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Abstract

Large Language Models (LLMs) have demon-001
strated a remarkable potential in medical knowl-002
edge acquisition and question-answering. How-003
ever, LLMs can potentially hallucinate and004
yield factually incorrect outcomes, even with005
domain-specific pretraining. Previously, re-006
trieval augmented generation (RAG) has lim-007
ited success in addressing hallucinations. Un-008
like previous methods in RAG where the re-009
trieval model was trained separately from the010
LLM, we introduce JMLR (for Jointly trains011
LLM and information Retrieval (IR)) during012
the fine-tuning phase. The synchronized train-013
ing mechanism enhances JMLR’s ability to014
leverage medical knowledge to reason and an-015
swer questions and reduces the demand for016
computational resources. We evaluated JMLR017
on the important medical question answering018
application. Our experimental results demon-019
strate that JMLR-13B (69.2%) outperforms a020
previous state-of-the-art open-source model us-021
ing conventional pre-training and fine-tuning022
Meditron-70B (68.9%) and Llama2-13B with023
RAG (58.3%) on a medical question-answering024
dataset. JMLR-13B (148 GPU hours) also025
trains much faster than Meditron-70B (42630026
GPU hours). Through this work, we provide a027
new and efficient knowledge enhancement tool028
for healthcare, demonstrating the potential of029
integrating IR and LLM training for medical030
question-answering systems 1.031

1 Introduction032

Effective clinical decision-making relies on a log-033

ical diagnostic chain, which requires specialized034

knowledge that isn’t widely accessible, present-035

ing a major healthcare challenge. Large Language036

Models (LLMs) show promise in making this criti-037

cal medical knowledge more accessible (Peng et al.,038

1The code, along with selected retrieval data that can be
made public, is included in the supplementary material and
will be made publicly accessible with CC-BY 4.0 license upon
the paper’s acceptance.

Figure 1: JLMR achieved the highest average accuracy
across the MMLU-Medical, MedMcQA, MedQA, and
Amboss datasets, utilizing only 148 GPU hours.

2023; Yang et al., 2023). Traditionally, LLMs 039

have been developed for general tasks using data 040

from diverse online sources, leading to a lack of 041

high-quality, domain-specific information, espe- 042

cially in medicine (Wornow et al., 2023; Singhal 043

et al., 2022). Previous researches expand medical 044

knowledge by continue training general domain 045

LLMs with domain-specific datasets. (Yunxiang 046

et al., 2023; Zhang et al., 2023; Toma et al., 2023). 047

However, LLMs face the significant challenge of 048

“hallucination”, where models generate plausible 049

but incorrect or unverified information (Ji et al., 050

2023; Bang et al., 2023). Such errors raise serious 051

concerns in healthcare, where precision is imper- 052

ative (Ahmad et al., 2023). Hence, recent works 053

proposed retrieval augmented generation (RAG): 054

they first train a retriever to obtain relevant docu- 055

ments from a general domain corpus based on the 056

input query and then train an LLM to generate a 057

response based on the input query and the retrieved 058

documents (Lewis et al., 2020; Borgeaud et al., 059

2022a; Cheng et al., 2023; Xiong et al., 2024). By 060

retrieving domain specific documents, RAG iden- 061

tifies relevant knowledge and provides contextual 062

grounding for LLMs, thereby alleviating hallucina- 063
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Figure 2: Comparison between different domain adaptation methods: traditional domain pretraining method (left),
RAG (middle), and JMLR (right). JMLR retrieves the documents to reduce the hallucination. Parameters are
updated simultaneously for the retriever and large language models (LLM) models, leading the retriever to know
which domain-specific document is helpful for LLM to give a reasonable answer.

tion issues (Shuster et al., 2021; Zhu et al., 2023).064

Although RAG shows high accuracy in bench-065

marks for open-domain question answering, its ef-066

fectiveness in specific domains is yet in challenge067

because retrievers trained in the general domain068

usually perform worse than those fine-tuned in the069

specific domain (Gao et al., 2023; Zhao et al.,070

2022; Thakur et al., 2021). Fine-tuning retrievers071

requires document-query pairs, which may not be072

readily available for a specific domain. Labeling073

such medical pairs specifically for this purpose in-074

curs additional time and financial costs. Moreover,075

RAG trains retriever and LLM separately. When076

training LLM with a frozen retriever, it gathers077

documents it deems most relevant, which may not078

always align with what the LLM requires to pro-079

duce the correct answer. (Asai et al., 2024; Yoran080

et al., 2023; Rubin et al., 2022)081

To solve these challenges, we introduce Joint082

Medical LLM and Retrieval Training (JMLR), a083

novel approach that synchronizes the training of084

an LLM and retriever. As shown in Figure 2,085

JMLR presents a novel approach compared to the086

traditional pretrain-finetune process. Like RAG,087

JMLR enhances question answering by fetching088

relevant domain-specific documents. This involves089

including each retrieved document in the initial in-090

put question before the LLM’s response attempt,091

thereby augmenting the input to train the LLM for092

answer generation. In addition to RAG, JMLR in-093

troduces a unique mechanism called LLM-Rank 094

loss to train the retriever. This is achieved by eval- 095

uating the improvement in LLM’s performance 096

upon including any candidate retrieved documents. 097

We calculate the log probability of the LLM’s an- 098

swer with each candidate, adopting the negative of 099

these values as the relevance score for each can- 100

didate. When reducing this loss, the retriever is 101

trained to prioritize candidate documents that sig- 102

nificantly aid the LLM. JMLR trains LLM and 103

retriever jointly in the same step and thus improves 104

medical question answering, especially in scenar- 105

ios requiring nuanced understanding and specific 106

information retrieval. 107

To validate the effectiveness of JMLR in terms 108

of reducing computational resource requirements 109

and fully utilizing given knowledge, we designed 110

three experimental setups. These experiments eval- 111

uated whether direct fine-tuning, instead of tradi- 112

tional pretraining, would improve JMLR’s perfor- 113

mance. We utilized external resources, including 114

the MIMIC-IV dataset (Johnson et al., 2020), med- 115

ical textbooks, and diverse medical documents for 116

knowledge expansion. Our JMLR-7B has demon- 117

strated superior results, achieving an impressive 118

62.45% accuracy, outperforming the traditional 119

method’s 53.2% on the medical QA dataset. Fur- 120

thermore, our 13B model (69.2%) surpasses the 121

performance of both the open-source medical LLM 122

(Meditron 70B: 68.9%) and closed-source general 123
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LLM (ChatGPT: 58.5%). Moreover, evaluation by124

both GPT-4 and domain experts supports the supe-125

rior performance of JMLR. We summarize our key126

contributions as follows:127

• We propose a new method that integrates re-128

trieval and LLM training together, resulting129

in JMLR surpassing the state-of-the-art open130

source model.131

• By designing a novel learning objective that132

jointly trains retrieval and LLM, we require133

need for additional human annotation, thereby134

enhancing flexibility in domain or downstream135

task adaptation.136

• When training 7B parameter model with a sin-137

gle Nvidia A100 GPU, our training method de-138

creases the training time required for knowledge139

expansion to just 100 hours. This is a consider-140

able reduction compared to Meditron’s pretrain-141

finetune process, where pretraining alone takes142

588 hours, and finetuning adds an additional 36143

hours.144

2 Problem Formulation & Traditional145

Method146

Given a set of medical questions Q and a set of147

medical documents D containing medical knowl-148

edge, our goal is to construct a language model M149

that can provide accurate answers.150

Formally, for each question qi ∈ Q, there is a151

corresponding correct answer a∗i within a set of152

options Ai, where a∗i ∈ Ai. The model M maps153

each question to a predicted answer:154

âi = M(qi,D; θ)155

where θ represents the parameters of the model.156

Our objective is to find the optimal parameters θ∗157

that minimize the loss function L, which measures158

the discrepancy between the predicted answer âi159

and the correct answer a∗i :160

θ∗ = argmin
θ

|Q|∑
i=1

L(âi, a∗i )161

The loss function can be instantiated as a cross-162

entropy loss for classification tasks, where the num-163

ber of classes is equal to the number of options.164

To solve this problem, previous methods pre-165

trained LLM to learn medical knowledge for a med-166

ical LLM, and then finetuned medical LLM on med-167

ical QA task (Chen et al., 2023b; Wu et al., 2023;168

Yunxiang et al., 2023; Toma et al., 2023). Specif-169

ically, such traditional pretrain-finetune pipeline170

first continued pretraining general domain LLMs 171

on medical documents D with next-token predic- 172

tion loss function, and then finetuned the medical 173

LLMs to select a∗i given question qi and option 174

description with loss function L. 175

3 Joint Medical LLM and Retrieval 176

Training (JMLR) 177

In comparison to traditional method, JMLR did 178

not pretrain LLM on medical documents. In- 179

stead, JMLR selected question-related medical doc- 180

uments as additional context during fine-tuning. 181

Specifically, given a question qi, we trained re- 182

triever to find helpful medical documents from D, 183

which was then used to train LLM to generate the 184

final answer a∗i . 185

3.1 Retriever 186

For information retrieval we used the ColBERT 187

model and the trained weight as the initial model. 188

ColBERT utilizes BERT-based encoders to trans- 189

form both queries and documents into bags of em- 190

beddings. A single BERT model is shared between 191

the query and document encoders, but the inputs 192

are distinguished by appending special tokens: [Q] 193

for queries and [D] for documents. The text is to- 194

kenized for queries into BERT-based WordPiece 195

tokens q0, q1 . . . ql, with the [Q] token placed af- 196

ter BERT’s sequence-start token [CLS]. For doc- 197

uments, ColBERT segments a document d into 198

its constituent tokens d1, d2, . . . dn, to which we 199

prepend BERT’s start token [CLS] followed by 200

our special token [D] that indicates a document 201

sequence. Queries shorter than a predefined num- 202

ber of tokens Nq are padded with BERT’s special 203

[mask] tokens to reach the length Nq, otherwise 204

truncated. The padded sequence of input tokens 205

is then passed through BERT. The resulting em- 206

beddings for queries (Eq) and documents (Ed) are 207

computed as follows: Eq is normalized after being 208

processed through a CNN layer applied to BERT’s 209

output, and Ed undergoes a similar process but 210

includes a filtering step to remove certain embed- 211

dings. 212

Eq := CNN(BERT ([Q]q0q1 . . . ql))

Ed := Filter (CNN (BERT ([D]d0d1 . . . dn)))
213

Sq,d :=
∑

i∈[|Eq |]

max
j∈[|Ed|]

Eqi · ET
dj

214
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3.2 LLM215

The original Llama model supports a maximum of216

4k tokens, which poses a challenge when multiple217

documents are retrieved. To address this, we uti-218

lized the Shifted Sparse Attention (S2-Attn) mecha-219

nism (Chen et al., 2023a), which can be used to pro-220

cess long sequences by mitigating the high memory221

cost and slow processing time associated with stan-222

dard self-attention in LLMs. S2-Attn divides input223

into sequence spans within self-attention modules224

and introduces shifted patterns for inter-span in-225

formation exchange. This extends context length226

efficiently without extra computational costs and227

achieves near-baseline performance. It maintains228

the standard self-attention architecture during infer-229

ence, ensuring compatibility with existing infras-230

tructure and optimizations.231

3.3 JMLR Architecture232

However, Colbert matches queries and documents233

based on the retriever similarity, returning scores234

and documents. To enable the retriever system to235

return documents that are more helpful for provid-236

ing accurate answers to Llama, we constructed the237

JMLR architecture. Let Q be a set of queries, D238

be a corpus of domain specific documents, and A239

be the set of options. Our task is to construct a240

function f parameterized by θ, which maps a ques-241

tion Q ∈ Q and a set of documents D ⊆ D to an242

answer A ∈ A.243

The objective is to simultaneously learn the
optimal parameters θ∗ and ϕ∗ that minimize
the combined loss on the retrieved docu-
ments and the generated answers, formalized as:
(θ∗, ϕ∗) = argminθ,ϕ E(Q,A)∼T [L(fA(Q, fR(Q;ϕ), θ), A)]

where L is a loss function that evaluates the cor-
rectness of the answer and the relevance of the
retrieved documents. The retrieval function fR is
defined by:

fR(Q;ϕ) = arg⊤D⊆D,|D|=krel(Q,D;ϕ)

and the similarity function rel(Q,D;ϕ) scores how244

relevant each document D is to the question Q.245

The combined optimization involves updating
both θ and ϕ through gradient descent to minimize
the expected loss:

∇(θ, ϕ) ∝ ∇θ,ϕL(fA(Q, fR(Q;ϕ), θ), A)

where ∇θ,ϕL denotes the gradient of the loss func-246

tion with respect to both sets of parameters. This247

dual-parameter optimization ensures that the re-248

trieval function is aligned with the needs of the249

answer function, enhancing both the accuracy of 250

the responses and the relevance of the information 251

retrieved. To solve this, JMLR structure employs 252

a rank loss, Lrank, which links the Llama and re- 253

triever systems. Llama’s content quality influences 254

the updating of retriever parameters. If the returned 255

document i reduces Llama’s loss function L̂ more 256

than document j, it indicates that document i is 257

more helpful for answering than document j. In 258

calculating the rank loss, we incorporate the scores 259

generated by the retriever system. However, due to 260

the large variance in scores, we normalize them to 261

obtain Ŝ. The essence of Lrank is that the retriever 262

system’s score rankings should be updated based 263

on the ranking. in L̂. 264

L = Lrank + L(fA(Q, fR(Q;ϕ)), θ, A), 265
266

Lrank := − 1

M

M∑
i=1

I(Li ̸= 0) · Fi, 267

where Fi is calculated as: 268

Fi = I(Li) log(Ci) + (1− I(Li)) log(1− Ci), 269

and Ci represents the contrastive logits: 270

Ci = σ(Ŝqi,dk)− σ(Ŝqi,dj ), 271

with the associated decision-based loss differences: 272

Li = L̂i(y, y
′(x, dj))− L̂j(y, y

′(x, dk)). 273

For JMLR model training, the dataset comprises 274

QA pairs from Amboss and USMLE, with the input 275

being a question and the output being the correct 276

choice, including the reasoning part. The top 7 277

documents with the highest scores are aggregated 278

and fed into the model during the training process. 279

Prior to training, we extracted the top 30 documents 280

based on scores from the retriever. During each it- 281

eration, 30 scores are generated by the retriever, 282

and we perform weighted random sampling based 283

on these scores, with higher scores having a greater 284

probability of selection. This approach ensures that 285

each document inputted into the LLM (Large Lan- 286

guage Model) is dynamic. The LLM will likely 287

encounter different useful guidelines and some that 288

are not useful. This step enhances the LLM’s ro- 289

bustness, helping it discern which knowledge from 290

which documents is useful and which documents 291

are irrelevant. 292

4 Experiment 293

4.1 Dataset 294

Medical document: Data quality is important for 295

pretraining text knowledge into parametric knowl- 296
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edge. Previous work primarily sourced from a297

wide array of medical research articles and clin-298

ical guidelines. Research papers, like those found299

in PubMed, provide foundational and current in-300

formation on healthcare. Clinical guidelines are301

thoroughly designed protocols developed to assist302

clinicians in making decisions given patient medi-303

cal history. Other high-quality medical documents304

to retrieve include medical textbooks.305

Corpus #Doc.
PubMed 23.9M
Textbooks 18
Cancer Care Ontario 87
Center for Disease Control and Prevention 621
Canadian Medical Association 431
International Committee of the Red Cross 49
National Institute for Health and Care Excellence 1.7k
Strategy for Patient-Oriented Research 217
World Health Organization 223
WikiDoc 33k

Table 1: For each medical corpus source, we provide the
number of distinct documents, the approximate articles
across all documents

Medical QA: The MedQA dataset (Jin et al.,306

2021), sourced directly from the official USMLE307

website, included a range of sample questions for308

Step1, Step2CK, and Step3, released between June309

2022 and March 2023. These questions represent310

the complex medical knowledge and ethical sce-311

narios that medical students and practitioners are312

expected to navigate.313

Additionally, Amboss question bank is a com-314

prehensive resource widely used by medical pro-315

fessionals and students. This dataset provided an316

extensive array of Step1, Step2CK, and Step3-type317

questions, further enriching our training material318

with practical and diverse medical scenarios.319

The MedMCQA dataset comprises 194k320

multiple-choice questions from Indian medical en-321

trance exams, covering 2.4k healthcare topics and322

21 medical subjects (Pal et al., 2022).323

MMLU-Medical is selected from the MMLU324

dataset (Hendrycks et al., 2020), focused on nine325

subjects most pertinent to medical and clinical326

knowledge — high school biology, college biology,327

college medicine, professional medicine, medical328

genetics, virology, clinical knowledge, nutrition,329

and anatomy. Since this dataset has no training330

set, we opt to evaluate it using the LLM originally331

trained on MedMCQA.332

We individually apply supervised finetuning on333

each QA dataset and subsequently assess their per-334

formance on the corresponding test sets, unless335

otherwise specified. MedQA and Amboss both 336

offer detailed reasoning traces, such as extensive 337

answers or explanations. 338

4.2 Baselines 339

For comparison with traditional domain pretraining 340

method, we select several public available medical 341

domain pretrained LLMs as baselines: (1) PMC- 342

Llama, a Llama model further pretrained on med- 343

ical research articles from PubMed Central (Wu 344

et al., 2023); (2) Meditron, a LLM pretrained on 345

clinical guidelines and research papers (Chen et al., 346

2023b). 347

To validate the benefit of joint training, we also 348

compare JMLR with its naive version: RAG, which 349

freezes the retriever and fetches the same document 350

given a specific question. 351

4.3 Training Details 352

Both our training process and the conventional fine- 353

tuning approach employ the AdamW optimizer, 354

with β1 = 0.9, β2 = 0.95, and eps = 1 × 10−5. 355

We implement a cosine learning rate schedule, in- 356

corporating a warmup phase that accounts for 10% 357

of the training duration and decays the learning 358

rate to 10% of its peak value. In alignment with 359

the practices outlined in Llama 2-chat (Touvron 360

et al., 2023), our training employs a learning rate 361

of 1 × 10−5, a weight decay factor of 0.1, and 362

manages a batch size of 2. The finetuning phase 363

spans 5 epochs for all iterations. However, we 364

apply a distinct learning rate for ColBERT, set at 365

3e− 5. The optimization strategy for training Col- 366

BERT mirrors that used for Llama 2. Throughout 367

these experiments, we utilize four A100 80 GB 368

GPUs. The total training duration for our method 369

amounts to 25 hours. Additionally, the pretraining 370

phase on medical guidelines takes approximately 371

138 hours, while the finetuning phase is approxi- 372

mately 17 hours on 7B Llama. This comprehensive 373

training approach ensures the effective adaptation 374

and optimization of the model for specific medical 375

applications. 376

5 Main Results 377

As shown in Table 2, our JLMR with 13B parame- 378

ters outperforms previous SOTA open access model 379

Meditron 70B parameters and even closed access 380

model such as ChatGPT. In the following sections, 381

we will explain with a more detailed analysis. 382
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Model Parameter
Open

MedQA Amboss MMLU MedMCQA Average
Access

GPT-4 - No 74.7 82.1 88.4 69.5 78.6
ChatGPT - No 50.2 49.1 69.4 51.0 54.9
Meditron 70B Yes 60.7 76.4 73.6 65.1 68.9
JLMR 13B Yes 62.5 81.2 72.8 65.5 70.5

Table 2: Comparison between JMLR and SOTA open/closed access LLMs.

Model MedQA Amboss MMLU MedMCQA Average

Llama 2 44.0 46.5 56.3 54.4 50.3
PMC-Llama* 42.4 43.7 59.7 57.6 50.8
Meditron* 47.9 50.1 55.6 59.2 53.2
RAG# 54.6 70.7 62.1 62.4 62.5
JLMR# 56.2 68.3 64.3 62.4 62.8

Table 3: The benefit from domain retrieval (#) compared
to domain pretraining (*) on 7B LLMs.

5.1 Domain Retrieval > Domain Pretrain383

Domain retrieval models (both RAG-7B and our384

JMLR-7B) outperform domain pretrained LLMs385

across all medical QA benchmarks as shown in Ta-386

ble 3. In the MedQA and Amboss datasets, where387

JMLR-7B not only outperforms baselines but does388

so with a notable margin, scoring 56.2% in MedQA389

and 71.2% in Amboss. This is particularly signifi-390

cant when compared to Meditron-7B, which scores391

47.9% and 50.1% in these datasets, respectively.392

The trend continues in MMLU-Medical and MedM-393

cQA datasets, JMLR-7B achieved scores of 64.3%394

and 62.4%, respectively, surpassing the scores of395

PMC-Llama-7B (59.7% and 57.6%), and Meditron-396

7B (55.6% and 59.2%). Overall, the results illus-397

trate that the JMLR-7B model, on average, achieves398

about a 14% improvement in performance over its399

closest competitor, Meditron-7B. This highlights400

the effectiveness of our training method and the401

substantial advancements it brings to the field of402

medical benchmarking.403

The enhanced performance of JMLR-7B can be404

partially attributed to its use of Llama-2 as the foun-405

dational model, showcasing significantly higher av-406

erage performance than other pre-trained baselines.407

However, the distinct edge comes from our inte-408

grated training approach that combines retriever409

and LLM. This methodology not only further en-410

hances Llama-2’s performance in medical bench-411

marks but also equips the retriever component with412

the ability to effectively source relevant and ben-413

eficial documents to aid the LLM in answering414

questions. In contrast, ChatGPT, when devoid of415

medical guidelines, has been known to make ba-416

Model MedQA Amboss MMLU MedMCQA Average

RAG-7B 54.6 70.7 62.1 62.4 62.5
JLMR-7B 56.2 68.3 64.3 62.4 62.8
RAG-13B 59.9 76.9 69.9 64.2 67.7
JLMR-13B 62.5 81.2 72.8 65.5 70.5

Table 4: The benefit from jointly training LLM and
retriever.

sic mistakes, such as recommending vaccinations 417

to pregnant women—a practice that contradicts 418

medical norms as documented in Table 6. Our 419

model, with the support of guidelines, avoids such 420

errors. This synergistic approach substantially re- 421

duces the occurrence of hallucinations and bolsters 422

the model’s overall reliability. 423

5.2 Joint Training > RAG 424

During fine-tuning, synchronously updating both 425

the Retriever and LLM yields better results than 426

updating only the LLM. Table 4 shows that JLMR 427

models significantly outperform RAG models. For 428

example, JLMR-13B’s scores (72.8% on MMLU, 429

65.5% on MedMcQA) is far superior to RAG-13B 430

(69.9% on MMLU, 64.2% on MedMcQA). This 431

result suggests that without updating the retriever, 432

the documents retrieved may be relevant to the 433

question but not necessarily helpful to the LLM’s 434

response. Joint training ensures that the retriever 435

learns which documents are beneficial for Llama-2. 436

To evaluate the adaptability of the JLMR re- 437

triever, we further applied retriever to other LLM. 438

Specifically, we employed different retrievers to 439

identify relevant documents, which were then pro- 440

vided to ChatGPT for generating the final answer. 441

The retriever trained with JMLR attained an aver- 442

age accuracy of 57.5%, while the retriever from 443

RAG achieved an accuracy of 56.7%. These re- 444

sults indicate that the JLMR retriever effectively 445

identifies documents that not only support Llama 446

but also aid ChatGPT in selecting the correct an- 447

swers. Interestingly, this experimental outcome 448

aligns with recent studies on weak-to-strong gener- 449

alization (Burns et al., 2023), such as the Aligner (Ji 450

et al., 2024). It appears that training a retrieval mod- 451

ule using a weaker model through the JMLR pro- 452
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Llama-7B Llama-7B-ColBERT FT-Llama-7B FT-Llama-7B-ColBERT JMLR-7B-Seperate JMLR-7B

MedQA 24.98 24.01 44.00 40.60 55.30 56.20
Amboss 17.10 35.90 46.50 45.60 71.00 71.20

Table 5: We conducted an ablation study to verify the necessity of the JMLR training method. We discussed the
retrieval versus no retrieval, and asynchronous training versus joint training. Ultimately, we found that the JMLR
training method significantly outperformed the other approaches.

cess enables it to function as a model-agnostic plug-453

and-play module, which subsequently enhances the454

performance of a stronger model. This suggests a455

promising research direction for future studies.456

5.3 Ablation Study457

To explore the impact of finetuning and information458

retrieval on model performance, we designed the459

following experiments:460

• Test the original Llama 2-7B on MedQA and461

Amboss datasets.462

• Adding a retriever during the inference stage463

to extract documents that assist Llama 2-7B464

in answering questions (Llama-7B+Colbert)465

to investigate the impact of Colbert on Llama-466

7B’s performance.467

• Finetune Llama 2-7B on Amboss and MedQA468

training sets to obtain FT-Llama-7B.469

• Add a retriever during the inference stage470

to extract relevant documents to assist the471

finetuned model in answering questions(FT-472

Llama-7B+ColBERT) to investigate how Col-473

bert affects the finetuned model.474

• Fix the parameters of the retriever and only up-475

dated those of Llama, and then fixed Llama’s476

parameters while updating the retriever’s us-477

ing rank loss to get JMLR-7B-Seperate.478

• Train retriever and Llama together(JMLR-7B)479

to compare with seperate training and ex-480

plore the impact of joint training on enhancing481

model performance.482

Table 5 displays the varied performance of483

models at different stages. We observed that484

Llama-7B+Retriever(24.01% on MedQA, 35.90%485

on Amboss), compared to Llama 2-7B(24.98% on486

MedQA, 17.10% on Amboss), did not improve487

well. This suggests that Llama 2-7B does not uti-488

lize these guidelines effectively, and longer guide-489

lines may even lead to misunderstandings and490

hallucinations. In contrast, FT-Llama-7B(44.0%491

on MedQA, 46.5% on Amboss) significantly im- 492

proved over Llama-7B, indicating that the fine- 493

tuning phase effectively enhanced Llama’s med- 494

ical QA capabilities. However, this phase did not 495

aid in the utilization of medical guidelines. The 496

JMLR-7B-Seperate model, with scores of 55.3% 497

on MedQA and 71.0% on Amboss, outperforms the 498

FT-Llama-7B-ColBERT model(40.6% on MedQA 499

and 46.5% on Amboss), owing to a distinctive fine- 500

tuning approach. Specifically, JMLR-7B-Seperate 501

incorporates medical documents during the fine- 502

tuning phase, enabling the model to utilize medical 503

resources effectively. In contrast, JMLR-7B, which 504

scores 56.2% on MedQA and 71.2% on Amboss, 505

employs a joint training method that facilitates 506

the retrieval of more pertinent medical documents. 507

This enhances the model’s ability to accurately an- 508

swer questions by retrieving cases with similarities 509

in critical aspects such as gender, age, and symp- 510

toms. As evidenced in Table 6, JMLR retrieves 511

closely related cases, allowing it to present similar 512

treatment plans for the model to consider, thereby 513

improving the decision-making process. 514

5.4 Effectiveness of the reasoning ability 515

To verify that our model can accurately answer 516

questions and provide detailed reasoning, we 517

tasked JMLR-13B with generating reasons for its 518

responses to the Amboss and MedQA test sets. 519

Similarly, we had ChatGPT generate correspond- 520

ing reasons. We employed two methods for scoring 521

these reasons: 1) We used GPT-4 to judge which 522

model’s generated reasoning was better based on 523

the ground truth. 2) We engaged three medical 524

professionals to review and assess a sample of 20 525

questions drawn from the test sets. These doctors 526

were asked to judge which model’s reasoning was 527

closer to the actual, clinically accurate reasons. 528

In the assessment using GPT-4, JMLR-13B 529

achieved a win rate of 0.63, while under the evalua- 530

tion of medical professionals, our model attained a 531

win rate of 0.60. These results suggest that simply 532

increasing the model’s parameters is not the most 533

effective way to expand medical knowledge. In- 534

stead, JMLR-13B’s ability to consult different med- 535
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ical guidelines for various questions and to find536

corresponding answers and explanations signifi-537

cantly reduces hallucinations and greatly enhances538

the model’s explanatory power. This achievement539

highlights the model’s proficiency in accessing and540

applying relevant medical information contextually,541

thereby providing more accurate and credible ex-542

planations. The close alignment of the win rates543

from both GPT-4 and medical professionals’ evalu-544

ations further underscores the model’s robustness545

and reliability in medical question-answering and546

reasoning tasks.547

6 Related Work548

Medical Large Language Model Medical549

LLMs have advanced from adapting models like550

BERT with biomedical datasets (Gu et al., 2021;551

Lee et al., 2020) to incorporating knowledge graphs552

(Yasunaga et al., 2022). Subsequently, architec-553

tures such as GPT (Bubeck et al., 2023) and Llama554

(Touvron et al., 2023) were trained on domain-555

specific (Wu et al., 2023; Gema et al., 2023; Yunxi-556

ang et al., 2023; Zhang et al., 2023; Labrak et al.,557

2024) or synthetic data (Tran et al., 2023; Han et al.,558

2023; Kweon et al., 2023). Recent efforts have559

scaled up data and model parameters, resulting in560

GatorTronGPT (Peng et al., 2023) and Clinical-561

Camel (Toma et al., 2023), along with studies on562

Flan-PaLM and PaLM-2’s medical reasoning us-563

ing chain-of-thought (Singhal et al., 2023a,b; Wei564

et al., 2022; Wang et al., 2022). Researchers have565

also introduced Meditron (Chen et al., 2023b), an566

open-source medical LLM suite with 7B and 70B567

parameters, demonstrating superior performance568

against leading benchmarks and comparable results569

to GPT-3.5 and Med-PaLM-2. Despite the model570

size increase, performance gains have plateaued,571

and such expansions have not effectively addressed572

model forgetting (Wang et al., 2023; Luo et al.,573

2023). In response, our study integrates a retriever574

with LLMs during training to tackle this issue, of-575

fering 7B and 13B versions. Our findings show576

that these models exceed traditional pre-trained577

language models in performance metrics, with our578

13B model surpassing even the Meditron 70B.579

Retrieval-Augmented Language Models In the580

clinical domain, LLMs’ factual inaccuracies due to581

gaps in medical knowledge pose significant risks,582

including misdiagnoses (Petroni et al., 2019; Sung583

et al., 2021; Yao et al., 2022; Singhal et al., 2023a).584

Incorporating diverse knowledge repositories into585

LLMs enhances their performance across various 586

NLP tasks, particularly in language modeling (Min 587

et al., 2022). In traditional RAG models, the re- 588

trieval component is static, with updates applied 589

only to the LLM. The process involves using the 590

input as a query to first retrieve a collection of 591

documents from a designated corpus, which the 592

LLM then uses to enhance its predictions (Yu, 593

2022; Izacard et al., 2022). However, integrating 594

retrieved documents does not guarantee effective 595

use of external knowledge. Innovations like At- 596

las (Izacard et al., 2022) and RETRO (Borgeaud 597

et al., 2022b) have modified models to better uti- 598

lize retrieved information, but challenges remain 599

in coherently blending this external data with the 600

LLM’s pre-trained responses. Although some re- 601

searchers have explored unsupervised training of re- 602

trievers to improve document relevancy for LLMs, 603

such as REALM (Guu et al., 2020), REPLUG 604

(Shi et al., 2023), and RA-DIT (Lin et al., 2023), 605

these systems are usually trained independently 606

from LLMs. Our approach innovatively integrates 607

and synchronously trains both the retriever and 608

the LLM, ensuring the retriever supplies more ap- 609

propriate documents, thereby boosting the LLM’s 610

effectiveness. We have validated our method’s su- 611

periority through comparisons with step-by-step 612

training techniques, confirming its enhanced per- 613

formance in seamlessly integrating external knowl- 614

edge. 615

7 Conclusion 616

This study introduces the Joint Medical LLM and 617

Retrieval Training (JMLR), significantly enhancing 618

performance in medical question-answering and 619

reasoning tasks. The JMLR models not only outper- 620

form existing state-of-the-art models in efficiently 621

handling medical resources but also effectively re- 622

duce hallucinations in information generation, im- 623

proving the accuracy and reliability of answers and 624

explanations. Experimental results demonstrate 625

substantial performance improvements across mul- 626

tiple medical benchmark tests, validating the effec- 627

tiveness of integrating retriever and language model 628

training. Furthermore, the reasoning capabilities 629

of the JMLR model have been recognized by both 630

GPT-4 and medical professionals, further confirm- 631

ing its potential and reliability for applications in 632

the medical domain. 633
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8 Limitations and Ethical Considerations634

This study offers valuable insights but also comes635

with several limitations that we would like to high-636

light:637

• Domain Specificity: Our research exclusively638

focuses on the task of medical QA and reason-639

ing. The adaptation of the proposed method640

to other domains remains unexplored. This641

suggests that our approach may need further642

validation and adjustments before being ap-643

plied to different fields.644

• Expertise of Annotators: We relied on 3645

doctors as annotators for human evaluation646

and preference results. While they are qual-647

ified to provide expert medical opinions and648

insights, employing more qualified domain649

experts as annotators would enhance the sta-650

tistical significance of our results. We leave651

this to future work, along with addressing con-652

cerns about fairness, generalizability to other653

domains/languages, and potential biases inher-654

ent in LLMs.655

Privacy Implications Despite significant ad-656

vancements in the performance of medical knowl-657

edge acquisition and question-answering systems,658

privacy protection becomes a paramount concern659

when dealing with sensitive medical data. In par-660

ticular, our model utilizes data from textbooks and661

public guideline.662

Bias Considerations Furthermore, while we663

strive to enhance the model’s performance across664

multiple medical question-answering datasets, we665

must acknowledge that the choice and composition666

of datasets could introduce or exacerbate biases667

within the model. For example, if training data pre-668

dominantly comes from certain geographic loca-669

tions or populations, the model might exhibit biases670

towards medical conditions or treatment methods671

outside those groups. This could limit the fairness672

and effectiveness of the model when applied glob-673

ally. Future research should consider training with674

more diverse and comprehensive datasets to reduce675

potential biases and enhance the model’s universal676

applicability.677

Broader Impacts Our study represents an im-678

portant step forward in advancing AI applications679

in the field of medicine, but its broader societal680

impacts also require careful consideration. In par- 681

ticular, automated medical question-answering sys- 682

tems hold great potential in improving healthcare 683

efficiency and accuracy but could also impact the 684

roles of medical professionals and patient care prac- 685

tices. For instance, reliance on these systems may 686

sometimes reduce direct communication between 687

doctors and patients or might influence physicians’ 688

clinical judgment. Therefore, implementing these 689

technological solutions should be approached with 690

caution, ensuring they serve as a complement, not 691

a replacement, to the toolkit of medical profes- 692

sionals. Moreover, the public’s understanding and 693

acceptance of these systems are crucial for their 694

widespread use, necessitating enhanced education 695

and transparency. 696

In summary, while our research demonstrates 697

the potential of leveraging large language models 698

and information retrieval techniques in medical 699

question-answering systems, close attention must 700

be paid to the ethical considerations of privacy, 701

bias, and broader societal impacts. Future work 702

should aim to address these challenges, ensuring 703

the development and application of these technolo- 704

gies benefit the healthcare system and society as a 705

whole. 706
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A Appendix1024

A.1 Case Study1025

We presented four specific examples to further un-1026

derstand why JLMR outperforms other public mod-1027

els. The first three examples are from the Amboss1028

dataset. Due to privacy concerns with Amboss, we1029

cannot display the complete content of these ques-1030

tions. The last example is from a USMLE question.1031

Our answers for the first two questions are correct,1032

while ChatGPT responded incorrectly. Although1033

both our model and ChatGPT answered the last two1034

questions correctly, there were some differences in1035

the reasoning generated. For the first example, we1036

found that JLMR’s retrieval function could extract1037

similar questions, leading the model to answer in-1038

correctly regarding direction. The retrieved docu-1039

ment served as a background, fully utilizing the pre-1040

viously fine-tuned dataset. In the second example,1041

we noticed that ChatGPT made a common-sense1042

error: vaccination is not recommended for preg-1043

nant women in such cases. Even though ChatGPT1044

has learned far more medical documents than our1045

model by using pretraining or finetuning, it does1046

not mean that the model will apply all medical1047

knowledge correctly, even for some basic medical1048

issues. In the third example, both we and ChatGPT1049

answered correctly, but the reasoning generated by1050

ChatGPT differed significantly from the correct1051

answer’s reasoning: ChatGPT simply stated some1052

facts without providing a logical reason. However,1053

our model gave a more detailed and logical explana-1054

tion of why there are decreased circulating T cells,1055

as JLMR could retrieve related documents, such1056

as some documents about SCID, to better under-1057

stand the underlying principles. The last example1058

differs from the first three, as the highest-scoring1059

document retrieved was from public guideline. The1060

guideline provides a detailed introduction to PCOS1061

and its symptoms, helping the model better explain.1062

In contrast, ChatGPT simply correlated the symp-1063

toms straightforwardly without thoroughly analyz-1064

ing other related symptoms, which can often lead1065

to diagnostic errors, even though it answered this1066

question correctly. Our model, however, performed1067

a comprehensive analysis.1068

A.2 Accuracy Variation with Different1069

Numbers of Documents1070

During training, we set the number of background1071

documents to seven, maintaining this count during1072

the inference phase as well. This quantity is opti-1073

mal, according to our experiments, as illustrated 1074

in the figure 3. We employed the JLMR method 1075

to train the LLM on the MedQA dataset, retriev- 1076

ing varying numbers of documents. The perfor- 1077

mance is at its weakest when only one document 1078

is retrieved; this insufficiency leads to a lack of 1079

adequate medical knowledge for the model. As we 1080

increase the number of retrieved documents, the 1081

model’s performance gradually improves, reach- 1082

ing its peak with seven documents. However, once 1083

this number increases to ten, performance again 1084

declines due to retrieving an excess of irrelevant 1085

documents, which hinders the model’s ability to 1086

answer questions effectively. 1087

Figure 3: The horizontal axis represents the number of
documents retrieved in JLMR, while the vertical axis
shows the accuracy of JLMR tested on the USMLE.

13



1 Q1: A 48-year-old man...
Answer:
ChatGPT:
The correct answer is A) Cerebral edema.
Explanation: This patient presents with symptoms consistent with alcohol withdrawal
syndrome (AWS), which can manifest as seizures (alcohol withdrawal seizures) due to
abrupt cessation or reduction of alcohol intake in a chronic heavy drinker. AWS seizures
typically occur within 48 hours of reducing alcohol intake.
This patient’s laboratory findings are indicative of hyponatremia (low serum sodium), which
is common in severe alcohol withdrawal due to the syndrome of inappropriate antidiuretic
hormone secretion (SIADH). SIADH leads to water retention and dilutional hyponatremia.
The risk of cerebral edema is increased in patients with severe hyponatremia who are rapidly
corrected to normal serum sodium levels. Rapid correction of hyponatremia can lead to
osmotic shifts of water into the brain cells, causing cerebral edema, which may result
in neurological deterioration, seizures, coma, and death. This risk is particularly high in
chronic alcoholics due to adaptive changes in brain osmolytes.
Given the patient’s current status, urgent treatment to normalize serum sodium levels (such
as with hypertonic saline infusion) puts him at increased risk for cerebral edema. Therefore,
careful monitoring and slow correction of hyponatremia are essential in this patient to avoid
this potentially fatal complication.
Our:
This patient’s presentation is consistent with alcohol withdrawal syndrome (AWS), which
is characterized by autonomic hyperactivity, tremulousness, and seizures. AWS can occur
in patients with a history of chronic alcohol use disorder who abruptly stop drinking or
significantly reduce their alcohol intake. The syndrome is thought to be due to the withdrawal
of the inhibitory effects of alcohol on the central nervous system.
The most common complication of AWS is seizures, which can occur within 48 hours
of the last drink. Seizures are often generalized tonic-clonic seizures and can be life-
threatening. Other complications include delirium tremens (DTs), which is characterized
by hallucinations, confusion, and autonomic instability. DTs can also lead to seizures and
death.
The treatment of AWS involves supportive care, including hydration, benzodiazepines,
and possibly antipsychotics. In severe cases, hospitalization may be necessary for close
monitoring and management of complications.
Osmotic myelinolysis (also known as central pontine myelinolysis) is a condition that can
occur in patients with severe hyponatremia (low sodium levels in the blood) who are treated
with rapid correction of their sodium levels. This condition is characterized by demyelination
of the central nervous system, leading to neurologic symptoms such as confusion, seizures,
and coma.
Given the patient’s presentation and history of chronic alcohol use disorder, the most
appropriate treatment is supportive care for AWS, including hydration, benzodiazepines,
and possibly antipsychotics. Rapid correction of his sodium levels is not indicated due to
the risk of osmotic myelinolysis.
Expertise Comment: ChatGPT incorrectly interpreted the patient’s symptoms as primarily
related to Alcohol Withdrawal Syndrome (AWS) without adequately considering the pa-
tient’s laboratory results, particularly the severe hyponatremia (serum sodium 112 mEq/L).
Although seizures can indeed accompany AWS, in this case, the diagnosis and treatment
of hyponatremia should be the primary focus. Moreover, it incorrectly associated the risks
of rapid correction of hyponatremia with cerebral edema. In fact, the main risk of rapidly
correcting hyponatremia is osmotic myelinolysis, not cerebral edema. Osmotic myelinolysis
results from rapid changes in blood osmolarity, leading to damage to the myelin sheath of
brain neurons.
Retrieve: A 48-year-old man is brought to the emergency department by his wife 20 minutes
after she witnessed him vigorously shaking for about 1 minute. During this episode, he
urinated on himself. He feels drowsy and has nausea. He has a history of chronic alcoholism;
he has been drinking 15 beers daily for the past 3 days. Before this time, he drank 8 beers
daily. His last drink was 2 hours ago. He appears lethargic. His vital signs are within normal
limits. Physical and neurologic examinations show no other abnormalities. On mental status
examination, he is confused and not oriented to time. Laboratory studies show: Hematocrit
44.0% Leukocyte count 12,000/mm3 Platelet count 320,000/mm3 Serum Na+ 112 mEq/L
Cl- 75 mEq/L K+ 3.8 mEq/L HCO3- 13 mEq/L Urea nitrogen 6 mEq/L Creatinine 0.6
mg/dL Albumin 2.1 g/dL Glucose 80 mg/dL Urgent treatment for this patient’s current
condition puts him at increased risk for which of the following adverse events?Ä: Cerebral
edema B: Cardiac arrhythmia C: Hyperglycemia D: Osmotic myelinolysis E: Wernicke
encephalopathy Correct Answer: D

Q2: A 27-year-old gravida 2, para 1 comes...
Answer:
ChatGPT:
Based on the clinical presentation described, the most likely diagnosis for this patient is
Rubella (German measles) infection during pregnancy, which can lead to congenital rubella
syndrome (CRS) in the fetus if contracted during the first trimester. The typical symptoms
of rubella include a maculopapular rash starting on the face and spreading downwards, along
with lymphadenopathy and joint swelling.
Given the risk of congenital rubella syndrome to the fetus, the most appropriate next step in
management is:
C) Vaccination
Vaccination against rubella is contraindicated during pregnancy due to the risk of causing
CRS. However, after delivery, the patient should receive the rubella vaccine to prevent future
infections. This will not only protect the patient from future rubella infections but also
prevent the risk of transmitting the virus to others, including vulnerable populations such as
pregnant women.
Options A, D, and E are not appropriate in this scenario. Oral acyclovir therapy (Option
A) is used for herpes simplex virus infections, not rubella. Reassurance and symptomatic
therapy (Option D) may provide comfort but do not address the potential risk to the fetus.
Intravenous immunoglobulin therapy (Option E) is not indicated for rubella infection during
pregnancy. Termination of pregnancy (Option B) is not necessary unless there are severe
fetal abnormalities detected on further evaluation.
Our:
The patient’s history of a rash that started on her face and progressed downwards, along with
the presence of postauricular lymphadenopathy, is suggestive of rubella infection. Rubella
is a highly contagious viral infection that is spread through respiratory droplets or direct
contact with infected secretions. It is characterized by a prodrome of malaise, low-grade
fever, and lymphadenopathy, followed by the appearance of a pink maculopapular rash that
begins on the face and spreads downwards. The rash is usually itchy and lasts for 3-5 days.
Rubella infection during pregnancy, especially during the first trimester, can have serious
consequences for the developing fetus. It can cause congenital rubella syndrome (CRS),
which is characterized by a wide range of birth defects, including cataracts, deafness, heart
defects, and intellectual disability.
The most appropriate next step in management for this patient is termination of pregnancy.
This is because the risk of CRS is high if the fetus is exposed to rubella during the first
trimester, and the risk of birth defects outweighs the potential benefits of continuing the
pregnancy.
Options A, B, C, and E are not appropriate in this case. Acyclovir is used to treat herpes
simplex virus infections, not rubella. Vaccination is not recommended during pregnancy
due to the risk of fetal infection. Reassurance and symptomatic therapy are not sufficient to
prevent the risk of CRS. Intravenous immunoglobulin therapy is not indicated for rubella
infection during pregnancy.
Expertise Comment: ChatGPT made a made a basic error; it’s not appropriate to vaccinate
during pregnancy.

Table 6: Case Study For Retrieval Documents

1 Q3: A 27-year-old woman presents to the office with concerns about her long struggle
with her physical appearance since adolescence. She says she has always been l̈argeänd
was constantly targeted by her classmates and coworkers for being so. Her main
concern at the moment is her acne and unwanted facial hair on her upper lip, for
which she often visits a local spa. She has tried numerous diet plans, exercise regimens,
and cosmetic products with little to no effect. Recently, she underwent a glucose
tolerance test that showed a plasma glucose level of 160 mg/dL (8.9 mmol/L) after 2
hours of a 75 g dose of oral glucose. She has a family history of type 2 diabetes mellitus
and a menstrual cycle that occurs every 45 days. Her pulse is 72/min and the blood
pressure is 138/80 mm Hg. On physical examination, her height is 160 cm (5 ft 3 in)
and her weight is 85 kg (187 lb), and she has severe inflammatory acne over the cheeks
and forehead and dark coarse hairs on the back. What is the most likely diagnosis
of this patient? A: Hypothyroidism B: Idiopathic hirsutism C: Cushing’s disease D:
Polycystic ovarian syndrome (PCOS) E: Ovarian hyperthecosis
Answer:
ChatGPT:
The most likely diagnosis for this patient is: D: Polycystic ovarian syndrome (PCOS)
PCOS is a common endocrine disorder in women of reproductive age, characterized by
hyperandrogenism, irregular menstrual cycles, and polycystic ovaries on ultrasound. The
clinical features seen in this patient, including acne, unwanted facial hair (hirsutism),
obesity, irregular menstrual cycles, and a family history of type 2 diabetes mellitus, are
all consistent with PCOS. Other options: A: Hypothyroidism - While hypothyroidism can
present with weight gain and menstrual irregularities, it is less likely given the presence
of hirsutism and obesity in this patient. B: Idiopathic hirsutism - This is unlikely as
idiopathic hirsutism typically presents with hirsutism without other features of PCOS such
as irregular menstrual cycles and obesity. C: Cushing’s disease - While Cushing’s disease
can present with weight gain and hirsutism, it is less likely in this patient as there are no
signs of hypercortisolism such as central obesity, buffalo hump, or purple striae. E: Ovarian
hyperthecosis - This is a rare condition characterized by luteinization of ovarian stromal
cells leading to hyperandrogenism. However, PCOS is a more common cause of hirsutism
and irregular menstrual cycles in young women.

Our:
The patient’s history of being "large" since adolescence, a family history of type 2 dia-
betes mellitus, and a menstrual cycle that occurs every 45 days, along with her physical
examination findings of severe inflammatory acne over the cheeks and forehead and dark
coarse hairs on the back, are suggestive of polycystic ovary syndrome (PCOS). PCOS is a
common endocrine disorder among women of reproductive age and is characterized by hy-
perandrogenism, chronic anovulation, and polycystic ovaries on ultrasound. The condition
is associated with insulin resistance, which can lead to hyperglycemia and impaired glucose
tolerance, as seen in this patient’s glucose tolerance test.
The other options listed are not as likely given the patient’s presentation:
A: Hypothyroidism is characterized by a slowing of metabolic processes, including growth
and development, and is not associated with the symptoms or findings seen in this patient.
B: Idiopathic hirsutism is a condition characterized by excessive hair growth in women,
often on the face, chest, and back, but it does not typically present with the other symptoms
or findings seen in this patient.
C: Cushing’s disease is a condition caused by excessive production of cortisol, which can
lead to weight gain, central obesity, and facial rounding, but it does not typically present
with the other symptoms or findings seen in this patient.
D: Polycystic ovarian syndrome (PCOS) is a common endocrine disorder among women
of reproductive age and is characterized by hyperandrogenism, chronic anovulation, and
polycystic ovaries on ultrasound. The condition is associated with insulin resistance, which
can lead to hyperglycemia and impaired glucose tolerance, as seen in this patient’s glucose
tolerance test.
E: Ovarian hyperthecosis is a condition characterized by excessive production of androgens
by the ovaries, which can lead to hirsutism and acne, but it does not typically present with
the other symptoms or findings seen in this patient.

Expertise Comment: Our explanation is slightly more detailed in terms of linking the pa-
tient’s specific symptoms to the characteristics of PCOS and explaining why other diagnoses
are less likely. It provides a more comprehensive understanding of PCOS and its relation to
the patient’s symptoms and test results. On the other hand, ChatGPT offers a more concise
but still accurate diagnosis.
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1 Q4: A 1-year-old girl is brought to the physician...
Answer:
ChatGPT:
Given the clinical presentation and findings described, this patient is most likely suffering
from severe combined immunodeficiency (SCID), which is characterized by a deficiency in
both T and B lymphocytes. The additional finding most likely to be present in this patient
with SCID is: D) Decreased circulating T cells SCID is a primary immunodeficiency disorder
characterized by profound defects in both cellular and humoral immunity. Patients with
SCID typically have absent or markedly reduced T cell counts, as T cell development and
function are severely impaired. This deficiency in T cells predisposes patients to recurrent,
severe, and often life-threatening infections. While B cells may also be affected in SCID, the
absence of T cells is the primary hallmark of the disease. Therefore, decreased circulating T
cells (Option D) would be the most likely additional finding in this patient. Other options
such as increased circulating IgE (Option B) or increased circulating neutrophils (Option F)
are less specific to SCID and could be seen in a variety of other conditions.
Our:
Correct Answer: D Decreased circulating T cells
This patient’s severe combined immunodeficiency (SCID) is most likely due to an autosomal
recessive adenosine deaminase deficiency (the second most common cause of SCID),
which results in disrupted purine metabolism and accumulation of metabolites (including
deoxyadenosine and dATP) that are toxic to maturing lymphocytes. Accumulation of dATP
also inhibits the function of ribonucleotide reductase, which is essential for the generation
of deoxynucleotides, thereby impairing the proliferation of lymphocytes. These effects on
lymphocytes proliferation and maturation lead to a decreased number of circulating T cells,
B cells, and NK cells, resulting in both cellular and humoral immunodeficiency. Clinically,
patients with SCID have no tonsils, no palpable lymph nodes, and a rudimentary thymus. In
contrast, X-linked SCID (the most common variant) is caused by a defect in the IL-2 receptor,
which is required for T-cell proliferation. Thus, X-linked SCID manifests with a decrease in
circulating T cells and a normal number of B cells. Congenital immunodeficiency disorders
Decreased levels of circulating parathyroid hormone in association with immunodeficiency
can be seen in patients with DiGeorge syndrome. This syndrome also manifests with thymic
hypoplasia and, possibly, the absence of tonsils. However, other features of CATCH-22 (e.g.,
congenital heart disease, dysmorphic facial features, hypocalcemia) would also be expected.
Increased deoxyadenosine concentration in both the serum and urine and absent tonsils
are not associated with DiGeorge syndrome. Increased circulating IgE levels can be seen
in patients with Job syndrome, which is an immunodeficiency characterized by impaired
neutrophil recruitment to the site of infection. Further manifestations would typically
include coarse facial features, eosinophilia, severe eczema, and recurrent abscess formation.
Increased deoxyadenosine concentration in both the serum and urine, absent tonsils, and an
absent thymus shadow on x-ray are not associated with Job syndrome. Circulating B cells are
decreased (not increased) in SCID due to adenosine deaminase deficiency and in X-linked
agammaglobulinemia, an immunodeficiency characterized by a defective Bruton tyrosine
kinase gene. Although X-linked agammaglobulinemia can also present with recurrent,
severe pyogenic infections beginning > 4–6 months after birth, it is extremely rare in girls
given its mode of inheritance. Absent thymic shadow, tonsillar hypoplasia, and elevated
deoxyadenosine levels are also not consistent with this diagnosis. In X-linked SCID (the
most common variant), the number of circulating B cells is normal. This patient’s severe
combined immunodeficiency (SCID) is most likely due to an autosomal recessive adenosine
deaminase deficiency (the second most common cause of SCID), which results in disrupted
purine metabolism and accumulation of metabolites (including deoxyadenosine and dATP)
that are toxic to maturing lymphocytes. Accumulation of dATP also inhibits the function of
ribonucleotide reductase, which is essential for the generation of deoxynucleotides, thereby
impairing the proliferation of lymphocytes. These effects on lymphocytes proliferation and
maturation lead to a decreased number of circulating T cells, B cells, and NK cells, resulting
in both cellular and humoral immunodeficiency. Clinically, patients with SCID have no
tonsils, no palpable lymph nodes, and a rudimentary thymus. In contrast, X-linked SCID
(the most common variant) is caused by a defect in the IL-2 receptor, which is required for T
Expertise Comment: ChatGPT’s explanation of the pathology is unclear, such as the
specific type of SCID (Severe Combined Immunodeficiency caused by adenosine deaminase
deficiency) and how this condition affects the proliferation and maturation of lymphocytes,
leading to a reduced number of T cells.
Retrieve: ...The treatment for mild to moderate cases is mainly supportive, with early
treatment of infections and prophylaxis with trimethoprim-sulfamethoxazole if needed,
but severe cases require definitive therapy with hematopoietic stem cell transplantation.
Congenital immunodeficiency disorders A defect in the interleukin-2 receptor subunit
gamma gene (IL2RG) is the most common mutation associated with severe combined
immunodeficiency (SCID), which can manifest soon after birth with recurrent episodes
of otitis media, candidiasis, and sepsis. However, patients would also typically show
failure to thrive and have a history of chronic diarrhea. A CBC, moreover, would reveal a
low absolute lymphocyte count (< 1000/mm3). Delayed umbilical cord separation would
not be expected. A defect in Bruton tyrosine kinase (BTK) is responsible for X-linked
agammaglobulinemia (XLA), which may result in recurrent otitis media from infection with
extracellular bacteria such as S. pneumoniae and H. influenzae. However, infants with B-cell
defects such as XLA typically do not develop symptoms before 32̆0136 months because they
generally retain passively acquired maternal antibodies up to this age. Delayed umbilical
cord separation would also not be expected. Moreover, candidiasis is more commonly seen
in defects involving T cells and granulocytes than in isolated primary defects of antibody
production such as XLA. Defective NADPH oxidase results in chronic granulomatous
disease (CGD), which may manifest in infancy with candidiasis (since C. albicans is
catalase-positive) and neutrophilia during episodes of infection. However, these infections
tend to remain localized, and sepsis is not as common as in other primary immune deficiency
syndromes. Other pathognomonic features of CGD include GI obstruction and urinary
retention caused by granulomas. Delayed umbilical cord separation would not be expected.
Defective microtubules due to a loss of function of the lysosomal trafficking regulator gene
(LYST) is the underlying pathophysiology of Chediak-Higashi syndrome (CHS), which can
result in systemic candidiasis. However, patients with CHS would have neutropenia, not
neutrophilia. Features such as oculocutaneous albinism and/or ocular motility disorders
(e.g., strabismus, nystagmus) would also be present. Delayed umbilical cord separation
would not be expected. A defectively organized actin cytoskeleton due to a mutation in
the WAS gene is the underlying cause of Wiskott-Aldrich syndrome (WAS), which can
manifest in infancy with recurrent otitis media as well as scaly erythematous lesions in the
diaper area due to atopic dermatitis. However, the absence of thrombocytopenia on a CBC
essentially rules out WAS. Delayed umbilical cord separation would also not be expected...
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MMLU MedMCQA MedQA Amboss Average

Non Corpus

PMC-Llama-7B 59.7 57.6 42.4 43.7 50.9
Llama 2-7B 56.3 54.4 44.0 46.5 50.3
Meditron-7B 55.6 59.2 47.9 50.1 53.2
ChatGPT 69.4 51.0 50.2 49.1 54.9
Meditron70B 73.6 65.1 60.7 76.4 68.9

Open Guidelines

RAG-7B 63.8 62.1 47.3 50.7 55.9
RAG-13B 69.8 63.4 56.8 60.7 62.7
RAG-ChatGPT 68.9 55.2 53.3 49.3 56.7
JLMR-7B 65.3 64.1 51.3 68.3 62.3
JLMR-13B 70.1 64.5 59.5 79.6 68.4

All Corpus

RAG-7B 62.1 62.4 54.6 70.7 62.5
RAG-13B 69.9 64.2 59.9 76.9 67.7
JLMR-ChatGPT 70.1 55.3 54.3 50.1 57.5
JLMR-7B 64.3 62.4 56.2 71.2 63.5
JLMR-13B 72.8 65.5 62.5 81.2 70.5

MedRAG Corpus MedRAG-ChatGPT 75.5 58.0 53.6 48.8 59.0

Table 7: Since Meditron-70B has already been tested on MedQA, we are directly using its results (Chen et al.,
2023b). For ChatGPT, we utilized the API of GPT-3.5-turbo to conduct tests on both MedQA and Amboss datasets.
For RAG-7B and RAG-13B, we employed the same medical guidelines and medical QA bank that we used with
JLMR.
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