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Abstract
Raman spectroscopy is widely used across science
and industry to characterize the chemical compo-
sition of samples in a nondestructive, label-free
manner. Many applications entail the unmixing
of signals from mixtures of molecular species to
identify the individual components present and
their proportions, yet conventional methods for
chemometrics often struggle with complex mix-
ture scenarios encountered in practice. Here, we
develop hyperspectral unmixing algorithms for
Raman spectroscopy based on autoencoder neural
networks, which we systematically validate using
synthetic and experimental benchmark datasets
created in-house. Our results demonstrate that un-
mixing autoencoders provide improved accuracy,
robustness and efficiency compared to standard
unmixing methods. We also showcase the appli-
cability of autoencoders to complex biological
settings by showing improved biochemical char-
acterization of volumetric Raman imaging data
from a human leukemia monocytic cell.

1. Introduction
Raman spectroscopy (RS) is a powerful optical modality
that facilitates the identification, characterization and quan-
tification of the molecular composition of chemical and bio-
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logical specimens, offering in-depth insights into their struc-
ture and functionality (Movasaghi et al., 2007; Talari et al.,
2015; Butler et al., 2016; McCreery, 2005; Smith & Dent,
2019). RS interrogates the vibrational modes of molecules
through the analysis of inelastic scattering of monochro-
matic light from matter, thereby enabling the nondestruc-
tive, label-free fingerprinting of chemical species (Koning-
stein, 2012; Szymanski, 2012; Colthup, 2012; Jones et al.,
2019; Bocklitz et al., 2016). As a result, RS has become
an important analytical tool in a myriad of scientific do-
mains, from chemistry (Schlücker, 2014; Dodo et al., 2022),
biology (Pezzotti, 2021; Smith et al., 2016; Shipp et al.,
2017; Cialla-May et al., 2017), and medicine (Kong et al.,
2015; Ember et al., 2017; Pence & Mahadevan-Jansen, 2016;
Balan et al., 2019; Auner et al., 2018; Mahadevan-Jansen &
Richards-Kortum, 1996; Tanwar et al., 2021), to materials
science (Fernández-Galiana et al., 2023; Weber & Merlin,
2013; Kumar, 2012), pharmacology (Wang et al., 2018;
Paudel et al., 2015; Vankeirsbilck et al., 2002), environmen-
tal science (Halvorson & Vikesland, 2010; Ong et al., 2020;
Terry et al., 2022), food quality control (Li & Church, 2014;
Pang et al., 2016), and even forensics (Chalmers et al., 2012;
Khandasammy et al., 2018; Izake, 2010).

Despite the wealth of information RS affords, the analysis
and interpretation of experimental RS data remains a ma-
jor challenge (Ryabchykov et al., 2018; Guo et al., 2021;
Gautam et al., 2015). Many important applications entail
the analysis of complex mixtures of molecular species co-
existing and interacting at micro- and nanoscales. Such
complexity can hinder the qualitative and quantitative in-
vestigation of RS measurements, especially when dealing
with the biomolecular diversity of biological samples (Byrne
et al., 2016; Gautam et al., 2015).

Hyperspectral unmixing (also known as (hyper)spectral de-
convolution or multivariate curve resolution) aims to re-
solve such mixed signals (Li et al., 2017; Olmos et al.,
2017) by identifying the individual components present
(endmember identification) and/or quantifying their propor-
tions (abundance estimation). Popular approaches include
N-FINDR (Winter, 1999) and Vertex Component Analysis
(VCA) (Nascimento & Dias, 2005) for endmember iden-
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tification, and Non-negative Least Squares (NNLS) (Law-
son & Hanson, 1995) and Fully Constrained Least Squares
(FCLS) (Heinz et al., 2001) for abundance estimation (Li
et al., 2017; Hedegaard et al., 2011). However, such tech-
niques, which originated in the field of remote sensing (Ke-
shava & Mustard, 2002; Harris, 2006), have limitations for
the unmixing of RS data. Specifically, these methods are
restricted to linear mixing; lack robustness to data artifacts
abundant in RS data (e.g., dark noise, baseline variations,
cosmic spikes); rely on additional assumptions (e.g., end-
members present as ‘pure pixels’ in the data) or require
additional information (e.g., number of endmembers, under-
lying mixture model, endmember library); and are compu-
tationally demanding for large datasets (e.g., imaging and
volumetric Raman raster scans).

In this work, we introduce a new approach for RS hyperspec-
tral unmixing based on autoencoder (AE) neural networks,
which we systematically validate against conventional meth-
ods for unmixing using a comprehensive array of synthetic
and experimental Raman spectroscopy data.

2. Background
Hyperspectral unmixing in Raman spectroscopy. Ra-
man spectra can be represented as vectors x ∈ Rb

+, whose
components correspond to the intensity of inelastically scat-
tered light binned over b wavelength/wavenumber bands.
Such measurement can be treated as the result of an underly-
ing mixing of n ‘pure’ components, defined by their Raman
signatures mi ∈ Rb

+, i = 1, . . . , n (endmembers), and their
respective proportions {αi}ni=1, αi ∈ R+ (fractional abun-
dances). Hyperspectral unmixing is the inverse problem
of recovering the endmembers and fractional abundances
from a (collection of) measurement(s) x (Figure 1a). The
unmixing can be performed with respect to a set of known
endmembers (non-blind unmixing) or without knowing the
endmembers (blind unmixing). Here, we focus on blind
unmixing but we also discuss how to adapt the framework
to the simpler problem of non-blind unmixing.

Linear mixing model. A major hurdle for unmixing is the
lack of information about the underlying mixing function.
The simplest and most common model is the linear mixing
model (LMM), where measurements are assumed to be a
linear combination of the endmembers:

x = Mα =

n∑
i=1

αimi, (1)

where M =
[
m1 m2 · · · mn

]
is an b × n non-

negative matrix containing the n endmember signatures, and
α = (α1, α2, · · · , αn)

T is an n×1 vector storing the corre-
sponding abundances. A random noise term ϵ ∈ Rb is also
often added to Equation (1) to model stochastic variations.

The abundances αi are constrained to be non-negative (i.e.,
the abundance non-negativity constraint (ANC), αi ≥ 0,∀i),
and are forced to sum to 1 when corresponding to pro-
portions (i.e., the abundance sum-to-one constraint (ASC),
||α||1 = 1 ). Standard methods for unmixing, such as N-
FINDR and VCA for endmember identification, and NNLS
and FCLS for abundance estimation, operate under the
LMM (see Appendix A for more information).

Nonlinear mixing models. The LMM is a good ap-
proximation when endmember species are spatially well-
separated with respect to the focal volume, and complex
light interactions that cause non-linear signal contributions
can be neglected (Keshava & Mustard, 2002). However,
when non-linear interactions become significant, more in-
tricate models are required (Dobigeon et al., 2013). To rep-
resent phenomena such as multiple scattering events, topo-
graphic variances and shadowing effects, the LMM has been
extended in remote sensing to more complex variants (Do-
bigeon et al., 2013; Heylen et al., 2014), including intimate
mixture models (Hapke, 1981), bilinear models (Halimi
et al., 2011a; Fan et al., 2009; Halimi et al., 2011b), multilin-
ear models (Heylen & Scheunders, 2015), or post-nonlinear
models (Altmann et al., 2012), among others. A popular
bilinear mixing model is the Fan model (Fan et al., 2009):

x =

n∑
i=1

αimi +

n∑
k=1

n∑
l=1,
l ̸=k

αkmk ⊙ αlml, (2)

where ⊙ is the Hadamard product. Nonetheless, accounting
for non-linear mixing interactions increases the complexity
and computational cost of unmixing (Dobigeon et al., 2013;
Heylen et al., 2014), an issue of especial relevance in Ra-
man spectroscopy where datasets (e.g., imaging/volumetric
scans) are typically larger than in remote sensing. Hence,
despite its limitations, the LMM remains a cornerstone of
hyperspectral unmixing in most practical settings (Bioucas-
Dias et al., 2012; Li et al., 2017).

Autoencoders. Autoencoders are a family of (deep) neu-
ral network models consisting of two sub-networks (encoder
and decoder) connected sequentially (Goodfellow et al.,
2016). The encoder E : Rb → Rm, usually m ≪ b, trans-
forms input data x to a lower-dimensional latent space repre-
sentation z = E(x), which the decoder D : Rm → Rb uses
to produce reconstructions x̂ = D(z) of the original input.
AE models are typically trained in a self-supervised manner
by minimizing a loss function L(x, x̂) that measures the
discrepancy between the input x and the reconstruction x̂
(e.g., the mean squared error (MSE)). As the training of the
model proceeds, the encoder progressively learns a latent
representation that captures the most salient features of the
input data, whereas the decoder learns how to recover the
data back from the latent representation.
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Figure 1. Hyperspectral unmixing for Raman spectroscopy using autoencoder neural networks. a, Diagram of the task of hyperspectral
unmixing. b, Hyperspectral unmixing as a self-supervised autoencoder learning problem: the decoder learns to derive endmembers and the
encoder learns the corresponding fractional abundances. c, Encoders can accommodate different concepts from representation learning,
such as convolutional layers and attention, to improve feature extraction and provide more accurate and robust unmixing. d, Decoders can
be structured to model different linear and non-linear mixing models. c-d, Labels in red indicate physics-inspired constraints.

Unmixing autoencoders. AEs have recently emerged as a
framework to enhance the precision of hyperspectral unmix-
ing in remote sensing, spurred by the availability of standard-
ized benchmark datasets for model evaluation (e.g., Urban,
Samson, AVARIS Cuprite) (Palsson et al., 2022; Zhang et al.,
2020c; Wang et al., 2022; Bhatt & Joshi, 2020; Chen et al.,
2022). Yet, despite initial explorations (Burzynski et al.,
2021; Boildieu et al., 2023), the utility of unmixing AEs for
Raman spectroscopy data remains largely unexplored.

3. Raman unmixing autoencoders
The dual functionality of autoencoders can be harnessed
to design AE models for hyperspectral unmixing: the la-
tent representations z = E(x) can be interpreted as frac-

tional abundances (with respect to an input spectrum x),
and the decoder D(·) acts as a mixing function on these rep-
resentations by encoding endmember signatures and other
interactions. Hence, AE models learn to perform an ‘unmix-
ing’ where the decoder identifies endmember signatures and
the encoder quantifies the fractional abundances of these
learned endmembers in the input spectrum (Figure 1b).

This setup provides a highly adaptable and versatile frame-
work for unmixing, which can address many of the limita-
tions of conventional techniques (see Table 1 in Appendix).

Encoder design. On the one hand, the learning of physi-
cal and biochemical features in the encoder can be enhanced
by adopting strategies from representation learning, such as
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convolutional layers to capture spectral and/or spatial corre-
lations among neighboring bands and/or pixels (Zhang et al.,
2018; Palsson et al., 2020; Elkholy et al., 2020), or atten-
tion mechanisms to model long-range dependencies (Ghosh
et al., 2022) (Figure 1c). In addition, sparsity, part-based
learning and denoising objectives can be adopted to enhance
explainability and robustness (Ozkan et al., 2018; Qu & Qi,
2018; Su et al., 2018; 2017; Qu et al., 2017).

In this work, we consider four types of encoders encompass-
ing a variety of architectures, from standard dense layers to
more contemporary convolutional and attention mechanisms
(see Appendix B for details): 1) an encoder consisting of
fully connected layers (Dense); 2) an encoder with a 1D con-
volutional feature extractor block, followed by a fully con-
nected part (Convolutional); 3) a transformer-based encoder
that uses multi-head attention (Transformer) (Vaswani et al.,
2017); and 4) a transformer-based encoder with a 1D convo-
lutional feature extractor (Convolutional Transformer).

Decoder design. On the other hand, the design of the de-
coder allows for flexible modeling of input data, specifically
to account for various mixture models, e.g., linear, bilinear
and post-nonlinear (Figure 1d) (Chen et al., 2022; Shahid &
Schizas, 2021; Zhao et al., 2021). This is akin to introducing
an inductive prior with respect to the mixture model directly
via the AE architecture.

To see that, consider a linear decoder DLin consisting of a
single linear layer defined by a b × m weight matrix W .
Under this setup, output reconstructions x̂ are given by

x̂ = DLin(z) = Wz . (3)

It follows from the formulation of the LMM (Equation (1))
that the latent representations z resemble the abundances α,
the weight matrix W resembles the matrix of endmembers
M , and the dimensionality m of the latent space defines the
number n of endmembers to learn.

This framework can accommodate non-linear mixture mod-
els through the design of the decoder. For instance, the
bilinear Fan model (Equation (2)) can be implemented by
extending DLin to account for the additional bilinear terms:

x̂ = DBilin(z) = Wz+

m∑
k=1

m∑
l=1,
l ̸=k

zkwk ⊙ zlwl, (4)

where zk, zl are components of z, and wk,wl are column
vectors of W . Similarly, one can devise decoders suited for
other mixture models (Chen et al., 2022; Shahid & Schizas,
2021; Zhao et al., 2021), or adopt a general decoder that
learns the underlying mixing model in a more data-driven
manner, at the cost of interpretability of the extracted end-
members and fractional abundances.

Notice that decoders can be pre-initialized with a set of end-
members (e.g., an endmember library, or signatures derived
using methods such as VCA), or readily adapted to non-
blind unmixing by, respectively, pre-initializing or fixing
the weight matrix W to predefined endmember signatures.

The two types of decoders we investigate are (see Ap-
pendix B for details): 1) a decoder designed for linear
unmixing (Equation (3)); and 2) a decoder designed for
bilinear unmixing (Equation (4)), both trained for non-blind
unmixing without pre-initialization.

Physics-inspired constraints. To guide the AE learning
and reinforce the physical interpretation of unmixing, we
incorporate appropriate physical constraints into the AE
architectures, e.g., non-negativity of endmembers and frac-
tional abundances, and sum-to-one abundances. We enforce
fractional abundance constraints through the choice of a
latent space activation function. We use softmax to en-
force both ANC and ASC; or, when interested in ANC
only, a ‘softly-rectified’ hyperbolic tangent function given
by f(x) = 1

γ ln(1 + eγ∗tanh(x)), γ = 10, designed to en-
sure abundances are non-negative (between 0 and 1) but do
not necessarily add up to one. To ensure the non-negativity
of endmembers, we constrain the weight matrix W in our
decoders by clipping negative values to zero.

Model training. We train our AE models in a self-
supervised fashion by minimizing a loss based on spectral
angle divergence (SAD) (Kruse et al., 1993) that measures
the cosine similarity between input and reconstructed spec-
tra mi and m̂i:

0 ≤ SAD(mi, m̂i) = arccos

(
mi · m̂i

∥mi∥2 ∥m̂i∥2

)
≤ 1. (5)

Notice that no ground truth information is provided during
training as opposed to previously reported machine learning
approaches for Raman hyperspectral analysis and character-
ization based on supervised learning (Manifold et al., 2021;
Zhang et al., 2020b; Wei et al., 2022).

Model evaluation. We compare AE performance to con-
ventional unmixing approaches: N-FINDR and VCA as
endmember extraction algorithms followed by NNLS or
FCLS to derive fractional abundances. When ground truth
information is available, accuracy is quantified with respect
to two measures - MSE for fractional abundances, and SAD
for endmembers. For each evaluation, we first assign de-
rived and ground truth endmembers (and corresponding
abundances) via the Hungarian algorithm with SAD as the
objective to minimize. When the number of extracted end-
members n is higher than the number of ground truth end-
members ntrue, we only use ntrue endmember and fractional
abundance estimates to compute the performance metrics.
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Figure 2. Benchmarking autoencoders on synthetic Raman mixtures. a, Representative results for the six algorithms (two conventional
and four AEs) on an example synthetic dataset (Chessboard+artifacts scenario): endmembers (left), and fractional abundances (right).
b-c, Summary of unmixing performance on synthetic datasets of variable mixing level and complexity: linear mixtures (b), bilinear
mixtures (c). Confidence intervals are given by one standard deviation around the sample mean (n = 25 samples: 5 datasets with 5 model
repetitions each).

4. Benchmarking unmixing autoencoders on
synthetic Raman mixtures

We first benchmark the performance of our AE architectures
on synthetic datasets created in-house.

Synthetic data generation. We developed a custom data
generator that produces synthetic Raman mixtures with dif-
ferent characteristics (e.g., number and type of endmembers,

abundance profiles, mixture model, data artifacts) with full
knowledge of the ‘ground truth’ endmembers and fractional
abundances (see Appendix C for data generation). This al-
lows us to quantify and compare the performance of unmix-
ing approaches (see Figure 2a for unmixing of an example
synthetic dataset and Appendix D for experimental details).

Using our data generator, we produce 11 types of synthetic
datasets of variable complexity, based on four mixture sce-
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narios over three fractional abundance scenes. In order of
complexity, the four mixture scenarios are: 1) a linear mix-
ture with clean endmembers and no data artifacts (ideal); 2)
a linear mixture with clean endmembers, but contaminated
with artifacts representing dark noise, baseline variations
and cosmic spikes (+artifacts); 3) a linear mixture with
noisy endmembers (i.e., containing additional smaller noise
peaks) and artifacts (+realistic); and 4) a bilinear mixture
based on the Fan model (Equation (2)) with noisy endmem-
bers and artifacts (+bilinear). For each of the four mixture
scenarios, we generate three dataset variants (two for the
+bilinear scenario since no bilinear interactions are present
in our Chessboard scene) based on custom 100× 100 frac-
tional abundance scenes. This produces 10k spectra per
dataset, organized into two-dimensional scenes for visual-
ization purposes. In increasing level of mixing, we have: 1)
a scene comprising well-separated patches, each containing
a single species (Chessboard scene); 2) a semi-mixed scene
given by a Gaussian mixture of species (Gaussian scene);
and 3) a highly-mixed scene where each pixel represents a
random sample of species drawn from a Dirichlet distribu-
tion (Dirichlet scene). Thus, our synthetic datasets cover
varied mixing scenarios, from the ideal Chessboard dataset,
which is trivial for conventional methods, to noisier, more
complex mixtures containing different types of artifacts.

Benchmark results on linear mixtures. We first discuss
our results on the nine dataset variants created through the
linear mixture scenarios (1-3). Such data complies with the
linear mixing assumption of conventional methods and, for
consistency, we equip the AE models with a decoder for
linear unmixing. Figure 2b summarises the performance of
the six models (two conventional and four AEs) across the
nine dataset variants, with experiments performed over 5
distinct datasets and 5 model initializations for each variant
(refer to Table 2 in Appendix for calculated performance
metrics). We find that the AE models outperform the two
conventional methods, providing more accurate endmem-
bers and fractional abundances across virtually all scenarios
and abundance scenes. The AEs recover the performance of
the conventional methods on the simple ideal Chessboard
datasets, and the improvement in AE performance becomes
increasingly prominent for mixture scenarios with higher
levels of noise and data artifacts.

Non-linear unmixing with autoencoders. We next pro-
ceed to our benchmark analysis on synthetic data generated
using a non-linear mixture model (i.e., +bilinear scenario).
This time, we equip AEs with a decoder specific to the bi-
linear mixture model, which is achieved by merely adapting
the decoder architecture. Our experimental results are dis-
played in Figure 2c. Again, we observe that all four AE
models provide a substantial improvement in unmixing ac-
curacy compared to standard unmixing methods for both

Figure 3. Computational efficiency of autoencoders and conven-
tional methods on synthetic datasets with an increasing number
of spectra. Each dot represents the average across 3 evaluations
(confidence intervals based on one standard deviation are small
and not visible to the eye). AE models are equipped with decoders
for linear unmixing. Data generated under Chessboard +artifacts.

endmember and abundance estimation.

Computational efficiency. The computational complex-
ity and scalability of unmixing methods can become a
significant bottleneck in real-world applications, partic-
ularly for imaging and volumetric Raman scans, which
can contain hundreds of thousands of spectra. To exam-
ine this issue, we profile the computational cost of our
four AE methods (linear decoders) and the two conven-
tional methods on synthetic datasets of increasing size up
to 250000 spectra (refer to Appendix E for experimental
details). To be fair to conventional algorithms, we in-
clude the full training time for autoencoders and use CPU
computation to avoid any advantage from GPU accelera-
tion. Figure 3 shows that all AE models are faster than N-
FINDR+FCLS and VCA+FCLS, which are already among
the most computationally lightweight conventional unmix-
ing techniques (Bioucas-Dias et al., 2012).

5. Validation on experimental Raman data
from sugar mixtures

To validate the unmixing performance of AEs on real exper-
imental data, we next conduct benchmark analyses on data
from a library of 240 sugar mixtures prepared in-house with
four types of sugar (glucose, sucrose, fructose, maltose)
at different concentrations (Figure 4a). To consider dif-
ferent signal-to-noise (SNR) conditions, we acquired high
SNR (1920 spectra) and low SNR (7680 spectra) measure-
ments using a custom Raman microspectroscopy platform
at integration times of 5 s and 0.5 s, respectively. We used
these experimental datasets with ground truth to evaluate
the performance of unmixing algorithms under typical ex-
perimental artifacts, such as baseline shifts, environmental
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Figure 4. Experimental validation on Raman spectroscopy data from sugar solutions. a, Schematic diagram of sugar mixture preparation.
Two sets of data are acquired—high and low signal-to-noise ratio (SNR) data, by using integration times of 5 s and 0.5 s, respectively. b,
Endmember signatures estimated from reference spectra (high SNR) additionally collected from pure solutions. c-d, Summary of unmixing
performance for: an idealized scenario with augmented data including reference spectra (c); and original data without augmentation (d).
Confidence intervals are given as one standard deviation around the sample mean (n = 5).

noise, and cosmic spikes. Full experimental details, includ-
ing sample preparation and data acquisition, are provided in
Appendix F.

We perform unmixing on these data to identify the content
of each mixture, i.e., types of sugar and their concentra-
tions. The ground truth is defined by the experimental
concentrations and the endmember signatures we obtain
from reference spectra measured from 5 additional pure so-
lutions (Figure 4b). As with the synthetic data above, we
benchmark the performance of our four AE models (linear
decoders) against N-FINDR+FCLS and VCA+FCLS.

Data with reference spectra. First, we consider an ide-
alized scenario, purposefully devised to favor conventional
methods, whereby endmembers are present in the data. To
do this, we augment our data with the additional reference
spectra we measured. When such ‘pure pixels’ are available,
we observe that conventional methods (NFINDR+FCLS,
VCA+FCLS) perform comparably to AEs on clean, high
SNR data (Figure 4c). Yet, AEs already provide improved
performance in low SNR regimes.

Data without reference spectra. In many experimental
applications, however, the underlying endmembers are not

present in the data and cannot be separately obtained (e.g.,
target-agnostic applications, or unknown species). To con-
sider such cases, we analyzed our original data without
augmentation. Our results in Figure 4d demonstrate that, in
such situations, AEs substantially outperform conventional
methods in both low and high SNR settings (see Figures 7-8
in Appendix for qualitative results, and Table 3 for perfor-
mance metrics).

6. Application to biological data: volumetric
Raman imaging of a THP-1 cell

As an application to biological research, we use unmixing
autoencoders to analyze a low-SNR volumetric RS raster
scan of a human leukemia monocytic (THP-1) cell (Fig-
ure 5a) (Kallepitis et al., 2017). Using Raman chemometrics,
the composition of the cell is probed to study its morphology
in a nondestructive, label-free manner.

After loading and preprocessing the data using Ra-
manSPy (Georgiev et al., 2024), we conduct unmixing with:
1) VCA+NNLS - as in the original paper; 2) Dense AE - our
simplest and most computationally efficient AE model; and
3) Deep Dense AE - an extension of Dense AE with a deeper
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Figure 5. Analysis of volumetric Raman imaging of a THP-1 cell with unmixing autoencoders. a, A brightfield image of the studied THP-1
cell. b, A cross-section reconstruction of the cell (layer z = 7) obtained by overlaying the fractional abundances derived by: VCA+NNLS,
our Dense AE, and a deeper Dense AE. c, Results obtained with our deeper Dense AE model, displaying the spatial distribution of
the individual fractional abundances and the associated endmember signatures. Fractional abundance maps normalized for consistent
visualization. Brightfield and Raman data from Kallepitis et al. (2017).

encoder with five layers. We derive 20 endmembers, which
we characterize via peak assignment to identify biochemical
species present in the scanned cell, such as deoxyribonucleic
acid (DNA), proteins, triglycerides (TAGs), phospholipids
(PLPs) and cholesterol esters (see Appendix G for experi-
mental details and characterization).

Figure 5b shows the reconstructions of the cell created by
overlaying selected fractional abundances derived by each
method, revealing the spatial organization of key cellular or-
ganelles, including the nucleus, cytoplasm, lipid bodies and
membranes. Although direct comparisons are challenging
due to the lack of ground truth, the unmixing results of our
AE models are aligned with the original findings (Kallepitis
et al., 2017), albeit with more distinct endmember signa-
tures and well-defined abundance features (see Figures 9-11
in Appendix for full results). In particular, we observe that
our Deep Dense AE model provides cleaner endmember
signatures and enables more precise spectral and composi-
tional information (Figure 5c). Notably, unlike the original

VCA+NNLS approach, our AEs detect cholesterol, an im-
portant functional and structural component in cells, which
plays a key role in membrane fluidity and stability, signaling
pathways, and immune response (Kritharides et al., 1998;
Tall & Yvan-Charvet, 2015; Saha et al., 2017).

7. Conclusion
In summary, we have presented an autoencoder-based
methodology for hyperspectral unmixing in Raman spec-
troscopy, which we validated on a wide array of synthetic
and experimental datasets. Our results demonstrate that au-
toencoders are adept at handling diverse mixture scenarios
and exhibit robustness against data artifacts, offering an ef-
fective, versatile and efficient framework for RS unmixing.

The potential of autoencoders for RS unmixing opens sev-
eral avenues for future research. One direction is the in-
vestigation of AE architectures with more complex de-
coders (Chen et al., 2022) and/or encoders, as well as the
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development of training objectives that further improve ro-
bustness to spectral variations (e.g., stacked and denoising
AE architectures (Qu et al., 2017; Su et al., 2018)). An-
other promising area is the use of AEs as a pretraining
procedure in downstream tasks, potentially combined with
other AI-based approaches (e.g., deep learning models for
denoising (Horgan et al., 2021)).

Finally, while our focus here is on RS, we wish to under-
score the applicability of our work to other spectroscopic
modalities, including infrared spectroscopy.
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A. Standard methods for hyperspectral unmixing
N-FINDR and VCA are geometric methods based on the concept of a simplex in Euclidean space. N-FINDR exploits the
fact that, under the linear mixing model (Equation (1)), endmembers represent vertices of a simplex spanning the data,
and operates by iteratively finding a set of points (endmembers) that maximizes the volume of the simplex they form. In
contrast, VCA finds endmembers by projecting the data onto directions orthogonal to the subspace spanned by previously
found endmembers and identifying new endmembers as the farthest points in these directions, effectively constructing a
simplex that encompasses all data points. In both methods, the number of endmembers to extract is specified a priori by the
user. Once endmember signatures M are derived, optimization-based algorithms such as NNLS and FCLS are employed to
estimate the fractional abundances α for a given spectrum x by minimizing the reconstruction error between the observed
data and the model minα ∥Mα− x∥2. NNLS imposes the ANC, whereas FCLS imposes both the ANC and ASC.

B. Autoencoder architectures
Dense AE. This autoencoder employs an encoder comprising 2 fully connected (or dense) layers. The first layer projects
spectra of dimension b to hidden features of dimension 128 (Leaky ReLU activation with a slope of 0.02), which the second
layer further projects to latent representations of dimension n (n is the number of endmembers to extract). In the Deep
Dense AE model used in the analysis of the THP-1 cell, we increase the number of hidden layers to five, comprising 512,
256, 128, 64 and 32 neurons, respectively, before the final layer of size n.

Convolutional AE. This model extends the Dense AE by adding a convolutional block before the dense layers. The
convolutional block consists of two layers of 1D convolutions connected in parallel, each comprising 16 filters of size 3 and
16 filters of size 5 (ReLU activation; input padded with zeroes). The outputs from these two layers are concatenated and
merged (channel-wise) via a 2-dimensional dense layer to produce representations of dimension b, which are then fed to the
Dense encoder described above.

Transformer AE. In this transformer-based encoder, input spectra are first projected to features of size 32 through a fully
connected layer, and then fed to a transformer encoder layer comprising a multi-head attention block with 2 attention heads
of size 32 (Vaswani et al., 2017), followed by two fully connected layers expanding the features to size 64 (ReLU activation)
and condensing back to 32 (no activation). We apply layer normalization (Ba et al., 2016) and dropout (10%) (Srivastava
et al., 2014) after the multi-head attention block and the fully connected layers. The output of the transformer block is then
channeled into the last fully connected layer of size n.

Convolutional Transformer AE. In this model, the Transformer AE architecture is extended with the same convolutional
block used in the Convolutional AE, here added before the transformer-based encoder block.

Decoder choice. Our linear unmixing decoder architecture consists of a single fully connected layer using the identity
activation function without bias (Equation (3)). Our bilinear Fan decoder has the same architecture as the linear decoder but
also calculates the additional bilinear interaction terms in line with Equation (4) during each forward pass.

C. Generating synthetic Raman mixtures
Generating endmembers. For each synthetic dataset, we first generate n endmembers spanning b spectral bands. For
the scope of this work, n = 5 and b = 1000. Each endmember mi ∈ Rb

+ is created by a superposition of a set of npeaks,i
Gaussian peaks of different amplitude, width and location, randomly sampled as follows. The number of peaks is sampled
from a discrete uniform distribution npeaks,i ∼ U(5, 9). Each peak p is described by p = hpσp

√
2πN (bp, σp), where

N (·) represents a Gaussian distribution. The height of the peak is defined as hp = h1 · h2, where h1 = 1 + 5hβ with
hβ ∼ Beta(1, 3) and h2 ∼ U(0.1, 1). The center of the peak is sampled from bp ∼ U(10, b− 10), and the width of the peak
is defined as σp = wpσ, with σ ∼ U(0.1, 1). We create two types of endmembers: clean and noisy. For the former, we
produce peaks with wp = 1. For the latter, we augment clean endmembers by adding nsmall

peaks,i ∼ U(50, 99) smaller peaks
sampled with h1 = 1/3 and wp = 2, thus making noisy endmembers better resemble experimental Raman signatures.

Generating fractional abundances. For visualization purposes, we present the fractional abundance profiles in the form
of two-dimensional scenes comprising H ×W pixels, where each pixel represents a fractional abundance vector α ∈ Rn

+.
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Table 1. Advantages of autoencoders over standard unmixing techniques.

Commonly used methods Autoencoders
Assumptions Strict - e.g. endmembers present in the

data; fixed mixture model; number of
endmembers is known.

Autoencoders can facilitate data-driven unmix-
ing without many strong assumptions about the
data and task.

Mixture model A specific model is assumed a priori.
Usually, a linear mixing only, as alterna-
tives can become too complex and com-
putationally expensive.

Autoencoders can be designed to capture various
mixture models, including non-linear mixtures.
This can be enforced by appropriate architectural
constraints or learned in a data-driven manner.

Input modality & capturing spa-
tial information

Spectra are processed individually. If
imaging or volumetric data are provided,
these are typically unfolded and used
pixel-wise, thereby discarding any spa-
tial information.

Autoencoders can be extended to utilize the spa-
tial information available in imaging or volumet-
ric data by incorporating (2D, 3D, and/or 4D)
convolutional layers.

Simultaneously deriving end-
members and fractional abun-
dances?

Typically, two separate algorithms are
applied.

Autoencoders simultaneously extract both end-
members and fractional abundances by default.
They can also be adjusted for non-blind unmix-
ing by fixing a pre-defined endmember matrix
in the decoder.

Robustness to non-specific sig-
nals and preprocessing – e.g.
noise, baseline

Performance is usually extremely depen-
dent on the quality of the data, as well as
on preprocessing, which can vary greatly
from application to application.

Autoencoders can incorporate feature selection
blocks and training loss to promote invariance to
scaling, baselines, and noise, making them more
robust to artifacts and outliers.

Variable spectral axis Observations are assumed to share a
common spectral axis, and the spectral
axis is discarded. This impedes the in-
tegration of data across experimental se-
tups unless they share the same spectral
axis.

The axis can be integrated as an input to the
model (e.g. as a positional encoding), allowing
the direct integration of diverse data sources.

Scalability Even the simplest models can become
computationally prohibitive for larger
datasets. More advanced options are in-
tractable in real-world applications in-
volving imaging or volumetric Raman
scans.

Deep neural networks are designed to be scalable
and parallelizable out-of-the-box.

Number of endmembers Typically, fixed a priori. Normally fixed a priori, too, but can poten-
tially be learned by introducing sparsity and
information-theoretic criteria in the latent space,
for instance.

Extensibility Most conventional techniques are based
on specialized optimization-based algo-
rithms tailored for the particular unmix-
ing task (e.g. mixture model, scene type,
number of endmembers), which makes
their extension challenging.

Easy extension and adaptation. One can readily
expand unmixing autoencoders into more ad-
vanced variants, as well as integrate models into
established AI and ML pipelines.

Downstream applications Conventional techniques are generally
constrained within hyperspectral unmix-
ing, with algorithms only outputting the
derived unmixing results.

Autoencoders can be used as feature extrac-
tors in a variety of modeling and predictive
downstream tasks, such as classification, clus-
tering and anomaly detection. They can also
leverage transfer learning techniques to improve
performance in situations with limited labeled
data by utilizing unmixing autoencoders for self-
supervised pre-training.
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Figure 6. Synthetic data generation workflow.

Here, we set H = W = 100, resulting in 10000 spectra per scene/dataset. In the simplest scene (Chessboard), we split
the scene into 20× 20 square patches, each containing a single randomly assigned endmember (i.e., all 400 pixels in each
patch are the same one-hot vector). Our second scene (Gaussian) consists of n Gaussian functions equally spaced along the
diagonal of the scene. After each pixel is normalized to comply with the ASC, we obtain abundance profiles representing
different levels of overlap of components. Our last fractional abundance scene (Dirichlet) corresponds to a highly mixed
scene, where each pixel is individually sampled from a n-dimensional Dirichlet distribution, producing a random mixture of
all endmembers. Note that the fractional abundance profile of each pixel in all three scenes complies with both ANC and
ASC.

Mixing model. Having generated a set of endmembers and an underlying fractional abundance scene, mixed data
measurements x ∈ Rb are created based on a mixing model chosen by the user. In this study, we consider linear mixtures
(Equation (1)) and bilinear mixtures based on the Fan model (Equation (2)).

Adding data artifacts. Finally, data artifacts (noise, baseline, cosmic spikes) can be optionally added to create more
realistic synthetic Raman spectra. Here, we add Gaussian noise ϵ ∈ Rb to each spectrum, with independent and identically
distributed components ϵi ∼ N (0, σN ). Further, we add a baseline signal B = hB arctan(π[1 : b]/b) ∈ Rb to each
spectrum with probability pB . Finally, with probability pS , a cosmic spike of intensity S ∼ hSU(0.75, 1.25) is added to
each spectrum at a band bS ∼ U{2, b− 2}. In our experiments: σN = 0.1, pB = 0.25 hB = 2, , pS = 0.1, hS = 5.

D. Model training and evaluation on synthetic Raman mixtures
Autoencoders were trained on synthetic data using the Adam optimizer (learning rate 0.001) over 10 epochs, with spectral
angle distance (Equation (5)) as a loss function between input and reconstructed spectra. The latent dimensionality m of
each AE model is set to 5 for the ideal mixture scenario, and 6 for the other mixture scenarios with data artifacts. Both ANC
and ASC are enforced for all experiments on synthetic data. Each experiment on the synthetic data was performed on 5
datasets and 5 model initializations using different random seeds, resulting in 5× 5 = 25 replicates per evaluation, or 1650
experiments in total: 6 models (2 conventional, 4 AEs) × 11 dataset variants × 25 replicates. Random seeds were kept the
same across mixture scenarios to allow direct comparison.

E. Measuring computational cost
We profile the computational cost of unmixing methods on synthetic datasets (ideal scenario, Chessboard scene) of increasing
sizes, from 2500 to 250000 spectra. The number of endmembers to extract was set to n = 5 for all methods. For each
experiment, we performed 3 separate evaluations, measuring the wall time of each method (including the training time for
autoencoders). All experiments were conducted on a MacBook Air laptop with an Apple M2 chip (8-core CPU, 10-core
GPU, and 16-core Neural Engine). We only employed CPU computations to ensure a fair comparison with traditional
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Table 2. Benchmark results on diverse synthetic Raman mixture datasets. Each value represents the average result of 25 replicates,
including 5 dataset and 5 model initialisations. Confidence intervals are calculated as one standard deviation around the sample mean.
Values rounded to 3 decimal places. Best and second best results (mean value) are given in underlined bold and bold, respectively.

Chessboard Gaussian Dirichlet

Endmembers Abundances Endmembers Abundances Endmembers Abundances
Method (SAD) ↓ (MSE) ↓ (SAD) ↓ (MSE) ↓ (SAD) ↓ (MSE) ↓

id
ea

l

PCA 0.874 ± 0.139 22.592 ± 8.969 1.051 ± 0.081 5.387 ± 1.876 0.847 ± 0.092 3.811 ± 1.291
N-FINDR + FCLS 0.000 ± 0.000 0.000 ± 0.000 0.473 ± 0.042 0.033 ± 0.001 0.101 ± 0.040 0.001 ± 0.000
VCA + FCLS 0.000 ± 0.000 0.000 ± 0.000 0.482 ± 0.047 0.038 ± 0.009 0.105 ± 0.031 0.003 ± 0.003

Dense AE 0.015 ± 0.065 0.002 ± 0.008 0.255 ± 0.037 0.010 ± 0.005 0.003 ± 0.001 0.012 ± 0.007
Convolutional AE 0.042 ± 0.111 0.002 ± 0.007 0.168 ± 0.033 0.009 ± 0.006 0.003 ± 0.001 0.012 ± 0.006
Transformer AE 0.002 ± 0.000 0.000 ± 0.000 0.212 ± 0.043 0.009 ± 0.005 0.007 ± 0.002 0.012 ± 0.006
Convolutional Transformer AE 0.002 ± 0.000 0.000 ± 0.000 0.215 ± 0.042 0.009 ± 0.005 0.017 ± 0.062 0.013 ± 0.007

+
ar

tif
ac

ts

PCA 0.819 ± 0.072 79.38 ± 49.727 1.009 ± 0.082 61.488 ± 48.586 0.869 ± 0.069 60.154 ± 48.330
N-FINDR + FCLS 0.629 ± 0.111 0.073 ± 0.036 0.828 ± 0.075 0.041 ± 0.015 0.599 ± 0.116 0.033 ± 0.015
VCA + FCLS 0.353 ± 0.159 0.071 ± 0.042 0.609 ± 0.093 0.059 ± 0.015 0.392 ± 0.175 0.036 ± 0.019

Dense AE 0.072 ± 0.081 0.042 ± 0.032 0.347 ± 0.137 0.029 ± 0.021 0.068 ± 0.070 0.021 ± 0.011
Convolutional AE 0.033 ± 0.003 0.023 ± 0.013 0.385 ± 0.166 0.027 ± 0.014 0.068 ± 0.072 0.017 ± 0.008
Transformer AE 0.039 ± 0.031 0.022 ± 0.011 0.393 ± 0.129 0.026 ± 0.014 0.073 ± 0.105 0.017 ± 0.009
Convolutional Transformer AE 0.033 ± 0.004 0.021 ± 0.010 0.399 ± 0.164 0.027 ± 0.015 0.112 ± 0.140 0.019 ± 0.010

+
re

al
is

tic

PCA 0.967 ± 0.074 88.132 ± 50.053 1.079 ± 0.045 63.735 ± 48.513 0.993 ± 0.089 61.244 ± 48.733
N-FINDR + FCLS 0.361 ± 0.062 0.072 ± 0.040 0.478 ± 0.047 0.043 ± 0.013 0.299 ± 0.087 0.030 ± 0.019
VCA + FCLS 0.173 ± 0.079 0.061 ± 0.038 0.400 ± 0.075 0.063 ± 0.016 0.229 ± 0.088 0.030 ± 0.017

Dense AE 0.045 ± 0.024 0.030 ± 0.023 0.177 ± 0.050 0.015 ± 0.011 0.073 ± 0.012 0.011 ± 0.006
Convolutional AE 0.054 ± 0.013 0.019 ± 0.008 0.168 ± 0.030 0.011 ± 0.004 0.071 ± 0.022 0.008 ± 0.003
Transformer AE 0.039 ± 0.005 0.018 ± 0.009 0.156 ± 0.044 0.011 ± 0.005 0.085 ± 0.014 0.008 ± 0.003
Convolutional Transformer AE 0.040 ± 0.005 0.018 ± 0.008 0.151 ± 0.033 0.010 ± 0.004 0.081 ± 0.012 0.008 ± 0.003

+
bi

lin
ea

r

PCA 1.117 ± 0.071 67.189 ± 48.404 1.038 ± 0.112 63.915 ± 48.423
N-FINDR + FCLS 0.456 ± 0.049 0.039 ± 0.016 0.287 ± 0.074 0.025 ± 0.015
VCA + FCLS 0.391 ± 0.058 0.057 ± 0.018 0.277 ± 0.082 0.030 ± 0.015

Dense AE (bilinear) 0.247 ± 0.070 0.017 ± 0.011 0.094 ± 0.011 0.010 ± 0.005
Convolutional AE (bilinear) 0.194 ± 0.030 0.010 ± 0.004 0.087 ± 0.010 0.008 ± 0.003
Transformer AE (bilinear) 0.222 ± 0.084 0.012 ± 0.008 0.105 ± 0.012 0.008 ± 0.003
Convolutional Transformer AE (bilinear) 0.208 ± 0.051 0.011 ± 0.006 0.100 ± 0.010 0.008 ± 0.003

methods which, by design, do not utilize GPU acceleration.

F. Analysis of experimental RS data from sugar mixtures
Preparation of sugar solutions. We prepared 1mol/L solutions of each type of sugar (sucrose, fructose, maltose, and
glucose) by dissolving the appropriate weight of sugar into 40mL of ultrapure distilled water (Invitrogen™ – UltraPure™
DNase/RNase-Free Distilled Water). The weights of sugars dissolved were 13.83 g for sucrose (Thermo Scientific Chemicals
– Sucrose, 99%), 7.279 g for fructose (Thermo Scientific Chemicals – D-Fructose, 99%), 15.171 g for maltose (Thermo
Scientific Chemicals – D-(+)-Maltose monohydrate, 95%) and 7.279 g for glucose (D-(+)-Glucose, AnalaR NORMAPUR®

analytical reagent). All solutions were mixed and vortexed in standard 50mL centrifuge tubes until no solute was visible.

Sugar mixtures were prepared in standard 96-well plates, with a volume of 375 µL per well. A full factorial experiment
was performed comprising 4 volume levels for each sugar (0 µL, 30 µL, 75 µL and 120 µL), filled with distilled water where
necessary. Discarding the mixtures exceeding the volume of the well and the one that contains no sugar, 240 distinct
mixtures were prepared. In addition, 5 extra ‘pure’ solutions (i.e., 375 µL of water, sucrose, fructose, maltose, or glucose)
were prepared, which we used to extract reference spectra for each chemical species. This resulted in a total of 245 wells
distributed in three standard 96-well plates. Mixtures were stirred using standard 200 µL pipettes before spectral acquisition
to ensure good mixing.

Raman measurements from sugar solutions. All spectra were acquired using a custom Raman microspectroscopy
platform designed for high-throughput analysis known as B-Raman. This platform is based on the Thorlabs Cerna® and
features the BWTek BRM-785-0.55-100-0.22-SMA laser excitation source and the Ibsen EAGLE Raman-S spectrometer.
The instrument was calibrated using an Argon wavelength calibration source (AR-2 – Ocean Insight) reference lamp before
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Table 3. Full unmixing results on Raman spectroscopy data from sugar solutions. Each value represents the average result of 5 replicates.
Confidence intervals are calculated as one standard deviation around the sample mean. Values rounded to 3 decimal places. Best and
second best results (mean value) are given in underlined bold and bold, respectively.

High SNR Low SNR

with endmembers without endmembers with endmembers without endmembers

Endmembers Abundances Endmembers Abundances Endmembers Abundances Endmembers Abundances
Method (SAD) ↓ (MSE) ↓ (SAD) ↓ (MSE) ↓ (SAD) ↓ (MSE) ↓ (SAD) ↓ (MSE) ↓
PCA 1.018 ± 0.000 0.073 ± 0.000 1.026 ± 0.000 0.072 ± 0.000 1.173 ± 0.000 0.075 ± 0.000 1.210 ± 0.000 0.073 ± 0.000
N-FINDR+FCLS 0.202 ± 0.000 0.005 ± 0.000 0.515 ± 0.035 0.037 ± 0.029 0.900 ± 0.000 0.026 ± 0.000 1.077 ± 0.000 0.154 ± 0.000
VCA+FCLS 0.322 ± 0.044 0.004 ± 0.000 0.525 ± 0.026 0.042 ± 0.029 0.677 ± 0.022 0.077 ± 0.035 0.901 ± 0.017 0.108 ± 0.006

SA
D

Dense AE 0.212 ± 0.004 0.057 ± 0.001 0.219 ± 0.001 0.058 ± 0.001 0.462 ± 0.038 0.058 ± 0.005 0.503 ± 0.046 0.054 ± 0.007
Convolutional AE 0.203 ± 0.001 0.058 ± 0.001 0.215 ± 0.002 0.058 ± 0.001 0.503 ± 0.055 0.058 ± 0.002 0.529 ± 0.041 0.057 ± 0.003
Transformer AE 0.206 ± 0.001 0.058 ± 0.001 0.218 ± 0.002 0.028 ± 0.002 0.496 ± 0.050 0.061 ± 0.002 0.545 ± 0.037 0.069 ± 0.013
Conv. Trans. AE 0.208 ± 0.002 0.057 ± 0.001 0.218 ± 0.001 0.057 ± 0.001 0.521 ± 0.059 0.068 ± 0.013 0.533 ± 0.035 0.062 ± 0.011

M
SE

+
SA

D Dense AE 0.242 ± 0.008 0.003 ± 0.001 0.265 ± 0.040 0.003 ± 0.002 0.498 ± 0.038 0.070 ± 0.006 0.509 ± 0.045 0.069 ± 0.008
Convolutional AE 0.264 ± 0.068 0.004 ± 0.004 0.240 ± 0.007 0.002 ± 0.000 0.568 ± 0.057 0.083 ± 0.017 0.593 ± 0.052 0.080 ± 0.013
Transformer AE 0.234 ± 0.006 0.004 ± 0.001 0.240 ± 0.009 0.004 ± 0.001 0.606 ± 0.034 0.101 ± 0.026 0.632 ± 0.014 0.097 ± 0.028
Conv. Trans. AE 0.321 ± 0.121 0.008 ± 0.005 0.333 ± 0.123 0.007 ± 0.006 0.570 ± 0.068 0.113 ± 0.012 0.665 ± 0.179 0.164 ± 0.037

Table 4. Full unmixing results on Raman spectroscopy data from sugar solutions with respect to an alternative endmember similarity
metric PCC based on the Pearson correlation coefficient. Each value represents the average result of 5 replicates. Confidence intervals
are calculated as one standard deviation around the sample mean. Values rounded to 3 decimal places. Best and second best results
(mean value) are given in underlined bold and bold, respectively. The PCC between two endmember signatures x and y is defined as

PCC(x, y) = 1−
∑

(xi − x̄)
∑

(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

.

High SNR Low SNR

with endmembers without endmembers with endmembers without endmembers

Endmembers Abundances Endmembers Abundances Endmembers Abundances Endmembers Abundances
Method (PCC) ↓ (MSE) ↓ (PCC) ↓ (MSE) ↓ (PCC) ↓ (MSE) ↓ (PCC) ↓ (MSE) ↓
PCA 0.547 ± 0.000 0.073 ± 0.000 0.541 ± 0.000 0.072 ± 0.000 0.641 ± 0.000 0.075 ± 0.000 0.691 ± 0.000 0.073 ± 0.000
N-FINDR+FCLS 0.039 ± 0.000 0.005 ± 0.000 0.203 ± 0.055 0.037 ± 0.029 0.520 ± 0.000 0.026 ± 0.000 0.641 ± 0.000 0.154 ± 0.000
VCA+FCLS 0.099 ± 0.047 0.004 ± 0.000 0.221 ± 0.056 0.042 ± 0.029 0.325 ± 0.019 0.077 ± 0.035 0.482 ± 0.005 0.108 ± 0.006

SA
D

Dense AE 0.029 ± 0.001 0.057 ± 0.001 0.031 ± 0.000 0.058 ± 0.001 0.164 ± 0.042 0.058 ± 0.005 0.198 ± 0.046 0.054 ± 0.007
Convolutional AE 0.027 ± 0.000 0.058 ± 0.001 0.030 ± 0.002 0.058 ± 0.001 0.207 ± 0.052 0.058 ± 0.002 0.228 ± 0.030 0.057 ± 0.003
Transformer AE 0.028 ± 0.000 0.058 ± 0.001 0.031 ± 0.000 0.028 ± 0.002 0.200 ± 0.048 0.061 ± 0.002 0.243 ± 0.032 0.069 ± 0.013
Conv. Trans. AE 0.028 ± 0.000 0.057 ± 0.001 0.031 ± 0.000 0.057 ± 0.001 0.226 ± 0.059 0.068 ± 0.013 0.236 ± 0.034 0.062 ± 0.011

M
SE

+
SA

D Dense AE 0.037 ± 0.002 0.003 ± 0.001 0.047 ± 0.018 0.003 ± 0.002 0.174 ± 0.032 0.070 ± 0.006 0.185 ± 0.042 0.069 ± 0.008
Convolutional AE 0.056 ± 0.044 0.004 ± 0.004 0.037 ± 0.002 0.002 ± 0.000 0.243 ± 0.044 0.083 ± 0.017 0.272 ± 0.040 0.080 ± 0.013
Transformer AE 0.035 ± 0.002 0.004 ± 0.001 0.037 ± 0.002 0.004 ± 0.001 0.296 ± 0.041 0.101 ± 0.026 0.311 ± 0.020 0.097 ± 0.028
Conv. Trans. AE 0.104 ± 0.096 0.008 ± 0.005 0.108 ± 0.099 0.007 ± 0.006 0.250 ± 0.072 0.113 ± 0.012 0.348 ± 0.176 0.164 ± 0.037

data collection. The excitation wavelength was 785 nm and the power incident to the samples was 36.3mW. The Raman
scattering was collected in reflection via a Leica N PLAN 10x/0.25 objective with 0.25 numerical aperture. The raw spectra
were acquired over the spectral wavenumber range of 142–3684.8 cm−1.

Spectra were measured from the center (horizontal) of each well at a fixed depth that was established to provide the highest
signal. Two sets of data were collected from each well, at 5 s and 0.5 s integration times, to compare unmixing performance
on low and high signal-to-noise ratio (SNR) data. Several measurements were collected from each well, resulting in a total
of 240 solutions × 2 measurements × 4 repetitions = 1920 high-SNR measurements (1960 with reference spectra); and
240 solutions × 8 measurements × 4 repetitions = 7680 low-SNR measurements (7840 with reference spectra). Ground-
truth endmembers signatures were obtained by taking the median (band-wise) of the reference spectra (40 in high SNR
setup, and 160 in low SNR setup) collected from the 5 additional wells containing pure solutions. Ground truth fractional
abundances were determined by calculating the ratio of the components present in each mixture.

Preprocessing of sugar data. First, we preprocess each sugar dataset: 1) cropping to the region 400–1800 cm−1;
2) baseline correction with Adaptive Smoothness Parameter Penalized Least Squares (ASPLS) (Zhang et al., 2020a)—
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smoothing parameter λ = 105, differential matrix of order 2, maximum iterations set to 100, exit criteria with tolerance
t = 0.001; 3) global vector normalization, where each observation is divided by the highest magnitude observed in the data.
Baseline removal is important to ensure models extract relevant features (i.e., characteristic peaks) as opposed to merely
capturing the trend.

Analysis of sugar data. To perform hyperspectral unmixing, we set the number of endmembers to extract to n = 5, and
we follow similar training and evaluation protocols to those employed for the synthetic data, but we increase the number
of epochs to 15 for low SNR data and 50 for high SNR data given the more limited number of spectra collected. We also
incorporate an additional MSE term in the training loss L of autoencoders on high SNR data:

L(x, x̂) = SAD(x, x̂) + λMSE(x, x̂), (6)

with λ = 1000. This term breaks the invariance to scale and leads to better abundance estimation given the weak water
endmember (see Table 3). The standard SAD loss was used for experiments on low SNR. Each experiment is repeated for 5
model initializations.

Table 4 presents performance evaluation using an alternative endmember distance based on Pearson’s correlation coefficient
(PCC), showing an even more pronounced improvement in endmember estimation accuracy.

G. Analysis of volumetric RS data from THP-1 cell
Acquisition and preprocessing of cell data. The volumetric Raman scan of the THP-1 cell (Kallepitis et al., 2017) is
collected using 0.3 s integration time and comprises a z = 1, . . . , 10 stack of ten 40 × 40 raster scans, organized into a
single volumetric hypercube for analysis. We preprocess the data before unmixing using the following protocol: 1) spectral
cropping to the fingerprint region 700–1800 cm−1; 2) cosmic spike removal using the algorithm in (Whitaker & Hayes,
2018) with kernel of size 3 and z-value threshold of 8; 3) denoising with Savitzky-Golay filter using a cubic polynomial
kernel of size 7 (Savitzky & Golay, 1964); 4) baseline correction using Asymmetric Least Squares (AsLS) with smoothing
parameter λ = 106, penalizing weighting factor p = 0.01, differential matrix of order 2, maximum iterations set to 50, exit
criteria with tolerance threshold of t = 0.001 (Eilers & Boelens, 2005); 5) global MinMax normalization to the interval
[0, 1].

Analysis of cell data. Unmixing is performed following the same AE training protocol as in other analyses, with the
number of training epochs set to 20, and the number of endmembers to extract to n = 20. Here, we also discard the
constraint that fractional abundances must sum to one. Out of the 20 endmembers we obtain, we display the 5 deemed most
biologically relevant following peak assignment as per the original paper (Kallepitis et al., 2017). For VCA+NNLS, two of
those five endmembers corresponded to the same cell organelle, namely cytoplasm, and were visualized using the same
color in the merged reconstruction displayed in Figure 5b.

Peak characterization. Cell organelles were determined based on the following peaks: PBS buffer - 1637 cm−1 (water
peak); cytoplasm - 1005 cm−1 (phenylalanine), 1250 cm−1 (Amide III), 1659 cm−1 (Amide I) and 1445 cm−1 (CH
deformations of proteins and lipids); TAGs/PLPs - 1092 cm−1 (C–C stretching ), 1308 cm−1 (CH2 twists), 1445 cm−1 (CH
deformation), and 1661 cm−1 (C=C stretching); nucleus/DNA - 790 cm−1 (symmetric phosphodiester stretch and ring
breathing modes of pyrimidine bases) and 1103 cm−1 (symmetric dioxy-stretch of the phosphate backbone); cholesterol -
1069 cm−1 and 1134 cm−1 (cholesteryl stearate), 1300 cm−1 (CH2 twists), and 1443 cm−1 (CH deformation) (Kallepitis
et al., 2017; Zhang et al., 2012; Movasaghi et al., 2007).
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Figure 7. Endmember estimates on high SNR sugar data. Qualitative comparison of derived endmembers on the high SNR sugar datasets -
with (a), and without reference spectra (b). Endmembers are scaled such that their maximum intensity is equal to 1 for visualization
purposes. x-axes represent the Raman shift region 400–1800 cm−1, and y-axes, which are shared for each row, represents normalized
intensity (a.u.).
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Figure 8. Endmember estimates on low SNR sugar data. Qualitative comparison of derived endmembers on the low SNR sugar datasets -
with (a), and without reference spectra (b). Endmembers are scaled such that their maximum intensity is equal to 1 for visualization
purposes. x-axes represent the Raman shift region 400–1800 cm−1, and y-axes, which are shared for each row, represents normalized
intensity (a.u.).
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Figure 9. Full unmixing results obtained with VCA + NNLS on the THP-1 cell data. a, Derived endmembers. b, Derived fractional
abundances.
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Figure 10. Full unmixing results obtained with our Dense AE model on the THP-1 cell data. a, Derived endmembers. b, Derived fractional
abundances.
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Figure 11. Full unmixing results obtained with our Deep Dense AE model on the preprocessed THP-1 cell data. a, Derived endmembers.
b, Derived fractional abundances.
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