5 langs - 43.5±0.3 62.8±0.0
+ Gold segmentation - 60.6±0.1 100±0.0
(Feng et al., 2021b), 13 langs 36.4±0.6 44.7±0.6 64.1±0.1
+ Gold segmentation 50.8±0.6 64.6±0.3 100±0.0

(Ours) IQ, |Y| = 161, K=31 46.5±0.4 40.2±0.1 65.5±0.1
+ Multilingual BNF 54.2±1.0 45.1±0.4 67.5±0.1
+ Gold segmentation 66.4±0.8 69.7±0.4 100±0.0

+ Multilingual BNF 74.3±0.8 76.9±0.6 100±0.0
(Ours) IQ, |Y| = 377, K=31 50.4±0.5 45.2±0.8 66.8±0.0
+ Multilingual BNF 57.1±1.0 49.3±0.3 67.3±0.1
+ Gold segmentation 69.3±1.0 73.0±0.6 100±0.0

+ Multilingual BNF 81.7±0.8 82.6±0.3 100±0.0

(5a)

↓ Equiv. PER ↑ Boundary F1
Predicted
Segments

Gold
Segments

wav2vec+k-means 66.6 64.8 52.4
wav2vec 2.0+k-means 64.5 60.0 55.3
vq-wav2vec (k-means) 77.3 - 31.1
vq-wav2vec (Gumbel) 77.0 - 30.3
CPC+k-means 63.1 57.4 54.7
VQ-CPC 80.3 - 23.0

IQ (Ours) 44.3 25.8 67.3

(5b)

Figure 5: (a) Phoneme discovery results of all models
on Mboshi dataset. (b) Comparison of IQ with other
self-supervised models in zero-resource speech recog-
nition.

codebook size is very different from the size of the 516

true phoneme inventory, suggesting our theory may 517

be able to work with a relaxed Assumption 4. 518

6.2 Sentence-level Phoneme Discovery 519

The results on TIMIT and Mboshi are shown in 520

Table 3 and Table 5a respectively. On TIMIT, our 521

model is able to outperform the visually grounded 522

baseline (Harwath et al., 2020) for all training vo- 523

cabulary, and all three baselines for |Y| = 524 and 524

|Y| = 824 with and without gold segmentation in 525

terms of all three metrics. Further, we also empiri- 526

cally verify the sample complexity bound in Theo- 527

rem 1 as IQ performs better in Token F1 and NMI 528

as the training vocabulary size get larger, which 529

generally increases the JS divergence. On Mboshi, 530

IQ with CPC feature consistently outpeforms (Feng 531

et al., 2021b) in token F1 and boundary F1, and IQ 532

with CPC+BNF features consistently outperform 533

(Feng et al., 2021b) in all three metrics under vari- 534

ous level of word supervision. The performance of 535

our model on Mboshi compared with other neural 536

self-supervised models are shown in Table 5b. We 537

found that IQ outperforms the best self-supervised 538
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Figure 6: The spectrograms annotated with the gold
transcripts and the zero-resource transcriptions by var-
ious models for three Mboshi utterances. The spoken
segments are in circles of the same colors are identified
as the same phoneme by our IQ model and in triangles
of the same color if they are but are acoustically similar.

model, CPC+k-means in equiv. PER by 34% and539

20% absolute with and without gold segmentation540

respectively and 12% absolute in terms of boundary541

F1, suggesting that IQ is able to learn consistent542

phoneme-like sequence useful for zero-resource or543

extremely low-resource speech recognition.544

Effect of segmentation and codebook size The545

use of unsupervised phoneme segmentation dete-546

riorates the NMI by about 18% and 28% absolute547

on TIMIT and Mboshi respectively for our models548

since the distributional property of phonemes does549

not apply exactly to non-phoneme segments. On550

the other hand, in Appendix F we show that the551

quality of codeword assignments by IQs is very552

robust against varying codebook size, after exper-553

imenting with codebook size from 30 to 70 on554

TIMIT and Mboshi.555

Multilingual and word supervision are compli-556

mentary In all vocabulary sizes, concatenating557

the multilingual BNF from (Feng et al., 2021b) to558

the CPC output representation from the segmental559

speech encoder in Figure 2 significantly improves560

token F1 and NMI to allow our best models to561

outperform baselines in all three metrics.562

6.3 Analysis563

IQ codebook resembles true phonemes From564

Figure 4b, we observe that the codeword as-565

signments by IQ correlates well with the actual566

Figure 7: ABX phoneme identification accuracy vs
phoneme frequency on the Mboshi dataset for IQ
trained with vocabulary size 161 and 377.

phonemes, but tends to confuse the most between 567

phonemes within the same manner class, such as 568

nasals /n/ and /m/. This is also confirmed by the 569

t-SNE plot in Figure 4a, where the embeddings 570

of most manner classes are well-clustered, except 571

for related manner classes such as affricate and 572

fricative, or glide and vowel. Further, from the 573

examples shown in Figure 6, we can see that IQ is 574

not only better at grouping segments of the same 575

phonemes but also at detecting segment boundaries 576

than the baselines. Also, across different examples, 577

IQ assign the same codes to phonemes such as /a/ 578

(31) and /s/ (7) more consistently than other mod- 579

els do. Please check Appendix G for more speech 580

examples. 581

Limitation While our theory predicts that with 582

gold segmentation, the TER of IQ is asymptotically 583

zero, in practice TER is nonzero due to the viola- 584

tion of Assumption 4, i.e., the phonemes are not 585

uniformly distributed for languages such as Mboshi. 586

As a result, the model often discards information of 587

the rare phonemes by merging them into a more fre- 588

quent phoneme cluster. Evidently, from Figure 7, 589

where we use ABX accuracy (Munson and Gard- 590

ner, 1950) to score how reliable the IQ codebook 591

can identify segments of the same phoneme, we 592

observe a strong correlation is observed between 593

ABX accuracy and the frequency of the phonemes. 594

7 Conclusion 595

Motivated by the linguistic definition of phonemes, 596

we propose information quantizer (IQ), a new neu- 597

ral network model with theoretical guarantee and 598

strong empirical performance for semantic-driven 599

phoneme discovery. 600
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Piotr Żelasko, Laureano Moro-Velázquez, Mark821
Hasegawa-Johnson, Odette Scharenborg, and Najim822
Dehak. 2020. That sounds familiar: an analysis of823
phonetic representations transfer across languages.824
In Interspeech.825

A Proofs of Theoretical Results826

A.1 Statistical definition of phonemes827

Proof of Proposition 1. Without loss of gen-828

erality, suppose (x1, x
′
1) ∈ X2, suppose829

there exists y1 such that PY |X(y1|xt) >830

PY |X(y1|x′t), then there exists y2 such that831

PY |X(y2|xt) < PY |X(y2|x′t), which means there832

exists 0 ≤ α1, α2 ≤ 1, α1 + α2 ≤ 1, such that833
PY |X(y1|x′t)
PY |X(y2|x′t)

≤ α2
α1
<

PY |X(y1|xt)
PY |X(y2|xt) . Now, since Equa-834

tion 2 holds for arbitrary PY |X=xs ∈ ∆|Y|, s 6= t,835

we can set PY |X(y1|x2) = α1, PY |X(y2|x2) =836

α2, PY |X(y1|xt) = PY |X(y2|xt) = 1
2 ,∀t > 2,837

in which case Equation 2 boils down838

to arg maxi∈{1,2} αiPY |X(yi|x1) =839

arg maxi∈{1,2} αiPY |X(yi|x′1). However,840

by the choice of αi’s, the left-hand side is841

y1 since α1PY |X(y1|x1) > α2PY |X(y2|x1)842

and the right-hand side is y2 since843

α2PY |X(y2|x1) > α1PY |X(y1|x′1), and844

therefore Equation 2 cannot hold. There-845

fore, Equation 2 is true only if PY |X(y|x1) =846

PY |X(y|x′1), ∀(x1, x
′
1) ∈ X2, y ∈ Y.847

A.2 Equivalence of TER and standard848

phoneme discovery metrics849

Consider the groundtruth assignment z(·) and a850

codebook assignment ẑ(·) with K̂ code words, the851

NMI of ẑ is defined as:852

NMI(ẑ) =
2I(z(X); ẑ(X))

H(z(X)) +H(ẑ(X))
, (11)853

where H(·) denotes the entropy and I(·; ·) denotes854

the mutual information.855

which is also related to the token F1 used856

for acoustic unit discovery (Dunbar et al., 2017).857

Since SPD is an unsupervised learning problem858

and ground truth phoneme labels are not avail-859

able, matching between codebook indices and860

phoneme units is needed. When computing to-861

ken F1, we consider two different many-to-one862

mappings πrec : {1, · · · ,K} → {1, · · · , K̂} and863

πprec : {1, · · · , K̂} → {1, · · · ,K} to compute the 864

token recall and precision respectively as: 865

Rec(ẑ) := max
πrec

P{ẑ(X) = πrec(z(X))} (12) 866

Prec(ẑ) := max
πprec

P{z(X) = πprec(ẑ(X))}, (13) 867

before computing the harmonic mean between the 868

two to obtain token F1: F1(ẑ) := 2Prec(ẑ)Rec(ẑ)
Prec(ẑ)+Rec(ẑ) . 869

The following proposition relates TER with token 870

F1 and NMI. 871

Proposition 2. For any assignment function ẑ : 872

{1, · · · ,K} → {1, · · · ,K}, PTER(ẑ) = 0 if and 873

only if F1(ẑ) = NMI(ẑ) = 1. 874

Proof. First of all, for such ẑ, we have 1 ≥ 875

F1(ẑ) ≥ min{Prec(ẑ),Rec(ẑ)} ≥ 1 − 876

Pe, TER(ẑ) = 1, where the third inequality comes 877

from the fact that the set of permutations is a 878

smaller set than the set of all many-to-one map- 879

pings π : {1, · · · ,K} → {1, · · · ,K}. Fur- 880

ther, using the fact that z and ẑ are functions 881

of each other when PTER(ẑ) = 0, it can be 882

shown that NMI(ẑ) = 2I(z(X),ẑ(X))
H(z(X))+H(ẑ(X)) = 883

2H(z(X))/2H(z(X)) = 1. 884

A.3 Exact Discovery Guarantee 885

First, we prove the claim made in Section 4.2 about 886

nearest neighbor information quantizers. Recall the 887

definition of general and nearest-neighbor informa- 888

tion quantizers as follows. 889

Definition 3. (Information quantizer) A K-point 890

information quantizer is a function q : ∆|Y| → 891

C = {Q1, · · · , QK} ⊂ ∆|Y|, where C is called 892

the codebook and Qk’s are called the code distri- 893

butions. Further, define QK to be the class of such 894

functions. 895

Definition 4. (Nearest-neighbor Information quan- 896

tizer) A K-point information quantizer is called 897

nearest-neighbor if, ∀P ∈ ∆|Y|, DKL(P ||q(P )) = 898

min1≤k≤K DKL(P ||Qk). Further, define QNN
K to 899

be the class of such functions. 900

Then we have the following lemma. 901

Lemma 1. There exists an information quantizer 902

θ̂n ∈ Θ, q̂n ∈ QNN
K such that 903

LIQ(Pn, θ̂, q̂) = min
θ∈Θ,q∈QK

LIQ(Pn, θ, q). (14) 904

Therefore, (θ̂, q̂) is an ERM of (P1). 905
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Proof of Lemma 1. Notice that only the LQ term906

of Equation P1 depends on q, so it suffices to show907

that minq∈QNN
K
LQ(P̃n, q) ≤ minq∈QK LQ(P̃n, q).908

This is true since909

min
q∈QK

LQ(P̃n, q) = min
q∈QK

EP̃n [DKL(P θY |X ||q(P
θ
Y |X))]910

≥ EP̃n [ min
1≤k≤K

DKL(P θY |X ||qk)]911

= min
q∈QNN

K

EP̃n [DKL(P θY |X ||q(P
θ
Y |X))]912

= min
q∈QNN

K

LQ(P̃n, q).913

914

Next, we show under the condition P θY |X =915

PY |X and n → ∞, (P1) recovers z(·) up to a per-916

mutation.917

Proposition 3. The pair (z∗, P ∗Y |Z) is a minimizer918

to the following optimization problem:919

max
ẑ:X→{1,··· ,K},PY |Z∈∆|Y|

I(ẑ(X);Y ), (P0)920

if and only if z∗ is equal to the true assignment921

function z up to a permutation.922

Proof. ⇒: First, z(·) is a feasible solution by defi-923

nition. By data processing inequality, we have924

I(z′(X);Y ) ≤ I(X;Y ) = I(z(X);Y ).925

Therefore, z(·) is also the optimal solution.926

⇐: Suppose there exists some optimal (ẑ, P̂Y |Z)927

with P̂Y |ẑ(x) 6= PY |z(x) for at least one x ∈ X .928

Since such discrepancies are independent with each929

other, it suffices to show that each such discrepancy930

leads to lower I(Z;Y ). Indeed, for (ẑ, P̂Y |Z) with931

P̂Y |Z=ẑ(x) 6= PY |Z=z(x) only at x,932

I(ẑ(X);Y )− I(z(X);Y )933

=PX(x)
∑
y

PY |X(y|x) log
P̂Y |Z=ẑ(x)

PY |Z=z(x)
934

=− PX(x)D(PY |Z=z(x)||P̂Y |Z=ẑ(x)) < 0,935

which contradicts the optimality of ẑ. Therefore,936

P̂Y |ẑ(x) = PY |z(x) for all optimal solution of (P0).937

938

To prove Theorem 1, we also need the following939

lemma.940

Lemma 2. Under Assumption 3, for any bounded941

parameter set Θ, there exists γ > 0 and942

some optimal parameter θ∗ ∈ Θ∗ such that943

DKL(P θY |X ||P
θ∗

Y |X) ≥ γ‖θ − θ∗‖, ∀θ ∈ Θ.944

Proof. We prove the lemma by contradiction. First, 945

we assume θ 6∈ Θ∗ since the inequality satisfies 946

trivially for any θ ∈ Θ∗. By boundedness, there 947

exists some R > 0 such that ‖θ‖ ≤ R. Suppose 948

for any γ > 0, there exists some θ ∈ Θ such that 949

DKL(P θY |X ||P
θ∗

Y |X) ≤ γ‖θ − θ∗‖ ≤ 2γR, then 950

we have DKL(P θY |X ||P
θ∗

Y |X) ≤ infγ>0 γR = 0. 951

However, since DKL(P θY |X ||P
θ∗

Y |X) ≥ 0, we have 952

DKL(P θY |X ||P
θ∗

Y |X) = 0, which implies θ ∈ Θ∗ 953

and leads to contradiction. 954

Note it is crucial that the parameter set is 955

bounded, which is the case for neural nets. Fur- 956

ther, Assumption 3 is needed or the inequality can 957

be easily violated when the optimal parameter set 958

Θ∗ is empty. 959

Next, we need the following lemma, which is 960

based on (Tsai et al., 2020): 961

Lemma 3. Under Assumptions 1-3, and consider 962

θ̂ to be part of the ERM of (P1) with conditional 963

distribution P̂Y |X := P θ̂Y |X . Then for any ε > 0, 964

the following inequality holds: 965

P
{

sup
x∈X

DKL(PY |X=x||P̂Y |X=x) > ε

}
(15) 966

≤2

∣∣∣∣N (Θ,
ε

4ρ
)

∣∣∣∣ exp

(
− γ2nε2

2ρ2(Cu − Cl)2

)
, (16) 967

where N (A, ε) is the ε-net of set A. 968

Proof. For notational ease, we drop the depen- 969

dence of LCE on P if the context is clear. Using As- 970

sumption 3, let PY |X = P θ
∗

Y |X . Define Dn(P ||Q) 971

as the empirical KL divergence. Further, notice that 972

for PY |X , LQ can always be made 0 and therefore, 973

the ERM of P1 needs to satisfy LCE(θ̂) ≤ LCE(θ∗). 974

As a result, 975

Dn(PY |X ||P̂Y |X) 976

:=EPn

[
log

PY |X(Y |X)

P̂Y |X(Y |X)

]
977

=LCE(θ̂)− LCE(θ∗) ≤ 0. 978

Note that Dn(P ||Q) is an unbiased estimator of 979

the conditional KL divergence between distribu- 980

tions P and Q: EPXn,Y nEPn log
PY |X(Y |X)

QY |X(Y |X) = 981
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D(PY |X ||QY |X). Therefore,982

P
{
DKL(PY |X ||P̂Y |X) > ε

}
983

≤P
{
DKL(PY |X ||P̂Y |X)−Dn(PY |X ||P̂Y |X) > ε

}
984

=P
{∣∣∣Dn(PY |X ||P̂Y |X)−DKL(PY |X ||P̂Y |X)

∣∣∣ > ε
}

985

≤P
{

sup
θ∈Θ

∣∣∣Dn(PY |X ||P θY |X)−DKL(PY |X ||P θY |X)
∣∣∣ > ε

}
.986

To bound the last probability, consider an ε
4ρ -987

net in the parameter space N (Θ, ε4ρ) and Θ =988

∪
|N (Θ, ε

4ρ
)|

k=1 Θk, where Θk is the ε
4ρ -ball sur-989

rounding θk ∈ N (Θ, ε4ρ), and let ∆n(θ) :=990

Dn(PY |X ||P θY |X) − DKL(PY |X ||P θY |X) we have991

∀θ ∈ Θk,992

P
{

sup
θ∈Θ
|∆n(θ)| > ε

}
(17)993

≤

∣∣∣N (Θ, ε
4ρ

)
∣∣∣∑

k=1

P

{
sup
θ∈Θk

|∆n(θ)| > ε

}
994

≤
∣∣∣∣N (Θ,

ε

4ρ
)

∣∣∣∣ sup
k

P

{
sup
θ∈Θk

|∆n(θ)| > ε

}
.

(18)

995

Further, by Assumption 2, we have996

sup
θ∈Θk

|∆n(θ)−∆n(θk)|997

≤ sup
θ∈Θk

∣∣∣Dn(PY |X ||P θY |X)−Dn(PY |X ||P θkY |X)
∣∣∣998

+
∣∣∣DKL(PY |X ||P θY |X)−DKL(PY |X ||P θkY |X)

∣∣∣999

=EPn

∣∣∣∣∣∣log
P θkY |X(Y |X)

P θY |X(Y |X)

∣∣∣∣∣∣+ EPXY

∣∣∣∣∣∣log
P θkY |X(Y |X)

P θY |X(Y |X)

∣∣∣∣∣∣1000

≤2ρ‖θk − θ‖ ≤
ε

2
.1001

As a result,1002

P

{
sup
θ∈Θk

|∆n(θ)| > ε

}
1003

≤P

{
|∆n(θk)|+ sup

θ∈Θk

|∆n(θ)−∆n(θk)| > ε

}
1004

≤P
{
|∆n(θk)| >

ε

2

}
1005

≤2 exp

(
− nε2

2(Cu − Cl)2

)
,1006

by Assumption 1 and Hoeffding’s inequality. Plug- 1007

ging this into (17), we arrive at 1008

P
{
DKL(PY |X ||P̂Y |X) > ε

}
(19) 1009

≤2

∣∣∣∣N (Θ,
ε

4ρ
)

∣∣∣∣ exp

(
− nε2

2(Cu − Cl)2

)
. (20) 1010

To prove uniform convergence, use Assumption 2 1011

to conclude that: 1012

DKL(PY |X=x||P̂Y |X=x) 1013

=
∑
y

PY |X(y|x) log
P θ
∗

Y |X(y|x)

P θ̂nY |X(y|x)
1014

≤ sup
y

∣∣∣∣∣∣log
P θ
∗

Y |X(y|x)

P θ̂nY |X(y|x)

∣∣∣∣∣∣ ≤ ρ‖θ∗ − θ̂n‖, 1015

for some θ∗ ∈ Θ∗. Therefore, using the local 1016

convexity property of the KL divergence around 1017

minima in Lemma 2, we arrive at the desired result: 1018

P
{

sup
x∈X

DKL(PY |X=x||P̂Y |X=x) ≥ ε
}

1019

≤P
{
‖θ∗ − θ̂n‖ ≥

ε

ρ

}
≤ P

{
DKL(PY |X ||P̂Y |X) ≥ γε

ρ

}
1020

≤2

∣∣∣∣N (Θ,
ε

4ρ
)

∣∣∣∣ exp

(
− γ2nε2

2ρ2(Cu − Cl)2

)
. 1021

1022

Next, we prove the following lemma by per- 1023

forming a perturbation analysis on (P1) inspired by 1024

((Qiu et al., 2019)). 1025

Lemma 4. Consider some subset of speech seg- 1026

ments D ⊂ X such that for any 1 ≤ z ≤ 1027

K, there exists x ∈ X such that z(x) = z. 1028

Further, suppose there exists ε > 0 such that 1029

‖P̂Y |X=x − PY |X=x‖1 ≤ ε,∀x ∈ D. Then, 1030

∀x ∈ X, ‖q̂(P̂Y |X=x) − PY |X=x‖1 ≤ c1ε
1/2 for 1031

some constant c1 > 0. 1032

Proof. We first prove the statement for the seg- 1033

ments from the set D. By the definition of ERM, 1034

LQ(Pn, q̂)− LQ(Pn, q
∗) (21) 1035

=EP̃n

[
log

PY |X(Y |X)

q̂(P̂Y |X(Y |X))

]
≤ 0. (*) 1036

From the condition in the lemma, we have 1037

P̂Y |X=x = PY |X=x + εφx for some ε ∈ [0, 1] 1038

and φx ∈ R|Y|, φ>x 1 = 0, ‖φx‖1 ≤ 1,∀x ∈ D. 1039
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Further, suppose q(P̂Y |X) = PY |X +δψx for some1040

δ ∈ [0, 1] and ψx ∈ R|Y|, ψ>x 1 = 0, ‖ψx‖1 ≤1041

1, ∀x ∈ X. Using Assumption 1 and the inequality1042

log(1 + x) ≤ x− x2

4 ,∀x ∈ (−1, 1], we have1043

∑
y

P̂Y |X(y|x) log
PY |X(y|x)

q̂(P̂Y |X(y|x))
1044

=−
∑
y

PY |X(y|x) log

(
1 + δ

ψx(y)

PY |X(y|x)

)
1045

−
∑
y

εφx(y) log
PY |X(y|x)

q̂(P̂Y |X(y|x))
1046

≥
∑
y

δ2ψ2
x(y)

4PY |X(y|x)
− Cuε ≥

δ2‖ψx(y)‖2

4
1047

≥ δ2

4|Y|
− Cuε,1048

for every x ∈ D. Therefore, to maintain (21), we1049

need δ2 ≤ 4Cu|Y|ε for the training examples Xn1050

and the inequality in the lemma holds for examples1051

from D with coefficient c′1 := 2
√
Cu|Y|.1052

To show the same claim holds for any unseen seg-1053

ments x′ ∈ X\D, we first use Lemma 1 to conclude1054

that there always exists a nearest-neighbor infor-1055

mation quantizer q̂ that is an ERM. Further, since1056

every phoneme class occurs in D, we can always1057

find x ∈ D such that z(x) = z(x′). Therefore, us-1058

ing the inequality log(1+x) ≥ x− x2

1+x ,∀x > −1,1059

we have1060

1

2
‖P̂Y |X=x′ − q̂(P̂Y |X=x′)‖211061

≤D(P̂Y |X=x′ ||q̂(P̂Y |X=x′)) ≤ D(P̂Y |X=x′ ||q(P̂Y |X=x))1062

≤D(PY |X=x′ ||q(P̂Y |X=x))+1063

ε|D(PY |X=x′ ||q(P̂Y |X=x′))−D(PY |X=x′ ||P̂Y |X=x′)|1064

≤D(PY |X=x′ ||q(P̂Y |X=x)) + ε(Cu − Cl)1065

≤
∑
y

δ2ψx′(y)2

P̂Y |X(y|xj)
+ ε(Cu − Cl)1066

≤ eCuδ2

miny:PY |X(y|z(x′))>0 PY |Z(y|z(x′))
+ ε(Cu − Cl)1067

≤a1ε,1068

where a1 := eCuc′21 /miny:PY |Z(y|z(x′))>0 PY |Z(y|z(x′))+1069

Cu − Cl > c′21 . Notice that the minimum is taken1070

over y’s with nonzero probabilities due to the1071

boundedness conditions in Assumption 1, which1072

asserts φx(y) = ψx(y) ≡ 0 for y’s with zero1073

probabilities. Finally, using triangular inequality: 1074

‖PY |X=x′ − q̂(P̂Y |X=x′)‖1 1075

≤‖P̂Y |X=x′ − q̂(P̂Y |X=x′)‖1 + ‖P̂Y |X=x′ − PY |X=x′‖1 1076

≤
√

2a1ε+ ε ≤ c1

√
ε, 1077

where c1 :=
√

2a1 + 1 is the coefficient in the 1078

lemma. 1079

Now we are ready to prove Theorem 1. 1080

Proof of Theorem 1. Define the event Cε := 1081

{supx∈XD(PY |X=x||P̂Y |X=x) < ε}. Further, sup- 1082

pose Θ is within the ball of radius R in Rd. By 1083

Lemma 3, we have: 1084

P (Cε) ≥ 1− exp(−c2nε
2 + c3(ε)), (22) 1085

where c2 := γ2

2ρ2(Cu−Cl)2
, c3(ε) := d logR(1 + 1086

8ρ
ε ) + log 2 ≥ log 2|N (Θ, ε4ρ)| (see e.g., (Ver- 1087

shynin, 2018), Section 4.2). For the subsequent 1088

discussion, suppose Cε occurs. To prove that 1089

ẑ achieves zero TER, it suffices to prove that 1090

ẑ(x) = ẑ(x′) ⇔ z(x) = z(x′),∀x, x′ ∈ X. To 1091

prove the “⇒” direction, suppose for some seg- 1092

ment pairs (x1, x2) ∈ X2, ẑ(x1) = ẑ(x2) = z′ 1093

but z(x1) = z1 6= z(x2) = z2. Invoke Lemma 1094

4 and write Qẑ(xj) = PY |X=xj + δψxj , δ = 1095

c1ε
1/4, ψ>xj1 = 0, ‖ψxj‖1 ≤ 1, j ∈ {1, 2}. Use 1096

the inequality log(1 +x) ≥ x− x2

1+x ,∀x > −1 we 1097

have 1098

DKL(PY |X=xj ||Qẑ(xj)) 1099

= −
∑
y

PY |X(y|xj) log

(
1 +

δψxj (y)

PY |X(y|xj)

)
1100

≤
∑
y

eCuδ2ψxj (y)2

PY |X(y|xj)
≤ a2(z1, z2)δ2, 1101

where a2(z1, z2) = 1102

maxj∈{1,2} e
Cu/miny:PY |Z(y|zj)>0 PY |Z(y|zj). 1103

As a result, 1104
1105

2a2(z1, z2)δ2 ≥ 1106

DKL(PY |X=x1 ||Qz′) +DKL(PY |X=x2 ||Qz′) ≥ 1107

2DJS(PY |X=x1 ||PY |X=x2), (23) 1108

which cannot be true if δ2 ≤ DJS(PY |Z=z1
||PY |Z=z2

)

a2(z1,z2) , 1109

or ε ≤ DJS(PY |Z=z1
||PY |Z=z2

)2

c1(z1,z2)2a2(z1,z2)2
. 1110

To prove the other direction, we use “⇒” to con- 1111

clude that every phoneme occurs in at least one dis- 1112

tinct cluster from other classes, since every cluster 1113
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in Ĉ contains only a unique phoneme class. Fur-1114

ther, define E =
{

1
n minz

∑n
i=1 1Zi=z = 0

}
. Us-1115

ing Sanov’s theorem (see e.g., (Cover and Thomas,1116

2006)), we have:1117

P (E) ≤ (n+ 1)K exp

(
−n min

P∈PE
DKL(P ||PZ)

)
,1118

where PE := {P ∈ ∆K : minz P (z) = 0}. Use1119

Assumption 4 and optimize the bound, we obtain1120
1121

min
P∈PE

DKL (P ||PZ)1122

= min
P∈PE

DKL

(
P || 1

K
1

)
1123

= logK − max
P∈PE

H(P ) = log
K

K − 1
1124

and1125

P (E) ≤ exp

(
−n log

K

K − 1
+K log(n+ 1)

)
.1126

As a result, phonemes of each class occur at least1127

once in the training set with high probability. If this1128

is the case and if there exists some x, x′ ∈ X such1129

that z(x) = z(x′) but ẑ(x) 6= ẑ(x′), Ĉ contains at1130

leastK+1 clusters, which contradicts Assumption1131

4. Therefore, define the event R := {ẑ(X) =1132

ẑ(X ′)⇔ z(X) = z(X ′)}, the token error rate can1133

be upper bounded as1134

PTER(ẑ)1135

≤P (Cε ∩ Ec)P {R|Cε ∩ Ec}+ P (Ccε ∪ E)1136

= exp (−nmin{e1(n, ε∗), e2(n,K)}) ,1137

where1138

ε∗ := min
z1 6=z2

DJS(PY |Z=z1 ||PY |Z=z2)2

c1(z1, z2)2a2(z1, z2)2
1139

=: min
z1 6=z2

c(z1, z2)DJS(PY |Z=z1 ||PY |Z=z2)21140

e1(ε∗) := c2ε
∗2 − c3(ε∗)

n
1141

e2 := log
K

K − 1
− K log(n+ 1)

n
.1142

Therefore, PTER(ẑ) ≤ δ amounts to1143

c2nε
∗2 − c3(ε∗) ≥ log

1

δ
1144

n log
K

K − 1
−K log(n+ 1) ≥ log

1

δ
.1145

The first inequality implies1146

n ≥ log c3(ε∗) + (1/δ)

c2ε∗2
= O

(
log(1

δ )

ε∗2

)
.1147

For the second inequality, rearranging the terms we 1148

obtain: 1149

n ≥ K

log K
K−1

log n+
log 1

δ

log K
K−1

, (24) 1150

which by Lemma A.2 from (Shalev-Shwartz and 1151

Ben-David, 2014) holds if 1152

n ≥
4K log 2K

log K
K−1

+ 2 log 1
δ

log K
K−1

= O

(
log 1

δ

log K
K−1

)
.

(25)

1153

Combining Equation 24 and Equation 25 proves 1154

the theorem. 1155

B Collection Process and Statistics of the 1156

Spoken Word Datasets 1157

The dataset statistics of all the datasets used for our 1158

experiments are shown in Table 2. We collect all 1159

the spoken word datasets from existing datasets in 1160

the following steps: 1161

1. Decide the train-test split: For Flickr audio, 1162

we use the original training and validation set 1163

to extract spoken words for the training set 1164

and the test set to extract words for test set; 1165

for Librispeech, we use train-clean-100 and 1166

train-clean-360 for training set and dev-clean 1167

for test set; for TIMIT and Mboshi, we use 1168

the whole dataset without SA utterances to 1169

extract spoken words, to be consistent with 1170

prior works. For the latter, it will not lead to 1171

overfitting since our setting is unsupervised in 1172

a sense that the target label, phoneme, is not 1173

available during training. 1174

2. Decide the phoneme inventory: The phoneme 1175

inventory of the English corpora such as Flickr 1176

audio, Librispeech and TIMIT are the stan- 1177

dard 61 phonemes from TIMIT merged into 1178

39 classes for Librispeech and 44 classes 1179

for Flickr Audio, due to slightly different 1180

phoneme set required for the forced align- 1181

ment systems used to extract phoneme and 1182

word boundaries. The phoneme inventory of 1183

Mboshi is provided in (Godard et al., 2017). 1184

3. Decide the vocabulary: For English corpora, 1185

we use a neural dependency parser (Gardner 1186

et al., 2017) to extract head words of noun 1187

phrases from the Flickr30kEntities and choose 1188

15



Flickr Audio Librispeech TIMIT Mboshi

|Y| 224 224 524 824 224 524 824 161 377

K 44 39 39 39 39 39 39 31 31
#train words 46569 50073 143512 188863 1289 1678 2348 30290 82606
#test words 6557 595 595 595 1289 1678 2348 30290 82606
#phonemes 318756 223821 590647 816754 5501 7692 11874 93236 165212
#hours 6.1 6.3 15.4 21.2 0.1 0.1 0.2 2.2 4.1

Table 2: Statistics of four spoken word datasets used for experiments. Mboshi has the same number of training and
test words since the whole datasets are used for both training and evaluation, consistent with prior works (Yusuf
et al., 2020; Feng et al., 2021b).

those with frequency more than 500 times1189

in the entire Flickr30k corpus. For Mboshi,1190

we use the bigrams and trigrams as proxy for1191

words.1192

4. Word and phoneme boundary detection: For1193

evaluation purposes, we need to extract word1194

and phoneme boundaries for the utterances.1195

While TIMIT and Mboshi has provided frame-1196

level phoneme transcriptions, such labels are1197

not available for Flickr Audio and Librispeech.1198

Therefore, we use the Montreal forced aligner1199

to extract Librispeech word and phoneme1200

boundaries and another HMM-DNN system1201

to extract Flickr i1202

5. Extract spoken word utterances: To keep the1203

dataset as balanced as possible, we set a cutoff1204

on the maximal number of word utterances per1205

class, which is set to be 200 for Flickr Audio1206

and 1000 for Librispeech, TIMIT and Mboshi.1207

C Model Implementation1208

For the pre-segmentation stage in Figure 2 of1209

IQ, we use the self-supervised model proposed in1210

(Kreuk et al., 2020) to predict the phoneme-level1211

segmentation for English datasets, and the segmen-1212

tation generated by one of our baselines (Feng et al.,1213

2021a) for experiments on Mboshi language. The1214

segmental speech encoder eθ1(·) is a CPC model1215

pretrained on the whole 960h Librispeech (Nguyen1216

et al., 2020) with 256-dimensional representation1217

for each 10ms frame followed by averaging across1218

each segments. The word posterior cθ2(·) for the1219

joint distribution learning stage consists of four hid-1220

den layers and 512 ReLU units per layer with layer1221

normalization and one softmax output layer. All1222

our models are trained for 20 epochs using Adam1223

optimizer (Kingma and Ba, 2014) with learning1224

rate of 0.001 decayed by 0.97 every 2 epochs and a 1225

batch size of 8. We slightly modify (P1) analogous 1226

to the VQ-VAE (van den Oord et al., 2017) to make 1227

it more suitable for gradient-based optimization: 1228
1229

LIQ-VAE(Pn, θ, q) := LCE(Pn, θ)+ 1230

λEPn [DKL(sg[P θY |X ]||q(P θY |X))+DKL(P θY |X ||sg[q(P θY |X)])]1231

where sg[·] denotes the stop-gradient operation and 1232

λ = 0.5 for all experiments. Exponential moving 1233

average (EMA) codebook update is used with a 1234

decay rate of 0.999 to optimize the first KL term. 1235

Each code distribution is initialized using a sym- 1236

metric Dirichlet distribution with a concentration 1237

parameter of 100. 1238

For CPC, wav2vec and wav2vec 2.0, we extract 1239

discrete units using the same predicted and gold 1240

segmentations as our IQ model using k-means clus- 1241

tering with the same number of clusters (K = 31). 1242

D Convergence Plot for Word-Level 1243

Phoneme Discovery 1244

Figure 8: Token F1 convergence plot of various models
on Flickr audio.

The convergence plot of Token F1 during train- 1245

ing of IQ on Flickr Audio compared to the baselines 1246
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is shown in Figure 8.1247

E Further Analysis of Representations1248

Learned by IQ1249

The visualizations of the estimated distributions1250

P θY |X using t-SNE (van der Maaten and Hinton,1251

2008) on Mboshi are shown in Figure 9. We again1252

observe that IQ is capable of clustering phonemes1253

from the same manner class as shown in the t-SNE1254

plots for TIMIT in the main text. We also show the1255

most confusing phoneme pairs for both datasets in1256

Table 10a and Table 10b respectively.

(9a) Manner-level t-SNE plots of phoneme clusters dis-
covered by IQ with |Y| = 161 and gold segmentation on
Mboshi

Figure 9: t-SNE plot by IQ on TIMIT and Mboshi

1257

F Effect of Codebook Size for IQ1258

The phoneme discovery results of IQ with different1259

codebook sizes on Mboshi and TIMIT are shown1260

Phoneme Pair Error Prob.

ae, aa 1.00
ch, ah 0.85
sh, s 0.82

ah, aa 0.82
aw, aa 0.77

z, s 0.75
n, m 0.73
p, k 0.70
r, er 0.67

iy, ey 0.60

(10a) Top-10 most confusing
phoneme pairs by IQ with
|Y| = 824 and predicted seg-
mentation on TIMIT

Phoneme Pair Error Prob.

a, Ng 1.00
bv, b 0.82
e, a 0.79
ţ, s 0.77
i, e 0.73

b, Ng 0.68
p, k 0.68
f, a 0.59
g, a 0.59

o, mw 0.56

(10b) Top-10 most confusing
phoneme pairs by IQ with
|Y| = 161 with predicted seg-
mentation on Mboshi

in Table 3 and Table 4 respectively. As discussed 1261

in the paper, our IQ model achieving equally good 1262

NMI and boundary F1 and is thus robust to the 1263

codebook size on both datasets. 1264

G More Speech Examples 1265

Lastly, we provide eight more spoken utterances 1266

annotated with phoneme discovery results. 1267
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(11a)

(11b)

(11c)

(11d)

Figure 11: The spectrograms annotated with the gold transcripts and the zero-resource transcriptions by various
models for four more utterances from Mboshi. The spoken segments in circles of the same colors are phonemes
correctly identified by our IQ model without gold segmentation, and those in triangles of the same color are
incorrect pairs that are acoustically similar.
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(12a)

(12b)

(12c)

(12d)

Figure 12: (Continued) the spectrograms annotated with the gold transcripts and the zero-resource transcriptions
by various models for four more utterances from Mboshi. The spoken segments in circles of the same colors are
phonemes correctly identified by our IQ model without gold segmentation, and those in triangles of the same color
are incorrect pairs that are acoustically similar.
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Codebook size 30 40 50 60 70

|Y| = 224
Token F1 51.2±1.0 50.9±0.8 50.3±0.6 49.0±1.2 49.0±0.4

NMI 43.0±0.7 43.4±0.9 43.6±0.3 43.1±0.7 43.5±0.5
Boundary F1 77.7±0.5 78.6±0.4 78.2±0.3 78.1±0.6 78.3±0.6

|Y| = 524
Token F1 53.5±0.8 53.9±0.3 53.0±0.9 52.0±0.9 52.5±0.7

NMI 46.8±0.6 46.7±0.2 46.7±0.4 46.9±0.3 47.3±0.2
Boundary F1 80.4±0.2 80.4±0.2 80.3±0.1 80.2±0.1 80.3±0.1

|Y| = 824
Token F1 53.7±0.5 54.4±0.4 53.3±0.4 52.6±0.8 50.7±0.9

NMI 47.1±0.4 47.5±0.2 47.3±0.2 47.4±0.4 47.1±0.4
Boundary F1 80.6±0.0 80.5±0.1 80.4±0.1 80.3±0.0 80.3±0.0

Table 3: Phoneme discovery performance vs. codebook size on TIMIT. The models used are IQs trained on
Librispeech+TIMIT.

Codebook size 30 40 50 60 70

|Y| = 161
Token F1 54.2±1.0 54.2±0.2 51.1±0.9 54.0±0.7 45.9±0.8

NMI 45.1±0.4 44.0±0.4 44.7±0.2 44.3±0.7 44.3±0.5
Boundary F1 67.5±0.0 67.4±0.1 67.3±0.1 67.3±0.1 66.8±0.0

|Y| = 377
Token F1 57.1±1.0 57.2±1.1 56.7±1.6 56.8±1.1 55.2±0.4

NMI 49.3±0.3 49.0±0.1 49.8±0.2 49.6±0.4 49.5±0.6
Boundary F1 67.3±0.1 67.3±0.1 67.3±0.1 67.1±0.2 67.0±0.0

Table 4: Phoneme discovery performance vs codebook size on Mboshi. The models used are IQs with CPC+BNF
features.
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