
IS MEMORIZATION Actually NECESSARY FOR GENER-
ALIZATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Memorization is the ability of deep models to associate training data with seem-
ingly random labels. Even though memorization may not align with models’ abil-
ity to generalize, recent work by Feldman and Zhang (2020) has demonstrated
that memorization is in fact necessary for generalization. However, upon closer
inspection of this work, we uncover several methodological errors including lack
of model convergence, data leakage, and sub-population shift. We show that these
errors led to a significant overestimation of memorization’s impact on test ac-
curacy (by over five times). After accounting for these errors, we demonstrate
that memorization does not impact prediction accuracy the way it is previously
reported. In light of these findings, future researchers are encouraged to design
better techniques to identify memorized points that can avoid some of the earlier
stated problems.

1 INTRODUCTION

One of the most interesting properties of deep learning models is their ability to fit outliers (i.e.,
samples that are not part of the data distribution) (Zhang et al., 2017; Arpit et al., 2017; Stephenson
et al., 2021). Specifically, deep models can output arbitrary ground-truth labels to inputs in the data
set. For example, if a picture of Gaussian noise is mislabeled as a cat, then the model will output
this label, even though the label is incorrect (Zhang et al., 2017). This is only possible due to the
model’s ability to memorize point-label pairs.

Intuitively, the ability to generalize (i.e., correctly label previously unseen points) should be at odds
with memorization. This is because generalization requires identifying the underlying patterns and
then subsequently applying them to unseen points. On the other hand, memorization simply retrieves
the labels of the previously observed inputs and consequently, should not help in correctly classi-
fying new unseen points. However, recent work from Feldman and Zhang (2020) has shown that
this is not true for deep models. In fact, their work demonstrated that “memorization is necessary
for achieving close-to-optimal generalization error”. They show this by 1) identifying the memo-
rized points in the training data, 2) removing these points from the data set, 3) retraining models
on the reduced data, and 4) measuring the drop in test accuracy. They report a significant accuracy
degradation of 2.54 ± 0.20%, thereby concluding that memorization is necessary for generalization.

While their work makes certain valuable contributions, we show that their conclusion is incorrect.
This is due to several methodological errors that include:

• Lack of Convergence: Models are not trained to their maximum test set accuracy (Section 4.1).
• Data Leakage: Training points have duplicates in the test set, resulting in imprecise test set

accuracy (Section 4.2).
• Sub-population Shift: Entire sub-populations were removed alongside the memorized points.

This gives rise to a widely recognized issue known as sub-population shift (Yang et al.,
2023; Santurkar et al., 2021)(Section 4.3).

1



Figure 1: Examples of train-test duplicates present in the CIFAR-100 data set.

In our work, we improve their methodology by accounting for these errors. In doing so, we show that
the authors had overestimated the impact of memorization on test set accuracy and that this number
is significantly lower. Specifically, while the authors report that removing memorized points leads
to a 2.54 ± 0.20% drop in test set accuracy, we demonstrate that this memorization only results in a
0.54 ± 0.29% drop. Below, we describe the high-level steps of our approach.

First, we show that by converging the model to a higher test accuracy significantly reduces the impact
of memorization on the test accuracy (by almost a half). Second, we analyze the memorized points
and show that almost half of them suffer from data leakage or sub-population shift. To account
for them, we clean the memorization data by removing the points that induce this error. Third, we
show that even though the remaining memorized points have a higher memorization score, they
have an insignificant impact on test accuracy. Specifically, the impact of memorized points goes
from 2.54 ± 0.20% (as reported by the original paper) to just 0.54 ± 0.29%, which is a five-fold
decrease. Therefore, we disprove the conclusion of the original work and show that memorization is
not necessary for generalization.

Finally, we note that the memorized points, as identified by Feldman and Zhang (2020), exhibit
substantial overlap with data points originating from certain sub-populations within the training set.
As a result, the role that the memorized points play largely duplicates that of the sub-population
in model accuracy. This phenomenon casts doubt on the validity of the original work’s definition
of memorization in the first place. In light of these results, future researchers are encouraged to
put forward more precise definitions of memorization and develop alternative approaches for accu-
rately discerning memorized points. Because ultimately memorized data should not be a redundant
representation of sub-populations.

2 BACKGROUND

Before we discuss our findings in any detail, it is important that we first understand some of the
important background concepts regarding memorization.

2.1 DATA LEAKAGE

Data leakage is the use of information by the model at train time that would otherwise not be avail-
able to it at test time (Kaufman et al., 2012). An example of data leakage is when the model’s
training data overlaps with the test one, due to the presence of train-test duplicates. This is when a
data point from the training set has an identical point in the test set (Figure 1). This also extends
to near identical points as well (Figure 2). Here, two images have identical content (shape, form,
background, color, etc), but might have different perspective (angle of the photograph). This is prob-
lematic since the goal of the test set is to quantify the model’s ability to generalize on unseen points.
Therefore, there should be no overlap between train/validation and test sets.

Any sort of overlap, e.g., in the form of train-test duplicates leads to an overly optimistic and arti-
ficially high test set accuracy. This is because the model will correctly classify the duplicates from
the test set (as it already saw them during training). The accuracy is overly optimistic as it is a result
of train-test duplicates rather than the model’s ability to generalize to unseen data. Unfortunately,
commonly used data sets in the current machine learning literature (e.g., CIFAR and MNIST) suffer
from this issue (Recht et al., 2018).

2



Figure 2: Examples of train-test near-duplicates present in the CIFAR-100 data set.

2.2 SUB-POPULATIONS

A data set can consist of one or more coarse class labels (e.g., cats and dogs). Within each of
these coarse labels, there may exist a mixture of points that have finer labels, which correspond to
distinct sub-populations (Zhu et al., 2014). For example, the cat data set will contain images with
different cat features including color, background, species, pose, etc. Cats with the same facets
will fall into the same sub-populations. For example, consider a hypothetical data set that contains
100 cat images, with 95 white cats and 5 black ones. Even though they have the same label, the
white and black cats form two distinct sub-populations (with potentially even finer sub-populations
within the white and black cats respectively (Malisiewicz et al., 2011; Felzenszwalb et al., 2009)).
Figure 3 provides an example of points from the same sub-populations in CIFAR-1001. As we can
see, images have similar visual features.

Figure 3: Examples of sub-populations that were removed by Feldman and Zhang (2020) alongside
the memorized points and the test set points that were impacted.

The size of sub-population may impact model accuracy as well. Generally, the larger the sub-
population, the higher the number of exemplar points, the greater the model’s ability to predict
accurately for that sub-population at test time. This is because more points usually mean more
representative examples for the model to learn from. Returning to our hypothetical cat data set (with
95 white cats and 5 black ones), since there are more pictures of white cats in the data set, the model
likely has better prediction accuracy on white cats than black ones at test time. This also means
removing an entire sub-population will result in degrading the model’s ability to correctly classify
missing sub-population at test time. If the model was never trained on black cats, it will likely
misclassify them at a higher rate. This is because certain distinguishing characteristics that aid the
model in correctly classifying the unseen sub population will likely not be learnt from remaining
data set, and will negatively impact the performance on unseen sub-populations.

1In Section 5 we describe how we find the sub-populations within a dataset.

3



Table 1: Symbols used and their meanings.
Symbol Meaning

xi training data point
yi training point label
x′i test data point
y′i test point label
S training set
A training algorithm
n size of the training set
m number of points removed from the training set
h trained model
t trial

2.3 INFLUENCE OF DATA SET POINTS

Influence is the ability of a training point (xi, yi) to impact the prediction of some other point
(xj , yj) (Koh and Liang, 2017). Hereinafter, xi denotes the data point and yi denotes the label of xi.
As an illustrative example for influence, if including xi in the training set increases the probability of
point xj being classified correctly by the resulting model, then xi is said to have a positive influence
on xj (Feldman and Zhang, 2020). The higher the influence value, the stronger the impact.

Self-influence is a special case of influence. This is the measure of how much xi impacts the models
prediction on itself. In other words, how well the model predicts the label for xi when the point itself
is present in the training data set in comparison to when xi is absent. If a point has positive self-
influence, it has a higher probability of being classified correctly when it is present in the training
data set. Therefore, when the point is removed from the training data set, the likelihood of correct
prediction goes down as well. Conversely, negative self-influence means a higher likelihood of being
classified correctly only if it is not present in the training data set (e.g., mislabeled points).

According to Feldman and Zhang (2020), higher self-influence means a higher risk of memorization.
The high self-influence points usually belong to the tail end of the data distribution. The tail usually
consists of atypical points (e.g., outliers and mislabeled points) or small-sized sub-populations (e.g.,
five black cats in a data set of all white cats). Therefore, these points have the highest risk of
memorization across the entire distribution.

Furthermore, if the point has high self-influence and has a duplicate in the test set, then removing
this point from the training data will result in the wrong prediction on itself, but also its duplicate
(or near duplicate) in the test set.

3 UNDERSTANDING FELDMAN AND ZHANG (2020)

Having gone over how different factors influence memorization, we describe in detail the original
work of Feldman and Zhang (2020). Our primary goal is to evaluate their methodology, recommend
experimental fixes, and consequently, reassess their findings. To that end, we attempt to gain a deeper
understanding of the original work. In this section, we describe how they 1) define memorization,
2) identify memorized points, and 3) quantify their marginal utility.

3.1 DEFINING MEMORIZATION

Feldman and Zhang (2020) define a memorized point as one having high self-influence (i.e., a point
that is predicted correctly only when present in the training data).

Specifically, consider a training set S = ((x1, y1)...(xn, yn)) and a point xi in the training set S.
The memorization score is the difference in prediction accuracy between when the point xi is present
in the training data (h ← A(S)) and when xi is absent (h ← A(S\i)). Here, (h ← A(S)) means
that models h were trained on dataset S using algorithm A. We include Table 1 for reference on the
symbols used throughout the paper:

mem(A,S, i) = Prh←A(S)[h(xi) = yi]− Prh←A(S\i)[h(xi) = yi] (1)

4



The definition captures the intuition that a point xi has been memorized if its prediction changes
significantly when it is removed from the dataset.

For example, consider training 1000 instances each of the models h ← A(S) and h ← A(S\i). If
the correct classification rate for xi when it h ← A(S) is around 90% (i.e., 900 out of the 1000
instances classified the point correctly). However, it falls significantly when h ← A(S\i) to 25%
(i.e., 250 out of the 1000 instances classified the point correctly). Due to the significant drop in self
accuracy, this point has a high self-influence, and therefore, a high memorization score, specifically
of 90%−25% = 65%. This means that xi is far more likely be classified correctly when it is present
in the training data. In contrast, if there is no significant change in the classification rate, then it has
a low memorization score. In this case, xi will likely be classified correctly, whether or not it is
present in the training data.

3.2 IDENTIFYING MEMORIZED POINTS

Now that we have defined memorization, the next step is to develop a methodology to identify mem-
orized points from a dataset. A point is considered memorized based on its memorization score,
calculated using Equation 1. One way to compute this score is via the classic leave-one-out experi-
ment. Here, we remove a single point from the training dataset, retrain the model on the remaining
data, and test to see if the removed point is correctly classified. We have to run this experiment on all
the points in the dataset to get the memorization score for each. Additionally, we have to repeat this
model training process, for each point, multiple times to account for different sources of randomness
introduced during training (e.g., the varying initialization, GPU randomness, etc.). Specifically, this
would require training hundreds models for every point in the training data. Considering training
data sets contain tens of thousands of points, this would require training millions of models. There-
fore, running this experiment over a large dataset and model will require a large amount of resources
and is therefore, computationally intractable.

To overcome this limitation, Feldman and Zhang (2020) propose a method to approximate the mem-
orization scores. Instead of removing one point at a time, the authors randomly sample a fraction r
of the points from the training set (originally of size n) and leave the remaining points out of train-
ing. The number of points used in training is then m = r · n, 0 ≤ r ≤ 1. In Feldman and Zhang
(2020) the authors use r = 0.7 for their experiments. The authors repeat this k times. The exact
value of k depends on the dataset but is typically on the order of a few thousand models. As a result,
a random point xi will be present in approximately k ·r of the total trained models and will be absent
from k · (1 − r) of them. By aggregating the results over both sets of models, the authors can ap-
proximate the memorization score for xi. All the points that have a higher memorization score than
some predetermined threshold (specified in the original work as 25%) are said to be memorized.

3.3 CALCULATING MARGINAL UTILITY

Having identified the memorized points, the authors now calculate their marginal utility (i.e., their
impact on test accuracy). This is done using a two-step process:

3.3.1 STEP 1: TRAINING MODELS WITHOUT THE MEMORIZED POINTS

The authors train two sets of models: one on the full training data (that includes the memorized
points), and another on the reduced dataset (without the memorized points). They train both sets of
models on identical parameters, repeating this training procedure hundreds of times to account for
different sources of randomness. At this point, the authors have hundreds of models trained on the
full data set and reduced datasets.

3.3.2 STEP 2: MEASURING THE DIFFERENCE IN ACCURACY

Next, the authors measure the drop in accuracy caused by removing the memorized points and
retraining the models. They simply take the mean test set accuracy of the models trained on the full
dataset and the models trained on the reduced one respectively. They subtract the two accuracies
to find the mean difference and the standard deviation. The authors reported a significant drop in
accuracy of 2.54 ± 0.20% and therefore, the concluded that these memorized points need to be

5



present in the training data for optimum accuracy. And as a result, memorization is necessary for
generalization.

4 GAPS AND FIXES FOR THE EXISTING APPROACH

In the previous section, we describe how Feldman and Zhang (2020) define memorization, identify
memorized points, and calculate their marginal utility. However, there are a number of methodologi-
cal errors in their work, which lead to their incorrect conclusion about memorization. In this section,
we describe these errors, and propose experimental fixes:

4.1 ERROR: LACK OF MODEL CONVERGENCE TO MAXIMUM TEST ACCURACY

Feldman and Zhang (2020) use non-ideal training parameters which result in the sub-optimal test set
accuracy. This is because these parameters do not allow models to learn all necessary patterns from
the training set. This issue is far more evident in the case of smaller sub-populations. Here, models
have difficulty learning the patterns due to the limited number of points. As a result, removing a
single point will significantly impact the accuracy of its own sub-population in the test. Therefore,
the decrease in accuracy between the full and reduced data models was not due to the removal of
the memorized points. Instead, it was because models had not been trained to learn some of the less
obvious patterns.

Fix: One simple fix is to improve the training procedure, allowing models to learn less obvious
patterns more effectively, while simultaneously reducing their sensitivity to the removal of any indi-
vidual point. One popular method of achieving this goal is weight decay (Krogh and Hertz, 1991).
This regularization method reduces models’ sensitivity to individual samples and improves model
generalization. We use this method in conjunction with the original methodology to improve model
training.

4.2 ERROR: DATASET LEAKAGE

As discussed in Section 2.1, train-test duplicates result in an overly-optimistic and artificially high
test set accuracy. This is because the model will correctly classify points whose duplicates it saw
during training, even if it performs poorly on the remaining test set. The authors did not account
for this behavior. While they kept the duplicates when training the full data models, they removed
duplicates as part of the memorized points to train the reduced data models. Therefore, the resulting
difference in accuracy was not entirely due to the marginal utility of the memorized points. Instead,
it is in part attributed to the removal of duplicates from one of the two training data sets. This led to
an unfair comparison between the two resulting models.

Fix: Only remove the memorized points not associated with the train-test duplicates. This way, we
can measure memorization’s impact as if there was no data leakage.

4.3 ERROR: SUB-POPULATION SHIFT

When calculating marginal utility, the authors remove memorized points to measure their impact on
the test set (Section 3.3.1). A number of these were images from the same sub-population, as can be
seen in Fig 3. Since these sub-population images have high self-influence values, this means a small
number of images make up these sub-populations. Removing a few points from the already small
sub-population will cause a complete or near complete sub-population purge from the training data,
and will result in a distribution shift. This is because the training data will no longer possess certain
sub-populations that do exist in the test data.

This will prevent the model from effectively learning distinguishing features of the sub-populations
(since they were removed from the training data) and consequently, lead to poor model performance
on the corresponding test set points.

This idea can be understood using our earlier cat dataset example, presented in Section 2.2. If we
remove all the black cats (five of them in total) from the dataset that contains another 95 white ones,
the corresponding model will likely perform poorly on black cats in the test set. This degradation
will be even more severe if the black cats have high self-influence. This implies that few distin-
guishing features can be learned from the white cats to help identify the black ones. Therefore,

6



the drop in model accuracy observed by Feldman and Zhang (2020) was not due to the marginal
utility of the memorized point but can be attributed to the induced distribution shift (because entire
sub-populations had been removed from the training set).

Fix: Only remove the memorized points not belonging to any sub-populations. Now, we can study
the impact of memorization as if there was no sub-population shift.

5 EXPERIMENTAL SETUP AND RESULTS

Having identified the methodological errors in the previous section, we now implement the necessary
fixes, rerun the experiments, and report our results.

5.1 SETUP

In order to perform the most fair evaluation, we employ an exact same experimental setup as the one
used by Feldman and Zhang (2020). Specifically, we train Resnet50 (He et al., 2016) models on the
full CIFAR-100 data sets for 160 epochs, using a batch size of 512, momentum of 0.9, and triangular
learning rate scheduler, with a base rate of 0.4. However, to account for the lack of convergence
(Section 4.1), we use weight-decay. This helps the model learn better patterns and improve test time
accuracy. We train over 100 models in each setup and use the FFCV library (Leclerc et al., 2023) to
quickly train a large number of models.

Next, we remove the same 1,015 memorized points provided by the original authors and retrain the
models. We do this for two reasons: 1) We want to recreate the exact same setup as the original
authors for the most fair comparison. 2) These 1,015 points are the ones that had the highest impact
on the test set accuracy. Refuting the authors’ claim against the most impactful memorized points
means that the impact of other memorized points is automatically dismissed.

Now, we address the data leakage error (Section 4.2). We iterate over the removed memorized
points and find their exact or near duplicates in the test set (Figure 1). We were able to identify 119
duplicates and 158 near duplicates.

Similarly, we account for the sub-population shift (Section 4.3). Here, we identify the sub-
populations based on the observation from prior work that the accuracy of models on a sub-
population is likely to increase once a representative example from that sub-population is observed
during training (Feldman, 2020). In other words, the presence of data points from a specific sub-
population in the training data tends to enhance models’ accuracy on other points from the same
sub-population in the test set. For instance, in our cat dataset example, including black cat im-
ages in the training set can lead to improved model accuracy on black cat images in the test set.
Following this rationale, we perform a two-step process to identify sub-populations: 1) check if
multiple memorized points impact the same test set point. If that is true, then they belong to the
same sub-population; 2) perform an additional visual check to confirm that these points do belong
to the same sub-population. To show the validity of this method, we show an example array of
the sub-populations that we found in Figure 3. We identified 239 such points. In total, we remove
119 + 239 + 158 = 516 points from the original 1,015 points and are left with 499 memorized
points.

The goal of our experiments is to understand 1) whether memorized points (barring the errors) have
a significant impact on test set accuracy and 2) if data leakage and sub-population shift contribute
towards a greater portion of the loss in accuracy (compared to the actual memorized points). To
answer these questions, we split the memorized points into two buckets. We place the removed
points in the “Leakage+Shift” bucket. And we place the remaining points in the “Memorized”
bucket. We remove each bucket from the training data individually train 100 models, and observe
the drop in accuracy for each bucket.

5.2 RESULTS

We compare the results of our findings against the original work in Table 2. We can see that the
originally reported drop in model accuracy (across hundreds of models) after the memorized points
are removed is 2.54 ± 0.20%. However, we show that merely training these models to maximum

7



Table 2: The table shows the impact of memorization points on test set accuracy. The original paper
reported a drop of 2.54 ± 0.20%. However, we can see that after training the models to convergence,
the value is significantly 1.78 ± 0.32%. We can also see that the majority of the drop was due to data
leakage and sub-population shift errors (Leakage+Shift Bucket). However, the Memorized Bucket
has an insignificant 0.54 ± 0.29% drop in accuracy, a five-fold decrease from the original number.

Original Our Results

Result Model
Convergence

Leakage+Shift
Bucket

Memorized
Bucket

Accuracy
Drop 2.54 ± 0.20% 1.78 ± 0.32% 1.25 ± 0.32% 0.54 ± 0.29%

test accuracy reduces this value to almost half, at 1.28 ± 0.48%. This shows that adequate training
can reduce memorization points’ impact on the test set.

Next, we measure whether the Leakage+Shift or the Memorized bucket contributes towards a greater
portion of the drop in accuracy. We can see in the Table that the Leakage+Shift bucket has more
than two times larger impact on test accuracy than that of the memorized bucket (1.25 ± 0.32% vs
0.54 ± 0.29% respectively). The drop in accuracy from 2.54 ± 0.20% as reported in the original
paper is five times larger than what is found after accounting for these errors. In other words, the
actual accuracy drop is almost exclusively caused by data leakage and sub-population shifts. More
importantly, upon closer inspection, we found that the points in the Memorized bucket in fact had
a lower memorization score on average than the Leakage+Shift bucket (83% and 74% respectively
based on Equation 1). This shows the memorized points had a lower accuracy drop despite a higher
memorization score. These results demonstrate the following: 1) Higher memorization scores do not
correspond to a higher drop in accuracy. 2) The reduction in test set accuracy in the original paper
was due to improper training, data leakage, and sub-population shifts. 3) Finally, memorization has
an insignificant impact on test accuracy, and therefore is not necessary for generalization

6 DISCUSSION

While Feldman and Zhang (2020) made valuable contributions, in the previous section, we showed
that overestimated the impact of memorization on test set accuracy by a factor of five. After ac-
counting for the three errors (model convergence, data leakage, and sub-population shift), we show
that memorization does not have a significant impact on accuracy. While the errors of model con-
vergence and data leakage are straightforward to deal with (specifically, train models to maximum
accuracy and avoid train-test duplicates, respectively), fixing the sub-population shift is not easy.
This is because the issue of sub-population shift directly resulted from Feldman and Zhang’s def-
inition of memorization and the technique they use to identify memorized points (Section 3). The
authors use a memorization (self-influence) threshold of 25%. Any points greater than this threshold
are considered memorized. Memorized points produced in this fashion significantly overlap with
certain sub-populations, especially those consisting of fewer samples (because these have higher
self-influence values). This raises the question: Do memorized points merely become a redundant
representation of the sub-populations? In light of our results, future researchers are strongly encour-
aged to put forward a more precise definition of memorization and explore more robust methods for
accurately identifying memorized points that are distinct from sub-populations.

Memorization has a direct implication for privacy research. This is because memorized points are
vulnerable to membership-inference attacks (Carlini et al., 2022a). Feldman and Zhang (2020) cre-
ated a tension between generalization and privacy. This is because they claimed that memorization
was needed for generalization while other works demonstrated that memorization was harmful to
privacy (Carlini et al., 2022a; Leino and Fredrikson, 2020; Carlini et al., 2019; Li et al., 2022). In
other words, generalization and privacy can not be simultaneously achieved. While this might have
dissuaded researchers in the community, our work shows that this tension does not exist. This is be-
cause memorization is not necessary for generalization. In light of these results, future researchers
are encouraged to explore methods to build models that both generalize and are private.

8



7 RELATED WORK

One of the first papers to discover memorization deep learning models was Zhang et al. (2017).
They showed that models can fit completely unstructured images even if these consist of random
Gaussian noise. Since then, there has been a tension between memorization and generalization and
how they impact model performance (Chatterjee, 2018). Earlier works focused on limiting model
memorization, thereby forcing the model to learn patterns instead. This was partly motivated by
the fact that memorization exposed models to privacy risks (e.g., membership inference) (Carlini
et al., 2019; 2022b). As a result, different methods were developed to counter memorization, which
included using regularization (Arpit et al., 2017), filtering weak gradients (Zielinski et al., 2020;
Chatterjee, 2020), adjusting model size (Arpit et al., 2017; Zhang et al., 2019). While these methods
did reduce model memorization, they did so at the cost of model accuracy.

However, the true impact of memorization on model behavior was yet unknown. This first and
foremost required methods to identify memorized points. A number of post-hoc methods were de-
veloped to identify them. These included clustering (Stephenson et al., 2021), repurposed member-
ship inference attacks (Carlini et al., 2022b), pseudo leave-one-out method (Feldman and Zhang,
2020). Having developed the ability to identify these points, the authors were now able to study
their impact on model efficacy. As we describe (Section 3), Feldman and Zhang (2020) demon-
strated that memorization was in fact necessary for model memorization. However, this conclusion
was incorrect and was a by-product of a number of methodological errors. By accounting for these
errors and rerunning their experiments, our results show that memorization has minimal impact on
generalization.

8 CONCLUSION

Memorization is the ability of the model to fit labels to seemingly random samples. Recent work
from Feldman and Zhang (2020) demonstrated that memorization is necessary for generalization.
We show that the original work suffered from a number of methodological errors including lack
of model convergence, data leakage, and sub-population shift. In order to study the real impact of
memorization, we modify the original methodology fix the underlying errors, and rerun the original
experiments. We show that memorization does not significantly impact memorization. While the
lack of model convergence and data leakage are easy to fix, sub-population shifts are harder. This
is because the definition of memorization proposed by Feldman and Zhang (2020) and the tech-
nique they use to identify memorized points may be flawed in the first place, making memorization
largely a redundant concept of sub-populations. In light of these results, researchers and practition-
ers are encouraged to put forward more precise definitions of memorization and develop alternative
approaches for accurately discerning memorized points that are distinct from sub-populations.

REFERENCES

D. Arpit, S. Jastrzundefinedbski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-Julien. A closer look at memorization in deep
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, page 233–242. JMLR.org, 2017.

N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song. The secret sharer: Evaluating and testing
unintended memorization in neural networks. In 28th USENIX Security Symposium (USENIX
Security 19), pages 267–284, 2019.

N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. Membership inference attacks
from first principles. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1897–1914.
IEEE, 2022a.

N. Carlini, M. Jagielski, C. Zhang, N. Papernot, A. Terzis, and F. Tramer. The privacy onion effect:
Memorization is relative. Advances in Neural Information Processing Systems, 35:13263–13276,
2022b.

S. Chatterjee. Learning and memorization. In International conference on machine learning, pages
755–763. PMLR, 2018.

9



S. Chatterjee. Coherent gradients: An approach to understanding generalization in gradient descent-
based optimization. arXiv preprint arXiv:2002.10657, 2020.

V. Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 954–959, 2020.

V. Feldman and C. Zhang. What neural networks memorize and why: Discovering the long tail via
influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891, 2020.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with dis-
criminatively trained part-based models. IEEE transactions on pattern analysis and machine
intelligence, 32(9):1627–1645, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman. Leakage in data mining: Formulation, detec-
tion, and avoidance. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(4):1–21,
2012.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Interna-
tional conference on machine learning, pages 1885–1894. PMLR, 2017.

A. Krogh and J. Hertz. A simple weight decay can improve generalization. Advances in neural
information processing systems, 4, 1991.

G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman, and A. Madry. FFCV: Accelerating
training by removing data bottlenecks. In Computer Vision and Pattern Recognition (CVPR),
2023. https://github.com/libffcv/ffcv/. commit xxxxxxx.

K. Leino and M. Fredrikson. Stolen memories: Leveraging model memorization for calibrated
{White-Box} membership inference. In 29th USENIX security symposium (USENIX Security
20), pages 1605–1622, 2020.

X. Li, Q. Li, Z. Hu, and X. Hu. On the privacy effect of data enhancement via the lens of memo-
rization. arXiv preprint arXiv:2208.08270, 2022.

T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and
beyond. In 2011 International conference on computer vision, pages 89–96. IEEE, 2011.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do cifar-10 classifiers generalize to cifar-10?
arXiv preprint arXiv:1806.00451, 2018.

S. Santurkar, D. Tsipras, and A. Madry. {BREEDS}: Benchmarks for subpopulation shift. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=mQPBmvyAuk.

C. Stephenson, S. Padhy, A. Ganesh, Y. Hui, H. Tang, and S. Chung. On the geometry of general-
ization and memorization in deep neural networks. arXiv preprint arXiv:2105.14602, 2021.

Y. Yang, H. Zhang, D. Katabi, and M. Ghassemi. Change is hard: A closer look at subpopulation
shift. In International Conference on Machine Learning, 2023.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. International Conference on Learning Representations (ICLR), 2017.

C. Zhang, S. Bengio, M. Hardt, M. C. Mozer, and Y. Singer. Identity crisis: Memorization and
generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698, 2019.

X. Zhu, D. Anguelov, and D. Ramanan. Capturing long-tail distributions of object subcategories. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 915–
922, 2014.

P. Zielinski, S. Krishnan, and S. Chatterjee. Weak and strong gradient directions: Explaining mem-
orization, generalization, and hardness of examples at scale. arXiv preprint arXiv:2003.07422,
2020.

10

https://github.com/libffcv/ffcv/
https://openreview.net/forum?id=mQPBmvyAuk
https://openreview.net/forum?id=mQPBmvyAuk

	Introduction
	Background
	Data Leakage
	Sub-populations
	Influence of Data Set Points

	Understanding feldman2020longtail
	Defining Memorization
	Identifying Memorized Points
	Calculating Marginal Utility
	Step 1: Training Models without the memorized points
	Step 2: Measuring the Difference in Accuracy


	Gaps and Fixes for the Existing Approach
	Error: Lack of Model Convergence to Maximum Test Accuracy
	Error: Dataset Leakage
	Error: Sub-population Shift

	Experimental Setup and Results
	Setup
	Results

	Discussion
	Related Work
	Conclusion

