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ABSTRACT

Images captured by rolling shutter (RS) cameras under fast camera motion often1

contain obvious image distortions and blur, which can be modeled as a row-wise2

combination of a sequence of global shutter (GS) frames within the exposure time.3

Naturally, recovering high-frame-rate GS sharp frames from an RS blur image4

needs to simultaneously consider RS correction, deblur, and frame interpolation.5

Tacking this task is nontrivial, and to the best of our knowledge, no feasible solu-6

tions exist by far. A naive way is to decompose the whole process into separate tasks7

and simply cascade existing methods; however, this results in cumulative errors8

and noticeable artifacts. Event cameras enjoy many advantages, e.g., high temporal9

resolution, making them potential for our problem. To this end, we propose the10

first and novel approach, named UniINR, to recover arbitrary frame-rate sharp11

GS frames from an RS blur image and paired event data. Our key idea is unifying12

spatial-temporal implicit neural representation (INR) to directly map the position13

and time coordinates to RGB values to address the interlocking degradations in14

the image restoration process. Specifically, we introduce spatial-temporal implicit15

encoding (STE) to convert an RS blur image and events into a spatial-temporal16

representation (STR). To query a specific sharp frame (GS or RS), we embed17

the exposure time into STR and decode the embedded features pixel-by-pixel to18

recover a sharp frame. Our method features a lightweight model with only 0.379M19

parameters, and it also enjoys high inference efficiency, achieving 2.83ms{frame20

in 31ˆ frame interpolation of an RS blur frame. Extensive experiments show that21

our method significantly outperforms prior methods.22

1 INTRODUCTION23

Most consumer-level cameras based on CMOS sensors rely on a rolling shutter (RS) mechanism.24

These cameras dominate the market owing to their benefits, e.g., low power consumption (Janesick25

et al., 2009). In contrast to the global shutter (GS) cameras, RS cameras capture pixels row by row;26

thus, the captured images often suffer from obvious spatial distortions (e.g., stretch) and blur under27

fast camera/scene motion. It has been shown that naively neglecting the RS effect often hampers the28

performance in many real-world applications (Hedborg et al., 2012; Lao & Ait-Aider, 2020; Zhong29

et al., 2021; Zhou et al., 2022). In theory, an RS image can be formulated as a row-wise combination30

of sequential GS frames within the exposure time (Fan & Dai, 2021; Fan et al., 2023).31

In this regard, it is meaningful to recover high-frame-rate sharp GS frames from a single RS blur32

image as the restored high-frame-rate sharp GS frames can directly facilitate many downstream tasks33

in practice. Intuitively, achieving this goal often requires simultaneously considering RS correction,34

deblurring, and frame interpolation. However, tackling this task is nontrivial because multiple35

degradations, such as RS distortion, motion blur, and temporal discontinuity (Meilland et al., 2013;36

Su & Heidrich, 2015), often co-exist for CMOS cameras (Zhong et al., 2021). The co-existence of37

various image degradations complicates the whole GS frame restoration process. To the best of our38

knowledge, no practical solutions exist in the literature to date. A naive way is to decompose the39

whole process as separate tasks and simply cascading existing image enhancement networks can40

result in cumulative errors and noticeable artifacts. For example, a simple consideration of cascading41

a frame interpolation network (Bao et al., 2019) with an RS correction network produces degraded42

results, as previously verified in (Naor et al., 2022).43
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Figure 1: Inputs and the outputs of our method, EvUnRoll, and EvUnRoll+TimeLens. Inputs are shown in (a),
which includes an RS blur image and events. ts and te are the start and end timestamps of RS, and texp is the
exposure time. Our outputs are shown in (b), which is a sequence of GS sharp frames during the whole exposure
time of the RS blur image. (c) shows outputs of EvUnRoll, which can only recover the GS sharp frames in a
limited time instead of the whole exposure time of the RS blur frame. (d) shows outputs of EvUnRoll+TimeLens.
More details are in Sec. C7 in Supp. Mat.
Event cameras offer several advantages, such as high-temporal resolution, which make them suitable44

for various image restoration tasks (Wang et al., 2020; Zhou et al., 2022; Tulyakov et al., 2021; Song45

et al., 2023; 2022). eSL-Net (Wang et al., 2020) proposes an event-guided sparse learning framework46

to simultaneously achieve image super-resolution, denoising, and deblurring. TimeLens (Tulyakov47

et al., 2021) integrates a synthesis-based branch with a warp-based branch to boost the performance48

of the video frame interpolation. DeblurSR (Song et al., 2023) and E-CIR (Song et al., 2022) take ad-49

vantage of the high temporal resolution of events by converting a blurry frame into a time-to-intensity50

function, using spike representation and Lagrange polynomials, respectively. EvUnRoll (Zhou et al.,51

2022) leverages events as guidance to enhance RS correction by accounting for nonlinear motion52

during the desired timestamp. However, these methods focus on either deburring or RS correction53

and can not recover arbitrary frame-rate sharp GS frames from a single RS blur image. An54

example is depicted in Fig. 1 (h), showing that simply cascading event-guided RS correction model55

(e.g., EvUnroll (Zhou et al., 2022)) and interpolation model (e.g., TimeLens (Tulyakov et al., 2021))56

to recover high-frame-rate sharp GS frames results in obvious artifacts.57

In this paper, we make the first attempt to propose a novel yet efficient learning framework, dubbed58

UniINR, that can recover arbitrary frame-rate sharp GS frames from an RS blur image and events.59

Our key idea is to learn a spatial-temporal implicit neural representation (INR) to directly map the60

position and time coordinates to RGB values to address the co-existence of degradations in the image61

restoration process. This makes it possible to exploit the spatial-temporal relationships from the62

inputs to achieve RS correction, deblur, and interpolation simultaneously. One distinct advantage63

of our method is that it is relatively lightweight with only 0.379M parameters. We formulate64

the task —recovering high-frame-rate sharp GS frames from an RS blur image and paired event65

data —as a novel estimation problem, defined as a function, F px, t, θq. Here, x denotes the pixel66

position px, yq of an image, t denotes the timestamp during the exposure time, and θ denotes the67

function’s parameters. Our proposed framework consists of three parts: spatial-temporal implicit68

encoding (STE), exposure time embedding (ETE), and pixel-by-pixel decoding (PPD). Specifically,69

STE first utilizes sparse learning-based techniques (Wang et al., 2020) to extract a spatial-temporal70

representation (STR) θ from events and an RS blur image (Sec. 3.2.1). To query a specific sharp71

frame of RS or GS pattern, we then model the exposure information as a temporal tensor T in72

ETE (Sec. 3.2.2). Finally, PPD leverages an MLP to decode sharp frames from the STR and the73

temporal tensor T (Sec. 3.2.3), allowing for the generation of a sharp frame at any given exposure74

pattern (e.g., RS or GS). One notable advantage of our approach is its high efficiency, as it only75

requires using the STE once, regardless of the number of interpolation frames. In practice, as frame76

interpolation multiples rise from 1ˆ to 31ˆ, the time taken increases from 31ms to 86ms. Thus, at77

31ˆ interpolation, each frame’s processing time is merely 2.8ms, whereas the cascading approach78

(EvUnRoll + TimeLens) requires more than 177ms (Sec. 4.2).79
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We conduct a thorough evaluation of our proposed method, including both quantitative and qualitative80

analyses, using a higher resolution (256 ˆ 256) dataset than that of the previous methods (180 ˆ81

240) (Song et al., 2023; 2022). Extensive experimental results demonstrate that our approach82

outperforms existing methods in RS correction, deblur, and interpolation (An example can be found83

in Fig. 1 (h)).84

2 RELATED WORKS85

2.1 EVENT-GUIDED IMAGE/VIDEO RESTORATION86

Event-guided Deblurring Owing to the high temporal resolution afforded by events, prior stud-87

ies (Sun et al., 2022; Wang et al., 2020; Shang et al., 2021; Kim et al., 2022) have incorporated events88

into the task of deblurring. These works focus on the reconstruction of a single GS sharp frame89

from the GS blur frame, guided by event data. The work most analogous to ours is EvUnroll (Zhou90

et al., 2022), which first leverages event cameras for RS correction, leveraging their low latency91

benefits. Nonetheless, EvUnroll primarily focuses on RS correction, with its optional deblurring92

module equipped to handle minor motion blur and reconstruct a sharp frame at the midpoint of the93

exposure time.94

Event-guided Deblurring + Interpolation These studies can be bifurcated based on the quantity95

of input GS blur frames: single GS frame (Xu et al., 2021; Song et al., 2022; 2023; Haoyu et al.,96

2020) or multiple GS frames (Pan et al., 2019; Zhang & Yu, 2022; Lin et al., 2020). The former,97

such as E-CIR (Song et al., 2022) and DeblurSR (Song et al., 2023), convert a GS blur frame into a98

time-to-intensity function while the latter, e.g., EDI (Pan et al., 2019), LEDVDI (Lin et al., 2020),99

and EVDI (Zhang & Yu, 2022) are both built upon the event-based double integral model (Pan100

et al., 2019). However, these methods primarily target GS frames affected by motion blur, leading to101

performance degradation when dealing with spatially distorted and RS blur frames.102

Recently, a contemporaneous study (Zhang et al., 2023) also focused on RS Correction, Deblur, and103

VFI. However, this research primarily concentrated on the individual performance of a single model104

across the three tasks, without extensive experimentation or investigation into handling all three tasks105

concurrently. This constitutes the most significant distinction from our method.106

2.2 FRAME-BASED VIDEO RESTORATION FOR RS INPUTS107

RS Correction + Interpolation RSSR (Fan & Dai, 2021; Fan et al., 2023) is the first work that108

generates multiple GS frames from two consecutive RS frames by introducing bi-directional undistor-109

tion flows. CVR (Fan et al., 2022) estimates two latent GS frames from two consecutive RS frames,110

followed by motion enhancement and contextual aggregation before generating final GS frames.111

RS Correction + Deblurring JCD (Zhong et al., 2021) proposes the first pipeline that employs112

warping and deblurring branches to effectively address the RS distortion and motion blur. How-113

ever, JCD’s motion estimation module, built upon the assumption of linear motion derived from114

DeepUnrollNet (Liu et al., 2020), encounters a significant performance degradation in real-world115

scenarios involving non-linear motion (Zhou et al., 2022). To eliminate the dependence of motion116

estimation, (Wang et al., 2022b) proposes a method that turns the RS correction into a rectification117

problem, which allows all pixels to start exposure simultaneously and end exposure line by line.118

Differently, our method can recover arbitrary GS sharp frames during the exposure time of RS blur119

frames without the assumption of linear motion.120

2.3 IMPLICIT NEURAL REPRESENTATION (INR)121

INR (Wang et al., 2021; Sitzmann et al., 2020; Chen et al., 2021; 2022; Lu et al., 2023) is proposed122

for parameterized signals (images, video or audio) in the coordinate-based representation, inspiring123

some researchers to explore the potential of INR in low-level vision tasks. LIIF (Chen et al., 2021)124

represents images as high-dimensional tensors and allows for upsampling at any scale through125

interpolation and decoding, followed by VideoINR (Chen et al., 2022), which extends LIIF to videos,126

enabling temporal and spatial upsampling at any scale. EG-VSR (Lu et al., 2023) incorporates127

events into the learning of INR to achieve random-scale video super-resolution. Differently, we128

propose STE to directly map the position and time coordinates to RGB values to address the co-129

existence of degradations in the image restoration process. Our STE makes it possible to exploit the130

spatial-temporal relationships from the inputs to achieve RS correction, deblur, and interpolation131

simultaneously.132

3 METHODOLOGY133

3.1 PROBLEM DEFINITION AND ANALYSIS134

We formulate the task —recovering arbitrary frame-rate sharp GS frames from an RS blur image and135

paired event data —as a novel estimation problem, defined as a function, F px, t, θq. Here, x denotes136
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Figure 2: An overview of our framework, which consists of three parts, (a) the Spatial-Temporal Implicit
Encoding (STE), (b) Exposure Time Embedding (ETE), and (c) Pixel-by-pixel decoding (PPD). Details of STE,
ETE, and PPD are described in Sec. 3.2.1, Sec. 3.2.2, and Sec. 3.2.3. The inputs are an RS blur image Irsb and
events, and the outputs are a sequence of GS frames and RS frames. RS frames are predicted only in training.

the pixel position px, yq of an image with a resolution of H ˆ W , t denotes the timestamp during the137

exposure time, and θ denotes the parameters. The intuition behind this formulation is that there exists138

a relationship between the RS blur/sharp frame and the GS blur/sharp frame. We now describe it.139

By defining a function F px, t, θq mapping the pixel position x “ px, yq and timestamp t to intensity140

or RGB value, we can obtain a GS sharp frame by inputting the desired timestamp t̂ during the141

exposure time to the function, which can be formulated as:142

Ig,t̂ “ F px, t̂, θq (1)

As an RS image can be formulated as a row-wise combination of sequential GS frames within the143

exposure time (Fan & Dai, 2021; Fan et al., 2023), we can assemble an RS sharp frame Ir,ts,te from144

a sequence of GS sharp frames row by row given the RS start time ts and the end time te. That is,145

the h-th row of an RS frame is the same as the h-th row of a GS frame at ths , and the exposure start146

timestamp of the h-th row of an RS frame is ths “ ts ` h ˆ pte ´ tsq{H . Therefore, we can formally147

describe an RS sharp frame as follows:148

Ir,ts,te “

!

F
´

x, ths , θ
¯

rhs, h P r0, Hq

)

. (2)

In principle, a blur frame can be regarded as the temporal average of a sequence of sharp frames (Nah149

et al., 2017; Zhang et al., 2020). Thus, a GS blur frame Ig,tg,texp
, where tg is the exposure start150

timestamp and texp is the exposure time, can be expressed as the average of a sequence of GS sharp151

frames during the exposure time texp, which can be formulated as:152

Ig,t,texp “
1

texp

ż t`texp

t

F px, t, θqdt «
1

N

N
ÿ

i“0

Ig,t0`iˆtexp{N , (3)

where N is the length of the GS frame sequence.153

With the above formulation, an RS blur frame Ir,tsÑte,texp
can thus be described based on the RS154

start time ts, RS end time te, and exposure time of each scan line texp, as depicted in Fig. 1 (a).155

According to Eq. 2 and Eq. 3, the h-th row of an RS blur frame can be described as the temporal156

average of the h-th row in a sequence of GS sharp frames, which can be written as follows:157

Ir,tsÑte,texp “

!

1
texp

şths `texp

ths
F px, t, θq rhsdt, h P r0, Hq

)

«

!

1
N

řN
i“0 Ig,ts`iˆtexp{N rhs, h P r0, Hq

)

.
(4)

An event stream E consists of a set of event e “ px, y, t, pq, where each event is triggered and158

recorded with the polarity p when the logarithmic brightness change at pixel px, yq exceeds a certain159
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threshold C, which can be approximated as the differential of F px, t, θq with respect to the time160

dimension. For details about the principle of event cameras, refer to the Suppl. Mat.161

To use event data E as guidance, we need to address three challenges to estimate the mapping function162

F px, t, θq: 1) how to find a function fe to encode the input RS blur image and events to θ of the163

mapping function F px, t, θq; 2) how to find a function fte to represent the exposure information of164

desired RS or GS sharp frames as t of the mapping function F px, t, θq; 3) how to find a function165

fd to eliminate the need to input position information of desired RS or GS sharp frames as p of166

the mapping function F px, t, θq. Therefore, our goal is to estimate fe, fte, and fd in order to get a167

mapped result, which can be formulated as:168

I “ F px, t, θq “ F px, t, fepE, Irsbqq “ F px, fteptq, fepE, Irsbqq “ fdpfteptq, fepE, Irsbqq. (5)

In the following section, we describe our framework based on Eq. 5 by substantiating fe, fte, and fd.169

3.2 PROPOSED FRAMEWORK170

An overview of our UniINR framework is depicted in Fig. 2, which takes an RS blur image Irsb171

and paired events E as inputs and outputs N sharp GS frames tIgssuNi“0 with a high-frame-rate. To172

substantiate the defined functions fe, fte, and fd, as mentioned in Sec. 3.1, our proposed framework173

consists of three components: 1) Spatial-Temporal Implicit Encoding (STE), 2) Exposure Time174

Embedding (ETE), and 3) Pixel-by-pixel Decoding (PPD). Specifically, we first introduce an STE175

with deformable convolution (Wang et al., 2022a) to encode the RS blur frame and events into a176

spatial-temporal representation (STR) (Sec. 3.2.1). To provide exposure temporal information for177

STR, we embed the exposure start timestamp of each pixel from the GS or RS by ETE. (Sec. 3.2.2).178

Lastly, the PDD module adds ETE to STR to generate RS or GS sharp frames (Sec. 3.2.3). We now179

describe these components in detail.180

3.2.1 SPATIAL-TEMPORAL IMPLICIT ENCODING (STE)181

Based on the analysis in Sec. 3.1, we conclude that the RS blur frame Irsb and events E collectively182

encompass the comprehensive spatial-temporal information during the exposure process. In this183

section, we aim to extract a spatial-temporal implicit representation θ that can effectively capture the184

spatial-temporal information from the RS blur frame Irsb and events E.185

To achieve this, we need to consider two key factors: (1) extracting features for the multi-task186

purpose and (2) estimating motion information. For the first factor, we draw inspiration from eSL-187

Net (Wang et al., 2020), which effectively utilizes events to simultaneously handle deblur, denoise,188

and super-resolution tasks. Accordingly, we design a sparse-learning-based backbone for the encoder.189

Regarding the second factor, previous works (Fan & Dai, 2021; Fan et al., 2022; 2023) commonly190

use optical flow for motion estimation in RS correction and interpolation tasks. However, optical191

flow estimation is computationally demanding (Gehrig et al., 2021; Zhu et al., 2019; Sun et al., 2018),192

making it challenging to incorporate it into the multiple task framework for RS cameras due to the193

complex degradation process. As an efficient alternative, we employ deformable convolution (Wang194

et al., 2022a) in our encoder to replace the optical flow estimation module. We adopt a 3D tensor with195

a shape of H ˆ W ˆ C as the STR θ, which can effectively address the interlocking degradations196

encountered in the image restoration process with a sparse-learning-based backbone and deformable197

convolution, as formulated as θ “ fepE, Irsbq in Eq. 5. More details in the Suppl. Mat.198

3.2.2 EXPOSURE TIME EMBEDDING (ETE)199

As depicted in Fig. 2 (b), the primary objective of the ETE module is to incorporate the exposure200

time of either a rolling shutter (RS) frame (ts, te) or a global shutter (GS) frame (tg) by employing201

an MLP layer, resulting in the generation of a temporal tensor T . To achieve this, we design an ETE202

module, denoted as fte, which takes the GS exposure time tg as input and produces the GS temporal203

tensor Tg “ fteptgq. Similarly, for RS frames, Tr “ fteptrs , treq represents the RS temporal tensor,204

which is only used in training. The process begins by converting the exposure process information205

into a timestamp map, with a shape of H ˆ W ˆ 1. Subsequently, the timestamp map is embedded206

by increasing its dimensionality to match the shape of the STR. This embedding procedure allows207

for the integration of the exposure time information into the STR representation. We now explain208

the construction of timestamp maps for both GS and RS frames and describe the embedding method209

employed in our approach.210

GS Timestamp Map: In GS sharp frames, all pixels are exposed simultaneously, resulting in the211

same exposure timestamps for pixels in different positions. Given a GS exposure timestamp tg, the212

GS timestamp map Mg can be represented as Mgrhsrws “ tg, where h and w denote the row and213

column indices, respectively.214
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RS Timestamp Map: According to the analysis in Sec. 3.1, pixels in RS frames are exposed line215

by line, and pixels in different rows have different exposure start timestamps. Given RS exposure216

information with start time ts and RS end time te, the RS timestamp map can be represented as217

Mrrhsrws “ ts ` pte ´ tsq ˆ h{H , where h, w, H denote the row and column indices and height of218

the image, respectively.219

Time Embedding: The timestamp maps, Mr and Mg, represent the timestamps of each pixel in220

a specific frame (RS or GS) with a shape of H ˆ W ˆ 1. However, the timestamp map is a high-221

frequency variable and can pose challenges for learning neural networks (Vaswani et al., 2017). Some222

approaches (Vaswani et al., 2017; Wang et al., 2021) propose a combination function of sine and223

cosine to encode the positional embedding. Nonetheless, calculating the derivative of the positional224

embedding is difficult, limiting its practical application to image enhancement tasks. In this paper,225

we utilize a one-layer MLP to increase the dimension for embedding. The whole embedding process226

is formulated as Tg “ fteptgq for GS frames, and Tr “ fteptrs , treq for RS frames, as depicted in227

Fig. 2(b). The MLP consists of a single layer that maps the timestamp map Mr or Mg to the same228

dimension H ˆ W ˆ C as the spatial-temporal representation (STR) θ, as described in Sec. 3.2.1.229

3.2.3 PIXEL-BY-PIXEL DECODING (PPD)230

As shown in Fig. 2 (c), the goal of PPD is to efficiently query a sharp frame from STR θ by the231

temporal tensor T . It is important that the encoder is invoked only once for N times interpolation,232

while the decoder is called N times. Therefore, the efficiency of this query is crucial for the overall233

performance. The query’s inputs θ capture the global spatial-temporal information, and T captures234

the temporal information of the sharp frame (GS or RS). Inspired by previous works (Mildenhall235

et al., 2021; Chen et al., 2021), we directly incorporate the temporal tensor T into the STR θ to obtain236

an embedded feature with a shape of H ˆ W ˆ C for each query. This additional embedded feature237

combines the global spatial-temporal information with the local exposure information, enabling238

straightforward decoding to obtain a sharp frame. To avoid the need for explicit positional queries,239

we employ a pixel-by-pixel decoder. The decoder, denoted as fd in Eq. 5, employs a simple 5-layer240

MLP fœ
5

mlp architecture. The reconstructed output I after decoding can be described in Eq. 6, where241

‘ means element-wise addition.242

I “ fdpfteptq, fepE, Irsbqq “ fdpT, θq “ fœ
5

mlppT ‘ θq. (6)

3.2.4 LOSS FUNCTION243

RS Blur Image-guided Integral Loss: Inspired by EVDI (Zhang & Yu, 2022), we formulate the244

relationship between RS blur frames and RS sharp frames. Given a sequence of RS sharp frames245

generated from the decoder, the input RS blur frame Irsb “ 1
M

řM
i“1 pÎirssq, where M represents the246

length of the RS image sequence. In this way, we can formulate the blur frame guidance integral247

loss between the reconstructed RS blur frame and the original RS blur frame as Lb “ LcpÎrsb, Irsbq,248

where Lc indicates Charbonnier loss (Lai et al., 2018).249

Total Loss: Apart from RS blur image-guided integral loss Lb, we incorporate a reconstruction loss250

Lre to supervise the reconstructed GS sharp frames. Our method consists of two losses: RS blur251

image-guided integral loss and the reconstruction loss, where λb,λre denote the weights of each loss:252

L “ λbLb ` λreLre “ λbLcpÎrsb, Irsbq ` λre
1

N

N
ÿ

k“1

LcpÎkgss, I
k
gssq. (7)

4 EXPERIMENTS253

Implementation Details: We utilize the Adam optimizer (Kingma & Ba, 2014) for all experiments,254

with learning rates of 1e ´ 4 for both Gev-RS (Zhou et al., 2022) and Fastec-RS (Liu et al., 2020)255

datasets. Using two NVIDIA RTX A5000 GPU cards, we train our framework across 400 epochs256

with a batch size of two. In addition, we use the mixed precision (Micikevicius et al., 2017) training257

tool provided by PyTorch (Paszke et al., 2017) , which can speed up our training and reduce memory258

usage. PSNR and SSIM (Wang et al., 2004) are used to evaluate the reconstructed results.259

Datasets: 1) Gev-RS dataset (Zhou et al., 2022) features GS videos at 1280 ˆ 720, 5700 fps. We260

reconstruct such frames and events from the original videos, downsampling to 260ˆ346 (Scheerlinck261

et al., 2019). Events and RS blur frames are synthesized using vid2e (Gehrig et al., 2020). We adopt262

EvUnroll’s (Zhou et al., 2022) 20/9 train/test split. 2) Fastec-RS dataset (Liu et al., 2020) offers GS263

videos at 640 ˆ 480, 2400 fps. We apply identical settings for resizing, event creation, and RS blur.264

The dataset is split into 56 training and 20 testing sequences. 3) Real-world dataset (Zhou et al.,265

2022) is the only available real dataset, containing four videos with paired RS frames and events.266

Due to the lack of ground truth, it offers only quantitative visualizations. More details in Suppl. Mat..267
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(a) Events (b) RS blur gray (c) Gray GT (d) Ours Gray (e) eSL-Net 
(modified) (f) DeblurSR

(g) Events 𝑡 = 0.5 (h) RS blur color (i) Color GT (j) Ours Color (k) EvUnRoll (l) JCD

Figure 3: Visual Comparisons on RS correction and deblurring on Gev-RS (Zhou et al., 2022) dataset. The
image resolution of DeblurSR (Song et al., 2023) is 180 ˆ 240.

4.1 COMPARISON WITH SOTA METHODS268

Our experiments are conducted on both simulated and real datasets. While the simulated dataset269

enables us to obtain accurate quantitative results, evaluating on the real dataset offers insights into the270

generation ability of our method.271

We compare our methods with recent methods with two different settings in these two datasets: (I)272

the experiment with a single GS sharp frame result, including JCD (Zhong et al., 2021) (frame-273

based RS correction and deblurring), EvUnroll (Zhou et al., 2022) (event-guided RS correction)274

and eSL-Net (Wang et al., 2020) (event-guided deblurring). (II) the experiment with a sequence of275

GS sharp frames result, which includes DeblurSR (Song et al., 2023) (event-guided deblurring and276

interpolation), and the combination of EvUnroll (Zhou et al., 2022) and TimeLens (Tulyakov et al.,277

2021) (event-guided video frame interpolation). In addition, we test our model’s generation ability by278

comparing it with EvUnRoll (Zhou et al., 2022) using real data. While this real data is solely reserved279

for testing, both our model and EvUnRoll are trained on the simulation dataset. More explanations of280

setting (II) are in Supp. Mat..281

We evaluate JCD, EvUnroll, TimeLens, and DeblurSR with the released code. We modified eSL-282

Net by adjusting its parameterization initialization method and removing the up-sampling module,283

allowing it to be well trained on our datasets. The outputs of eSL-Net and DeblurSR are grayscale284

frames, and the outputs of JCD, EvUnroll, and the combination of EvUnroll and TimeLens are RGB285

frames. For fairness, our network is trained with the input of grayscale and RGB images, respectively.286

The quantitative results for experiments generating a single GS sharp frame (1ˆ) and those producing287

a sequence of GS sharp frames (3ˆ, 5ˆ, 9ˆ) are presented in Tab. 1. In comparison to methods288

that yield a single GS sharp frame, our approach exhibits remarkable performance in both gray and289

RGB frames, surpassing the best-performing methods (eSL-Net (Wang et al., 2020) in gray and290

EvUnroll (Zhou et al., 2022) in RGB) by 1.48dB and 4.17dB on the Gev-RS (Zhou et al., 2022)291

dataset, respectively. In scenarios where a sequence of GS sharp frames is produced, our method292

attains optimal performance for both gray and RGB frames, achieving an increase of up to 13.47dB293

and 8.49dB compared to DeblurSR (Song et al., 2023) and EvUnroll (Zhou et al., 2022)+Time-294

Lens (Tulyakov et al., 2021) on the Gev-RS (Zhou et al., 2022) dataset, respectively. The substantial295

performance decline of DeblurSR (Song et al., 2023) can be ascribed to the interdependence between296

RS correction and deblur. The performance reduction of EvUnroll+TimeLens can be accounted for297

by the accumulation of errors arising from this cascading network, as shown in Fig. 1(h).298

The qualitative results, as depicted in Fig. 11, showcase the effectiveness of our proposed method299

on both grayscale and RGB inputs. These results demonstrate our approach’s ability to generate300
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Table 1: Quantitative results for RS correction, deblurring, and frame interpolation. TL refers to
TimeLens Tulyakov et al. (2021). EU refers to EvUnroll Zhou et al. (2022). eSL-Net* represents a
modified model based on eSL-Net Wang et al. (2020).

Inputs Gev-RS Fastec-RS
Methods Frame Event Params(M) Ó PSNR Ò SSIM Ò PSNR Ò SSIM Ò

1ˆ

eSL-Net* 1 gray ✓ 0.1360 31.64 0.9614 32.45 0.9186
UniINR (Ours) 1 gray ✓ 0.3790 33.12 0.9881 34.62 0.9390
JCD 3 color ✗ 7.1659 18.59 0.5781 21.31 0.6150
EU 1 color ✓ 20.83 26.18 0.8606 29.76 0.8693
UniINR (Ours) 1 color ✓ 0.3792 30.35 0.9714 33.64 0.9299

3ˆ

DeblurSR 1 gray ✓ 21.2954 17.64 0.554 21.17 0.5816
UniINR (Ours) 1 gray ✓ 0.3790 31.11 0.9738 33.23 0.9210
EU + TL 2 color ✓ 93.03 21.86 0.7057 24.81 0.7179
UniINR (Ours) 1 color ✓ 0.3792 28.36 0.9348 32.72 0.9147

5ˆ

DeblurSR 1 gray ✓ 21.2954 18.35 0.6107 22.86 0.6562
UniINR (Ours) 1 gray ✓ 0.3790 30.84 0.9673 32.82 0.9147
EU + TL 2 color ✓ 93.03 21.59 0.6964 24.46 0.7140
UniINR (Ours) 1 color ✓ 0.3792 28.41 0.9062 32.13 0.9053

9ˆ

DeblurSR 1 gray ✓ 21.2954 18.86 0.6502 23.96 0.7049
UniINR (Ours) 1 gray ✓ 0.3790 30.54 0.9579 32.21 0.9051
EU + TL 2 color ✓ 93.03 21.24 0.6869 23.99 0.7029
UniINR (Ours) 1 color ✓ 0.3792 27.21 0.8869 29.31 0.8590

Table 2: Quantitative comparison in PSNR, SSIM, and LPIPS on EvUnRoll simulation dataset (Zhou
et al., 2022). The numerical results of DSUN, JCD, and EvUnRoll are provided by (Zhou et al.,
2022).

Method Frames Event Params(M) Ó PSNR Ò SSIM Ò LPIPS Ó

DSUN (Liu et al., 2020) 2 ✗ 3.91 23.10 0.70 0.166
JCD (Zhong et al., 2021) 3 ✗ 7.16 24.90 0.82 0.105
EvUnRoll (Zhou et al., 2022) 1 ✓ 20.83 30.14 0.91 0.061
UniINR(Ours) 1 ✓ 0.38 30.61 0.9285 0.048

sharp frames devoid of RS distortion, yielding the most visually pleasing outcomes in challenging301

scenarios involving a fast-moving train with motion blur and RS distortion. Comparatively, the results302

of eSL-Net and EvUnroll exhibit discernible noise, particularly evident around the train door within303

the red region of Fig. 11. Another approach, JCD, falls short in recovering sharp frames within304

such complex scenes. This failure can be attributed to the insufficient availability of frame-based305

methods which rely on the assumption of linear motion. Furthermore, the results obtained using306

DebluSR (Song et al., 2023) display noticeable artifacts, particularly in the context of the moving307

train. These artifacts hinder satisfactory frame reconstruction in such dynamic environments.308

Bad case analysis: The color distortion in Fig. 11 (j) can be attributed to the insufficient color309

information in the challenging scene of a fast-moving train. From the input (Fig. 11 (h)), it can be310

noticed that the degree of motion blur is extremely severe and the blurry frame cannot provide valid311

color information. Furthermore, according to the principle of the generation of the event, the event is312

triggered by intensity change and it cannot provide color information.313

EvUnRoll Simulation Dataset: To achieve a more equitable comparison with EvUnRoll, we evaluate314

our method on the simulated dataset employed by EvUnRoll, shown in Tab. 2. It’s important to315

emphasize that the dataset includes paired data consisting of RS blur, RS sharp, and GS sharp. For our316

model’s training, we specifically utilize the paired images of RS blur and GS sharp. As a one-stage317

approach, our method directly transforms an RS-blurred image into a GS-sharp image avoiding318

accumulated error, and thus has better performance.319

Real-world Dataset: Fig. 4 shows real-world results. The input frame exhibits rolling shutter320

distortions, such as curved palette edges. In contrast, events show global shutter traits. Both321

our method and EvUnRoll correct these distortions effectively. Due to the lack of ground truth,322

quantitative analysis is not possible. Notably, our method avoids artifacts and errors, outperforming323

EvUnRoll in palette scenarios. For further discussion please refer to the Supp. Mat..324

4.2 ABLATION AND ANALYTICAL STUDIES325

Importance of Exposure Time Embedding: We conduct the experiments to evaluate the impact326

of learning-based position embedding, with a comparative analysis to sinusoid position embed-327
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(a) Events (b) Color (c) EvUnRoll (d) Ours

Figure 4: Visualization results in a real-world
dataset (Zhou et al., 2022). (a) is the events visual-
ization results. (b) are the input RGB images that
have clear rolling shutter distortions. (c) is the out-
put of EvUnRoll. (d) are the outputs of our method.
The red circle in (c) has color distortion.
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Figure 5: Comparison of inference time of our method
with EvUnroll + TimeLens. tEU and tTL represent the
respective inference times of EvUnRoll and TimeLens.
The axes represent frame interpolation multiples (1ˆ to
31ˆ) and time. 2TEU and 2tTL means calling EvUnRoll
twice and TimeLens twice.

ding (Vaswani et al., 2017). As indicated in Tab. 3, learning-based position embedding outperforms328

sinusoid position embedding, with advancements of up to 1.11dB on average. This superior efficacy329

is attributable to the intrinsic adaptability of the learning-based position embedding.330

Importance of RS Blur Image-guided Integral Loss: The effectiveness of the RS blur image-guided331

integral Loss across diverse interpolation settings is depicted in Tab. 4. The findings point towards332

the enhancement in PSNR for high interpolation configurations (e.g., 9ˆ) upon employing this loss.333

Inference Speed: Fig. 5 shows our method’s inference time across 1ˆ to 31ˆ interpolation. The334

total time rises modestly, e.g., from 30.8 ms at 1ˆ to 86.9 ms at 31ˆ, a 2.8-fold increase for a335

31-fold interpolation. The average frame time even decreases at higher multiples, reaching 2.8 ms at336

31ˆ. Compared to EvUnRoll (Zhou et al., 2022) and TimeLens (Tulyakov et al., 2021), our method337

is more computationally efficient, requiring only 72% of EvUnRoll’s 42.3 ms for RS correction and338

deblurring. For N -fold frame insertion using EvUnRoll + TimeLens, EvUnRoll is counted twice,339

and TimeLens N ´ 2 times. This advantage is amplified in high-magnification scenarios, where340

TimeLens costs 186.76ms per call. Our calculations focus on GPU time, excluding data I/O, which341

further increases EvUnRoll and TimeLens’ time consumption. More discussions are in Supp. Mat..342

Table 3: Ablation for learning-based position embedding.
Position Embedding PSNR SSIM

1ˆ
Sinusoid 32.46 0.9851
Learning 33.12 0.9881

3ˆ
Sinusoid 30.83 0.9723
Learning 31.11 0.9738

5ˆ
Sinusoid 30.70 0.9678
Learning 30.84 0.9673

9ˆ
Sinusoid 30.51 0.9560
Learning 30.54 0.9579

+1.11 +0.0059

Table 4: Ablation for the loss function.
Lb PSNR SSIM

✗ 33.12 0.9881
1ˆ ✓ 33.14 0.9844

✗ 31.11 0.9738
3ˆ ✓ 31.09 0.9768

✗ 30.84 0.9673
5ˆ ✓ 30.83 0.9784

✗ 30.54 0.9579
9ˆ ✓ 30.61 0.9538

+0.060 +0.0063

343

5 CONCLUSION344

This paper presented a novel approach that simultaneously uses events to guide rolling shutter frame345

correction, deblur, and interpolation. Unlike previous network structures that can only address one346

or two image enhancement tasks, our method incorporated all three tasks concurrently, providing347

potential for future expansion into areas such as image and video super-resolution and denoising.348

Furthermore, our approach demonstrated high efficiency in computational complexity and model size.349

Regardless of the number of frames involved in interpolation, our method only requires a single call350

to the encoder, and the model size is a mere 0.379M.351

Limitations Our analysis utilizes simulated data and real-world datasets, the latter of which lacks352

ground truth. Acquiring real data with ground truth is challenging. In future work, we aim to address353

this limitation by employing optical instruments, such as spectroscopes, to obtain real-world data354

with ground truth for quantitative evaluation.355
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