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Abstract

This paper aims at developing novel shuffling gradient-based methods for tackling
two classes of minimax problems: nonconvex-linear and nonconvex-strongly con-
cave settings. The first algorithm addresses the nonconvex-linear minimax model
and achieves the state-of-the-art oracle complexity typically observed in nonconvex
optimization. It also employs a new shuffling estimator for the “hyper-gradient”,
departing from standard shuffling techniques in optimization. The second method
consists of two variants: semi-shuffling and full-shuffling schemes. These variants
tackle the nonconvex-strongly concave minimax setting. We establish their oracle
complexity bounds under standard assumptions, which, to our best knowledge, are
the best-known for this specific setting. Numerical examples demonstrate the per-
formance of our algorithms and compare them with two other methods. Our results
show that the new methods achieve comparable performance with SGD, supporting
the potential of incorporating shuffling strategies into minimax algorithms.

1 Introduction

Minimax problems arise in various applications across generative machine learning, game theory,
robust optimization, online learning, and reinforcement learning (e.g., [1, 2, 3, 5, 12, 13, 17, 19, 21,
25, 35, 40]). These models often involve stochastic settings or large finite-sum objective functions.
To tackle these problems, existing methods frequently adapt stochastic gradient descent (SGD)
principles to develop algorithms for solving the underlying minimax problems [4, 13]. For instance,
in generative adversarial networks (GANSs), early algorithms employed stochastic gradient descent-
ascent methods where two routines, each using an SGD loop, ran iteratively [13]. However, practical
implementations of SGD often incorporate shuffling strategies, as seen in popular deep learning
libraries like TensorFlow and PyTorch. This has motivated recent research on developing shuffling
techniques specifically for optimization algorithms [4, 5, 8, 16, 26, 32, 38]. Our work builds upon
this trend by developing shuffling methods for two specific classes of minimax problems.

Problem statement. In this paper, we study the following minimax optimization problem:

min max {L(w,u) = Jw) + H(w.w) — h(u) = fw) + 5 3 Hilw,u) - h(u)}, (1)
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where f : R? — RU {+o0} is a proper, closed, and convex function, #; : R? x R? — R are smooth
forall i € [n] := {1,2,--- ,n},and h : R? - R U {400} is also a proper, closed, and convex
function. In this paper, we will focus on two classes of problems in (1), overlapped to each other.

(NL) H,; is nonconvex in w and linear in u as H;(w, u) := (F;(w), Ku) for a given function
F; : R? — R™ and a matrix K € R?7*™ for all ¢ € [n] and (w, u) € dom (£).
(NC) H,; is nonconvex in w and H,;(w, -) — h(+) is strongly concave in u for all (w, u) € dom (L).

Although (NC) looks more general than (NL), both cases can be overlapped, but one is not a special
case of the other. Under these two settings, our approach will rely on a bilevel optimization approach,
where the lower-level problem is to solve max,, £(w, u), while the upper-level one is min,, £(w, u).

Challenges. The setting (NL) is a special case of stochastic nonconvex-concave minimax problems
because the objective term H (w, u) := (F(w), Ku) is linear in u. It is equivalent to the compositional
model (CO) described below. However, if h is only merely convex and not strongly convex (e.g., the
indicator of a standard simplex), then ®( in (CO) becomes nonsmooth regardless of F’s properties.
This presents our first challenge. A natural approach to address this issue, as discussed in Section 2,
is to smooth ®(. The second challenge arises from the composition between the outer function i*
and the finite sum F'(-) in (CO). Unlike standard finite-sum optimization, this composition prevents
any direct use of existing techniques, requiring a novel approach for algorithmic development and
analysis. The third challenge involves unbiased estimators for gradients or “hyper-gradients” in
minimax problems. Most existing methods rely on unbiased estimators for objective gradients, with
limited work exploring biased estimators. While biased estimators can be used, they require variance
reduction properties (see, e.g., [10]). The setting (NC) faces the same second and third challenges
as the setting (NL). Additionally, when reformulating it as a minimization problem using a bilevel
optimization approach (3), constructing a shuffling estimator for the “hyper-gradient” V&, becomes
unclear. This requires solving the lower-level maximization problem (2). Therefore, it remains an
open question whether shuffling gradient-type methods can be extended to this bilevel optimization
approach to address (1). In this paper, we address the following research question:

Can we efficiently develop shuffling gradient methods to solve (1) for both (NL) and (NC) settings?

Our attempt to tackle this question leads to a novel way of constructing shuffling estimators for the
hyper-gradient V& or its smoothed counterpart. This allows us to develop two shuffling gradient-
based algorithms with rigorous theoretical guarantees on oracle complexity, matching state-of-the-art
complexity results in shuffling-type algorithms for nonconvex optimization.

Related work. Shuffling optimization algorithms have gained significant attention in optimization
and machine communities, demonstrating advantages over standard SGDs, see, e.g., [4, 5, 8, 16, 26,
32, 38]. Nevertheless, applying these techniques to minimax problems like (1) remains challenging,
with limited existing literature (e.g., [3, 8, 11]). Das et al. in [8] explored a specific case of (1)
without nonsmooth terms f and h, assuming strong monotonicity and L-Lipschitz continuity of the
gradient VH := [V, H, —V, H] of the joint objective H. Their algorithm simplifies to a shuffling
variant of fixed-point iteration or a gradient descent-ascent scheme, not applicable to our settings.
Cho and Yun in [3] built upon [8] by relaxing the strong monotonicity to Polyak-t.ojasiewicz (PL.)
conditions. This work is perhaps the most closely related one to our algorithm, Algorithm 2, for the
(NC) setting. Note that the method in [3] exploits Nash’s equilibrium perspective with a simultaneous
update, which is different from our alternative update. Moreover, [3] only considers the noncomposite
case with f = 0 and » = 0. Though we only focus on a nonconvex-strongly-concave setting (NC),
our results here can be extended to the PL condition as in [3]. Very recently, Konstantinos et al.
in [11] introduced shuffling extragradient methods for variational inequalities, which encompass
convex-concave minimax problems as a special case. However, this also falls outside the scope of
our work due to the nonconvexity of (1) in w. Again, all the existing works in [3, 8, 11] utilize a
Nash’s equilibrium perspective, while ours leverages a bilevel optimization technique. Besides, in
contrast to our sampling-without-replacement approach, stochastic and randomized methods (i.e.
using i.i.d. sampling strategies) have been extensively studied for minimax problems, see, e.g.,
[9, 14, 15, 18, 22, 23, 31, 37, 42]. A comprehensive comparison can be found, e.g., in [3].

Contribution. Our main contribution can be summarized as follows.

(a) For setting (NL), we suggest to reformulate (1) into a compositional minimization and exploit
a smoothing technique to treat this reformulation. We propose a new way of constructing
shuffling estimators for the “hyper-gradient” V&, (cf. (10)) and establish their properties.



(b) We propose a novel shuffling gradient-based algorithm (cf. Algorithm 1) to approximate
an e-KKT point of (1) for the setting (NL). Our method requires O(ne*“o’) evaluations of
F; and VF; under the strong convexity of /, and O(ne~7/2) evaluations of F; and VF;
without the strong convexity of h, for a desired accuracy € > 0.

(c) For setting (NC), we develop two variants of the shuffling gradient method: semi-shuffling
and full-shuffling schemes (cf. Algorithm 2). The semi-shuffling variant combines both
gradient ascent and shuffling gradient methods to construct a new algorithm, which requires
O(ne=3) evaluations of both V,,H; and V., H;. The full-shuffling scheme allows to perform
both shuffling schemes on the maximization and the minimization alternatively, requiring
either O(ne~?) or O(ne~*) evaluations of V,H; depending on our assumptions, while
maintaining O(ne~?) evaluations of V,,H; for a given desired accuracy € > 0.

If a random shuffling strategy is used in our algorithms, then the oracle complexity in all the cases
presented above is improved by a factor of y/n. Our settings (NL) and (NC) of (1) are different
from existing works [3, 8, 11], as we work with general nonconvexity in w, and linearity or [strong]
concavity in u, and both f and h are possibly nonsmooth. Our algorithms are not reduced or similar
to existing shuffling methods for optimization, but we use shuffling strategies to form estimators for
the hyper-gradient V& in (5). The oracle complexity in both settings (NL) and (NC) is similar to
the ones in nonconvex optimization and in a special case of (1) from [3] (up to a constant factor).

Paper outline. The rest of this paper is organized as follows. Section 2 presents our bilevel
optimization approach to (1) and recalls necessary preliminary results. Section 3 develops our
shuffling algorithm to solve the setting (NL) of (1) and establishes its convergence. Section 4 proposes
new shuffling methods to solve the setting (NC) and investigates their convergence. Section 5 presents
numerical experiments, while technical proofs and supporting results are deferred to Supp. Docs.

Notations. For a function f, we use dom (f) to denote its effective domain, and V f for its gradient
or Jacobian. If f is convex, then V f denotes a subgradient, 0 is its subdifferential, and prox is
its proximal operator. We use F; to denote o (wq, w1, - ,w;), a o-algebra generated by random

vectors wg, w, - -+ , Wy, B¢[-] = E[-|F] is a conditional expectation, and E[-] is the full expectation.

As usual, O(+) denotes Big-O notation in the theory of algorithm complexity.

2 Bilevel Optimization Approach and Preliminary Results

Our approach relies on a bilevel optimization technique [9] in contrast to Nash’s game viewpoint

[24], which treats the maximization as a lower level and the minimization as an upper level problem.

2.1 Bilevel optimization approach

The minimax model (1) is split into a lower-level (i.e. a follower) maximization problem of the form:
Po(w) = max{H(w,u) — h(u) = 3" Hi(w,u) — h(u)},

u€eRY (2)

uf(w) = argggg{?—[(w,u) —h(u)= 13" Hi(w,u) — h(uw)}.

For @ defined by (2), then the upper-level (i.e. the leader) minimization problem can be written as
w5 = min {Yo(w) = Po(w) + f(w) }. 3)

Clearly, this approach is sequential, and only works if ®( is well-defined, i.e. (2) is globally solvable.
Hence, the concavity of 7 (w, -) — h(-) w.r.t. to u is crucial for this approach as stated below. However,
this assumption can be relaxed to a global solvability of (2) combined with a PL condition as in [3].

Assumption 1 (Basic). Problems (1) and (3) satisfy the following assumptions for all i € [n]:

(a) ¥§ :=inf,, ¥o(w) > —o0.
(b) H,; is differentiable w.r.t. (w,u) € dom (L) and H;(w,-) is concave in u for any w.
(¢c) Both f : RP — RU{+o0} and h : R? — RU {+oc} are proper, closed, and convex.

This assumption remains preliminary. To develop our algorithms, we will need more conditions on
‘H; and possibly on f and h, which will be stated later. In addition, we can work with a sublevel set

Ly, (wg) := {w € dom (V) : ¥g(w) < Tg(wo)} )



of ¥, for a given initial point wq from our methods. If uf(w) is uniquely well-defined for given
w € Ly, (wp), then by the well-known Danskin’s theorem, @, is differential at w and its gradient is

Voo (w) = VeH(w, uf(w)) = 230 Vi Hi(w, uf(w)). )
We adopt the term “hyper-gradient” from bilevel optimization to name V ® in this paper.
2.2 Technical assumptions and properties of ®, for nonconvex-linear setting (NL)

(a) Compositional minimization formulation. If H;(w, u) := (F;(w), Ku) as in setting (NL), then
(1) is equivalently reformulated into the following nonconvex compositional minimization problem:

n

min {\Ilo(w) = f(w) + o(w) = f(w) + h* (% ZKTFi(w)) } (CO)

weRP
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where h*(v) := sup, {(v,u) — h(u)}, the Fenchel conjugate of h, and ®y(w) = h* (KT F(w)). If

h is not strongly convex, then h* is convex but possibly nonsmooth.

(b) Technical assumptions. To develop our algorithms, we also need the following assumptions.

Assumption 2. h is pp,-strongly convex with py, > 0, and dom(h) is bounded by Mj, < +oc.

Assumption 3 (For F;). For setting (NL) with H;(w,u) := (F;(w), Ku) (i € [n]), assume that
(a) F; is continuously differentiable, and its Jacobian V F} is L, -Lipschitz continuous.

(b) F; is also Mp,-Lipschitz continuous or equivalently, its Jacobian NV F; is My, -bounded.
(¢c) There exists a positive constant o; € (0, +00) such that

LS |V (w) - VEw)|? <03, Yw € dom (F). ©)

Assumption 2 allows p;, = 0 that also covers the non-strong convexity of h. Assumption 3 is rather
standard to develop gradient-based methods for solving (1). Under Assumption 3, the finite-sum F’ is
also M p-Lipschitz continuous and the Jacobian V F' of F'is also L p-Lipschitz continuous with
Mp :=max{Mp, :i € [n]} and Lp:=max{Lp, :i€ [n]}. @)
Condition (6) can be relaxed to the form 1 Y7 | ||V E;(w) — VF(w)||> < 02 + 0 4||V®q(w)||? for
some © 7 > 0, where V®, is a [sub]gradient of ®( or @, (its smoothed approximation). Moreover,
under Assumption 3, if iy > 0, then VA* is L« -Lipschitz continuous with Lp« := #% Thus it is
possible (see [9]) to prove that ® is differentiable, and V®y is also Lg,-Lipschitz continuous with

Ly, :== M| K||Lr + W as a consequence of Lemma 4 when ~ | 07 in Supp. Doc. A.

(c) Smoothing technique for lower-level maximization problem (2). If h is only merely convex (i.e.
wn = 0), then (2) may not be uniquely solvable, leading to the possible non-differentiability of ®.
Let us define the following convex function:

o(0) = max {(v. Ku) = h(w)} = h* (K"v) ®

Then, @ in (2) or (CO) can be written as ®o(w) = ¢o(F(w)) = ¢o (£ > 7, F;(w)). Our goal is
to smooth ¢ if h is not strongly convex, leading to
by (v) = max {(v, Ku) — h(u) — vb(u)},

ul(v) = argmgx{(v,Ku) — h(u) —yb(u)},

€))

where v > 0 is a given smoothness parameter and b : R — R is a proper, closed, and 1-strongly
convex function such that dom(h) C dom(b). We also denote Dy, := sup{||Vb(u)| : v € dom (h)}.
1 T

In particular, if we choose b(u) := 5 ||u — || for a fixed @, then u* (v) = prox,, ., (@ — K"v).

Using ¢.,, problem (CO) can be approximated by its smoothed formulation:
min { W, (w) == f(w) + @, (w) = f(w) + ¢, (F(w)) = f(w) + ¢, (1 T, Fw) }. (10)

To develop our method, one key step is to approximate the hyper-gradient of ®., in (10), where

Ve, (w) = VE(w) Vo, (F(w)) = 5 YiL, VFi(w) Vo, (F(w)). (1)
Then, V&, is Lg_-Lipschitz continuous with Ly := M| K| Lr + % (see Lemma 4).
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2.3 Technical assumptions and properties of ®, for the nonconvex-strongly-concave setting

To develop our shuffling gradient-based algorithms for solving (1) under the nonconvex-strongly-
concave setting (NC), we impose the following assumptions.

Assumption 4 (For H;). H; for all i € [n] in (1) satisfies the following conditions:

(a) For any given w such that (w,u) € dom (H), H;(w, -) is pr-strongly concave w.r.t. u.
(b) VH,; is (L, Ly,)-Lipschitz continuous, i.e. for all (w,w), (0, 4) € dom (H):

IVH(w,u) = VH;(w, 4| < L lw — 9> + L [Ju — 4. (12)
(¢c) There exist two constants ©,, > 0 and 0., > 0 such that for (w,u) € dom (H), we have
7 it IVuHi(w,u) = VoH(w,w)[? < 0u[|VuH(w, u)|® + o5, (13)
There exist two constants ©,, > 0 and o, > 0 such that for all (w,u) € dom (H), we have
5 it IVaHi(w, u) = Vo H(w,u)|* < 04|VuH(w,u)|* + 0. (14)

Assumption 4(a) makes sure that our lower-level maximization of (1) is well-defined. Assumption 4(b)
and (c) are standard in shuffling gradient-type methods as often seen in nonconvex optimization [9].
Lemma 1 (Smoothness of ®). Under Assumptions 2 and 4, u(+) in (2) is k-Lipschitz continuous

/LHLJ_LM. Moreover, V® in (5) is L, -Lipschitz continuous with Lg, := (1 4+ K)Ly,.

with Kk 1=

2.4 Approximate KKT points and approximate stationary points

(a) Exact and approximate KKT points and stationary points. A pair (w*,u*) € dom (L) is called
a KKT (Karush-Kuhn-Tucker) point of (1) if

0€ VyoH(w*, u*)+0f(w*) and 0€ -V, H(w*,u*)+ Oh(u*). (15)
Given a tolerance € > 0, our goal is to find an e-approximate KKT point (@, @) of (1) defined as
rw € VoH(W, ) + 0f (W), r, € =V, H(w,u)+ Oh(u), and E[||[rw7ru]||2] <€ (16)

A vector w* € dom (W) is said to be a stationary point of (3) if

0 € Voo(w*) + of (w*). 17)
Since f is possibly nonsmooth, we can define a stationary point of (3) via a gradient mapping as:
Gn(w) :==n~" (w — prox, ;(w — nV e (w))), (18)

where 77 > 0 is given. It is well-known that G, (w*) = 0 iff w* is a stationary point of (3). Again,
since we cannot exactly compute w*, we expect to find an e-stationary point wy of (3) such that
E[[|G,(@r)||?] < € for a given tolerance € > 0.

(b) Constructing an approximate stationary point and KKT point from algorithms. Our algorithms
below generate a sequence {{Et}tTZO such that T%_l Zf,T:o E[l1G,(@,)]?
an e-stationary point wr using one of the following two options:

} < €2, Hence, we construct

ty = argmin{||G, (w,)|| : 0 <t < T}, (Option 1) or

(19)
t« is uniformly randomly chosen from {0,1,--- , T} (Option 2).

Wy := wy,, where {

Clearly, we have E[||G, (&7)[?] < 75 S0 E[1G,(@:)]|?] < €. We need the following result.

Lemma 2. (a) If (w*,u*) is a KKT point of (1), then w* is a stationary point of (3). Conversely, if
w* is a stationary point of (3), then (w*, uf§(w*)) is a KKT point of (1).

(b) If W is an e-stationary point of (3) and V® is Ls,-Lipschitz continuous, then (Wr,ur) is an
é-KKT point of (1), where Wy := prox, ;(wr —nV®o(wr)), Ur := ui(Wr), and é := (14 La,n)e.

(¢) If Wy is an e-stationary point of (10), then (wWr,ur) is an é-KKT point of (1), where Wy =

prox, ;(y — nV&, (wr)), r = ul(F(wr)), and € := max{(1 + La,n)e,7Ds}.

Lemma 2 allows us to construct an é-approximate KKT point (W, ur) of (1) from an e-stationary
point W of either (3) or its smoothed problem (10), where é = O(max{e,v}).
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2.5 Technical condition to handle the possible nonsmooth term f
To handle the nonsmooth term f of (1) in our algorithms we require one more condition as in [5].

Assumption 5. Let ®., be defined by (10), which reduces to ® given by (2) as v | 0%, and G,) be
defined by (18). Assume that there exist two constants Ao > 1 and Ay > 0 such that:

V@, (w)[|? < Ao||Gy(w)[|* + Ay, Vw € dom (®p) . (20)

If f =0, then G, (w) = V&, (w), and Assumption 5 automatically holds with Ag = 1 and A; = 0.
If f # 0, then it is crucial to have Ay > 1 in (20). Let us consider two examples to see why?

(i) If fis M-Lipschitz continuous (e.g., £1-norm), then (20) also holds with Ag :=1+v > 1
and A; := H'T”Mf for a given v > 0.
@ii ) If f = &yy, the indicator of a nonempty, closed, convex, and bounded set WV, then
Assumption 5 also holds by the same reason as in Example (i) (see Supp. Doc. A).
3 Shuffling Gradient Method for Nonconvex-Linear Minimax Problems

We first propose a new construction using shuffling techniques to approximate the true gradient V&,
in (11) for any v > 0. Next, we propose our algorithm and analyze its convergence.

3.1 The shuffling gradient estimators for V&,

Challenges. To evaluate V®.,(w) in (11), we need to evaluate both VF (w) and F(w) at each w.
However, in SGD or shuffling gradient methods, we want to a;l)proximate both quantities at each
iteration. Note that this gradient can be written in a finite-sum + 3" | VF;(w)T V¢, (F(w)) (see
(11)), but every summand requires V¢.,(F'(w)), which involves 'the full evaluation of F.

Our estimators. Let F, (t)(z)(wl(t)l) and VF"(t)(i)(w(t_l) be the function value and the Jacobian

component evaluated at w( )1 respectlvely for i € [n], where 7) = (7 (1), 71 (2), .- 7" (n))
and 7 = (7 (1), 7" (2),--- ,7#®) (n)) are two permutations of [n] := {1,2,--- ,n}. We want

to use these quantities to approxunate the function value F'(w (¢ )) and its Jacobian V£ (w(()t)) of F at

w(() ), respectively, where w ) the iterate vector at the beginning of each epoch ¢.

For function value F'(w (¢ )) we suggest the following approximation at each inner iteration i € [n]:
. t t n t
Option 1: ( " [Z] 1 <t>(j)(wj(‘—)1) + Ej:i+1 Fﬂ(t)(j)(w(() ))] : 2D
Alternative to (21), for all ¢ € [n], we can simply choose another option:
. t t ¢
Option 2: Fi() =1 a2 Fj(w ()) Z] 1 (t)(j)(wé)). (22)
For Jacobian VF(w(()t)), we suggest to use the following standard shuffling estimator for all ¢ € [n]:
VEY := VFh0 0 w?). (23)
For F; ® from (21) (or (22)) and for VF; ® from (23), we form an approximation of V&., (w t))
Vo, (w) = (VE) Ve, (FV) = (VE) T K (FY). (24)

Discussion. The estimator Fi(t) for F' requires n — ¢ more function evaluations F7 () ;) (w(()t)) at
each epoch t. The first option (21) for F' uses 2n function evaluations F;, while the second one in
(22) only needs n function evaluations at each epoch ¢ > 0. However, (21) uses the most updated
information up to the inner iteration ¢ compared to (22), which is expected to perform better. The

Jacobian estimator VF,L-(t) is standard and only uses one sample or a mini-batch at each iteration .
3.2 The shuffling gradient-type algorithm for nonconvex-linear setting (NL)
We propose Algorithm 1, a shuffling gradient-type method, to approximate a stationary point of (10).

Discussion. First, the cost per epoch of Algorithm 1 consists of either 2n or n function evaluations
F;, and n Jacobian evaluations V F;. Compare to standard shuffling gradient-type methods, e.g., in
[8], Algorithm 1 has either n more evaluations of F; or the same cost. Second, when implementing



Algorithm 1 (Shuffling Proximal Gradient-Based Algorithm for Solving (10))

1: Initialization: Choose an initial point Wy € dom (®() and a smoothness parameter v > 0.
2: fort=1,2,--- ,Tdo
3:  Set wét) = Wy_1;

4:  Generate two permutations 7(*) and #(®) of [n] (identically or randomly and independently)
5 fori=1,--- ,ndo
6: Evaluate F") by either (21) or (22) using 7(), and VF") by (23) using #(*).
7: Solve (9) to get u* (F(t)) and form V. (w,) := (VF(t))TKu (FM.
8: Update w(t) (t - Vo ~(w; ® 1)

9:  end for

10:  Compute w; := prox,, f(wg));
11: end for

Algorithm 1, we do not need to evaluate the full Jacobian VFZ-(t), but rather the product of matrix

(VE)T and vector V., (F") as Vo, (w'”,) := (VF Ve, (F"). Evaluating this matrix-
vector multiplication is much more efficient than evaluating the full Jacobian V F; ) and VO ~(F, (t))

individually. Third, thanks to Assumption 5, the proximal step w; := prox,, f(wgl )) is only required

at the end of each epoch ¢. This significantly reduces the computational cost if prox,, ; is expensive.

3.3 Convergence Analysis of Algorithm 1 for Nonconvex-Linear Setting (NL)
Now, we are ready to state the convergence result of Algorithm 1 in a short version: Theorem 1. The
full version of this theorem is Theorem 6, which can be found in Supp. Doc. B.

Theorem 1. Suppose that Assumptions 1, 2, 3, and 5 holds for the setting (NL) of (1) ande > 0isa
sufficiently small tolerance. Let {1} be generated by Algorithm I after T = O(e~3) epochs using

arbitrarily permutations 7 and #®) and a learning rate n; = 1 = O(e) (see Theorem 6 in Supp.
Doc. B for the exact formulas of T and n). Then, we have T%rl ZZ:O G, (wy))? < €2

Alternatively, if {w,} is generated by Algorithm I after T := O(n~"/2¢=3) epochs using two random
and independent permutations 7 and #®) and a learning rate n, = 1 := O(n'/?€) (see Theorem 6
in Supp. Doc. B for the exact formulas). Then, we have %ﬂ ZtT:o E[||Gy, (we)|?] < €2

Our first goal is to approximate a stationary point w* of (CO) as E[||g,,( 0)||?] < €2, while Algorithm 1
only provides an e-stationary of (10). For a proper choice of ~, it is also an e- statlonary point of (3).

Corollary 1. Let Wy defined by (19) be generated from {w;} of Algorithm 1. Under the conditions
of Theorem 1 and any permutations =9 and #®), the following statements hold.

(a) If his pp-strongly convex with uy, > 0, then we can set v = 0, and Algorithm 1 requires
O(ne=3) evaluations of F; and V F; to achieve an e-stationary wr of (3).
(b) If h is only convex (i.e. pp = 0), then we can set v := O(e€), and Algorithm 1 needs
O(ne_7/2) evaluations of F; and V F}; to achieve an e-stationary wr of (3).
If. in addition, ) and #*) are sampled uniformly at random without replacement and independently,
and Ay = O(n~1), then the numbers of evaluations of F; and NV F; are reduced by a factor of \/n.

4 Shuffling Method for Nonconvex-Strongly Concave Minimax Problems

In this section, we develop shuffling gradient-based methods to solve (1) under the nonconvex-
strongly concave setting (NC). Since this setting does not cover the nonconvex-linear setting (NL) in
Section 3 as a special case, we need to treat it separately using different ideas and proof techniques.
4.1 The construction of algorithm

Unlike the linear case with H;(w, u) = (F;(w), Ku) in Section 3, we cannot generally compute the
solution ug(w;—1) in (2) exactly for a given w;_;. We can only approximate uo(@t 1) by some ;.

This leads to another level of inexactness in an approximate “hyper-gradient” V(I)O( (¢ ) ,) defined by

Vo(w”)) == VaHaw i (Wi, ). 25)



There are different options to approximate ug(w;—1). We propose two options below, but other
choices are possible, including accelerated gradient ascent methods and stochastic algorithms [6, 20].

(a1) Gradient ascent scheme for the lower-level problem. We apply a standard gradient ascent

scheme to update u;: Starting from s = 0 with uét) := U1, ateach epoch s = 1,--- . S, we update

al) = prox;, , (s a L+ IS VaHi (@1, T (t)1))v (26)

or a giwven Learning rate 1y > 0. en, we jinatly Ulzttpl/tt Uy ‘= U to approxzmate up wt 1
iven learni A > 0. Th Il U =g 5

To make our method more flexible, we allow to perform either only one iteration (i.e. S = 1) or
multiple iterations (i.e. S > 1) of (26). Each iteration s requires n evaluations of V, H,;.

(ag) Shuffling gradient ascent scheme for the lower-level problem. We can also construct u; by
a shuffling gradient ascent scheme. Again, we allow to run either only one epoch (i.e. S = 1) or

multiple epochs (i.e. S > 1) of the shuffling algorithm to update u,, leading to the following scheme:
Starting from s := 1 with ﬂgt) := Uy_1, at each epoch s = 1,2,--- | S, having ug )1, we generate a

permutation 75 of [n] and run a shuffling gradient ascent scheme as

ués,t) _ agt)b

Fori=1,2,--- ,n, update
ug‘“’t) = (g t) + ”tV uHarsn i (wt_l,ul(»i’?),
~(t)

us’ = proxmh( sft)).

27

At the end of the S-th epoch, we output u; := ﬁg) as an approximation to ul(w;_1). Here, we use

the same learning rate #j; for all epochs s € [S]. Each epoch s requires n evaluations of V,, ;.

(b) Shuffling gradient descent scheme for the upper-level minimization problem. Having u;
from either (26) or (27), we run a shuffling gradient descent epoch to update w; from w;_; as

wf?)

= W1,

For:=1,2,...  n, update

_ (28)
wi = w®| — 1V0(w)) = wl| — BV H (Wi, ),
Wy 1= proxmf(wfl)).
These two steps (26) (or (27)) in u and (28) in w are implemented alternatively fort = 1,--- | T.

(c) The full algorithm. Combining both steps (26) (or (27)) and (28), we can present an alfernating
shuffling proximal gradient algorithm for solving (1) as in Algorithm 2.

Algorithm 2 (Alternating Shuffling Proximal Gradient Algorithm for Solving (1) under setting (NC))

1: Initialization: Choose an initial point (W, ug) € dom (£).
2: fort=1,2,---,T do

3 Compute u; using either (26) or (27).

4:  Set w(()t) = @t,l and generate a permutation 7(*) of [n].
50 fori=1,---,n do

6: Evaluate v‘bo( ) \% Hﬂ.(t)( )( E )1,ﬂt).

7 Update w(t) = w(t_)l - '”V<I> (w; ® 1)

8:  end for

9:  Compute w; := prox,, f(w% )).

10: end for

Discussion. Algorithm 2 has a similar form as Algorithm 1, where u(w;_1) is approximated by ;.

In Algorithm 1, u§j(w;—1) is approximated by w (F( )) Moreover, Algorithm 1 solves the smoothed
problem (10) of (3), while Algorithm 2 dlrectly solves (3). Depending on the choice of method to
approximate ug;(w;—1), we obtain different variants of Algorithm 2. We have proposed two variants:



e Semi-shuffling variant: We use (26) for computing 4; to approximate ug(w;_1).
o Full-shuffling variant: We use (27) for computing %, to approximate ug(w;—_1).

Note that Algorithm 2 works in an alternative manner, where it approximates u(w;—1) up to a certain
accuracy before updating w;. This alternating update is very natural and has been widely applied to
solve minimax optimization as well as bilevel optimization problems, see, e.g., [1, 9, 13].

4.2 Convergence analysis

Now, we state the convergence of both variants of Algorithm 2: semi-shuffling and full-shuffling
variants. The full proof of the following theorems can be found in Supp. Doc. C.

(a) Convergence of the semi-shuffling variant. Our first result is as follows.

Theorem 2. Suppose that Assumptions 1, 2, 4, and 5 hold for (1), and G,, is defined by (18).

Let {(wy,ur)} be generated by Algorithm 2 using the gradient ascent scheme (26) with 1) := O(e)
explicitly given in Theorem 8 of Supp. Doc. C, 7 € (0, %_ch] S = (9(% (uh+%)fl) =0(1),
and T := O(e~3) explicitly given in Theorem 8. Then, we have %H Z?:o Gy (wy)|)* < €2.

Consequently, Algorithm 2 requires O(ne~3) evaluations of both V., H; and ¥V, H; to achieve an
e-stationary point Wt of (3) computed by (19).

Note that Theorem 2 holds for both S > 1 and S = 1 (i.e. we perform only one iteration of (26)).

(b) Convergence of the full-shuffling variant — The case S > 1 with multiple epochs. We state our
results for two separated cases: only H,; is pp-strongly convex, and only % is pp-strongly convex.
Theorem 3 (Strong convexity of H;). Suppose that Assumptions 1, 2, 4, and 5 hold, and H,; is
wr-strongly concave with pg > 0 for i € [n], but h is only merely convex.

Let {(wy,u;)} be generated by Algorithm 2 using S epochs of the shuffling routine (27) and fixed
learning rates ny = n := O(€) as given in Theorem 8 of Supp. Doc. C for a given ¢ > 0,
fe :=H = O(e), S 1= L%J, and T := O(e~3). Then, we have TL—H ZZ;O G, (we)[]? < €.
Consequently, Algorithm 2 requires O(ne~?) evaluations of V., H; and O(ne=*) evaluations of
V.. H; to achieve an e-stationary point Wt of (3) computed by (19).

Theorem 4 (Strong convexity of h). Suppose that Assumptions 1, 2, 4, and 5 hold for (1), and h is
wn-strongly convex with uy, > 0, but H; is only merely concave for all i € [n]. Then, under the same

settings as in Theorem 3, but with S := L%J, the conclusions of Theorem 3 still hold.

(c) Convergence of the full-shuffling variant — The case S = 1 with one epoch. Both Theorems 3
and 4 require O(ne*) evaluations of V,H;. To improve this complexity, we need two additional
assumptions but can perform only one epoch of (27), i.e. S = 1.

Assumption 6. Let Qn (u) == n~Y(u— prox,, (u + nVuH(w,u))) be the gradient mapping of
Y(w,-) = —H(w,-) + h(-). Assume that there exist Ao > 1and Ay > 0 such that
IVt (w, w)l[* < Aol|Gy ()| + Ar,  V(w,u) € dom (£). 29)

Clearly, if h = 0, then G, (u) = —V,H (w, u) and (20) automatically holds for Ag = 1 and A; = 0.
Assumption 6 is similar to Assumption 5, and it is required to handle the prox operator of i in (27).

Assumption 7. For f in (1), there exists Ly > 0 such that
F) < f@)+ (f' @),y —2) + Zlly —2|>, Vo,y €dom(f), f'(x) €df(x).  (30)

Clearly, if f is L s-smooth, then (30) holds. If f is also convex, then (30) implies that f is L s-smooth.

Under these additional assumptions, we have the following result.
Theorem 5. Suppose that Assumptions 1, 2, 4, 5, 6, and 7 hold and G,, is defined by (18).

Let {(ws, ut)} be generated by Algorithm 2 using one epoch (S = 1) of the shuffling routine (27),
and fixed learning rates n, = 1 := O(e) as in Theorem 9 of Supp. Doc. C for a given € > 0, fj; :=

i) = 30k2n, and T := O(e3), where  := uHL-i?-Lun' Then, we have TL—H ZtT:O G, (we)]]? < €.




Consequently, Algorithm 2 requires O(ne~3) evaluations of both V., H; and of V, H; to achieve an
e-stationary point Wr of (3) computed by (19).

Similar to Algorithm 1, if 7(**) and #(*) are generated randomly and independently, A; = O(1/n),

and A; = O(1/n), then our complexity stated above can be improved by a factor of \/n. Nevertheless,
we omit this analysis. Finally, we can combine each Theorem 2, 3, 4 or 5 and Lemma 2 to construct
an é-KKT point of (1). Theorem 5 has a better complexity than Theorems 3 and 4, but requires
stronger assumptions. Algorithm 2 is also different from the one in [3] both in terms of algorithmic
form and the underlying problem to be solved, while achieving the same oracle complexity.

S Numerical Experiments

We perform some experiments to illustrate Algorithm 1 and compare it with two existing and related
algorithms. Further details and additional experiments can be found in Supp. Doc. D.

We consider the following regularized stochastic minimax problem studied, e.g., in [9, 33]:
. 1 n A

min { max {2570, Foy(w)} + 3w}, (1)
where F; ; : RP x Q@ — R can be viewed as the loss of the j-th model for data point ¢ € [n]. If we
define ¢ (v) := maxi<j<,{v;} and f(w) := 3 |wl||% then (31) can be reformulated into (3). Since
vj > 0, we have ¢o(v) := maxi<j<m{v;} = [|[v]|ec = maxy|,<1(v,w), which is nonsmooth.
Thus we can smooth ¢ as ¢~ (v) := max|, |, <1{(v, u) — (v/2)|ul|*} using b(u) := F||ul[.
Here, we apply our problem (31) to solve a model selection problem in binary classification with
nonnegative nonconvex losses, see, €.g., [41]. Each function F; ; belongs to 4 different nonconvex
losses (m = 4): F;1(w,§) := 1 — tanh(b;{a;, w)), Fi2(w, &) = log(l + exp(—b;{a;, w))) —
log(1 + exp(—b;{a;, w) — 1)), F; 3(w,&) := (1 — 1/(exp(—b;{a;,w)) + 1)), and F; 4(w, &) :=
log(1 + exp(—b;{a;,w))) (see [41] for more details), where (a;, b;) represents data samples.

We implement 4 algorithms: our SGM with 2 options, SGD from [10], and Prox-Linear from [11].
We test these algorithms on two datasets from LIBSVM [6]. We set A := 10~* and update the
smooothing parameter v; as y; := W The learning rate 7 for all algorithms is finely tuned
from {100, 50, 10, 5, 1,0.5,0.1,0.05,0.01, 0.001, 0.0001}, and the results are shown in Figure 1 for
w8a and rcvl datasets using k;, = 32 blocks. The details of this experiment is given in Supp. Doc. D.

SVM - w8a: n = 49749, p = 300 SVM - revl: n = 20242, p = 47236
10% 4 @~ SGM-Option 1 1074 ~®— SGM-Option 1
—#— SGM-Option 2 9 x 10-1 —d— SGM-Option 2
- sGD ! - sGD
—W— Prox Linear 8% 10-1 —¥— Prox Linear

6x 10!
Tx 107!

Objective Value
Objective Value

6x 107!
1x 107t

5 1
3x 107t 5x 10

T T T T T T T u T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 1: The performance of 4 algorithms for solving (31) on two datasets after 200 epochs.

As shown in Figure 1, the two variants of our SGM have a comparable performance with SGD and
Prox-Linear, providing supportive evidence for using shuffling strategies in minimax algorithms.

6 Conclusions

This work explores a bilevel optimization approach to address two prevalent classes of nonconvex-
concave minimax problems. These problems find numerous applications in practice, including robust
learning and generative Als. Motivated by the widespread use of shuffling strategies in implementing
gradient-based methods within the machine learning community, we develop novel shuffling-based
algorithms for solving these problems under standard assumptions. The first algorithm uses a non-
standard shuffling strategy and achieves the state-of-the-art oracle complexity typically observed in
nonconvex optimization. The second algorithm is also new, flexible, and offers a promising possibility
for further exploration. Our results are expected to provide theoretical justification for incorporating
shuffling strategies into minimax optimization algorithms, especially in nonconvex settings.
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duction, see the “Contribution” paragraph in the introduction section. Our contribution
consists of two algorithms, Algorithm 1 and Algorithm 2, and their theoretical convergence
guarantees stated in the subsequent theorems.
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Guidelines:
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3. Theory Assumptions and Proofs



Question: For each theoretical result, does the paper provide the full set of assumptions and
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Answer: [Yes]
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proofs are given in Supp. Docs. due to space limit, and we believe that our technical proofs
are correct.
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e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
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e The proofs can either appear in the main paper or the supplemental material, but if
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by formal proofs provided in appendix or supplemental material.
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. Experimental Result Reproducibility
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our data is available online from LIBSVM. The code is implemented in
Python. The code for all experiments is also provided with instruction.
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o The instructions should contain the exact command and environment needed to run to
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should state which ones are omitted from the script and why.
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