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Abstract

We study the linear contextual bandit problem where an agent has to select one
candidate from a pool and each candidate belongs to a sensitive group. In this
setting, candidates’ rewards may not be directly comparable between groups, for
example when the agent is an employer hiring candidates from different ethnic
groups and some groups have a lower reward due to discriminatory bias and/or
social injustice. We propose a notion of fairness that states that the agent’s policy
is fair when it selects a candidate with highest relative rank, which measures how
good the reward is when compared to candidates from the same group. This is a
very strong notion of fairness, since the relative rank is not directly observed by
the agent and depends on the underlying reward model and on the distribution of
rewards. Thus we study the problem of learning a policy which approximates a fair
policy under the condition that the contexts are independent between groups and
the distribution of rewards of each group is absolutely continuous. In particular, we
design a greedy policy which at each round constructs a ridge regression estimate
from the observed context-reward pairs, and then computes an estimate of the
relative rank of each candidate using the empirical cumulative distribution function.
We prove that, despite its simplicity and the lack of an initial exploration phase, the
greedy policy achieves, up to log factors and with high probability, a fair pseudo-
regret of order VdT after T rounds, where d is the dimension of the context vectors.
The policy also satisfies demographic parity at each round when averaged over
all possible information available before the selection. Finally, we use simulated
settings and experiments on the US census data to show that our policy achieves
sub-linear fair pseudo-regret also in practice.

1 Introduction

Consider a sequential decision making problem where at each round an employer has to select one
candidate from a pool to hire for a job. The employer does not know how well a candidate will
perform if hired, but they can learn it over time by measuring the performance of previously selected
similar candidates. This scenario can be formalized as a (linear) contextual bandit problem (see
[2L 12} 26] and references therein), where each candidate is represented by a context vector, and after
the employer (or agent) chooses a candidate, it receives a reward, i.e. a scalar value measuring the
true performance of the candidate, which depends (linearly) on the context.

In the above framework, the typical objective is to find a policy for the employer to select candidates
with the highest rewards [1H3] 26]]. However, in some important scenarios this objective may not

*riccardo.grazzi@iit.it

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



be appropriate; if candidates belong to different sensitive groups (e.g. based on ethnicity, gender,
etc.) the resulting policy might discriminate or even exclude some groups completely in the selection
process. This may happen when some groups have lower expected reward than others, e.g. because
they acquired less skills due lower financial support. Another example arises when each candidate in
the pool, if selected, will perform a different kind of job, and the associated reward is job-specific.
For instance, if the employer is a university and each candidate is a researcher in a different discipline,
then the rewards associated to different disciplines will be substantially different and incomparable,
e.g. citation counts vary greatly among different subjects; see [23]] for a discussion. In both of the
above scenarios, it is unfair to directly compare rewards of candidates belonging to different groups.

A simple way to deal with this issue would be to select the candidate to hire uniformly at random.
This policy satisfies a notion of fairness called demographic parity (see [[7,131] and references therein),
which requires the probability of selecting a candidate from a given group to be equal for all groups.
However, as is apparent, this approach completely ignores the employer’s goal of selecting good
candidates and is also unfair to candidates who spent effort acquiring credentials for the job. In this
work, we provide a fair way of comparing candidates from different groups via the relative rank,
that is the cumulative distribution function (CDF) value of the reward of the candidate where the
distribution is that of the rewards of the candidate’s group. We call a policy group meritocratic fair
(GMF) if it always selects a candidate with the highest relative rank. Such a policy is meritocratic but
only in terms of the within-group performance. A closely related idea has been introduced in [23] for
settings where the candidates’ rewards are available before the selection, while we are not aware of a
similar notion in the multi-armed bandits literature.

A GMF policy requires the knowledge of the relative rank of each candidate which is not directly
observed by the agent and depends on the underlying reward model and on the distributions of rewards.
Moreover, to estimate the relative rank from the observed rewards and contexts it is necessary to
learn the CDF of the rewards of each group, which adds a challenge to the standard linear contextual
bandit framework where only the linear relation between contexts and rewards has to be learned. Due
to this, a learned policy cannot be GMF at all rounds, thus we study the problem of learning a policy
which minimizes the fair regret, that is the cumulative difference between the relative rank of the
candidate chosen by a GMF policy and the candidate chosen by a learning policy.

For this purpose, we design a greedy policy, which at each round uses the following two-stage
strategy. Firstly, it constructs a ridge regression estimate which maps contexts to rewards. Secondly, it
computes an estimate of the relative rank of each candidate using the empirical CDF of the estimated
rewards. We show that the proposed policy achieves, under some reasonable assumptions and after
T rounds, O(K 3 4 \/dT) fair regret with high probability, where d is the dimension of the context
vectors and K is the number of candidates in the pool. Notably, our policy does not require an initial
exploration phase and satisfies demographic parity at each round when averaged over all possible
random draws of the information avaliable to the agent before the decision, i.e. current contexts and
previously received contexts, actions and rewards.

Contributions and Organization. After a review of previous work in Sec. [2, we introduce the
learning problem and the proposed fairness notion in Sec. [3] To simplify the exposition, we assume
that each arm corresponds to a sensitive group. In Sec. d we propose a greedy policy which jointly
learns the underlying regression model and the CDF of each group. We derive a O(ﬁ) regret
bound for our policy in Sec.[5] In Sec.[6] we present an illustrative simulation experiment with diverse
reward distributions. In Sec.[/| we extend our policy and results to the case where candidates from the
same arm can belong to different groups and show the efficacy of our approach with an experiment on
the US census data where the sensitive group (ethnicity) is drawn at random together with the context.
We draw conclusions in Sec. [8| Code athttps://github.com/CSML-IIT-UCL/GMFbandits

Notation. We use (-, -) for the scalar product. For K € N we have [K] = {1,..., K}. Let ¢ be
a scalar random variable, for each a € [K] and p* € R4, we denote with Fu, Fq the CDF of ¢
and (u*, X, ) respectively. If X is a continuous random vector with values in R, we denote with
fx : R? — [0, 00) its probability density function. For any s € N, we denote I, as the s x s identity
matrix. For a random variable Y € R®, we call Y an absolutely continuous random variable, if its
distribution is an absolutely continuous measure with respect to the Lebesgue measure on R®. For
a positive semi-definite matrix D, we denote Ay, (D) and )\Ln(D) the smallest eigenvalue of D,
and the smallest non-zero eigenvalue of D respectively. Supp(X ) indicates the support of a random
variable X. We also denote with Z/[S], the uniform distribution over the set S.
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2 Related Works

In recent years algorithmic fairness has received a lot of attention, becoming a large area of machine
learning research. The potential for learning algorithms to amplify pre-existing bias and cause harm
to human beings has triggered researchers to study solutions to mitigate or remove unfairness of
the learned predictor, see [4, |8, [11} 114} 16, (19} 20, 22} 124} 25 |29} 13537, |39]] and references therein.
Fairness in sequential decision problems (see [38] for a survey) is usually divided into two categories:
group fairness (GF) and individual fairness. We give an overview of these notions below.

GF requires some statistical measure to be (approximately) equal across different sensitive groups. A
prominent example relevant to this work is demographic parity, which requires that the probability
that the policy selects a candidate from a given group should be the same for all groups. A similar
notion is used by [10, 32]], where the probability that the policy selects a candidate has to always
be greater than a given threshold for all candidates. [27] impose a weaker requirement concerning
the expected fraction of candidates selected from each group. Other examples of GF in sequential
decision problems are equal opportunity 5] and equalized odds [6l]. Under some assumptions on the
distributions of the contexts, our GMF and greedy policies satisfy variants of demographic parity at
each round.

Individual fairness can be divided in two categories: fairness through awareness (FA) [28[34]] and
meritocratic fairness (MF) [21}22]]. FA is based on the idea that similar individuals should be treated
similarly and is designed to avoid “winner takes all” scenarios where some individuals cannot be
selected when they have a lower reward than others in the pool, even if the difference between rewards
is very small. For example, [34] propose a policy where the probability of selecting a context over
another is lower when the context has a lower reward, but is never zero. MF instead requires that less
qualified individual should not be favored over more qualified ones, which could happen during the
learning process. For example [22] proposes an algorithm where the policy selects the arm uniformly
at random among the best arms with overlapping confidence intervals. This guarantees meritocratic
fairness at each round but comes at a cost in terms of regret.

Our definition of fairness falls between group and meritocratic fairness. It is meritocratic because
it states that a candidate with a worse relative rank than another should never be selected. It is also
based on groups since the relative ranks directly depend on the distribution of rewards of each group.
A similar idea of fairness based on relative rank has been introduced in [23]], which study the problem
of selecting candidates from different groups based on their scalar-valued score when the scores
between groups are incomparable (e.g. number of citations in different research areas). Contrary
to our work, where the (noisy) rewards are observed only for the selected candidates, in [23] the
noiseless scores for all candidates can be accessed before the selection. This difference makes the
estimation of the relative rank simpler in [23]], as the rewards CDFs can be estimated more efficiently.

3 Group Meritocratic Fairness in Linear Contextual Bandits

We consider the linear contextual bandit setup [2]] where at each round ¢ € [T], an agent receives a
set of feature vectors {X; ,}X | with X; , C R? sampled from the environment, one for each arm
a € [K]. We assume that context (or candidate) X , has an associated reward (u*, Xy ,) where
w* € R is unknown to the agent. After the agent selects the arm ay, it receives the noisy reward
equal to 7y 4, = (1", X¢,4,) + M, Where 7, is some scalar noise (formally specified later). In addition,
we assume that each arm represents a fixed sensitive group (e.g. based on ethnicity, gender, etc.).
The latter assumption simplifies the presentation but implies that at each round the agent receives
exactly one candidate for each group. This can be too restrictive e.g. when candidates are sampled
i.i.d. together with their group and/or some groups are minorities. However, our results can be easily
adapted to more realistic settings without such assumption, as we show in Sec.[/|and more rigorously
in Appendix |E]! Excluding these sections, we use arm and group interchangeably in all that follows.

Usually, the goal of the agent is to maximise the expected cumulative reward Zf:l (u*, Xt,a,)- Since
as we previously explained, this objective might be unfair to some of the sensitive groups, we instead
use a different kind of reward which measures the relative performance of a candidate compared to
others of the same arm/group. First, we additionally assume, for each group a, that {X; .}, are
1.i.d and have the same distribution of X ,, which we define to be a random variable with unknown
distribution. We call the distribution of (1*, X, ) the reward distribution of arm « and denote with F,



its CDF, i.e. Fo(r) = P((1*, X,) < r) for every r € R. Then, we introduce the relative rank of
candidate X, , as F,((1*, X o)), that is the probability that a sample from the reward distribution
of arm a is lower than the reward of X; ,. We argue that the relative rank, allows to have a fair way
of comparing candidates from different groups and introduce the following fairness definition.
Definition 3.1 (Group Meritocratic Fairness). A policy {a}}$2, is group meritocratic fair (GMF) if
forallt € Nja € [K]

]:a}f(<:u*7Xt,a;f>) Z ]:a(</'L*7Xt7a>) .

A GMF policy chooses candidates with the highest reward compared to candidates from the same
group. This is a strong definition of fairness which is impossible to satisfy at each round for a learned
policy. As in standard linear contextual bandits, ;1* is unknown and must be learned. In this setting
however, we have the additional challenge of learning the CDF for the rewards of each arm, F,.
Thus, we will focus on how to learn a GMF policy by introducing the following regret definition.
Definition 3.2 (Fair Pseudo-Regret). Let T € N, {a;}]_; be the evaluated policy and {a}}_, be a
GMEF policy. Then we denote by (cumulative) fair pseudo-regret the quantity

T
RF(T) = Z-Fat“/i*aXt,aZ» - -Fat(<ﬂ*7Xt,at>) . ()
t=1

The goal of the learned policy will be to minimize the fair pseudo-regret, since a policy with sublinear
fair pseudo-regret will get closer and closer to a GMF fair policy over time.
Remark 3.1. The fair pseudo-regret resembles the standard pseudo-regret defined as
T
R(T) = 3 (0" Xy ) — (0, X)) with @ € argmax(u®, X,.0) .
=1 ¢ a€[K]

where rewards are replaced by relative ranks and atOpt by the GMF policy a;. Furthermore, since

the CDF restricted to the support is strictly increasing, when the reward distributions are the same
for each arm, i.e. F, = Fy forall a,a’ € [K), then a policy minimizing the fair pseudo-regret also
minimizes the standard pseudo-regret and vice versa. This is not true in the general case, where fair
and standard pseudo-regrets are often competing objectives. For example, when {{1*, X,)}X | are
independent and absolutely continuous and there exists & such that (i1*, X5) > (u*, X,,) for every
a # a, then for every t, a?pt = a, while as we will show in Proposition aj selects each arm with
equal probability. Thus, with non-zero probability a?pt has a linear fair pseudo-regret while aj has a
linear standard pseudo-regret. Moreover, in Appendix@ for K = 2, we show that if {(u*, X1) and
(u*, Xo) are independent, absolutely continuous, but not identically distributed, then the GMF policy
has a linear standard regret and {a{’ t};’il has a linear fair regret with positive probability.

Learning a GMF policy brings several challenges. The relative rank is not directly observed by the
agent, which receives instead only the noisy reward. This implies that the agent has to estimate
Fa, which in general might not even be Lipschitz continuous. This is the main reason why we
restrict our analysis to the case where the rewards {(1*, X,,)}X | are independent and absolutely

continuous. In particular, for any ¢ > 0, let H; = Ul_; {{X;} 70,0} with Hy = @
and H; := H; U {{Xi+1.a}5 |} be respectively the history and the information available for the
decision at round ¢ + 1, then the following holds.
Proposition 3.1 (GMF policy satisfies history-agnostic demographic parity). Let {{p*, X,)}E_| be
independent and absolutely continuous and for every a € [K],t € N, let X, , be an i.i.d. copy of X,.
Then for every t € N, {F,({(u*, X1.0)) Y| are i.i.d. uniform on [0,1] and

Pla; =olHi) =  VaelK] @

for any GMF policy {a; }32,. Note, the randomness lies exclusively in the current contexts { Xy o }< .

Proof. Let ¢, = F,({11*, Xt.a)). From the assumptions {1, }X ;| are i.i.d random variables,
independent from H,_,, with uniform distribution on [0, 1] (see [9, Theorem 2.1.10]). Hence
Vai,az € [K]: P(te, = q,) = 0,P(af = a|H;_,) =P(af = a) and
Pla; = a1) = P(Ya, > Vur, Va' # a1) = P(Wa, > Vo, Va' # az) =P(af = a2) =1/K .
O



We call property (2)) history-agnostic demographic parity since it states that, at each round, the policy
selects all groups with equal probability regardless of the history. Recall that in our setup each arm
corresponds to a sensitive group. Proposition [3.1] ensures that a GMF policy will keep exploring
regardless of the history. This fact plays a key role in the design of our policy, which is greedy
without the need of an exploration phase.

Remark 3.2. Note that in the standard linear contextual bandit setting, the optimal policy afpt does
not necessarily satisfy (2) even when we assume that {(u*, X,) Y| are independent and absolutely
continuous. This is true since when the rewards of one arm are always lower than at least one of the
other arms, that arm will never be selected by the optimal policy.

In the following, we state and discuss the assumptions made for the analysis of our greedy policy.

Assumption A. Let pi* € R? be the underlying reward model. We assume that:

(i) The noise random variable 1, is zero mean R-subgaussian, conditioned on Hy_1.

(i) Let X, be a random variable with values in R? and such that || X,||2 < L almost surely.
Forany a € [K|, {X; o }1, arei.i.d. copies of X,.

(iii) The random variables { X, }5_, are mutually independent.

(iv) Forevery a € [K|, there exist d, > 1, an absolutely continuous random variable Y, with
values in R% admitting a density f,, B, € R and c, € R? such that B] B, =1,

X, =ByY,+cq and p* By #0 .

Assumption [A[D)]is a standard assumption on the noise in stochastic bandits. [A[il)]implies that the
actions taken by the policy do not affect future contexts. This is needed to allow the learning of
the distribution of rewards for each group and is also used in [[10, [27]]. implies that (u*, X,)
is absolutely continuous and is satisfied when X, is absolutely continuous in a subspace of R¢
which is not orthogonal to ¢* ] This fact combined with [Afiii)|ensures that Proposition [3.1]holds.
Assumptions are specific to our setting and a current limitation of the analysis. Notice
however, that is reasonable when the groups are sufficiently isolated, e.g. each context is
sourced from a different country/group, while assuming that the rewards (u*, X,) are absolutely
continuous is natural when the contexts contain continuous attributes. Furthermore allows p*
to act differently on each group, similarly to the case when there is a different reward vector for each
sensitive group. An example of this is showed in the simulation experiment in Sec. [6]

4 The Fair-Greedy Policy

If Proposition [3.1] holds, then there is no arm with relative rank always strictly worse than the others
and any learned policy with sub-linear fair pseudo-regret will select all arms with equal probability
in the limit when the number of rounds goes to infinity. Hence, using confidence intervals will not
help in decreasing the probability that one arm is selected. Furthermore, estimating the relative ranks
{Fa({p*, Xt.a)) | is challenging, since they are not directly observed and using the past noisy
rewards {r; q, }5_1 to construct the empirical CDF for each group, similarly to [23], can be inaccurate

due to the presence of noise.

For the reasons above, we propose the greedy approach in Alg. [T} which uses the following two-stage
procedure at each round ¢. First it assembles the previously selected contexts and corresponding
rewards from iterate 1 up to ¢ = | (¢ — 1)/2] (line |4) in order to construct an estimate j; of p*
(line [5)), which is a noisy version of the ridge regression estimate. Secondly, for each arm a, our
policy computes an estimate of the relative rank F, ((u*, X;.4)), namely F o ({17, X)), which is
the empirical CDF value of {u7, X; o) and is constructed using y7 and the contexts from round £ + 1
up to ¢ (line[6)). Lastly, it selects a; uniformly at random among the arms maximizing the relative
rank estimate (line [7).

’E.g. X, cannot be sum of random variables that are independent and absolutely continuous in orthogonal
subspaces of R%.



Algorithm 1 Fair-Greedy

1: Requires regularization parameter A > 0 and noise magnitude p € (0,1] .

2. fort=1...Tdo

3: Receive contexts { Xy , X

4 Sett=[(t=1)/2), Xip= Ko X)) i = (a5,

5 If £ = 0 set u; = 0, else let V; := X1 X, ; + Mg, generate 7; ~ N(0,14) and compute

= Vit X g + dij/i V-
6: For each a € [K] compute
t—1
Frallnp X)) = (E=1=07" > 1{{pp Xoa) < (15 Xr0)}
s=i+1
7: Sample action

a; ~ M[argmaxﬁt7a(<ug, Xt)am )
a€[K]

8: Observe noisy reward 1 o, = (i, X¢.0,) + M-
9: end for

Fair-Greedy has two hyperparameters A and p, although the latter can be set arbitrarily small without
affecting the regret. Moreover, it is greedy as at each time ¢, it always selects from the arms the one
with the highest currently estimated relative rank. However, contrary to standard greedy approaches
in bandits, Fair-Greedy does not require an initial exploration phase because it naturally explores all
arms, as the following lemma and remark show.

Lemma 4.1 (Fair-Greedy satisfies information averaged demographic parity). Let a; be the action
taken by Fair-Greedy at time t and let Assumption|[A|be satisfied. Then, for all t > 1 we have

1

Pla; =a) = e 3)

and hence p; T B, # 0 almost surely. Combining this with Assumption E we obtain that (p7, X,)
is also absolutely continuous (see LemmalA.T). Moreover, thanks to Assumption [AJii}(iiD)] we can
show that the random variables in {F; o ({7, X¢.0))} X, are i.i.d. when conditioned on y;. Note that
a+ is sampled uniformly form the argmax of i.i.d. random variables, when conditioned on pz, which
implies P(a; = a| ;) = 1/K. The statement follows by taking the expectation over p;. O

Proof sketch ( proof in Appendix|[B). The noise term in £; ensures that y; is absolutely continuous

Remark 4.1. It is easy to verify (through Lemmad.1)) that at any number of rounds T, the Fair-Greedy
policy selects in expectation T/ K candidates from every group, i.e. E[Zthl 1{a; =a}] = %for
every a € [K]. This also holds for the GMF policy and the one selecting arms uniformly at random.

Since P(a; = a) = Ey,_,[P(ar = a|Hi—1)], with H;_; being the information available to
the policy before making a decision at round ¢, we call the property in (3) information-averaged
demographic parity, which is weaker than history-agnostic demographic parity (in (Z)). However, our
analysis still requires a lower bound on P(a; = a | H;_,) which is presented in the next section.

Remark 4.2 (Computational cost of Fair-Greedy). Compared to common linear contextual bandits
approaches based on ridge regression, Alg.[I|has an higher computatlonal and memory cost which
grow linearly with t. |17 requires us to compute the product of V~ and X #1:5> which can be stored

using d* and d values respectively and updated online ( wa sherman -morrison [17|]). However, Alg. I

also requires, at each round t, to keep in memory K (t — 1 —t) d-dimensional contexts and to compute
the same number of scalar products to construct the empmcal CDF for all K groups.



5 Regret Analysis

In this section we present the analysis leading to the high probability O(K*® + v/dT) upper bound
on the fair pseudo-regret of the greedy policy in Alg.[TI] We start by showing two key properties of
CDF functions in the following lemma (proof in Appendix [C.IJ). Recall that for a continuous random
variable Z we denote by f the associated probability density function (PDF).

Lemma 5.1. Let Assumption |A(iv)|hold and setVa € K|, Z, := (u*, X,) so that F, = Fz, and
M := max,e (k] zer fz,(2) < 400 as the maximum PDF value of the rewards of all groups. Then,
the following two statements are true.

(1) Fq is Lipschitz continuous for every a € [K), and in particular for any r,r’ € R we have
sup |Fo(r) — Fo(r')| < M|r — '] .
a€[K]

(ii) Foreverya € [K], let u € RY, Zy = (u, X o). Then we have

sup | Fa(r) — Fz, (r)| < 2M||p" — pll[|2maxll«
a€[K],reR

for any norm ||-|| with dual norm |||, where ||Zmax ||« 1= SUPzeux_ supp(x,)lZl« and
Supp(X,) is the support of the random variable X, .

Lemma 5. I[D)|bounds the Lipschitz constant of 7, and its derivation is straightforward. Lemma 5. I[iD)|
is needed since we only have access to an estimate of p*, which will take the role of u. Its
derivation is more subtle and could be of independent interest. By using Lemma [5.1] and the
Dvoretzky—Kiefer—Wolfowitz-Massart (DKWM) inequality [15/30]] to bound the gap between CDF
and empirical CDF, we obtain the following result.

Lemma 5.2 (Instant regret bound). Let Assumption[A(ii1){iv)| hold and a; to be generated by Alg.
Then with probability at least 1 — § /4, for all t such that 3 < t < T we have

* * « log(8K'T/4)
]'—a;‘(<ﬂ aXt,a§f>) — Fa, ((p aXt,az>) <6M||p* — ﬂt’”VngmaXHthl +2 -1

where meaxuvf—l = Supmeu(}lesupp(Xg)||xHVf_1'

Proof. Let Z; = (g, Xa,), Zf = (g, Xar) and Fz,, Fz: be their CDF conditioned on yz, a;,
and a;. Let also Ring(t) := Fur ({0, Xt,az)) — Fa, ({1, Xt,a,)) - Then we can write
Rina(t) = Fay (0" Xtaz) = Fay (5 Xt.az)) + Far (s Xeap)) = Fzp (5 Xt.ap))
() (I
+ Tz (s Xvap)) = Froar (s Xeap)) + Froar (1, Xta1)) = Froan (1 Xta,)
(111) av)
+ ﬁt,at(</‘t"vXt,at>) = Fz, (15> Xt.a,)) + Fz, (i Xtoar)) — Fa, (g Xtoar)
V) (VD)
+ Fa, ({15, Xt,a,)) = Fa, (07, Xt a,)
(VID)

Since a is chosen greedily in Alg.[]] we have (IV) < 0. Then, applying Lemma [5.1(i)} Cauchy-
Schwarz and || Xy, 4[|« < ||Zmax]||« for (I) and (VII) and Lemma 5. Ii(ii)| for (II) and (VI), we obtain

M+ (VID < 2M|[p" = pillllzmax]l« »  AD+ (VD < AM [ — pglll|zmax[« -

By noticing that F; ,(-) is the empirical CDF of the random variable (7, X,,) conditioned to y7, we
can bound (III) and (V) directly using the DKWM inequality (see Lemma|[C.), which gives that with
probability at least 1 — §/4 and for all ¢ such that 3 < ¢ < T we have

log(8KT/d
() + (V) < 2 % .
We conclude the proof by combining the previous bounds and setting ||-|| = [|-[|v; - O



We proceed by controlling the term || — piz|v; meaXHVt__l in Lemma|5.2| The quantity ||z — uz||v;
can be bounded using the OFUL confidence bounds [[1, Theorem 2], since the noise term in p;
decreases at an appropriate rate. Controlling ||Zmax||,~1 requires instead different results than the
t
ones in ], since it depends on the distributions of { X, }X ; and not only on previous contexts and
rewards. Hence, to provide an upper bound for ||#max||\,—1 Which decreases with ¢, we also rely on
t

Assumption and the structure of Alg. [I] which enable the following history-agnostic lower
bound on the probability of selecting one arm.

Proposition 5.1. Let Assumption E| hold, a; be generated by Alg. |l|and ¢ € [0,1). Then with
probability at least 1 — §/4, for all a € K] and all t > 3 + 81log®/? (5Ke/d)/(1— %)3 we have

_ C
Plac=alH, 1) 2 5

where we recall that Hy = U'_) {{Xi .o} 1,70, ai )

Proof sketch (proof in Appendix[C.2). Forany a € [K],let7, = (i, X¢,q4) be the estimated reward
for arm « at round ¢, denote with F7, . the CDF of 7 , conditioned on pz, and let

¢t,a = ]:ft,a (’f't,a) 3 and qgt,a = ﬁt,a(ft,a) 3

where ﬁt’a(ﬂ,a) is defined in line|§|0f Alg. |1} Now, by the definition of a (lineof Alg. , we have
K1
Play=a|M; )= —Bla € GGl =m[H,_,) ,

m=1

where we introduced C; := argmax,c g g{)tﬁa. Let ¢; > 0 and continue the analysis conditioning on

the events where sup,, ¢ |bt.0 — <;A$M| < €. Then, we can write

Pla; = a|H,_y) = P(bra > bra, Va' #a|H ) > P(dra > bt + 2, Ya' #alH_y) ,

where in the first inequality we considered the case when a € C; and |C;| = 1, and in the second
inequality we considered the worst case scenario where ¢;, = ¢r.q — € and ¢y o = Pr or + €.
Assumption [A(iv)| and the additive noise in p; imply that (17, X,) is an absolutely continuous
random variable for each a € [K, which yields that {¢; 4 }4e[k] is uniformly distributed on [0, 1].
Furthermore, {¢¢ o } o[k are also independent due to Assumption Thus we have

— - ! K-1 _ ! K—1 o (1 — 2€t)K
Bla=al M 1) > [ Pl <p—20) " du= [ (ue2eptap= L2200
0 2

€t

Finally, thanks to Assumption [A[iD)] we can invoke the DKWM inequality to appropriately bound e,
in high probability for all ¢ sufficiently large. O

The property in Proposition [5.1] guarantees that, for sufficiently large ¢, the policy can get arbitrarily
close to satisfy history-agnostic demographic parity in (3). In particular this allows us to control
|#max||;—1 by using a standard matrix concentration inequality 33, Theorem 3.1] on a special

decomposition of V7, thereby enabling the following result (proof in Appendix [C3).

Lemma 5.3. Let Assumption E| hold, a; be generated by Alg. |I, 7, = 32K° log?’/2 (5K 6/5),
)\rijf(;) log(%d) and T = 4max(71,72) + 3. Then, with probability at least 1 — %, for all
t > 7 we have

T —

8L
() -t

= = willv; el < (b /dTog(8 + At max(L2/A, 1)) + A [l ]

min

where by = A\ +R+L, % := K~! Zle E[X. X, | and X}, () is its smallest nonzero eigenvalue.

Finally we obtain the desired high probability regret bound by combining Lemma[5.2] with Lemma[5.3]
and summing over the 7" rounds (see Appendix [C.4]for a proof).
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Figure 1: Simulation Results. First image is a density plot of the reward distributions while the second and
third plot show the standard and fair pseudo-regrets, with mean (solid lines) + standard deviation (shaded region)
over 10 runs. To approximate the true reward CDF for each group we use the empirical CDF with 107 samples.

Theorem 1. Let Assumption[A|lhold and a; be generated by Alg.[I} Then, with probability at least
1 =29, forany T > 1 we have

Ri(T) SM [(A% + R+ L)\/dT log((8 + 4T max(L2/\, 1))/6) + VAT || u* ||2}
)\1’-‘;1111(2)
48 Tlog(8KT/9)

+7,
3
with T defined in Lemma Hence Rp(T) = O(K31og®*(K /) + \/dT log(KT}5)).

The regret bound in Thm. has two terms. The O(K3 log®?(K)) term describes the rounds needed
to satisfy Propositionwith ¢ = 1/2. The remaining part, which is of order O(y/dT log(KT)) is
instead associated to the convergence of the empirical CDF and to the bandit performance. Indeed, it
recalls the standard regret bound holding for finite-action linear contextual bandits [, 12} [26].

6 Simulation with Diverse Reward Distributions

We present an illustrative proof of concept experiment which simulates groups with diverse reward
distributions. We set K = 4, n; = 2&;, where &; has standard normal distribution, X, = B,Y, + ¢,
where each coordinate of Y, € R* is an independent sample from the uniform distribution on [0, 1],
B, € RAK+1x4 s quch that X, contains Y, starting from the 4a-th coordinate and ¢, has all the
coordinates set to zero except for the last which is set to 3a to simulate a group bias. In this setup
u* acts differently on each group, in particular, we note that ;1 € R**1 has its last coordinate
multiplying the group bias in ¢4, which we set to 1, and 4 group-specific coordinates, which we set to
manually picked values between 0 and 9. Results are shown in Fig. |1} where we compare our greedy
policy in Alg.[T]with OFUL [1], both with regularization parameter set to 0.1, and with the Uniform
Random policy. We observe that, as expected from our analysis, our policy achieves sublinear fair
pseudo-regret, while also having better-than random, although linear, standard regret. Additional
details and an experiment on US census data with gender as the sensitive group are in Appendix [D]

7 Multiple Candidates for Each Group

In this section, we analyze the more realistic case where contexts from a given arm do not necessarily
belong to the same group. The complete analysis is presented in Appendlx@ In particular, we assume
that at each round ¢, the agent receives {(X¢ q, St.q) } 2 . which are K i.i.d. random variables where
1,4 € [G] is the sensitive group of the context X, , € R< and G is the total number of groups. This
setting can model for example a hiring scenario where at each round the employer has to choose
among candidates belonging to different ethnic groups, some of which are minorities and hence have
a small probability P(s; , = 7) of being in the pool of received candidates. By naturally adapting
the definition of fair-regret Rg(T), the Fair-Greedy policy and Assumptionto this setting, with
probability 1 — § we obtain the following regret bound (see Cor. [E.I|in Appendix [E).

[ Glog(GT/8)  (KG)*?1log®*(G/5) dT log (GT/6)
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Figure 2: US Census Results. Group = Ethnicity. First image shows mean (colored bars) and std (thinner
black bars), while the other two show the mean (solid lines) & standard deviation (shaded region) over 10 runs.
To compute the reward CDF for each group we use the empirical CDF on 5K samples from D2. Percentage of
selected groups is computed by dividing the number of candidates of a given group selected by the policy by the
total number of candidates of that group received by the agent. GX with X € {1,...,6}, stands for group X.

where guin = min;e(g) P(s¢,q = )G, so that ¢min, = 1 if and only if each group has equal probability
of being sampled and gmin > 0 without loss of generality. (@) is similar to Thm. [T} having the same
dependency on § and 7" but an improved dependency on the number of arms K when K > G, since
contexts from all arms can be used to estimate the CDF of each group. The first term in (@) comes
from the application of the Chernoff bound to lower bound the number of candidates in each group
received by the agent, which is now random.

US Census experiments. Group = Ethnicity. We test this setting in practice by simulating the
hiring scenario discussed above with data from the US Census containing the income and other useful
indicators of several individuals in the United States. This data is accessed via the FolkTables library
[13]. In particular, at each round, we sample K = 10 candidates at random from the population
containing the G = 6 largest ethnic groups’} the reward is a previously computed linear estimate of
the income, while the noisy reward is the true reward plus some small gaussian noise. We compare
the Fair-Greedy Policy with OFUL [[L], Greedy (selects the candidate with the best estimated reward)
and Uniform Random in Fig.[2] Similarly to the synthetic experiment in Sec. [6] the Fair-greedy
policy achieves the best fair pseudo-regret and standard regret better than Uniform Random. Note
that Greedy outperforms OFUL, which is too conservative in this scenario. Furthermore, the Fair-
Greedy policy selects approximately the same percentage of candidates from each group, similarly to
Uniform Random, while OFUL and Greedy select smaller percentages from G2, G3, G5 and G6. In
Appendix [E-T| we provide more details and a comparison with two oracle fair policies which shows
that knowing p* plays a more important role than knowing the true reward CDFs of each group.

8 Conclusions and Future Work

We introduced the concept of group meritocratic fairness in linear contextual bandits, which states
that a fair policy should select, at each round, the candidate with the highest relative rank in the pool.
This allows us to compare candidates coming from different sensitive groups, but it is hard to satisfy
since the relative rank is not directly observed and depends on both the underlying reward model
and on the rewards distribution for each group. After defining an appropriate fair pseudo-regret we
analyzed a greedy policy and proved that its fair pseudo-regret is sublinear with high probability.

This result was possible since we restricted the analysis to the case where the contexts of different
groups are independent random variables and the rewards are absolutely continuous. Relaxing these
assumptions is a challenging avenue for future work. In particular, without the independence of
contexts across arms, different approaches relying on confidence intervals might be necessary. Other
two interesting directions are (i) to study the optimality of the proposed results and establishing lower
bounds for any algorithm which minimises the fair pseudo-regret and (ii) to design a learning policy
which aims at achieving a tradeoff between group meritocratic fairness and reward maximization.

Acknowledgments. This work was supported in part by the EU Projects ELISE and ELSA.

*We remove groups with less than 5K individuals to compute accurately the true CDFs for the fair regret.
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