
Published as a conference paper at ICLR 2025

DISCRETE CODEBOOK WORLD MODELS FOR
CONTINUOUS CONTROL

Aidan Scannell†
University of Edinburgh
aidan.scannell@ed.ac.uk

Mohammadreza Nakhaei∗
Aalto University

Kalle Kujanpää∗
Aalto University

Yi Zhao
Aalto University

Kevin Sebastian Luck
Vrije Universiteit Amsterdam

Arno Solin
Aalto University

Joni Pajarinen
Aalto University

ABSTRACT

In reinforcement learning (RL), world models serve as internal simulators, enabling
agents to predict environment dynamics and future outcomes in order to make
informed decisions. While previous approaches leveraging discrete latent spaces,
such as DreamerV3, have demonstrated strong performance in discrete action
settings and visual control tasks, their comparative performance in state-based
continuous control remains underexplored. In contrast, methods with continuous
latent spaces, such as TD-MPC2, have shown notable success in state-based con-
tinuous control benchmarks. In this paper, we demonstrate that modeling discrete
latent states has benefits over continuous latent states and that discrete codebook
encodings are more effective representations for continuous control, compared to
alternative encodings, such as one-hot and label-based encodings. Based on these
insights, we introduce DCWM: Discrete Codebook World Model, a self-supervised
world model with a discrete and stochastic latent space, where latent states are
codes from a codebook. We combine DCWM with decision-time planning to
get our model-based RL algorithm, named DC-MPC: Discrete Codebook Model
Predictive Control, which performs competitively against recent state-of-the-art
algorithms, including TD-MPC2 and DreamerV3, on continuous control
benchmarks. See our project website www.aidanscannell.com/dcmpc.

1 INTRODUCTION

In model-based reinforcement learning (RL), world models (Ha & Schmidhuber, 2018) have been
introduced in order to simulate or predict the environment’s dynamics in a data-driven way. An agent
equipped with a world model can make predictions about its environment by “simulating” possible
actions within the model and ”imagining” the outcomes. This equips the agent with the ability to
plan and anticipate outcomes given a (learned) reward function, and the additional ability to envision
transitions and outcomes before taking them in the real world can in turn improve sample efficiency.

One of the state-of-the-art world models, DreamerV2/V3 (Hafner et al., 2022; 2023) achieves strong
performance in a wide variety of tasks, by “imagining” sequences of future states within a world
model and using them to improve their policies. Interestingly, DreamerV2/V3 introduced a discrete
latent space, in the form of a one-hot encoding, which offered significant benefits over its predecessor,
DreamerV1 (Hafner et al., 2019a). This suggests that discrete latent spaces may have benefits over
continuous latent spaces. It could be from the discrete latent space helping avoid compounding
errors over multi-step time horizons or enabling policy and value learning to harness the benefits of
discrete variable processing for efficiency and interoperability. In the context of generative modeling,
discrete codebooks have been at the heart of many successful approaches (Chang et al., 2023; Esser
et al., 2021; Ramesh et al., 2021). However, in the context of continuous control, TD-MPC2 (Hansen
et al., 2023) uses a continuous latent space and significantly outperforms DreamerV3. Whilst there
are multiple differences between TD-MPC2 and DreamerV2/V3, in this paper, we are specifically
interested in exploring if discrete latent spaces can offer benefits for continuous control.

†Work done while at Aalto University ∗Equal contribution

1

www.aidanscannell.com/dcmpc

Published as a conference paper at ICLR 2025

Recently, Farebrother et al. (2024) showed that training value functions with classification may have
benefits over training with regression. The benefits may arise because (i) classification considers
uncertainty during training (via the cross-entropy loss), (ii) the categorical distribution is multi-modal
so it can consider multiple modes during training, or (iii) learning in discrete spaces is more efficient.
In the context of world models, it is natural to ask, what benefits are obtained by (i) using discrete vs
continuous latent spaces and (ii) modeling deterministic vs stochastic transition dynamics. Further to
this, when considering stochastic latent transition dynamics, what is the effect of modeling with (i)
unimodal distributions (e.g. Gaussian in continuous latent spaces) vs (ii) multimodal distributions
(e.g. categorical in discrete latent spaces). In this paper, we explore these ideas in the context of
world models for model-based RL, i.e. does learning a discrete latent space using classification have
benefits over learning a continuous latent space using regression.

Contributions The main contributions are as follows:

(C1) In the context of continuous control, we show that learning discrete latent spaces with classifi-
cation does have benefits over learning continuous latent spaces with regression.

(C2) We show that formulating a discrete latent state using codebook encodings has benefits over
alternatives, such as one-hot (like DreamerV2/V3) and label encodings.

(C3) Based on our insights, we introduce Discrete Codebook World Model (DCWM): a world
model with a discrete latent space where each latent state is a discrete code from a codebook.
It obtains strong performance in the difficult locomotion tasks from DeepMind Control suite
(Tassa et al., 2018) and manipulation tasks from Meta-World (Yu et al., 2019).

2 RELATED WORK

In this section, we recap world models in the context of model-based RL. We introduce two competing
methods for learning latent spaces (i) those using observation reconstruction and (ii) those using
latent state temporal consistency objectives. We then compare methods that learn continuous latent
spaces using regression and those that learn discrete latent spaces using classification.

World models Model-based RL is often said to be more sample-efficient than model-free methods.
This is because it learns a model in which it can reason about the world, instead of simply trying to
learn a policy or a value function to maximize the return (Ha & Schmidhuber, 2018). The world model
can be used for planning (Allen & Koomen, 1983; Basye et al., 1992). A prominent idea has been to
optimize the evidence lower bound of observation and reward sequences to learn world models that
operate on the latent space of a learned Variational Autoencoder (VAE, Kingma & Welling (2014); Igl
et al. (2018)). These models rely on maximizing the conditional observation likelihood p(ot|zt), i.e.
the reconstruction objective. The latent space of the model can then be used for both policy learning
in the imagination of the world model, known as offline planning, e.g. Dreamer (Hafner et al., 2019a),
or for decision-time planning (Rubinstein, 1997; Hafner et al., 2019b; Schrittwieser et al., 2020).

Latent-state consistency Using the reconstruction loss for learning latent state representations is
unreliable (Lutter et al., 2021) and can have a detrimental effect on the performance of model-based
methods in various benchmarks (Kostrikov et al., 2020; Yarats et al., 2021a). To this end, TD-MPC
(Hansen et al., 2022) and its successor, TD-MPC2 (Hansen et al., 2023), use a consistency loss to
learn representations for planning with Model Predictive Path Integral (MPPI) control together with
reward and value functions learned through temporal difference methods (Williams et al., 2015).
Note that many prior works learn latent state representations using variants of a self-supervised
latent-state consistency objective (Schwarzer et al., 2020; Wang et al., 2022; Ghugare et al., 2022;
LeCun; Georgiev et al., 2024; Scannell et al., 2024b; Zhao et al., 2023; Scannell et al., 2024a). Given
the success of learning representations without observation reconstruction in continuous control tasks,
we predominantly focus on this class of methods, i.e. methods that use latent-state consistency losses.

Discrete latent spaces DreamerV1 (Hafner et al., 2019a), DreamerV2 (Hafner et al., 2022), and
DreamerV3 (Hafner et al., 2023), are world model methods which learn policies using imagined
transitions from their world models. They utilize observation reconstruction when learning their world
models and perform well across a wide variety of tasks. However, they are significantly outperformed
by TD-MPC2 in continuous control tasks, which does not reconstruct observations. Of particular inter-
est in this paper, is that DreamerV2/V3 introduced a discrete latent space, in the form of a one-hot en-
coding, and trained it with a classification objective, significantly improving performance. In contrast,

2

Published as a conference paper at ICLR 2025

Latent code
ct

code
idx

pφ(ĉt+1 | ct,at)

Latent code
ĉt+1

code
idx

pφ(ĉt+2 | ĉt+1,at+1)

Latent code
ĉt+2

Encoder Encoder Encoder

Codebook
index

Codebook
index

at at+1

rt rt+1

ot ot+1 ot+2

Dynamics ST Gumbel-
softmax
sampling

Dynamics ST Gumbel-
softmax
sampling

FS
Q

Cross-entropy
loss

Cross-entropy
loss

Figure 1: World model training DCWM is a world model with a discrete latent space where
each latent state is a discrete code c () from a codebook C. Observations o are first mapped
through the encoder and then quantized () into one of the discrete codes. We model probabilistic
latent transition dynamics pφ(c′ | c,a) as a classifier such that it captures a potentially multimodal
distribution over the next state c′ given the previous state c and action a. During training, multi-step
predictions are made using straight-through (ST) Gumbel-softmax sampling such that gradients
backpropagate through time to the encoder. Given this discrete formulation, we train the latent space
using a classification objective, i.e. cross-entropy loss. Making the latent representation stochastic
and discrete with a codebook contributes to the very high sample efficiency of DC-MPC.

TD-MPC2 learns a continuous latent space with mean squared error regression. In this paper, we are
interested in learning discrete latent spaces with classification, however, in contrast to DreamerV2/V3,
we seek to avoid observation reconstruction – due to its poor performance in continuous control
(see Fig. 20) – and instead learn the latent space using a self-supervised latent-state consistency loss.

3 PRELIMINARIES

In this section, we recap different types of discrete encodings and compare their pros and cons. First,
let us assume we have three discrete categories: A,B, and C.

• One-hot encoding Given categories A, B, and C, a one-hot encoding would take the form
e(A) = [1, 0, 0], e(B) = [0, 1, 0], and e(C) = [0, 0, 1] respectively.

• Label encoding Given categories A, B, and C, label encoding would result in e(A) = 1,
e(B) = 2, and e(C) = 3 respectively.

• Codebook encoding Given categories A, B, and C, a codebook might encode them as
e(A) = [−0.5,−0.5], e(B) = [0, 0], and e(C) = [0.5, 0.5] respectively.

Ordinal relationships If we have an ordinal relationship A < B < C, label and codebook encodings
can ensure |e(A) − e(B)| < |e(A) − e(C)|, where e(·) is the encoding function. In this case, the
global ordering is preserved along both dimensions of the codebook. It is worth noting that codebook
encodings are flexible enough to model ordinal relationships in multiple dimensions. For example,
the following code vectors exhibit opposite ordering along their two dimensions e(E) = [0.5,−0.5],
e(F) = [0, 0], e(G) = [−0.5, 0.5], which adds a level of modeling flexibility. One-hot encoding,
however, results in |e(A) − e(B)| = |e(A) − e(C)| =

√
2 for all distinct pairs, eliminating any

notion of ordering. Whilst this may be beneficial in some scenarios, e.g., when modeling distinct
categories like fruits, it means that they cannot capture the inherent ordering in continuous data.

Sparsity and dimensionality Another downside of one-hot encodings is that they create sparse data
(i.e., data with many zero values), which can have a negative impact on neural network training. In con-
trast, label and codebook encodings create dense data (i.e. many non-zero values). Finally, it is worth

3

Published as a conference paper at ICLR 2025

noting that one-hot encodings have high dimensionality, especially when there are many categories.
This makes them memory-intensive and slow to train when using a large number of categories.

In this work, we show that discrete codebook encodings resulting from quantization (Mentzer et al.,
2024) offer benefits over both one-hot and label encodings when learning discrete latent spaces for
continuous control. This is because they preserve ordinal relationships in multiple dimensions whilst
being simpler, much lower-dimensional and having less memory requirements.

4 METHOD

In this section, we detail our method, named Discrete Codebook Model Predictive Control
(DC-MPC), which is a model-based RL algorithm which (i) learns a world model with a discrete
latent space, named Discrete Codebook World Model (DCWM), and then, (ii) performs decision-time
planning with MPPI. The paper’s main contribution is formulating a discrete latent space using
quantization such that latent states are codes from a codebook. This allows us to train the latent
representation using classification, in a self-supervised manner. See Fig. 1 for an overview of DCWM,
Alg. 1 for details of world model training and Alg. 2 for details on the MPPI planning procedure.

We consider Markov Decision Processes (MDPs, Bellman (1957))M = (O,A,P,R, γ), where
agents receive observations ot ∈ O at time step t, perform actions at ∈ A, and then obtain the next ob-
servation ot+1 ∼ P(· |ot,at) and reward rt = R(ot,at). The discount factor is denoted γ ∈ [0, 1).

4.1 WORLD MODEL

Learning world models with discrete latent spaces (e.g. DreamerV2) has proven powerful in a wide
variety of domains. However, these approaches generally perform poorly in continuous control tasks
when compared to algorithms like TD-MPC2 and TCRL (Zhao et al., 2023), which use continuous
latent spaces. Rather than representing a discrete latent space using a one-hot encoding, as was done
in DreamerV2, DC-MPC aims to construct a more expressive representation which is effective for
continuous control. More specifically, DC-MPC represents discrete latent states as codes from a
discrete codebook, obtained via finite scalar quantization (FSQ, Mentzer et al. (2024)). The world
model can subsequently benefit from the advantages of discrete representations, e.g. efficiency and
training with classification, whilst performing well in continuous control tasks.

Components DC-MPC has six main components:

Encoder: x = eθ(o) ∈ R|L|×d (1)
Latent quantization: c = f(x) ∈ C (2)

Dynamics: c′ ∼ Categorical
(
p1, . . . , p|C|

)
with pi = pφ(c

′ = c(i) | c,a) (3)

Reward: r = Rξ(c,a) ∈ R (4)

Value: q = qψ(c,a) ∈ RNq (5)
Policy prior: a = πη(c) (6)

The encoder eθ(·) first maps observations o to continuous latent vectors x ∈ Rb×d, where the number
of channels b and the latent dimension d are hyperparameters. This continuous latent vector x is
then quantized f(·) into one of the discrete latent codes c ∈ C from the (fixed) codebook C, using
finite scalar quantization (FSQ, Mentzer et al. (2024)). As we have a discrete latent space, we
formulate the transition dynamics to model the distribution over the next latent state c′ given the
previous latent state c and action a. That is, we model stochastic transition dynamics in the latent
space. We denote the probability of the next latent state c′ taking the value of the ith code c(i) as
pi = pφ(c

′ = c(i) | c,a). This results in the next latent state following a categorical distribution
c′ ∼ Categorical

(
p1, . . . , p|C|

)
. We use a standard classification setup, where we use an MLP to

predict the logits l = {l1, . . . , l|C|} = dφ(c,a) ∈ R|C|. Note that logits are the raw outputs from the
final layer of the neural network (NN), which represent the unnormalized probabilities of the next
latent state c′ taking the value of each discrete code in the codebook C. The logit for the ith code is
given by li = [dφ(c,a)]i ∈ R. We then apply softmax to obtain the probabilities {pi}|C|i=1 of the next
latent state taking each discrete code in the codebook C, i.e., pi = softmaxi(l). DC-MPC utilizes
the discrete codes c as its latent state for future predictions and decision-making.

4

Published as a conference paper at ICLR 2025

Quantized latent space DCWM uses a discretized latent space where world states are encoded
as discrete codes from a codebook C. We use latent quantization to enforce data compression
and encourage organization (Hsu et al., 2023). However, we implement this using finite scalar
quantization (FSQ, Mentzer et al. (2024)) instead of dictionary learning (van den Oord et al., 2017).
As a result, our codebook is fixed and we obviate two codebook learning loss terms, which stabilizes
early training. In this section, we will give an overview of our discretization method which utilizes
codebooks. First, let us assume the output of the encoder is a tensor1 x ∈ Rb×d, with d dimensions
and b as the number of channels.

x y

z

x y

z

-1 -1 1
-1 -.5 1
-1 1 .33

...

Fixed, implicit
codebook

Figure 2: Illustration of Codebook (C)
FSQ’s codebook is a b-dimensional hy-
percube (left). This figure illustrates a
b=3-dimensional codebook, where each axis
of the 3-dimensional hypercube (left) corre-
sponds to one dimension of the codebook
(right). The ith dimension of the hypercube
is discretized into Li values, e.g., the x and
y-axis are discretized into L0 = L1 = 5 and
the z-axis into L3 = 4. Code symbols (here
integers) are normalized to the range [−1, 1].

Each latent dimension is quantized into a codebook
C. That is, we have d independent codebooks, one
for each latent dimension. Our first step is to define
the size of the codebook for each dimension, i.e. to
define the ordered set of quantization levels L =
{L1, L2, · · · , Lb}. Each quantization level Li corre-
sponds to the i-th channel, e.g. L1 defines the number
of discrete values in the first channel, L2 for the sec-
ond and so on. In short, a quantization level of e.g.
Li = 11 would mean that we discretize each dimen-
sion in the i-th channel into 11 distinct values/sym-
bols. We use integers as symbols, which would mean
that the code for dimension d in channel i would be
a symbol from the set {−5,−4, · · · , 0, · · · , 4, 5}. In
practice, for fast conversion from continuous values
to codes we use a similar discretization scheme as
FSQ and apply the function

f : x,L, i→ round

(⌊
Li
2

⌋
· tanh(xi,:)

)
, (7)

to each channel, taking the output x of the encoder
and the channel quantization level Li. This approach results in a codebook with |C| =

∏b
i=1 Li

unique codes for each dimension d, each code being made of b symbols, i.e. a b-dimensional vector.

Intuitively, this results in a Voronoi partition of the b-dimensional space in each dimension d, where
any point in space is assigned to one of the equidistantly placed centroids via Eq. (7). See Fig. 2 for a
visualization. In effect, this leads to an efficient and fast discretization of the latent embedding space.

In practice, Eq. (7) is not differentiable. To solve this for using standard deep learning libraries,
we use the straight-through gradient estimation (STE) approach with round_ste(x) : x → x +
sg(round(x) − x), where the function sg(·) stops the gradient flow. Furthermore, we normalize
codes to be in the range [−1, 1] after the discretization step as improved performance was reported by
Mentzer et al. (2024). The hyperparameters of this approach are the number of channels b and the
number of code symbols per channel Li, i.e. quantization levels. In our experiments, we found the
quantization levels L = {5, 3} (i.e. b = 2 channels) to be sufficient.

World model training We train our world model components eθ, dφ, Rξ jointly using backpropaga-
tion through time (BPTT) with the following objective

L(θ, φ, ξ;D) = E(o,a,o′,r)0:H∼D

[
H∑
h=0

γh
(
CE(pφ(ĉh+1 | ĉh,ah), ch+1︸ ︷︷ ︸

Latent-state consistency

) + ‖Rξ(ĉh,ah)− rh‖22︸ ︷︷ ︸
Reward prediction

)]

with ĉ0 = f(eθ(o0))︸ ︷︷ ︸
First latent state

ĉh+1 ∼ pφ(ĉh+1 | ĉh,ah)︸ ︷︷ ︸
Stochastic dynamics

ch = sg(f(eθ(oh)))︸ ︷︷ ︸
Target latent code

, (8)

where H denotes the multi-step prediction horizon and γ is the discount factor. The first predicted
latent code ĉ0 is obtained by passing the observation o0 through the encoder and then quantizing the
output. At subsequent time steps, the dynamics model predicts the probability mass function over the
next latent code pφ(ĉh+1 | ĉh,ah). Given this probabilistic dynamics model, we must consider how

1For simplicity, we omit here the batch dimension.

5

Published as a conference paper at ICLR 2025

to make H-step predictions in the latent space. In practice, we propagate uncertainty by sampling
and we use the straight-through (ST) Gumbel-softmax trick (Jang et al., 2017; Maddison et al., 2017)
so that gradients backpropagate through our samples to the encoder. Note that gradients must flow
back to the encoder at the first time step when it was used to obtain the first latent code ĉ0, as the
target codes c are obtained by passing the next observation o′ through the encoder and using the
stop gradient operator sg. We then train our dynamics “classifier” using the cross-entropy (CE) loss.
Finally, we note that our reward model Rξ is trained jointly with the encoder eθ and dynamics model
pφ to ensure that the world model can accurately predict rewards in the latent space.

Policy and value learning We learn the policy πη(c) and action-value functions qψ(c,a) in the
latent space using the actor-critic RL method TD3 (Fujimoto et al., 2018). However, we follow Yarats
et al. (2021b); Zhao et al. (2023) and augment the loss with N -step returns. The main difference
to TD3 is that instead of using the original observations o, we map them through the encoder
c = f(eθ(o)) and learn the actor/critic in the discrete latent space c. We also reduce bias in the TD
target by following REDQ (Chen et al., 2021) and learning an ensemble of Nq = 5 critics, as was
done in TD-MPC2. When calculating the TD target we randomly subsample two of the critics and
use the minimum of these two. Let us denote the indices of the two randomly subsampled critics as
M. The critic is then updated by minimizing the following objective:

Lq(ψ;D) = E(o,a,o′,r)Nn=1∼D

 1

Nq

Nq∑
k=1

(qψk
(f(eθ(ot))︸ ︷︷ ︸

ct

,at)− y)2
 , (9)

y =
N−1∑
n=0

γnrt+n + γN min
k∈M

qψ̄k
(f(eθ(ot+N))︸ ︷︷ ︸

ct+N

,at+N), with at+n = πη̄(ct+n) + εt+n,

where we use policy smoothing by adding clipped Gaussian noise εt+n ∼ clip
(
N (0, σ2),−c, c

)
to the action at+n = πη̄(ct+n) + εt+n. We then use the target action-value functions qψ̄ and the
target policy πη̄ to calculate the TD target y. Note that the target networks use an exponential moving
average, i.e. [ψ̄, η̄]← (1− τ)[ψ̄, η̄] + [ψ, η]. We follow REDQ and learn the actor by minimizing

Lπ(η;D) = −Eot∼D

[
1

|M|
∑
ψk∈M

qψk
(f(eθ(ot))︸ ︷︷ ︸

ct

, πη(f(eθ(ot))︸ ︷︷ ︸
ct

))

]
. (10)

That is, we train the actor to maximize the average action value over two subsampled critics.

Summary Whilst this world model shares some similarities with TD-MPC2, there are some
important distinctions. First, the latent space is represented as a discrete codebook which enables DC-
MPC to train the dynamics model using the cross-entropy loss. Importantly, the cross-entropy loss
considers a (potentially multimodal) distribution over the predicted latent codes during both training
and inference. In contrast, TD-MPC2 considers deterministic dynamics and uses mean squared error
regression. Interestingly, our experiments suggest that our stochastic dynamics model offers benefits
in deterministic environments. Second, DC-MPC does not use value prediction when training the
encoder. Instead, we follow the insight from Zhao et al. (2023) that value prediction is not necessary
for obtaining a good latent representation and instead, train the action-value function separately.

Importantly, our discrete latent space is parameterized as a set of discrete codes from a codebook.
It is worth highlighting that our codebook encoding preserves ordinal relationships between
observations. This contrasts with one-hot encodings which were used by DreamerV2 (Hafner et al.,
2022). See Sec. 3 for a comparison of the different discrete encodings. We hypothesize that this
will offer significant improvements when representing continuous state vectors in a discrete space.

4.2 DECISION-TIME PLANNING

DC-MPC follows TD-MPC2 and leverages the world model for decision-time planning. It uses MPC
to obtain a closed-loop controller and uses (modified) MPPI (Williams et al., 2015) as the underlying
trajectory optimization algorithm (Betts, 1998; Scannell et al., 2021). MPPI is a sampling-based
trajectory optimization method which does not require gradients. See Alg. 2 for full details. At each
environment step, we estimate the parameters µ∗

0:H ,σ
∗
0:H of a diagonal multivariate Gaussian over a

6

Published as a conference paper at ICLR 2025

H-step action sequence that maximizes the following objective

µ∗
0:H ,σ

∗
0:H = argmax

µ0:H ,σ0:H

Ea0:H∼N
(
µ0:H ,diag(σ2

0:H)
) [J(a0:H ,o)] (11a)

J(a0:H ,o) =

H−1∑
h=0

γhRξ(ĉh,ah) + γH
1

|M|
∑
ψk∈M

qψk
(ĉH ,aH) (11b)

s.t. ĉ0 = f(eθ(o)) and ĉh+1 =

|C|∑
i=1

Pr(ĉh+1 = c(i) | ĉh,ah)c(i), (11c)

whereH is the planning horizon and γ is a discount factor. MPPI solves Eq. (11) in an iterative manner.
It starts by sampling candidate action sequences and evaluating them using the objective J(a0:H ,o).
It then refits the sampling distribution’s parameters µ0:H , σ2

0:H based on a weighted average. After
several iterations, we select an action trajectory and apply its first action a

(i∗)
0 in the environment.

Note that during training we promote exploration by adding Gaussian noise. Importantly, Eq. (11)
uses the action-value function qψ(c,a) to bootstrap the planning horizon such that it estimates the
full RL objective. DC-MPC follows TD-MPC2 and warm starts the planning process with Nπ action
sequences originating from the prior policy πη and we warm start by initializing µ0:H , σ2

0:H as the
solution to the previous time step shifted by one. See App. A and Alg. 2 for further details.

Note that at planning time, we do not sample from the transition dynamics p(ch+1 | ch,ah) because
this introduces unwanted stochasticity. Instead, we take the expected code, which is a weighted sum
over the codes in the codebook. Whilst the expected value of a discrete variable does not necessarily
take a valid discrete value, we find it effective in our setting. This is likely because our discrete codes
have an ordering such that expected values simply interpolate between the codes in the codebook.

5 EXPERIMENTS

In this section, we experimentally evaluate DC-MPC in a variety of continuous control tasks from
the DeepMind Control Suite (DMControl) (Tassa et al., 2018), Meta-World (Yu et al., 2019) and
MyoSuite (Vittorio et al., 2022) against a number of baselines and ablations. Our experiments seek to
answer the following research questions:

RQ1 Does DC-MPC’s discrete latent space offer benefits over a continuous latent space?
RQ2 What is important for learning a latent space: (i) classification loss, (ii) discrete codebook, (iii)

stochastic dynamics or (iv) multimodal dynamics?
RQ3 Does DC-MPC’s codebook offer benefits for dynamics/value/policy learning over alternative

discrete encodings such as (i) one-hot encoding (similar to DreamerV2) and (ii) label encoding?
RQ4 How does DC-MPC compare to state-of-the-art model-based RL algorithms leveraging latent

state embeddings, especially in the hard DMControl and Meta-World tasks?

Experimental Setup We compared DC-MPC against two state-of-the-art model-based RL base-
lines, namely DreamerV3 (Hafner et al., 2023) which utilizes a discrete one-hot encoding as its latent
state and TD-MPC2 (Hansen et al., 2023) using a continuous latent space. We also compare against
soft actor-critic (SAC) (Haarnoja et al., 2018), a model-free RL baseline, and the original TD-MPC
(Hansen et al., 2022). Our proposed approach utilized a latent space with d = 512 dimensions and
b = 2 channels, with 15 code symbols per dimension by using FSQ levels L = {L1 = 5, L2 = 3}.

5.1 COMPARISON OF DIFFERENT LATENT SPACES

We first evaluate how different latent dynamics formulations affect the performance. We seek to
answer the following: (i) do discrete latent spaces offer benefits over continuous latent spaces? (ii)
does training with classification (cross-entropy) offer benefits over mean squared error regression?
and (iii) does modeling stochastic (and potentially multimodal) transition dynamics offer benefits?

In our experiments, we consider both continuous and discrete latent spaces to investigate the impact
of discretizing the latent space of the world model. In Figs. 3 and 9, the experiments with discrete
latent spaces are labelled with “Discrete” (red, green, and purple) whilst continuous latent spaces are
labelled “Continuous” (orange). We also evaluate DC-MPC using the simplical normalization used

7

Published as a conference paper at ICLR 2025

0.3 0.5 0.7

Discrete+CE+stoch (ours)

Discrete+CE+det
Discrete+MSE

SimNorm+MSE
Continuous+MSE

IQM

0.3 0.5 0.7

Optimality Gap

Normalized Score

(a) Aggregate statistics at 500k environment steps

0 500 1000
Env. Steps (1e3)

0.0

0.5

IQ
M

N
or

m
al

iz
ed

S
co

re DMControl 10 tasks

0 500 1000
Env. Steps (1e3)

MetaWorld 10 tasks

(b) Training curves

Figure 3: Latent space ablation Evaluation of (i) discrete (Discrete) vs continuous (Continuous) la-
tent spaces, (ii) using cross-entropy (CE) vs mean squared error (MSE) for the latent-state consistency
loss, and (iii) formulating a deterministic (det) vs stochastic (stoch) dynamics model. Discretizing
the latent space (red) improves sample efficiency over the continuous latent space (orange) and for-
mulating stochastic dynamics and training with cross-entropy (purple) improves performance further.

in TD-MPC2 – which bounds the latent space – labelled “SimNorm” (blue) . Experiments labelled
with “MSE” were trained with mean squared error regression whilst those labelled “CE” were trained
with the cross-entropy classification loss. The experiment labelled “Discrete+CE+det” used FSQ to
get a discrete latent space and trained with the cross-entropy loss, where the logits were obtained as
the MSE between the dynamics prediction and each code in the codebook. This experiment enabled
us to test if DC-MPC’s performance boost resulted from training with the cross-entropy loss or from
making the dynamics stochastic. In Fig. 9, experiments labelled with “log-lik.” were trained by
maximizing the log-likelihood, i.e. cross-entropy for “FSQ-log-lik.” (purple), Gaussian log prob. for
“Gaussian+log-lik.” (blue), and Gaussian mixture log prob. for “GMM+log-lik.” (green).

Discrete vs continuous latent spaces The experiments using discrete latent spaces (red and purple)
significantly outperform the ones with continuous latent spaces in terms of sample efficiency. This
suggests that our discrete codebook encoding offers significant benefits over continuous latent spaces.

Classification vs regression Interestingly, training a deterministic discrete latent space using
MSE regression (red) does not perform as well as training a stochastic discrete latent space using
classification (purple). However, our experiment with the deterministic discrete latent space using
classification (green) confirms that the benefit arises from the stochasticity of our latent space. This
suggests that using straight-through Gumbel-softmax sampling (Jang et al., 2017) when making
multi-step dynamics predictions during training boosts performance. Our results extending TD-MPC2
to use DC-MPC’s discrete stochastic latent space in Fig. 6 support this conclusion.

Deterministic vs stochastic Given that modeling a stochastic latent space and training with
maximum log-likelihood is beneficial for discrete latent spaces, we now test if this holds in continuous
latent spaces. To this end, we formulate two stochastic continuous latent spaces and compare them
in Fig. 9. The first models a unimodal Gaussian distribution (blue) whilst the second models a
multimodal Gaussian mixture model (GMM) (green). Interestingly, these stochastic transition models
sometimes increase sample efficiency on DMControl tasks when compared to their deterministic
counterparts (orange). However, they drastically underperform on Meta-World tasks.

Our method (purple) has a discrete latent space, is trained by maximum log-likelihood (i.e. cross-
entropy), and models a (potentially multimodal) distribution over the latent transition dynamics
during training. These factors, combined with using ST Gumbel-softmax sampling, offer improved
sample efficiency over continuous latent spaces.

5.2 IMPACT OF LATENT SPACE ENCODING

Our world model consists of NNs for the dynamics pφ(c′ | c,a), reward Rξ(c,a), critic Qψ(c,a),
and prior policy πη(c), which all make predictions given the discrete codebook encoding c = ecodes.
In Fig. 4, we evaluate what happens when we replace the codebook encoding c with (i) label encoding
elabel = i ∈ {1, . . . , |C|} and (ii) one-hot encoding eone-hot = v ∈ {0, 1}|C| given

∑|C|
i=1 vi = 1. In

these experiments, we did not modify the dynamics pφ(c′ | c,a), that is, the dynamics continued to
make predictions using the codebook encoding c and did not use the one-hot or label encodings. This
is because when we replaced the codebook encoding with either one-hot or label encodings, this
led to the training curves (environment step vs episode return) flat-lining and unable to solve the

8

Published as a conference paper at ICLR 2025

0 500 1000 1500
Env. Steps (1e3)

0

500

E
pi

so
de

R
et

ur
n

Dog Run

0 500 1000 1500
Env. Steps (1e3)

Humanoid Walk

0 10 20 30
Time (hours)

Dog Run

0 10 20 30
Time (hours)

Humanoid Walk

Codes (ours) One-hot Label

Figure 4: Discrete encodings ablation DC-MPC with its discrete codebook encoding (purple)
outperforms using DC-MPC with one-hot encoding (red) and label encoding (blue), in terms of both
sample efficiency (left) and computational efficiency (right). Dynamics model used codes pφ(c′ | c,a)
whilst reward Rξ(e,a), critic Qψ(e,a) and prior policy πη(e) used the respective encoding e.

task. This suggests that our codebook encoding is needed in our self-supervised world model setup.
Nevertheless, we evaluated the performance when changing the encoding for the other components.

We evaluated the following experiment configurations: Codes (purple): All components used
codes: dynamics pφ(c′ | c,a), reward Rξ(c,a), critic Qψ(c,a) and prior policy πη(c). Label (blue):
Dynamics model used codes pφ(c′ | c,a) whilst reward Rξ(elabel,a), critic Qψ(elabel,a) and prior
policy πη(elabel) used labels elabel obtained from the code’s index i in the codebook. One-hot (red):
Dynamics model used codes pφ(c′ | c,a) whilst reward Rξ(eone-hot,a), critic Qψ(eone-hot,a) and
prior policy πη(eone-hot), used the one-hot eone-hot representation of the label encoding.

The label encoding (blue) struggles to learn in the Humanoid Walk task and is often less sample
efficient than the alternative encodings. This is likely because the label encoding is not expressive
enough to model the multi-dimensional ordinal structure of our codebook. Let us provide intuition
via a simple example. Our codebook has b = 2 channels, so two different codes may take the form
ecodes(A) = [0.5,−0.5] and ecodes(B) = [0, 0.5]. As a result, our codebook encoding can model
ordinal structure in both of its channels, i.e., ecodes(A)1 > ecodes(B)1 whilst ecodes(A)2 < ecodes(B)2.
The corresponding label encoding would encode this as elabel(A) = 1 and elabel(B) = 2, which
incorrectly implies that B > A. In short, the label encoding cannot model the multi-dimensional
ordinal structure of the codebook C. In contrast, the one-hot encoding (red) matches the codebook
encoding in terms of sample efficiency in all tasks except Humanoid Walk. However, the one-hot
encoding introduces an extremely large input dimension for the reward, value and policy networks,
and this significantly slows down training. See Sec. 3 for further details on why this is the case.

5.3 PERFORMANCE OF DC-MPC

In Figs. 5, 14, 16 and 18, we compare the aggregate performance of DC-MPC against TD-MPC2,
DreamerV3, TD-MPC, and SAC, in 30 DMControl, 45 Meta-World, and 5 MyoSuite tasks respec-
tively, with 3 seeds per task. Some tasks in DMControl are particularly high-dimensional. For
instance, the observation space of the Dog tasks is O ∈ R223 and the action space is A ∈ R38, and
for Humanoid, the observation space is O ∈ R67 and the action space A ∈ R24. Fig. 13 shows
that DC-MPC excels in the high dimensional Dog and Humanoid environments when compared
to the baselines. We hypothesize that our discretized representations are particularly beneficial for
simplifying learning the transition dynamics in high-dimensional spaces, making DC-MPC highly
sample efficient in these tasks. Similarly, we find that DC-MPC outperforms DreamerV3 in simulated
manipulation tasks in the Meta-World task suite (Figs. 5, 15 and 16). We also see that DC-MPC

0 1M 2M 3M
Env. Steps

0

500

E
pi

so
de

R
et

ur
n

DMControl 30 tasks

0 1M 2M
Env. Steps

0

50

100

S
uc

ce
ss

R
at

e
(%

)

Meta-World 45 tasks

0 0.5M 1M
Env. Steps

0

50

100

S
uc

ce
ss

R
at

e
(%

)

MyoSuite 5 tasks

DC-MPC (ours)

DreamerV3

SAC

TD-MPC

TD-MPC2

Figure 5: Aggregate training curves in DMControl, Meta-World, & MyoSuite DC-MPC generally
matches TD-MPC2 whilst outperforming DreamerV3, SAC and TD-MPC across all tasks. We plot
the mean (solid line) and the 95% confidence intervals (shaded) across 3 seeds per task.

9

Published as a conference paper at ICLR 2025

0.8 0.9 1.0
DC-MPC (ours)

TD-MPC2 w/ DCWM

TD-MPC2
IQM

0.15 0.20 0.25

Optimality Gap

Normalized Score

(a) Aggregate statistics at 1M environment steps

0 500 1000
Env. Steps (1e3)

0.0

0.5

1.0

IQ
M

N
or

m
al

iz
ed

S
co

re DMControl 10 tasks

0 500 1000
Env. Steps (1e3)

Meta-World 10 tasks

(b) Training curves

Figure 6: TD-MPC2 with DCWM Adding DC-MPC’s discrete and stochastic latent space to
TD-MPC2 improves performance. See Apps. B and B.10 for more details.

generally matches the performance of TD-MPC2. Comparing the results at a global level (Fig. 5), we
can find that our proposed method performs well across all benchmarks.

It is important to note that TD-MPC2 has multiple algorithmic differences to DC-MPC which means
that a straight-up comparison between them is not only affected by the latent space design. For
example, it (i) uses soft-actor critic (SAC) to learn the prior policy (helping with exploration in sparse
reward tasks), (ii) learns the value function jointly with the world model, and (iii) the reward and
value functions are formulated using discrete regression in a log-transformed space. In Fig. 6, we
show that incorporating DCWM’s stochastic and discrete codebook latent space into TD-MPC2
(red) offers improvements over vanilla TD-MPC2. See Apps. B and B.10 for more details on these
experiments and App. B.9 where we tried the same experiments with DreamerV3. DreamerV3’s
performance is poor in the harder tasks so we do not see any benefit from using DCWM. However,
we identify that its poor performance stems from using observation reconstruction.

Further Experiments In Apps. B.1 and B.3, we evaluate DC-MPC’s sensitivity to codebook size
|C| and latent dimension d, respectively, in App. B.3, we show that stochastic continuous latent spaces
do not appear to offer the same benefits as stochastic discrete latent spaces, in App. B.4, we ablate FSQ
and show that it either matches or outperforms vector quantization (VQ) whilst being simpler, and in
App. B.5, we show the benefit of using REDQ’s ensemble of critics vs the standard double Q approach.

6 CONCLUSION

We have presented DC-MPC, a world model that learns a discrete and stochastic latent space using
codebook encodings and a cross-entropy-based self-supervised loss for model-based RL. DC-MPC
demonstrates strong performance in continuous control tasks, including Meta-World and the complex
DMControl Humanoid and Dog tasks, where it exceeds or matches the performance of SOTA
baselines. Our results indicate that using straight-through Gumbel-softmax sampling when making
multi-step dynamics predictions is beneficial for world model learning, both in DC-MPC and our
experiments where we modified TD-MPC2’s latent space. In summary, we have demonstrated
the benefit of a discrete latent space with codebook encodings over a standard continuous latent
embedding or classical discrete spaces such as label and one-hot encodings. These findings open
up a new interesting avenue for future research into discrete embeddings for world models.

Limitations and Future Work As our goal was to evaluate latent space design, we did not prioritize
making DC-MPC run with a single set of hyperparameters and we tuned the noise schedule and
the N -step return for some tasks. In future work, it would be interesting to make DC-MPC robust to
hyperparameters. For example, it would be interesting to model the epistemic uncertainty associated
with the latent transition dynamics – arising from learning from limited data – and using it to equip
DC-MPC with a more principled exploration mechanism like Chua et al. (2018); Scannell et al.
(2024c); Daxberger et al. (2021) and remove the task-specific noise schedules. It would also be
interesting to investigate if our results hold for different world model backbones (Deng et al., 2023;
NVIDIA et al., 2025), such as Transformers (Vaswani et al., 2017; Robine et al., 2022; Zhang
et al., 2023; Micheli et al., 2022; Bar et al., 2024) and diffusion models (Ho et al., 2020; Alonso
et al., 2024). Finally, it would be interesting to investigate how well DC-MPC scales (Kaplan et al.,
2020; Henighan et al., 2020; Hoffmann et al., 2022) and if it is an effective setup for generalist (i.e.
multi-embodiment) world modeling (Reed et al., 2022; Zhao et al., 2025).

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Aidan Scannell and Kalle Kujanpää were supported by the Research Council of Finland from the
Flagship program: Finnish Center for Artificial Intelligence (FCAI). Arno Solin and Yi Zhao acknowl-
edge funding from the Research Council of Finland (grant ids 339730 and 357301, respectively) and
Mohammadreza Nakhaei acknowledges funding from Business Finland (BIOND4.0 – Data Driven
Control for Bioprocesses). Kevin Sebastian Luck is supported by the project TeNet: Text-to-Network
for Fast and Energy-Efficient Robot Control with file number NGF.1609.241.015 of the research
programme National Growth Fund AiNed XS Europe 24-2 which is financed by the Dutch Research
Council (NWO). We acknowledge CSC – IT Center for Science, Finland, for awarding this project
access to the LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CSC
(Finland) and the LUMI consortium through CSC. We acknowledge the computational resources
provided by the Aalto Science-IT project.

11

Published as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Advances in Neural
Information Processing Systems, volume 34, pp. 29304–29320. Curran Associates, Inc., 2021.

James F Allen and Johannes A Koomen. Planning using a temporal world model. In Proceedings of
the Eighth international joint conference on Artificial intelligence-Volume 2, pp. 741–747, 1983.

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce, and
François Fleuret. Diffusion for World Modeling: Visual Details Matter in Atari. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, November 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation World Models.
arXiv preprint arXiv:2412.03572, 2024.

Kenneth Basye, Thomas Dean, Jak Kirman, and Moises Lejter. A decision-theoretic approach to
planning, perception, and control. IEEE Expert, 7(4):58–65, 1992.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957. ISSN 0095-9057.

John T. Betts. Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance,
Control, and Dynamics, 21(2):193–207, March 1998. doi: 10.2514/2.4231.

Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
Yang, Kevin Patrick Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip
Krishnan. Muse: Text-To-Image Generation via Masked Generative Transformers. In Proceedings
of the 40th International Conference on Machine Learning, pp. 4055–4075. PMLR, July 2023.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model. In International Conference on Learning Representations, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Reinforcement
Learning in a Handful of Trials using Probabilistic Dynamics Models. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace Redux - Effortless Bayesian Deep Learning. In Advances in Neural
Information Processing Systems, volume 34, pp. 20089–20103. Curran Associates, Inc., 2021.

Fei Deng, Junyeong Park, and Sungjin Ahn. Facing Off World Model Backbones: RNNs, Transform-
ers, and S4. In Advances in Neural Information Processing Systems, volume 36, pp. 72904–72930,
December 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for High-Resolution
Image Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12873–12883, 2021.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL, March 2024.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in Actor-
Critic Methods. In Proceedings of the 35th International Conference on Machine Learning, pp.
1587–1596. PMLR, July 2018.

Ignat Georgiev, Varun Giridhar, Nicklas Hansen, and Animesh Garg. PWM: Policy Learning with
Large World Models. arXiv preprint 2407.02466, 2024.

12

Published as a conference paper at ICLR 2025

Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Russ Salakhutdinov.
Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with
One Objective. In The Eleventh International Conference on Learning Representations, September
2022.

David Ha and Jürgen Schmidhuber. Recurrent World Models Facilitate Policy Evolution. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In International
Conference on Machine Learning, pp. 1861–1870. PMLR, July 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning Latent Dynamics for Planning from Pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, May 2019b.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
Discrete World Models. In International Conference on Learning Representations, February 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, Robust World Models for
Continuous Control. In The Twelfth International Conference on Learning Representations,
October 2023.

Nicklas A. Hansen, Hao Su, and Xiaolong Wang. Temporal Difference Learning for Model Predictive
Control. In Proceedings of the 39th International Conference on Machine Learning, pp. 8387–8406.
PMLR, June 2022.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Rad-
ford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam
McCandlish. Scaling Laws for Autoregressive Generative Modeling, November 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training Compute-Optimal Large Language Models, March 2022.

Kyle Hsu, William Dorrell, James Whittington, Jiajun Wu, and Chelsea Finn. Disentanglement
via Latent Quantization. Advances in Neural Information Processing Systems, 36:45463–45488,
December 2023.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. In International Conference on Machine Learning, pp.
2117–2126. PMLR, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models. arXiv preprint arXiv:2001.08361, 2020.

13

Published as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International Conference
on Learning Representations, 2014.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Yann LeCun. A Path Towards Autonomous Machine Intelligence Version 0.9.2, 2022-06-27.

Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim,
Nicolas Heess, Josh Merel, and Yuval Tassa. Learning dynamics models for model predictive
agents. arXiv preprint arXiv:2109.14311, 2021.

Haoyu Ma, Jialong Wu, Ningya Feng, Chenjun Xiao, Dong Li, Jianye Hao, Jianmin Wang, and
Mingsheng Long. HarmonyDream: Task Harmonization Inside World Models. In Proceedings of
the 41st International Conference on Machine Learning, pp. 33983–34007. PMLR, July 2024.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations,
2017.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite Scalar Quan-
tization: VQ-VAE Made Simple. In International Conference on Learning Representations,
2024.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are Sample-Efficient World Models.
In The Eleventh International Conference on Learning Representations, September 2022.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit
Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao Fan, Michele
Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jinwei Gu, Siddharth
Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin, Seung Wook Kim,
Gergely Klár, Grace Lam, Shiyi Lan, Laura Leal-Taixe, Anqi Li, Zhaoshuo Li, Chen-Hsuan Lin,
Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun
Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, Despoina Paschalidou,
Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei Ren, Vasanth Rao Naik
Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne Tchapmi, Przemek
Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun
Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiashu Xu, Wei Yang, Lin Yen-Chen, Xiaohui
Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing Zhao, and Artur Zolkowski.
Cosmos world foundation model platform for physical ai. arXiv preprint arXiv:2501.03575, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-Shot Text-to-Image Generation. In Proceedings of the 38th International
Conference on Machine Learning, pp. 8821–8831. PMLR, July 2021.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A Generalist
Agent. Transactions on Machine Learning Research (TMLR), 2022.

14

Published as a conference paper at ICLR 2025

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based World
Models Are Happy With 100k Interactions. In The Eleventh International Conference on Learning
Representations, September 2022.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89–112, 1997.

Aidan Scannell, Carl Henrik Ek, and Arthur Richards. Trajectory Optimisation in Learned Multimodal
Dynamical Systems Via Latent-ODE Collocation. In Proceedings of the IEEE International
Conference on Robotics and Automation. IEEE, 2021.

Aidan Scannell, Kalle Kujanpää, Yi Zhao, Mohammadreza Nakhaeinezhadfard, Arno Solin, and Joni
Pajarinen. Quantized Representations Prevent Dimensional Collapse in Self-predictive RL. In
ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and Theorists, July
2024a.

Aidan Scannell, Kalle Kujanpää, Yi Zhao, Mohammadreza Nakhaei, Arno Solin, and Joni Pajarinen.
iQRL - Implicitly Quantized Representations for Sample-efficient Reinforcement Learning. arXiv
preprint arXiv:2406.02696, 2024b.

Aidan Scannell, Riccardo Mereu, Paul Edmund Chang, Ella Tamir, Joni Pajarinen, and Arno Solin.
Function-space parameterization of neural networks for sequential learning. In The Twelfth
International Conference on Learning Representations, 2024c.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap,
and David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.
Nature, 588(7839):604–609, December 2020. ISSN 0028-0836, 1476-4687. doi: 10.1038/
s41586-020-03051-4.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bachman.
Data-Efficient Reinforcement Learning with Self-Predictive Representations. In International
Conference on Learning Representations, October 2020.

R.S. Sutton and A.G. Barto. Reinforcement Learning, Second Edition: An Introduction. Adaptive
Computation and Machine Learning Series. MIT Press, 2018. ISBN 978-0-262-35270-3.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural Discrete Representation Learning.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Caggiano Vittorio, Wang Huawei, Durandau Guillaume, Sartori Massimo, and Kumar Vikash.
Myosuite – a contact-rich simulation suite for musculoskeletal motor control. arXiv preprint
arXiv:2205.13600, 2022.

Tongzhou Wang, Simon Du, Antonio Torralba, Phillip Isola, Amy Zhang, and Yuandong Tian.
Denoised MDPs: Learning World Models Better Than the World Itself. In Proceedings of the 39th
International Conference on Machine Learning, pp. 22591–22612. PMLR, June 2022.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021a.

15

Published as a conference paper at ICLR 2025

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering Visual Continuous
Control: Improved Data-Augmented Reinforcement Learning. In International Conference on
Learning Representations, October 2021b.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. STORM: Efficient Stochastic
Transformer based World Models for Reinforcement Learning. In Advances in Neural Information
Processing Systems, volume 36, pp. 27147–27166, December 2023.

Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, and Joni Pajarinen. Simplified Temporal
Consistency Reinforcement Learning. In Proceedings of the 40th International Conference on
Machine Learning, pp. 42227–42246. PMLR, July 2023.

Yi Zhao, Aidan Scannell, Yuxin Hou, Tianyu Cui, Le Chen, Arno Solin, Juho Kannala, and Joni
Pajarinen. Generalist world model pre-training for efficient reinforcement learning. arxiv preprint
arXiv:2502.19544, 2025.

16

Published as a conference paper at ICLR 2025

APPENDICES

This appendix is organized as follows. In App. A we provide further details on our method. App. B
provides further experimental results, including evaluating DC-MPC’s sensitivity to the codebook
size in App. B.1, its sensitivity to latent dimension in App. B.2, further details on the latent space
ablation in App. B.3, a comparison of DC-MPC using VQ instead of FSQ in App. B.4, a comparison
of DC-MPC’s ensemble REDQ critic approach vs the standard double Q approach in App. B.5, full
DeepMind control suite results in App. B.6, Meta-World results in App. B.7, MyoSuite results in
App. B.8, evaluation of DreamerV3 using DC-MPC’s latent space in App. B.9 and an evaluation of
TD-MPC2 using DC-MPC’s latent space in App. B.10. In App. C, we provide further implementation
details, including default hyperparameters, hardware, etc. In App. D, we provide further details of the
baselines and in App. E we detail the different DeepMind control, Meta-World and MyoSuite tasks
used throughout the paper.

A METHOD DETAILS 18

B FURTHER RESULTS 20

B.1 SENSITIVITY TO CODEBOOK SIZE |C| . 21

B.2 SENSITIVITY TO LATENT DIMENSION d . 22

B.3 ABLATION OF LATENT SPACE . 23

B.4 ABLATION OF FSQ VS VECTOR QUANTIZATION (VQ) 24

B.5 ABLATION OF REDQ CRITIC VS STANDARD DOUBLE Q APPROACH 25

B.6 DEEPMIND CONTROL RESULTS . 26

B.7 META-WORLD MANIPULATION RESULTS . 28

B.8 MYOSUITE MUSCULOSKELETAL RESULTS 30

B.9 DOES DCWM IMPROVE DREAMERV3? . 31

B.10 IMPROVING TD-MPC2 WITH DC-MPC . 32

C IMPLEMENTATION DETAILS 33

D BASELINES 35

E TASKS 36

–appendices continue on next page–

17

Published as a conference paper at ICLR 2025

A METHOD DETAILS

Alg. 1 outlines DC-MPC’s training procedure.

Algorithm 1 DC-MPC’s training

Input: Encoder eθ, dynamics dφ, reward Rξ, critics {qψi
}Nq

i=1, policy πη, learning rate α, target
network update rate τ , episode length T , replay buffer D = {}
for 1 : Nrandom episodes do
D ← D ∪ {ot,at,ot+1, rt}Tt=0 . Collect data using random policy

end for
for 1 : Nepisodes do
D ← D ∪ {ot,at,ot+1, rt}Tt=0 . Collect data using DC-MPC
for i = 1 to T do
[θ, φ, ξ]← [θ, φ, ξ] + α∇ (L(θ, φ, ξ;D)) . Update world model, Eq. (8)
ψ ← ψ + α∇ (Lq(ψ;D)) . Update critic, Eq. (9)
if i % 2 == 0 then
η ← η + α∇ (Lπ(η;D)) . Update actor less frequently than critic, Eq. (10)

end if
[ψ̄, η̄]← (1− τ)[ψ̄, η̄] + τ [ψ, η] . Update target networks

end for
end for

Alg. 2 outlines how we perform trajectory optimization using MPPI (Williams et al., 2015), closely
following the formulation of MPPI by Hansen et al. (2022), with two key modifications. First,
during each rollout, we use the expected next latent state, i.e. a weighted sum over the codes in the
codebook. Note that this contrasts our world model training where we sample from the transition
dynamics p(ch+1|ch, ch). This approach reduces the variance in state transitions, which results in
more stable trajectory evaluations. Second, we do not add noise sampled from the standard deviation
σ2
0 returned from MPPI. Instead, we promote exploration by adding noise sampled from a separate

noise schedule.This method, inspired by TD3 (Fujimoto et al., 2018), strikes a better balance between
exploration and exploitation, leading to more stable training performance.

It is worth noting that MPPI resembles the CEM-based planner in Chua et al. (2018), however, instead
of simply fitting a Gaussian to the top K action samples at each iteration, MPPI uses weighted
importance sampling, which weights all samples by their empirical return estimates. However, we
follow Hansen et al. (2022) and use a hybrid approach, which selects the top K action samples (like
CEM) but then use weighted importance sampling (like MPPI). At each iteration, we calculate the
mean and variance of the action trajectory as follows,

µ0:H = fit_mean
({(

a
(i)
0:H ,Φ

(i)
)}K
i=0

)
=

K∑
i=1

Ω(i)∑K
j=1 Ω

(j)︸ ︷︷ ︸
importance weight

a
(i)
0:H (12)

σ2
0:H = fit_var

({(
a
(i)
0:H ,Φ

(i)
)}K
i=0

)
=

∑K
i=1 Ω

(i)
(
a
(i)
0:H − µ0:H

)2

∑K
i=1 Ω

(i)
(13)

where Ω(i) is the exponentiated normalized empirical return estimate given by Ω(i) =
exp

(
τMPPI

(
Φ(i) −max

(
{Φ(0), . . . ,Φ(Np+Nπ)}

)))
. Note that τMPPI is the (inverse) temperature

parameter and Φ(i) denotes the return estimate for the ith action trajectory a
(i)
0:H . After J (default

6) iterations, we sample one of the top K action sequences {a(i)
0:H}i∈{i∗1 ,...,i∗K} where each action

sequence is weighted by its empirical return estimate {Ω(i)}i∈{i∗1 ,...,i∗K}. We then apply the first

action a
(i∗)
0 in the environment.

–appendices continue on next page–

18

Published as a conference paper at ICLR 2025

Algorithm 2 DC-MPC’s inference (modified MPPI)

Input: current observation o, planning horizon H , iterations J , population size Np, prior popula-
tion size Nπ , number of elites K, exploration noise std σnoise
c0 ← eθ(o) . Encode observation into discrete code
Initialize µ0

0:H , (σ2
0:H)0 with the solution from the last time step shifted by one.

for each iteration j = 1, . . . , J do
Sample Np action trajectories of length H from {ah ∼ N (µj−1

h , (σ2
h)
j−1)}Hh=0 . Sample

action candidates
Sample Nπ action trajectories of length H using πη and dφ . Prior policy samples

for all Np +Nπ action sequences
{
τ (i) =

(
a
(i)
0 , . . . ,a

(i)
H

)}Np+Nπ

i=1
do . Trajectory evaluation

Φ(i) ← 0
for step h = 0, . . . , H − 1 do
Φ(i) ← Φ(i) + γhRξ(ĉh,a

(i)
h) . Compute immediate reward

ĉh+1 =
∑|C|
k=1 Pr(ĉh+1 = c(k) | ĉh,a(i)

h)c(k) . Compute next state
end for
Φ(i) ← Φ(i) + γH 1

Nq

∑Nq

k=1 qψk
(cH ,a

(i)
H) . Bootstrap with ensemble of Q-functions

end for
Φ(i∗1), . . . ,Φ(i∗K) = topk({Φ(0), . . . ,Φ(Np+Nπ)}) . Get top-K elite scores
µ0:H ← fit_mean

({(
a
(i)
0:H ,Φ

(i)
)}
i∈{i∗1 ,...,i∗K}

)
. Update mean of action dist.

σ2
0:H ← fit_var

({(
a
(i)
0:H ,Φ

(i)
)}
i∈{i∗1 ,...,i∗K}

)
. Update variance of action dist.

end for
i∗ ∼ Categorical

(
softmax({Φ(i∗1), . . . ,Φ(i∗K)})

)
. Sample action index according to scores

return a
(i∗)
0 + ε with ε ∼ N (0, σ2

noise) . Final output with exploration noise

–appendices continue on next page–

19

Published as a conference paper at ICLR 2025

B FURTHER RESULTS

In this section, we include further results and ablations.

Aggregate metrics In Figs. 14, 16 and 18, we compare the aggregate performance of DC-MPC
against TD-MPC, TD-MPC2, DreamerV3, and SAC, in 30 DMControl tasks, 45 Meta-World tasks,
and 5 MyoSuite tasks respectively, with 3 seeds per task. Following Agarwal et al. (2021), we report
the median, interquartile mean (IQM), mean, and optimality gap at 1M environment steps, with error
bars representing 95% stratified bootstrap confidence intervals. For DMControl, we use min-max
normalization as the maximum possible return in an episode is 1000 whilst the minimum is 0, i.e.
Normalized Return = Return/(1000− 0). For Meta-World, we report the success rate which does
not require normalization as it is already between 0 and 1.

In Figs. 3 and 6 we report aggregate metrics over 10 DMControl and 10 Meta-World tasks. The tasks
are as follows:

• DMControl 10: Acrobot Swingup, Dog Run, Dog Walk, Dog Stand, Dog Trot, Humanoid
Stand, Humanoid Walk, Humanoid Run, Reacher Hard, Walker Walk.

• Meta-World 10: Button Press, Door Open, Drawer Close, Drawer Open, Peg Insert Side, Pick
Place, Push, Reach, Window Open, Window Close.

–appendices continue on next page–

20

Published as a conference paper at ICLR 2025

B.1 SENSITIVITY TO CODEBOOK SIZE |C|

In this section, we evaluate how the size of the codebook |C| influences training. We indirectly
configure different codebook sizes via the FSQ levels L = {L1, . . . , Lb} hyperparameter. This is
because the codebook size is given by |C| =

∏b
i=1 Li. The top row of Fig. 7 compares the training

curves for different codebook sizes. The algorithm’s performance is not particularly sensitive to the
codebook size. A codebook that is too large can result in slower learning. The best codebook size
varies between environments.

Given that a codebook has a particular size, we can gain insights into how quickly DC-MPC’s
encoder starts to activate all of the codebook. The connection between the codebook size and the
activeness of the codebook is intuitive: the bottom row of Fig. 7 shows that the smaller the codebook,
the larger the active proportion.

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run Humanoid Walk Reacher Hard Walker Walk

0 500 1000
Env. Steps (1e3)

80

90

100

C
od

eb
oo

k
A

ct
iv

e
P

er
ce

nt
(%

)

0 500 1000
Env. Steps (1e3)

0 500 1000
Env. Steps (1e3)

0 200
Env. Steps (1e3)

L = [8] L = [5, 3] L = [8, 4] L = [8, 8]

Figure 7: Sensitivity to codebook size We compare how the codebook size affects the performance
of DC-MPC (top) and the percentage of the codebook that is active during training (bottom). In
general, smaller codebooks become fully active faster than larger codebooks. We plot the mean and
the 95% confidence intervals (shaded) across 3 random seeds for all environments.

–appendices continue on next page–

21

Published as a conference paper at ICLR 2025

B.2 SENSITIVITY TO LATENT DIMENSION d

This section investigates how the latent dimension d affects the behavior and performance of DC-
MPC in four different environments. In the top row of Fig. 8, we see that the performance of
our algorithm is robust to the latent dimension d, although a latent dimension too small can result
in inferior performance, especially in the more difficult environments. The bottom row of Fig. 8
demonstrates that DC-MPC learns to use the complete codebook irrespective of the latent dimension.

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run Humanoid Walk Reacher Hard Walker Walk

0 500 1000
Env. Steps (1e3)

80

90

100

C
od

eb
oo

k
A

ct
iv

e
P

er
ce

nt
(%

)

0 500 1000
Env. Steps (1e3)

0 500 1000
Env. Steps (1e3)

0 250 500
Env. Steps (1e3)

d = 128 d = 256 d = 512 d = 1024

Figure 8: Sensitivity to latent dim d We compare how the latent dimension d affects the performance
of DC-MPC (top) and the percentage of the codebook that is active during training (bottom). In
general, our algorithm is robust to the latent dimension of the representation, although in more
difficult environments, such as Humanoid Walk, a d too small can harm the agent’s performance. We
plot the mean and the 95% confidence intervals (shaded) across 3 random seeds for all environments.

–appendices continue on next page–

22

Published as a conference paper at ICLR 2025

B.3 ABLATION OF LATENT SPACE

In this section, we provide further details on the comparison of different latent spaces experiments in
Sec. 5.1. To validate our method, we test the importance of quantizing the latent space and training
the world model with classification instead of regression. In Fig. 9, we compare DC-MPC to world
models with different latent spaces formulations, which we now detail.

0 1000
Env. Steps (1e3)

0

250

500

E
pi

so
de

R
et

ur
n

Dog Run

0 1000
Env. Steps (1e3)

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Walk

0 1000
Env. Steps (1e3)

0

500

E
pi

so
de

R
et

ur
n

Humanoid Walk

MSE FSQ+MSE. Gaussian+log-lik GMM+log-lik. FSQ+log-lik. (ours)

0 1000
Env. Steps (1e3)

0

50

100

S
uc

ce
ss

R
at

e
(%

) Assembly

Figure 9: Latent space comparison Comparison of different latent space formulations. Continuous
and deterministic latent space trained with MSE regression (orange), deterministic and discrete trained
with MSE (red), continuous and unimodal Gaussian latent space trained with maximum log-likelihood
(blue), continuous and multimodal GMM trained with maximum log-likelihood (green), and discrete
trained with classification (purple). Discretizing the latent space with FSQ (red) improves sample
efficiency and making the dynamics stochastic and training with classification (purple) improves
performance further.

MSE (orange) First, we consider a continuous latent space with deterministic transition dynamics
trained by minimizing the mean squared error between predicted next latent states and target next
latent states.

FSQ+MSE (red) Next, we consider quantization of the latent space and training based on mean
squared error regression. This experiment allows us to analyze the importance of quantization.

Gaussian+log-lik. (blue) To consider stochastic continuous dynamics, we configure the transition
dynamics to model a Gaussian distribution over predictions of the next state. During training, we
sample from the Gaussian distribution using the reparameterization trick. The world model is then
trained to maximize the log-likelihood of the next latent state targets. This allows us to investigate if
modeling stochastic transition dynamics offers benefits when using continuous latent spaces.

GMM+log-lik. (green) To consider continuous multimodal transitions, we consider a Gaussian
mixture with three components. During training, we sample a Gaussian from the mixture with the ST
Gumbel-softmax trick and then we sample from the selected Gaussian using the reparameterization
trick. The world model is then trained to maximize the log-likelihood of next latent state targets.

–appendices continue on next page–

23

Published as a conference paper at ICLR 2025

B.4 ABLATION OF FSQ VS VECTOR QUANTIZATION (VQ)

To understand how the choice of using FSQ for discretization contributes to the performance of
our algorithm, we tried replacing the FSQ layer with a standard Vector Quantization layer. We
evaluated the methods in Walker Walk, Dog Run, Humanoid Walk, and Reacher Hard. We used
standard hyperparameters, β = 0.25, and an EMA-updated codebook with a size of 256 and either
256 (dog) or 128 (other tasks) channels per dimension. We did not change other hyperparameters
from DC-MPC. However, we found that to approach the performance of standard FSQ, VQ needs
environment-dependent adjusting of the planning procedure. In Humanoid Walk, the performance of
FSQ aligns closely with the VQ with a weighted sum over the codes in the codebook for planning
(expected code) but significantly outperforms sampled VQ. Conversely, standard sampling is superior
in Reacher Hard, which is unsurprising, as the discrete codes in VQ have not been ordered like in
FSQ. The necessary environment-specific adjustments for VQ undermine its general applicability
compared to FSQ.

0 1000
Env. Steps (1e3)

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run

0 1000
Env. Steps (1e3)

Humanoid Walk

0 1000
Env. Steps (1e3)

Reacher Hard

0 200
Env. Steps (1e3)

Walker Walk

FSQ VQ (Sample) VQ (Weighted Avg)

Figure 10: Ablation of FSQ vs VQ FSQ does not require the extra loss terms required by VQ and it
generally performs equal to or better and VQ.

–appendices continue on next page–

24

Published as a conference paper at ICLR 2025

B.5 ABLATION OF REDQ CRITIC VS STANDARD DOUBLE Q APPROACH

In this section, we compare the ensemble of Q-functions approach, used by DC-MPC, REDQ (Chen
et al., 2021) and TD-MPC2 (Hansen et al., 2023), to the standard double Q approach (Fujimoto et al.,
2018). In Fig. 11, we evaluate how our default ensemble size of Nq = 5 (purple) compares with the
standard double Q approach, which is obtained by setting the ensemble size to Nq = 2 (blue). Note
that we always sample two critics so the Nq = 2 result reduces to the standard double Q approach.
Fig. 11 shows that DC-MPC works fairly well with both approaches but the ensemble approach
offers benefits in the harder Dog Run and Humanoid Walk tasks.

0 500 1000
Env. Steps (1e3)

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run

0 500 1000
Env. Steps (1e3)

Humanoid Walk

0 500 1000
Env. Steps (1e3)

Reacher Hard

0 200
Env. Steps (1e3)

Walker Walk

Nq = 2 Nq = 5

Figure 11: Ablation of REDQ critic vs standard double Q DC-MPC uses a Q ensemble, similar to
REDQ, of size Nq = 5 (purple) and sub samples two critics when calculating the mean or minimum
Q-value. We compare this approach to the standard double Q approach by setting Nq = 2 (blue) and
we see that the ensemble approach offers a slight benefit in the harder Dog Run and Humanoid Walk.

–appendices continue on next page–

25

Published as a conference paper at ICLR 2025

B.6 DEEPMIND CONTROL RESULTS

0

500

1000

E
pi

so
de

R
et

ur
n

Acrobot Swingup Cartpole Balance Cartpole Balance Sparse Cartpole Swingup Cartpole Swingup Sparse

0

500

1000

E
pi

so
de

R
et

ur
n

Cheetah Run Cup Catch Cup Spin Dog Run Dog Stand

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Trot Dog Walk Finger Spin Finger Turn Easy Finger Turn Hard

0

500

1000

E
pi

so
de

R
et

ur
n

Fish Swim Hopper Hop Hopper Stand Humanoid Run Humanoid Stand

0

500

1000

E
pi

so
de

R
et

ur
n

Humanoid Walk Pendulum Spin Pendulum Swingup Quadruped Run Quadruped Walk

0 1M 2M
Env. Steps

0

500

1000

E
pi

so
de

R
et

ur
n

Reacher Easy

0 1M 2M
Env. Steps

Reacher Hard

0 1M 2M
Env. Steps

Walker Run

0 1M 2M
Env. Steps

Walker Stand

0 1M 2M
Env. Steps

Walker Walk

DC-MPC (ours) DreamerV3 SAC TD-MPC TD-MPC2

Figure 12: DeepMind Control results. DC-MPC performs well across a variety of DMC tasks.
We plot the mean (solid line) and the 95% confidence intervals (shaded) across 5 seeds (DC-MPC)
or 3 seeds (TD-MPC2/TD-MPC/DreamerV3/SAC), where each seed averages over 10 evaluation
episodes.

–appendices continue on next page–

26

Published as a conference paper at ICLR 2025

0 1M 2M 3M
Env. Steps

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run

0 1M 2M 3M
Env. Steps

Dog Trot

0 1M 2M 3M
Env. Steps

Dog Walk

0 1M 2M 3M
Env. Steps

Humanoid Run

0 1M 2M 3M
Env. Steps

Humanoid Walk

DC-MPC (ours) SAC TD-MPC2 TD-MPC DreamerV3

Figure 13: High-dimensional locomotion DC-MPC (purple) significantly outperforms TD-MPC2
(blue) and DreamerV3 (red) in the complex, high-dimensional locomotion tasks from DMControl.

0.6 0.7 0.8 0.9
DC-MPC (ours)

TD-MPC2
DreamerV3

SAC
TD-MPC

Median

0.60 0.75 0.90

IQM

0.5 0.6 0.7 0.8

Mean

0.2 0.3 0.4 0.5

Optimality Gap

Normalized Score

Normalized Return

DMControl @ 1M Env. Steps (30 tasks, 3 seeds per task)

Figure 14: DMControl aggregate results DC-MPC generally outperforms TD-MPC2 and Dream-
erV3 in DMControl tasks. This is due to DC-MPC’s strong performance in the hard Dog and
Humanoid tasks. Error bars represent 95% stratified bootstrap confidence intervals.

–appendices continue on next page–

27

Published as a conference paper at ICLR 2025

B.7 META-WORLD MANIPULATION RESULTS

0

100

S
uc

ce
ss

R
at

e
(%

) Assembly Basketball Bin Picking Box Close Button Press

0

100

S
uc

ce
ss

R
at

e
(%

) Button Press Td Button Press Td Wall Button Press Wall Coffee Button Coffee Pull

0

100

S
uc

ce
ss

R
at

e
(%

) Coffee Push Dial Turn Disassemble Door Close Door Lock

0

100

S
uc

ce
ss

R
at

e
(%

) Door Open Door Unlock Drawer Close Faucet Close Faucet Open

0

100

S
uc

ce
ss

R
at

e
(%

) Hammer Hand Insert Handle Press Handle Press Side Handle Pull

0

100

S
uc

ce
ss

R
at

e
(%

) Handle Pull Side Lever Pull Peg Insert Side Peg Unplug Side Pick Out Of Hole

0

100

S
uc

ce
ss

R
at

e
(%

) Pick Place Plate Slide Plate Slide Back Plate Slide Back Side Plate Slide Side

0

100

S
uc

ce
ss

R
at

e
(%

) Push Push Wall Reach Wall Soccer Stick Pull

0 1M 2M
Env. Steps

0

100

S
uc

ce
ss

R
at

e
(%

) Stick Push

0 1M 2M
Env. Steps

Sweep

0 1M 2M
Env. Steps

Sweep Into

0 1M 2M
Env. Steps

Window Close

0 1M 2M
Env. Steps

Window Open

DC-MPC (ours) DreamerV3 SAC TD-MPC TD-MPC2

Figure 15: Meta-World manipulation results DC-MPC performs well across Meta-World tasks.
We plot the mean (solid line) and the 95% confidence intervals (shaded) across 3 seeds, where each
seed averages over 10 evaluation episodes.

–appendices continue on next page–

28

Published as a conference paper at ICLR 2025

0.45 0.60 0.75 0.90
DC-MPC (ours)

TD-MPC2
DreamerV3

SAC
TD-MPC

Median

0.4 0.6 0.8 1.0

IQM

0.45 0.60 0.75 0.90

Mean

0.15 0.30 0.45 0.60

Optimality Gap

Episode Success

MetaWorld @ 1M Env. Steps (45 tasks, 3 seeds per task)

Figure 16: Meta-World results DC-MPC performs well in Meta-World, generally matching TD-
MPC2, whilst significantly outperforming DreamerV3 and SAC. Error bars represent 95% stratified
bootstrap confidence intervals.

–appendices continue on next page–

29

Published as a conference paper at ICLR 2025

B.8 MYOSUITE MUSCULOSKELETAL RESULTS

In this section, we evaluate DC-MPC in five musculoskeletal tasks from MyoSuite.

In these experiments, we followed Hafner et al. (2023); Hansen et al. (2023) and scaled the rewards
using symlog(·),

symlog(x) = sign(x)ln(|x|+ 1). (14)
This compresses large and small rewards whilst preserving the input sign as it is a symmetric function.
Note that we simply transform the rewards with symlog and learn both the reward function and
Q-functions using these transformed rewards. We use N = 1-step returns in Hand Key Turn, Hand
Obj Hold and Hand Pen Twirl and we useN = 5-step returns in Hand Pose and Hand Reach. In Hand
Pose we also had to adjust the temperature from 0.5 to 0.2. In future work, it would be interesting to
investigate if using λ-returns – which uses a weighted-sum of N -step returns – can make DC-MPC
robust to the N -step hyperparameter. Further to this, it would be interesting to explore methods for
dynamically tuning the MPPI (inverse) temperature τMPPI.

In Fig. 17 we show the training curves for the individual tasks. Fig. 18 then reports aggregate metrics
at 1M environment steps over three random seeds in the five tasks. On average, DC-MPC performs
well, generally matching TD-MPC2 at 1M environment steps and outperforming the other baselines.

0 500 1000
Env. Steps (1e3)

0.0

0.5

1.0

S
uc

ce
ss

R
at

e
(%

)

Hand Key Turn

0 500 1000
Env. Steps (1e3)

Hand Obj Hold

0 500 1000
Env. Steps (1e3)

Hand Pen Twirl

0 500 1000
Env. Steps (1e3)

Hand Pose

0 500 1000
Env. Steps (1e3)

Hand Reach

DC-MPC (ours) DreamerV3 SAC TD-MPC TD-MPC2

Figure 17: MyoSuite training curves We plot the mean (solid line) and the 95% confidence intervals
(shaded) across 3 seeds, where each seed averages over 10 evaluation episodes.

0.00 0.25 0.50 0.75 1.00
Episode Success

DC-MPC (ours)
TD-MPC2

DreamerV3
SAC

TD-MPC
Median

0.00 0.25 0.50 0.75 1.00
Episode Success

IQM

0.25 0.50 0.75 1.00
Episode Success

Mean

0.00 0.25 0.50 0.75
Episode Success

Optimality Gap

MyoSuite @ 1M Env. Steps (5 tasks, 3 seeds per task)

Figure 18: MyoSuite results DC-MPC performs similarly to TD-MPC2 in MyoSuite. Error bars
represent 95% stratified bootstrap confidence intervals.

–appendices continue on next page–

30

Published as a conference paper at ICLR 2025

B.9 DOES DCWM IMPROVE DREAMERV3?

In this section, we seek to evaluate what happens when we replace DreamerV3’s one-hot discrete
encoding with the codebook encoding used in DC-MPC. Fig. 19 shows that in the easy Reacher Hard
and Walker Walk environments, FSQ (blue) and one-hot (orange) perform similarly. However, in the
difficult Dog Run and Humanoid Walk tasks, no discrete encoding can enable DreamerV3 to perform
as well as DC-MPC (purple). We hypothesize that DreamerV3’s poor performance in the Dog Run
and Humanoid Walk tasks results from its decoder struggling to reconstruct the observations.

0 1000
Env. Steps (1e3)

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run

0 1000
Env. Steps (1e3)

Humanoid Walk

0 1000
Env. Steps (1e3)

Reacher Hard

0 200
Env. Steps (1e3)

Walker Walk

DC-MPC (ours) DreamerV3 w/ FSQ DreamerV3 w/ one-hot

Figure 19: DreamerV3 with FSQ Replacing DreamerV3’s one-hot encoding (orange) with DC-
MPC’s codebook encoding (blue) does not improve performance. Moreover, DreamerV3 is not
able to learn in the hard Dog Run and Humanoid Walk tasks and is significantly outperformed by
DC-MPC (purple).

Learning to minimize the observation reconstruction error has been widely applied in model-based
RL (Sutton & Barto, 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019b), and an observation
decoder has been a component of many of the most successful RL algorithms to date (Hafner et al.,
2023). However, recent work in representation learning for RL (Zhao et al., 2023) and model-based
RL (Hansen et al., 2022) has shown that incorporating a reconstruction term into the representation
loss can hurt the performance, as learning to reconstruct the observations is inefficient due to the
observations containing irrelevant details that are uncontrollable by the agent and do not affect the task.

To provide a thorough analysis of DC-MPC, we include results where we add a reconstruction term
to our world model loss in Eq. (8):

Lo = Eot∼D[‖ôt − ot‖22], ôt = hκ(ct), (15)
where hκ is a learned observation decoder that takes the latent code as the input and outputs the recon-
structed observation. The decoder hκ is a standard MLP. We perform reconstruction at each time step
in the horizon. The results in Fig. 20 show that in no environments does reconstruction aid learning,
and in some tasks, such as the difficult Dog Run and Humanoid Walk tasks, including the recon-
struction term has a significant detrimental effect on the performance, and can even prevent learning
completely. Our results support the observations of Zhao et al. (2023) and Hansen et al. (2022) about
the lack of need for a reconstruction loss in continuous control tasks. However, it is worth noting that
we weighted all loss terms equally whilst the results in Ma et al. (2024) suggest that the observation
reconstruction, temporal consistency, and reward prediction loss terms need to be carefully balanced.

0 1000
Env. Steps (1e3)

0

500

1000

E
pi

so
de

R
et

ur
n

Dog Run

0 1000
Env. Steps (1e3)

Humanoid Walk

0 1000
Env. Steps (1e3)

Reacher Hard

0 200
Env. Steps (1e3)

Walker Walk

w/o reconstruction (ours) w/ reconstruction

Figure 20: Reconstruction harms performance Adding observation reconstruction to DC-MPC
(blue) harms the performance of DC-MPC across a mixture of easy and hard DMControl tasks.

31

Published as a conference paper at ICLR 2025

B.10 IMPROVING TD-MPC2 WITH DC-MPC

In this section, we investigate using DC-MPC’s latent space inside TD-MPC2. Note that TD-MPC2’s
latent space is continuous and trained with MSE regression. It also uses simplical normalization
(SimNorm) to make its latent space bounded. In these experiments, we removed SimNorm and
replaced it with our discrete and stochastic latent space, and then trained using cross-entropy for
the consistency loss. In particular, we made the following changes to the TD-MPC2 codebase: (i)
removed SimNorm, (ii) added FSQ to the encoder, (iii) modified the dynamics to predict the logits
instead of the next latent state, (iv) modified the dynamics to use ST Gumbel-softmax sampling for
multi-step predictions during training and our weighted average approach during planning, and (v)
changed the world model’s loss coefficients for consistency, value, and, reward, to all be 1.

In Fig. 6, we report aggregate metrics over 3 random seeds in 10 DMControl tasks and 10 Meta-World
tasks. Fig. 6 (left) shows the IQM and optimality gap at 1M environment steps over the 20 tasks.
It shows that adding DC-MPC’s discrete and stochastic latent space to TD-MPC2 offers some
improvement. Fig. 6 (right) shows the aggregate training curves (IQM over 10 tasks) for DMControl
and Meta-World, respectively. The results show that using DCWM inside TD-MPC2 offers some
benefits in the 10 DMControl tasks, whilst in the 10 Meta-World tasks, the performance of all methods
seems about equal. This suggests that, in the context of continuous control, discrete and stochastic
latent spaces are advantageous for world models. This is an interesting result which we believe
motivates further research into discrete and stochastic latent spaces for world models.

–appendices continue on next page–

32

Published as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

Architecture We implemented DC-MPC with PyTorch (Paszke et al., 2019) and used the AdamW
optimizer (Kingma & Ba, 2015) for training the models. All components (encoder, dynamics, reward,
actor and critic) are implemented as MLPs. Following Hansen et al. (2023) we let all intermediate
layers be linear layers followed by LayerNorm (Ba et al., 2016). We use Mish activation functions
throughout. Below we summarize the DC-MPC architecture for our base model.
DCMPC(

(model): WorldModel(
(_fsq): FSQ(levels=[5, 3])
(_encoder): ModuleDict(

(state): Sequential(
(0): NormedLinear(in_features=obs_dim, out_features=256, act=Mish)
(1): Linear(in_features=256, out_features=latent_dim*num_channels)

)
)
(_trans): Sequential(

(0): NormedLinear(in_features=(latent_dim*num_channels)+act_dim, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=latent_dim*codebook_size)

)
(_reward): Sequential(

(0): NormedLinear(in_features=(latent_dim*num_channels)+act_dim, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=1)

)
)
(_pi): Sequential(
(0): NormedLinear(in_features=latent_dim*num_channels, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=act_dim)

)
(_Qs): Vectorized ModuleList(
(0-4): 5 x Sequential(

(0): NormedLinear(in_features=(latent_dim*num_channels)+act_dim, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=1)

)
)
(_pi_tar): Sequential(
(0): NormedLinear(in_features=latent_dim*num_channels, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=act_dim)

)
(Qs_tar): Vectorized ModuleList(
(0-4): 5 x Sequential(

(0): NormedLinear(in_features=(latent_dim*num_channels)+act_dim, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=1)

)
)

)

where obs_dim is the dimensionality of the observation space, act_dim is the dimension-
ality of the action space, latent_dim is the number of the latent dimensions d (default
512), num_channels is the number of channels per latent dimension b (default 2), and
codebook_size is the codebook size |C| (default 15).

Statistical significance We used five seeds for DC-MPC and three seeds for TD-MPC2/Dream-
erV3/SAC/TD-MPC in the main figures, at least three seeds for all ablations, and plotted the 95 %
confidence intervals as the shaded area, which corresponds to approximately two standard errors of
the mean. However, in Figs. 3 and 6 we follow Agarwal et al. (2021) and plot the interquartile mean
(IQM) with the shaded area representing 95% stratified bootstrap confidence intervals.

Hardware We used NVIDIA A100s and AMD Instinct MI250X GPUs to run our experiments. All
our experiments have been run on a single GPU with a single-digit number of CPU workers.

Open-source code For full details of the implementation, model architectures, and training, please
check the code, which is available in the submitted supplementary material and available on github at
https://github.com/aidanscannell/dcmpc.

–appendices continue on next page–

33

https://github.com/aidanscannell/dcmpc

Published as a conference paper at ICLR 2025

Hyperparameters Table 1 lists all of the hyperparameters for training DC-MPC which were used
for the main experiments and the ablations.

Table 1: DC-MPC hyperparameters We kept most hyperparameters fixed across tasks. However,
we set task-specific exploration noise schedules and N -step returns.

HYPERPARAMETER VALUE DESCRIPTION

TRAINING
ACTION REPEAT 2 (1 IN MYOSUITE)
MAX EPISODE LENGTH (T) 500 IN DMCONTROL ACTION REPEAT MAKES THIS 1000

100 IN META-WORLD ACTION REPEAT MAKES THIS 200
100 IN MYOSUITE

NUM. EVAL EPISODES 10
RANDOM EPISODES (NRANDOM EPISODES) 10 NUM. RANDOM EPISODES AT START
MPPI PLANNING
PLANNING HORIZON 3
PLANNING ITERATIONS (J) 6
POPULATION SIZE (Np) 512
PRIOR POPULATION SIZE (Nπ) 24 NUM. POLICY SAMPLES TO WARM START
NUMBER OF ELITES (K) 64
MINIMUM STD 0.05
MAXIMUM STD 2
(INVERSE) TEMPERATURE (τMPPI) 0.5
TD3
ACTOR UPDATE FREQ. 2 UPDATE ACTOR LESS THAN CRITIC
BATCH SIZE 512
BUFFER SIZE 106

DISCOUNT FACTOR (γ) 0.99
EXPLORATION NOISE Linear(1.0, 0.1, 50) (EASY) DMCONTROL

Linear(1.0, 0.1, 150) (MEDIUM) DMCONTROL
Linear(1.0, 0.1, 500) (HARD) DMCONTROL
Linear(1.0, 0.1, 250) META-WORLD & MYOSUITE

LEARNING RATE 3× 10−4

MLP DIMS [512, 512] FOR ACTOR/CRITIC/DYNAMICS/REWARD
MOMENTUM COEF. (τ) 0.005
NUM. Q-FUNCTIONS (Nq) 5
NUM. Q-FUNCTIONS TO SAMPLE 2
NOISE CLIP (c) 0.3
N-STEP TD 1 OR 3 IN DMCONTROL

3 IN META-WORLD
1 OR 5 IN MYOSUITE

POLICY NOISE 0.2
UPDATE-TO-DATA (UTD) RATIO 1
WORLD MODEL
DISCOUNT FACTOR (γ) 0.9
ENCODER LEARNING RATE 10−4

ENCODER MLP DIMS [256]
FSQ LEVELS [5, 3] GIVES |C| = 5× 3 = 15 ≈ 24

HORIZON (H) 5 FOR WORLD MODEL TRAINING
LATENT DIMENSION (d) 512

1024 (HUMANOID/DOG)

–appendices continue on next page–

34

Published as a conference paper at ICLR 2025

D BASELINES

In this section, we provide further details of the baselines we compare against.

• DreamerV3 (Hafner et al., 2023) is a reinforcement learning algorithm that uses a world
model to predict outcomes, a critic to judge their value, and an actor to choose actions to
maximize value. It uses symlog loss for training and operates on model states from imagination
data. The critic is a categorical distribution with exponentially spaced bins, and the actor is
trained with entropy regularization and return normalization. The world model is only used for
training and there is no decision-time planning. In contrast, DC-MPC learns a deterministic
encoder with a discrete latent space and stochastic dynamics in the world model. We report
the results of DreamerV3 from the TD-MPC2 official repository 2.

• Temporal Difference Model Predictive Control 2 (TD-MPC2, Hansen et al. (2023)) is a
decoder-free model-based reinforcement learning algorithm with a focus on scalability and
sample efficiency. It includes an encoder, latent transition dynamics, a reward predictor, a
terminal value (critic), and a policy prior (actor). In contrast to DreamerV3, it utilizes a
deterministic encoder and transition dynamics implemented with MLPs, layer normalization
(Ba et al., 2016) and Mish (Misra, 2019) activations. To avoid exploding gradients and
representation collapse, the latent space is normalized with projection followed by a softmax
operation. All components except the policy prior are trained jointly based on predicting the
latent embedding, reward prediction, and value prediction, while reward and value predictions
are based on discrete regression in log-transformed space. Similarly, we use a deterministic
encoder, but we train the transition dynamics with a cross-entropy loss function, which
considers multi-modality and uncertainties, and we decouple representation learning from
value learning. We report the results from the TD-MPC2 official repository 3.

• Temporal Difference Model Predictive Control (TD-MPC, Hansen et al. (2022)) is the
first version of TD-MPC2. It is also a decoder-free model-based RL algorithm consisting of an
encoder, latent transition dynamics, reward predictor, terminal value (critic), and policy prior
(actor). In contrast to TD-MPC2, it does not apply simplical normalization (SimNorm) to its
latent state, it trains the reward and value prediction using the MSE loss instead of the cross-
entropy loss, and it uses SAC as the underlying RL algorithm. We refer the reader to the TD-
MPC paper for further details. We report the results from the TD-MPC2 official repository 4.

• Soft Actor-Critic (SAC, Haarnoja et al. (2018) is an off-policy model-free RL algorithm
based on the maximum entropy RL framework. That is, it attempts to succeed at the task whilst
acting as randomly as possible. It is worth highlighting that TD-MPC2 uses SAC as it’s under-
lying model-free RL algorithm. We report the results from the TD-MPC2 official repository 5.

–appendices continue on next page–

2https://github.com/nicklashansen/tdmpc2/tree/main/results/dreamerv3
3https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc2
4https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc
5https://github.com/nicklashansen/tdmpc2/tree/main/results/sac

35

https://github.com/nicklashansen/tdmpc2/tree/main/results/dreamerv3
https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc2
https://github.com/nicklashansen/tdmpc2/tree/main/results/tdmpc
https://github.com/nicklashansen/tdmpc2/tree/main/results/sac

Published as a conference paper at ICLR 2025

E TASKS

We evaluate our method in 30 tasks from the DeepMind Control suite (Tassa et al., 2018), 45 tasks
from Meta-World (Yu et al., 2019) and 5 tasks from MyoSuite (Vittorio et al., 2022). Tables 2 to 4
provide details of the environments we used, including the dimensionality of the observation and
action spaces.

Table 2: DMControl We consider a total of 30 continuous control tasks from DMControl.

TASK OBSERVATION DIM ACTION DIM SPARSE?

ACROBOT SWINGUP 6 1 N
CARTPOLE BALANCE 5 1 N
CARPOLE BALANCE SPARSE 5 1 Y
CARTPOLE SWINGUP 5 1 N
CARTPOLE SWINGUP SPARSE 5 1 Y
CHEETAH RUN 17 6 N
CUP CATCH 8 2 Y
CUP SPIN 8 2 N
DOG RUN 223 38 N
DOG STAND 223 38 N
DOG TROT 223 38 N
DOG WALK 223 38 N
FINGER SPIN 9 2 Y
FINGER TURN EASY 12 2 Y
FINGER TURN HARD 12 2 Y
FISH SWIM 24 5 N
HOPPER HOP 15 4 N
HOPPER STAND 15 4 N
HUMANOID RUN 67 24 N
HUMANOID STAND 67 24 N
HUMANOID WALK 67 24 N
PENDULUM SPIN 3 1 N
PENDULUM SWINGUP 3 1 N
QUADRUPED RUN 78 12 N
QUADRUPED WALK 78 12 N
REACHER EASY 6 2 Y
REACHER HARD 6 2 Y
WALKER RUN 24 6 N
WALKER STAND 24 6 N
WALKER WALK 24 6 N

–appendices continue on next page–

36

Published as a conference paper at ICLR 2025

Table 3: Meta-World We consider a total of 45 continuous control tasks from Meta-World. This
benchmark is designed for multitask research so all tasks share similar embodiment, observation
space, and action space.

TASK OBSERVATION DIM ACTION DIM SPARSE?

ASSEMBLY 39 4 N
BASKETBALL 39 4 N
BIN PICKING 39 4 N
BOX CLOSE 39 4 N
BUTTON PRESS 39 4 N
BUTTON PRESS TOPDOWN 39 4 N
BUTTON PRESS TOPDOWN WALL 39 4 N
BUTTON PRESS WALL 39 4 N
COFFEE BUTTON 39 4 N
COFFEE PUSH 39 4 N
COFFEE PULL 39 4 N
DIAL TURN 39 4 N
DISASSEMBLE 39 4 N
DOOR CLOSE 39 4 N
DOOR LOCK 39 4 N
DOOR OPEN 39 4 N
DOOR UNLOCK 39 4 N
DRAWER CLOSE 39 4 N
FAUCET CLOSE 39 4 N
FAUCET OPEN 39 4 N
HAMMER 39 4 N
HAND INSERT 39 4 N
HANDLE PRESS 39 4 N
HANDLE PRESS SIDE 39 4 N
HANDLE PULL 39 4 N
HANDLE PULL SIDE 39 4 N
LEVER PULL 39 4 N
PEG INSERT SIDE 39 4 N
PEG UNPLUG SIDE 39 4 N
PICK OUT OF HOLE 39 4 N
PICK PLACE 39 4 N
PLATE SLIDE 39 4 N
PLATE SLIDE BACK 39 4 N
PLATE SLIDE BACK SIDE 39 4 N
PLATE SLIDE SIDE 39 4 N
PUSH 39 4 N
PUSH WALL 39 4 N
REACH WALL 39 4 N
SOCCER 39 4 N
STICK PULL 39 4 N
STICK PUSH 39 4 N
SWEEP 39 4 N
SWEEP INTO 39 4 N
WINDOW CLOSE 39 4 N
WINDOW OPEN 39 4 N

Table 4: MyoSuite We consider a total of 5 continuous control tasks from MyoSuite. This benchmark
is designed for high-dimensional muscoloskeletal motor control which involves complex object
manipulation with a dexterous hand.

TASK OBSERVATION DIM ACTION DIM SPARSE?

KEY TURN 93 39 N
OBJECT HOLD 91 39 N
PEN TWIRL 83 39 N
POSE 108 39 N
REACH 115 39 N

37

Published as a conference paper at ICLR 2025

Figure 21: Tasks visualizations Visualization of the DMControl, Meta-World, and MyoSuite tasks
used throughout the paper.

38

	Introduction
	Related Work
	Preliminaries
	Method
	World model
	Decision-time planning

	Experiments
	Comparison of different latent spaces
	Impact of latent space encoding
	Performance of DC-MPC

	Conclusion
	Method details
	Further Results
	Sensitivity to Codebook Size |C|
	Sensitivity to Latent Dimension d
	Ablation of Latent Space
	Ablation of FSQ vs Vector Quantization (VQ)
	Ablation of REDQ Critic vs Standard Double Q Approach
	DeepMind Control Results
	Meta-World Manipulation Results
	MyoSuite Musculoskeletal Results
	Does DCWM Improve DreamerV3?
	Improving TD-MPC2 with DC-MPC

	Implementation details
	Baselines
	Tasks

