
WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Masahiro Negishi Thomas Gärtner 1 Pascal Welke 2 1

Abstract
We investigate the distance function learned by
message passing neural networks (MPNNs) in
specific tasks, aiming to capture the functional
distance between prediction targets that MPNNs
implicitly learn. This contrasts with previous
work, which links MPNN distances on arbitrary
tasks to structural distances on graphs that ignore
task-specific information. To address this gap, we
distill the distance between MPNN embeddings
into an interpretable graph distance. Our method
uses optimal transport on the Weisfeiler Leman
Labeling Tree (WILT), where the edge weights
reveal subgraphs that strongly influence the dis-
tance between embeddings. This approach gen-
eralizes two well-known graph kernels and can
be computed in linear time. Through extensive
experiments, we demonstrate that MPNNs define
the relative position of embeddings by focusing
on a small set of subgraphs that are known to be
functionally important in the domain.

1. Introduction
Message passing graph neural networks (MPNNs) have
achieved high predictive performance in various domains
(Zhou et al., 2020). To understand these performance
gains, researchers have focused on the expressive power
of MPNNs (Morris et al., 2019; Xu et al., 2019; Maron
et al., 2019). However, the binary nature of expressive
power excludes any analysis of the distance between graph
embeddings, which is considered to be a key to the predic-
tive power of MPNNs (Liu et al., 2022b; Li & Leskovec,
2022; Morris et al., 2024). Recently, there has been growing
interest in the analysis of MPNN (generalization) perfor-
mance using structural distances between graphs (Chuang
& Jegelka, 2022; Böker et al., 2024; Franks et al., 2024) that
consider graph topology but ignore the target function to be

1TU Wien, Vienna, Austria 2Lancaster University Leipzig,
Leipzig, Germany. Correspondence to: Masahiro Negishi
<m.negishi25@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

learned. That line of work has derived generalization bounds
under strong assumptions on the margin between classes or
on the Lipschitz constants of MPNNs, which often do not
hold in practice. In this work, we instead investigate the
distance dMPNN implicitly obtained from a popular MPNN
trained on a practical dataset.

Specifically, we ask: What properties does the distance
dMPNN learned by a well-performing MPNN have in practice
that can explain its high performance? While previous stud-
ies (Chuang & Jegelka, 2022; Böker et al., 2024) focused
on the alignment between dMPNN and a non-task-tailored
structural graph distance dstruc, we have found that it is not
critical to the predictive performance of MPNNs. Rather,
even if an MPNN was trained with classical cross-entropy
loss, dMPNN respects the task-relevant functional distance
dfunc. Furthermore, the alignment between dMPNN and dfunc
is highly correlated with the predictive performance of the
MPNN. Then, we move to our second question: How do
MPNNs learn such a metric structure? Since dMPNN is es-
sentially a distance between multisets of Weisfeiler Leman
(WL) subgraphs, we distill dMPNN into a more interpretable
distance between these multisets. Our distance dWILT is an
optimal transport distance on a weighted Weisfeiler Leman
Labeling Tree (WILT), which is a trainable generalization
of the graph distances of existing high-performance ker-
nels (Kriege et al., 2016; Togninalli et al., 2019). It allows
us to identify WL subgraphs whose presence or absence
significantly affects the relative position of graphs in the
MPNN embedding space. In addition, dWILT is efficiently
computable as the ground metric is a path length on a tree,
and is at least as expressive as dMPNN in terms of binary
expressive power. We show experimentally that the WILT-
ing tree distances fit MPNN distances well. Examination of
the resulting edge parameters on a WILT after distillation
shows that only a small number of WL subgraphs deter-
mine dMPNN. In a qualitative experiment, the subgraphs that
strongly influence dMPNN are those that are known to be
functionally important by domain knowledge. In short, our
contributions are as follows:

• We show that MPNN distances after training are
aligned with the task-relevant functional distance of
the graphs and that this is key to the high predictive
performance of MPNNs.

1

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

• We propose a trainable graph distance on a weighted
Weisfeiler-Lehman Labeling Tree (WILT) that gener-
alizes Weisfeiler Leman-based distances and is effi-
ciently computable.

• WILT allows a straightforward definition of relevant
subgraphs. Thus, distilling an MPNN into a WILT
enables us to identify subgraphs that strongly influence
the distance between MPNN embeddings, allowing an
interpretation of the MPNN embedding space.

2. Related Work
Recently, it has become increasingly recognized that the
geometry of the MPNN embedding space, not just its binary
expressiveness, is crucial to its performance (Li & Leskovec,
2022; Morris et al., 2024). For instance, graph contrastive
learning methods implicitly assume that good metric struc-
ture in the embedding space leads to high performance (Liu
et al., 2022b). Chuang & Jegelka (2022); Böker et al. (2024);
Franks et al. (2024) analyzed MPNN’s (generalization) per-
formance using structural distances between graphs, which
consider graph topology but ignore the learning task at hand.
Despite their theoretically sound analyses of generalization
bounds, they made strong assumptions about the Lipschitz
constants of MPNNs (Chuang & Jegelka, 2022; Böker et al.,
2024) or the margin between classes (Franks et al., 2024).
In addition, Böker et al. (2024) dealt only with dense graphs
and required the consideration of all MPNNs with some
Lipschitz constant. Our study also focuses on the geome-
try of the embedding space, but we empirically investigate
practical MPNNs trained on real, sparse graphs, mainly
using task-dependent functional distances without limiting
Lipschitz constants or the margin between classes.

This study is also related to GNN interpretability (Liu et al.,
2022a; Yuan et al., 2022). Higher interpretability of well-
performing models may lead to a new understanding of sci-
entific phenomena when applied to scientific domains such
as chemistry or biology. In addition, it may be a requirement
in real-world problems where safety or privacy is critical.
Most of the existing interpretation methods are instance-
level, identifying input features in a given input graph that
are important for its prediction. However, instance-level
methods cannot explain the global behavior of GNNs. Re-
cently, some studies have proposed a way to understand
the global behavior of GNNs by distilling them into highly
interpretable models. The resulting model can be a GNN
with higher interpretability (Müller et al., 2024), or a logical
formula (Azzolin et al., 2023; Köhler & Heindorf, 2024;
Pluska et al., 2024). Our study also distills an MPNN into
a highly interpretable WILT for global-level understand-
ing. This allows to interpret the metric structure of the
MPNN embedding space, while previous studies focused
on generating explanations for each label class. In addition,

HG

Figure 1: Example of two iterations of the Weisfeiler
Leman algorithm. and are colors corresponding to
initial node attributes, while and represent edges
with different attributes. Node colors in iterations one
and two are shown in the small circles next to the nodes.
For example, = HASH(, {{(,), (,)}}) and =
HASH(, {{(,), (,), (,)}}), where HASH is a per-
fect hash function.

our method can be applied to graph regression tasks, while
previous studies are restricted to classification problems.

3. Preliminaries
We define a graph as a tuple G = (V,E, lnode, ledge), where
V and E are the set of nodes and edges. Each node and each
edge have an attribute defined by lnode : V → Σnode and
ledge : E → Σedge, where Σnode and Σedge are finite sets. We
restrict them to finite sets because our method is based on
the Weisfeiler Leman test described below, which is discrete
in nature. We denote the set of all graphs up to isomorphism
as G and the set of neighbors of node v as N (v). We only
consider undirected graphs, but the extension to directed
graphs is easy by employing an appropriate version of the
Weisfeiler Leman test.

Message Passing Algorithms (Gilmer et al., 2017) in-
clude popular GNNs such as Graph Convolutional Networks
(GCN, Kipf & Welling, 2017), and Graph Isomorphism Net-
works (GIN, Xu et al., 2019). At each iteration, a message
passing algorithm updates the embeddings of all nodes by
aggregating the embeddings of themselves and their neigh-
bors in the previous iteration. After L iterations, the node
embeddings are aggregated into the graph embedding hG:

a(l)v = AGG(l)
(
{{(h(l−1)

u , ledge(evu)) | u ∈ N (v)}}
)
,

h(l)
v = UPD(l)

(
h(l−1)
v , a(l)v

)
,

hG = READ
(
{{h(L)

v | v ∈ V }}
)
.

Here, {{·}} denotes a multiset, and 0 < l ≤ L with h
(0)
v =

lnode(v). h
(l)
v ∈ Rd and hG ∈ Rd′

are the embedding
of node v after the l-th layer and the graph embedding,
respectively. AGG(l), UPD(l), and READ are functions.
Message Passing Neural Networks (MPNNs) implement
UPD(l) and AGG(l) using multilayer perceptrons (MLPs).
Sum and mean pooling are popular for READ.

2

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

The Weisfeiler Leman (WL) Algorithm is a message
passing algorithm, where UPD(l) is an injective function.
AGG(l) and READ are the identity function on multisets. A
node embedding of the WL algorithm is called color. We
use c

(l)
v instead of h(l)

v to refer to it. Figure 1 shows the
progress of the WL algorithm on two graphs: G and H start
with the same colors, but no longer share colors after two
iterations, i.e., {{c(2)v | v ∈ VG}} ∩ {{c(2)v | v ∈ VH}} = ∅.

Message Passing Pseudometrics The WL algorithm cannot
distinguish some nonisomorphic graphs (Cai et al., 1992)
and all MPNNs are bounded by its expressiveness (Xu et al.,
2019). Hence, any MPNN yields a pseudometric on the set
of pairwise nonisomorphic graphs G.
Definition 3.1 (Graph Pseudometric). A graph pseudomet-
ric space (G, d) is given by a non-negative real valued func-
tion d : G × G → R≥0 that satisfies for all F,G,H ∈ G:

d(G,G) = 0 (Identity)
d(G,H) = d(H,G) (Symmetry)

d(G,F) ≤ d(G,H) + d(H,F) (Triangle inequality)

Given an MPNN, we obtain a pseudometric space
(G, dMPNN) by setting dMPNN(G,H) := d(hG, hH), where
d : Rd′ × Rd′ → R is a (pseudo)metric and hG and hH

are graph embeddings. Note that (G, dMPNN) is not a metric
space since there are nonisomorphic graphs G,H with iden-
tical representations and hence dMPNN(G,H) = 0. For the
rest of this paper, we will use dMPNN(G,H) = ||hG−hH ||2,
but other distances between embeddings can also be used.
Note that dMPNN depends not only on the input graphs but
also on the task on which the MPNN is trained. For exam-
ple, dMPNN of an MPNN trained to predict the toxicity of
molecules will be different from dMPNN of another MPNN
trained to predict the solubility of the same molecules.

Structural Pseudometrics To date, many different graph
kernels have been proposed (see Kriege et al., 2020). Each
positive semidefinite graph kernel k : G × G → R cor-
responds to a pseudometric between graphs. Please see
Appendix A.1 for the definitions of structural pseudometrics
from previous studies that are used in this article. We will
refer to these pseudometrics as structural pseudometrics
and write dstruc, as they only consider the structural and
node/edge attribute information of graphs, without being
trained using the target label information.

Functional Pseudometrics To formally define the func-
tional distance between graphs, we introduce another pseu-
dometric on G that is based on the target labels of the graphs.

Definition 3.2 (Functional Pseudometric). Let yG be the
target label of graph G in a given task. In classification, yG
is a categorical class, while yG is a numerical value in re-
gression. We assume the space for yG is bounded. Then, the

functional pseudometric space (G, dfunc) is obtained from
dfunc : G × G → [0, 1] defined as:

dfunc(G,H) :=

1yG ̸=yH
(classification)

|yG−yH |
sup
I∈G

yI− inf
I∈G

yI
(regression),

where 1yG ̸=yH
is the indicator function that returns 1 if

yG ̸= yH , otherwise 0.

See Appendix A.2 for a proof that (G, dfunc) is a pseudomet-
ric space. If the sup/inf of yG in G are unknown, they can
be approximated by the max/min in a training dataset.

The Expressive Power of a message passing algorithm is
defined based on its ability to distinguish non-isomorphic
graphs. Formally, a message passing graph embedding
function f is said to be at least as expressive as another one
g if the following holds:

∀G,H ∈ G : f(G) = f(H) =⇒ g(G) = g(H),

where G is the set of all pairwise non-isomorphic graphs. We
extend the above to pseudometrics on graphs. Specifically,
a graph pseudometric d is said to be at least as expressive as
d′ (d ≥ d′) iff

∀G,H ∈ G : d(G,H) = 0 =⇒ d′(G,H) = 0.

d and d′ are equally expressive (d ∼= d′) iff d ≥ d′ and
d′ ≥ d. Furthermore, d is said to be more expressive than
d′ (d > d′) iff d ≥ d′ and there exists G,H ∈ G s.t.
d(G,H) ̸= 0 ∧ d′(G,H) = 0.

4. Is the MPNN Embedding Distance Critical
to Performance?

Our first question is what properties dMPNN of well perform-
ing MPNNs have in practice that can explain their high
performance. This section investigates whether the align-
ment between dMPNN and the task-relevant pseudometric
dfunc is such a property. Specifically, we address the ques-
tions below:

Q1.1 Does training an MPNN increase the alignment be-
tween dMPNN and the task-relevant dfunc?

Q1.2 Does a strong alignment between dMPNN and dfunc
indicate high performance of the MPNN?

Note that the alignment between dMPNN and task-irrelevant
structural graph pseudometrics dstruc has been considered
a key to MPNN performance in previous studies (Chuang
& Jegelka, 2022; Böker et al., 2024; Franks et al., 2024).
However, we found that this property is not consistently im-
proved by training and does not correlate with performance.
(See Appendix D for detailed analyses).

3

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

To answer Q1.1 and Q1.2, we will first define a measure
of the alignment between dMPNN and dfunc. Note that it is
inappropriate to adopt a typical min/max of dfunc(G,H)

dMPNN(G,H) to
measure the alignment. This is because dfunc is a binary
function for classification tasks, and expecting the exact
match of the two distances is unreasonable. Thus, we define
our evaluation criterion as follows.
Definition 4.1 (Evaluation Criterion for Alignment Between
dMPNN and dfunc). Let D be a graph dataset, k(≥ 1) be an
integer hyperparameter, and Nk(G) ⊂ D \ {G} be a set of
k graphs that are closest to G under dMPNN. Let

Ak(G) :=
1

k

∑
H∈Nk(G)

dfunc(G,H),

Bk(G) :=
1

|D| − k − 1

∑
H∈D\(Nk(G)∪{G})

dfunc(G,H).

Then, dMPNN is aligned with dfunc if

ALIk(dMPNN, dfunc) :=
1

|D|
∑
G∈D

[−Ak(G) +Bk(G)]

is positive. In addition, the larger ALIk is, the more we say
dMPNN is aligned with dfunc.

Here, Ak(G) and Bk(G) are the average functional dis-
tances between G and its neighbors and non-neighbors, re-
spectively. If Ak(G) < Bk(G), then G and closeby graphs
in MPNN space have a lower average functional distance
than G and far away graphs in MPNN space.

We show the distribution of ALIk(dMPNN, dfunc) for 48 dif-
ferent MPNNs on different datasets and varying k in Fig-
ure 2. Each model was trained with a standard loss function
(cross entropy loss for classification and RMSE for regres-
sion). We did not explicitly optimize ALIk. We also include
the results for untrained MPNNs to see the effect of training.
We can see that there is little overlap between the distribu-
tions of the untrained and trained MPNNs. This means that
ALIk consistently improves through training, implying a
positive answer to Q1.1. Next, we compute Spearman’s rank
correlation coefficient (SRC) between ALIk(dMPNN, dfunc)
of trained MPNNs and their predictive performance. We
use accuracy and RMSE between the ground truth target
and predicted values to measure classification and regres-
sion performance, respectively. Table 1 shows that SRC for
Mutagenicity and ENZYMES is always positive, indicating
that the higher the ALIk, the higher the accuracy. Similarly,
the higher the ALIk, the lower the RMSE for Lipophilic-
ity. The correlations are consistent across training and test
sets. These results suggest that the degree of alignment be-
tween dMPNN and dfunc is a crucial factor contributing to the
high performance of MPNNs, answering Q1.2 positively.
See Appendix C for more details and additional results on
non-molecular datasets.

1 5 10 20

k

0.2

0.4

A
L

I k

Mutagenicity

1 5 10 20

k

0.00

0.25

0.50

0.75

A
L

I k

ENZYMES

1 5 10 20

k

0.05

0.10

0.15

A
L

I k

Lipophilicity

untrained

trained

Figure 2: The distribution of ALIk(dMPNN, dfunc) under dif-
ferent k and datasets.

Table 1: Correlation (SRC) between ALIk(dMPNN, dfunc)
and the performance on Dtrain and Dtest under different k.
We use accuracy for Mutagenicity and ENZYMES, and
RMSE for Lipophilicity to measure performance.

Mutagenicity ENZYMES Lipophilicity

k train test train test train test

1 0.66 0.70 0.89 0.49 -0.65 -0.57
5 0.65 0.69 0.87 0.50 -0.63 -0.56

10 0.63 0.68 0.87 0.47 -0.62 -0.56
20 0.61 0.67 0.85 0.46 -0.60 -0.55

5. WILTing Pseudometrics
Section 4 confirms that MPNNs are implicitly trained so that
dMPNN aligns with dfunc, which turns out to be crucial for
MPNN’s performance. Then, our second research question
is: how do MPNNs learn dMPNN that respects dfunc? To
this end, we note that MPNN embeddings are aggregations
of WL color embeddings, i.e., there exists a function f
with hG = f({{cv | v ∈ VG}}). Hence, dMPNN defines a
pseudometric df between multisets of WL colors

dMPNN(G,H) := ||hG − hH ||2
= ||f({{c(L)

v | v ∈ VG}})− f({{c(L)
v | v ∈ VH}})||2

=: df ({{c(L)
v | v ∈ VG}}, {{c(L)

v | v ∈ VH}}).

Therefore, we aim to understand dMPNN by distilling it into
our more interpretable and equally expressive pseudometric
dWILT on the same multisets. dWILT is an optimal transport

4

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

distance on the weighted Weisfeiler Leman Labeling Tree
(WILT) and generalizes two existing pseudometrics of high-
performing graph kernels (Kriege et al., 2016; Togninalli
et al., 2019). After distillation, the edge parameters of dWILT
allow us to identify WL colors whose presence or absence
significantly affects the relative position of graphs in the
MPNN embedding space. In addition, dWILT is efficient to
compute as the ground metric is a path length on the tree.

5.1. Weisfeiler Leman Labeling Tree (WILT)

The Weisfeiler Leman Labeling Tree (WILT) TD is a rooted
weighted tree built from the set of colors obtained by the WL
test on a graph dataset D ⊆ G. Given D, we define V (TD)
as the set of colors that appear on any node during the WL
test plus the root node r, that is, V (TD) = {c(l)v | v ∈
VG, G ∈ D, l ∈ [L]}∪ {r}. Colors x, y ∈ V (TD) \ {r} are
adjacent if and only if there exists a node v in some graph
in D and an iteration l with x = c

(l)
v and y = c

(l−1)
v . r is

connected to all x = c
(0)
v . Due to the injectivity of the AGG

and UPD functions in the WL algorithm, it follows that TD
is a tree. Figure 3 (top) shows the WILT built from the
graphs G and H in Figure 1. See Appendix B for a detailed
algorithm to build a WILT from D.

We consider edge weights w : E(TD) → R≥0 on WILT.
We only allow non-negative weights so that the WILTing
distance in Definition 5.1 will be non-negative. Given
a WILT TD with weights w, the shortest path length
dpath(x, y;w) :=

∑
e∈Path(x,y) w(e) is the sum of edge

weights of the unique shortest path Path(x, y) between x
and y. Note that dpath is a pseudometric on V (TD), i.e., the
set of WL colors in D. Intuitively, dpath(x, y;w) is large if
Path(x, y) is long, but w allows us to tune this pseudometric
according to the needs of the learning task.

5.2. The WILTing Distance

A WILT TD with edge weights w yields a pseudometric
dWILT on the graph setD. This section shows two equivalent
characterizations of dWILT as an optimal transport distance
and as a weighted Manhattan distance. The latter allows us
to define the importance of specific WL colors and to com-
pute our proposed pseudometric efficiently. For simplicity,
we define dWILT for graphs with the same number of nodes.
In the next section, we will discuss the extension to graphs
with different numbers of nodes. For two distributions with
identical mass on the same pseudometric space, optimal
transport distances such as the Wasserstein distance (Villani,
2009) measure the minimum effort of shifting probability
mass from one distribution to the other. Each unit of shifted
mass is weighted by the distance it is shifted. We define
our pseudometric dWILT(G,H;w) as the optimal transport
between VG and VH , where the ground pseudometric is the
shortest path metric on the WILT TD.

νG

νH

ν̇G

ν̇H

ν̄G

ν̄H

3 2 2 1 1 1 0 2 0 1 1 1 0

2 2 2 0 0 0 2 0 2 0 0 0 2

3
5

2
5

2
5

1
5

1
5

1
5

0
5

2
5

0
5

1
5

1
5

1
5

0
5

2
4

2
4

2
4

0
4

0
4

0
4

2
4

0
4

2
4

0
4

0
4

0
4

2
4

3 2 0 2 1 1 1 0 0 2 0 1 1 1 0 0

2 2 1 2 0 0 0 2 1 0 2 0 0 0 2 1

r

r

c0¬
c1¬
c2¬

Figure 3: (top): The Weisfeiler Leman Labelling Tree
(WILT) built from D = {G,H} from Figure 1. (middle):
The WILT built from D = {G,H} with dummy nodes.
(bottom): The WILT embeddings ν, ν̇ with size normaliza-
tion, and ν̄ with dummy node normalization.

Definition 5.1 (WILTing Distance). Let G,H ∈ D be
graphs with |VG| = |VH |. Then

dWILT(G,H;w) := min
P∈Γ

∑
vi∈VG

∑
uj∈VH

Pi,jdpath(c
(L)
vi , c(L)

uj
)

where Γ := {P ∈ R|VG|×|VH | | Pi,j ≥ 0, P1 = 1, PT1 =
1}.

Note that dWILT is not a metric but a pseudometric on the
set of pairwise nonisomorphic graphs G. This is because
there are nonisomorphic graphs G and H whose colors are
the same after L iterations, i.e., {{c(L)

v | v ∈ VG}} = {{c(L)
v |

v ∈ VH}}.

Generic algorithms to compute Wasserstein distances re-
quire cubic runtime. In our case, however, there exists a
linear time algorithm to compute dWILT as shown below,
since the ground pseudometric dpath is the shortest path met-
ric on a tree (Le et al., 2019).

Definition 5.2 (WILT Embedding). The WILT embedding
of a graph G ∈ D is a vector, where each dimension counts
how many times a corresponding WL color appears during
the WL test on G, i.e., νGc := |{v ∈ VG | ∃l ∈ [L] c

(l)
v =

c}| for c ∈ V (TD) \ {r}. (see the bottom of Figure 3).

5

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Proposition 5.3 (Equivalent Definition of WILTing Dis-
tance). dWILT in Definition 5.1 is equivalent to:

dWILT(G,H;w) =
∑

c∈V (TD)\{r}

w
(
e{c,p(c)}

) ∣∣νGc − νHc
∣∣ ,

where e{c,p(c)} is the edge connecting c and its parent p(c)
in TD.

This equivalence allows efficient computation of dWILT
given the WILT embeddings of graphs, which can be com-
puted by the WL algorithm in O(L|EG|) time, where L is
the number of WL iterations. Using sparse vectors for νG

and νH , dWILT(G,H) can be computed in O(|VG|+ |VH |).

5.3. Normalization and Special Cases

The definition of dWILT(G,H) as an optimal transport dis-
tance requires |VG| = |VH |. However, |VG| and |VH | are
usually different, so we propose two solutions. Interest-
ingly, the two modified WILTing distances generalize two
pseudometrics corresponding to well-known graph kernels.

Size Normalization Straightforwardly, we can restrict the
mass of each node to 1

|VG| when calculating the Wasserstein
distance in Definition 5.1. In other words, we replace Γ with
Γ̇ := {P ∈ R|VG|×|VH | | Pi,j ≥ 0, P1 = 1

|VG|1, P
T1 =

1
|VH |1}. Similarly, νG in Proposition 5.3 is changed to

ν̇G := νG

|VG| . The resulting pseudometric ḋWILT effectively
ignores differences in the number of nodes of G and H ,
generally assigning fractions of colors in G to colors in H .
In Figure 3 (bottom), we show ν̇ of G and H from Figure 1.
ḋWILT(G,H) is calculated as:

ḋWILT(G,H) =w(e{ , })

∣∣∣∣35 − 2

4

∣∣∣∣+ w(e{ , })

∣∣∣∣25 − 2

4

∣∣∣∣
+ . . .+ w(e{ , })

∣∣∣∣05 − 2

4

∣∣∣∣ .
An interesting property of ḋWILT is that it generalizes
the pseudometric corresponding to the Wasserstein Weis-
feiler Leman graph kernel (Togninalli et al., 2019): when
w ≡ 1

2(L+1) , ḋWILT matches their pseudometric. See Ap-
pendix A.3 for technical details.

Dummy Node Normalization We can also add isolated
nodes with a special attribute, called dummy nodes, to
graphs so that all the graphs have the same number of nodes.
The WILT will be built in the same way as described in
Section 5.1 after dummy nodes are added to all graphs in
D. The resulting WILT has new colors c0¬, c

1
¬, . . . , c

L
¬ that

arise from the WL iteration on the isolated dummy nodes
(Figure 3 middle). The WILT embedding will be slightly
changed to

ν̄Gc :=

{
N − |VG| if c ∈ {c0¬, c1¬, . . . , cL¬}
νGc otherwise

,

Algorithm 1 Optimizing edge weights of WILT

Input: graph dataset D, an MPNN f with L message
passing layers trained on D, and WILT TD built from the
results of L-iteration WL test on D
Parameter: batch size, number of epochs E, and learn-
ing rate lr
Output: learned edge weights w of WILT TD
nc ← |E(TD)|
w ← 1 ∈ Rnc

optimizer← Adam(params=w, lr=lr)
for e = 1 to E do

for batch B in D2 do
l← 1

|B|
∑

(G,H)∈B

(
dWILT(G,H)− dMPNN(G,H)

)2

l.backward()
optimizer.step()
/* Ensuring that edge weights w are non-negative */
w ← max(w, 0)

return w

where N = maxG∈D |VG| (Figure 3 bottom). Then, the re-
sulting pseudometric d̄WILT(G,H) for the graphs in Figure 1
is:

d̄WILT(G,H) =w(e{ , })|3− 2|+ w(e{ , })|2− 2|
+ . . .+ w(e{ , })|0− 1|.

Similar to size normalization, d̄WILT includes the pseudomet-
ric of Weisfeiler Leman optimal assignment kernel (Kriege
et al., 2016) as a special case. When w ≡ 1

2 , d̄WILT is
equivalent to their pseudometric. See Appendix A.3 for
details.

5.4. Edge Weight Learning and Identification of
Important WL Colors

Now, we have a graph pseudometric on WILT defined for
any pairs of graphs in D. Next, we show how to optimize
the edge weights w. Proposition 5.3 allows us to learn the
edge weights w, given training data. Specifically, given a
target pseudometric dtarget we adapt dWILT by minimizing

L(w) :=
∑

(G,H)∈D2

(
dWILT(G,H;w)− dtarget(G,H)

)2

,

with respect to w. Note that dWILT can refer to both ḋWILT
and d̄WILT. In this work, we focus on dtarget = dMPNN. That
is, we train dWILT to mimic the distances between the graph
embeddings of a given MPNN, as shown in Algorithm 1.
Once we have trained w by minimizing L, we can gain
insight into dMPNN via dWILT. WL colors with large edge
weights are those whose presence or absence in a graph
significantly affects dMPNN between the graph and other

6

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

graphs. Specifically, we can derive the following reasoning.

Large difference between G and H in the number
or ratio of WL colors c with a large w(e{c,p(c)})

=⇒ Large dWILT(G,H) (∵ Proposition 5.3)
=⇒ Large dMPNN(G,H) (∵ dWILT approximates dMPNN)

5.5. Expressiveness of Pseudometrics on WILT

Here, we discuss which of the two normalizations is pre-
ferred for a given MPNN based on the expressive power.
Below are the relationships between the expressiveness of
dMPNN and dWILT.

Theorem 5.4 (Expressive Power of the Pseudometrics on
WILT). Let dmean

MPNN and dsum
MPNN be dMPNN of MPNNs with

mean and sum graph poolings, respectively. We also define
a pseudometric based on the L-iteration WL test:

dWL(G,H) := 1{{c(L)
v |v∈VG}}≠{{c(L)

v |v∈VH}}.

Then, for WILT with positive edge weights, the following
relationships hold between the expressive power of each
pseudometric.

ḋWILT < d̄WILT ∼= dWL,

dmean
MPNN ≤ ḋWILT(< d̄WILT),

dsum
MPNN ≤ d̄WILT, d

sum
MPNN@≤ḋWILT.

Proof. See Appendix A.4.

Since d̄WILT is more expressive than ḋWILT, one might think
that d̄WILT is always preferable to approximating dMPNN.
However, ḋWILT is expected to be better at approximating
dmean

MPNN, since it provides a tighter bound. Intuitively, this
follows from the fact that mean pooling and the size nor-
malization are essentially the same procedure: they both
ignore the number of nodes. In contrast, d̄WILT is expected
to work well on dsum

MPNN, which retains the information about
the number of nodes and thus cannot be bounded by ḋWILT.
We will experimentally confirm these analyses in Section 6.
Note that Theorem 5.4 considers only the binary expressive-
ness of pseudometrics. Regarding the size of the family of
functions that each pseudometric can represent, dMPNN is
expected to be superior to dWILT, because dWILT is restricted
to an optimal transport on the tree for faster computation
and better interpretability. Still, in Section 6, we empirically
show that dWILT can approximate dMPNN well.

6. Experiments
In this section, we confirm that our proposed dWILT can
successfully approximate dMPNN. Then, we show that the

Table 2: The mean±std of RMSE(dMPNN, d) [×10−2] over
five different seeds. Each row corresponds to a GCN with a
given graph pooling method, trained on a given dataset.

dWWL dWLOA ḋWILT d̄WILT

Mutagenicity
mean 9.25±0.87 18.74±3.36 1.74±0.52 3.34±1.01
sum 12.25±0.54 5.98±1.60 1.22±0.31 0.82±0.17
ENZYMES
mean 12.18±0.23 16.79±2.33 2.71±0.38 4.64±0.67
sum 11.28±0.65 6.83±0.41 9.15±0.47 1.43±0.10
Lipophilicity
mean 10.92±0.42 13.97±0.97 3.11±0.54 6.35±1.22
sum 10.83±0.73 10.00±1.34 2.50±0.67 2.64±0.74

distribution of learned edge weights of WILT is skewed
towards 0, and a large part of them can be removed with L1
regularization. Finally, we investigate the WL colors that
influence dMPNN most. Due to space limitations, we report
results only for a selection of MPNNs and datasets. Code is
available online, and experimental settings and additional
results are in Appendix E.

We trained 3-layer GCNs with mean or sum pooling on the
three datasets with five different seeds. We then distilled
each into two WILTs, one with size normalization and one
with dummy node normalization. To evaluate how well a
distance d approximates dMPNN, we used a variant of RMSE:

RMSE(dMPNN, d)

:=

√√√√min
α∈R

1

|D|2
∑

(G,H)∈D2

(
d̂MPNN(G,H)− α · d̂(G,H)

)2

,

where d̂WILT and d̂ means they are normalized to [0, 1]. Intu-
itively, the closer the RMSE is to zero, the better the align-
ment is, and zero RMSE means perfect alignment. We do
not use the correlation coefficient because it can be one even
if dMPNN is not a constant multiple of d: it allows a non-zero
intercept. Note that the minimization over α can be solved
analytically. In practice, we compute the RMSE using only
1000 pairs from D2 for speed. Table 2 shows the RMSE
between dMPNN and ḋWILT or d̄WILT. We also include results
for dWWL and dWLOA, which are special cases of ḋWILT and
d̄WILT with fixed edge weights, respectively. It is obvious
that dWILT aligns with dMPNN much better than dWWL and
dWLOA. Interestingly, ḋWILT approximates dMPNN(mean) bet-
ter, while d̄WILT approximates dMPNN(sum) better, except
for dMPNN(sum) trained on Lipophilicity, where their per-
formance is close. This observation is consistent with the
theoretical analysis in Section 5.5.

Next, we look into the distribution of the learned edge
weights of WILT. Figure 4 shows the histogram of the edge
weights of the WILT with dummy node normalization after

7

https://github.com/masahiro-negishi/wilt

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

0 10 20 30 40

Weight value

100

101

102

103

104

F
re

qu
en

cy

Weight distribution

Figure 4: The distribution of the edge
weights of WILT after distillation.

0.0 0.0001 0.001 0.01 0.1 1.0

L1 coefficient

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
M

S
E

Results with different λ

RMSE of WLOA

RMSE of WILT

Ratio of non-zero weights

0.2

0.4

0.6

0.8

1.0

R
at

io
of

n
on

-z
er

o
w

ei
gh

ts

Figure 5: The RMSE and the ratio of
non-zero edge weights after distillation
under different L1 coefficients (mean
and std over five different seeds).

H O H

(1)

C

N

NO2
(2)

CH2 N

CH3

N

O

F(3)

CH3 CH

Br

Br

(4)

Figure 6: Example graphs with high-
lighted significant subgraphs corre-
sponding to colors with the largest
weights.

distillation from a 3-layer GCN with sum pooling trained on
Mutagenicity. The distribution is heavily skewed towards
zero. This plot, together with Proposition 5.3, suggests that
the relative position of MPNN graph embeddings is deter-
mined based on only a small subset of WL colors. To further
verify this idea, we added an L1 regularization term to the
objective function L and minimized it so that w(e{c,p(c)})
would be set to zero for some colors. Figure 5 shows the
RMSE between dMPNN and the resulting d̄WILT, as well as
the ratio of non-zero edge weights, under different L1 coeffi-
cient λ. As expected, the larger λ is, the more edge weights
are set to zero and the larger the RMSE. However, it is worth
noting that d̄WILT is much better aligned with dMPNN than
dWLOA even when trained with λ = 1.0 and about 95% of
the edge weights are zero. This good approximation with
only 5% non-zero edges implies that MPNNs rely on only a
few important WL colors to define dMPNN.

Finally, we show the subgraphs corresponding to the colors
with the largest weights, thus influencing dMPNN the most.
Again, we only show results for the 3-layer GCN with sum
pooling trained on the Mutagenicity dataset. To avoid iden-
tifying colors that are too rare, we only consider colors that
appear in at least 1% of the entire graphs. Figure 6 shows ex-
ample graphs with subgraphs corresponding to colors with
the four largest weights. The identified subgraphs in (1) and
(4) are known to be characteristic of mutagenic molecules
(Kazius et al., 2005). In fact, (1) and (4) are classified as
“epoxide” and “aliphatic halide” based on the highlighted
subgraphs. Given that only a tiny fraction of the entire WL
colors correspond to the subgraphs reported in (Kazius et al.,
2005), this result suggests that MPNNs learn the relative po-
sition of graph embeddings based on WL colors that are also
known to be functionally important by domain knowledge.

7. Conclusions
We analyzed the metric properties of the embedding space
of MPNNs. We found that the alignment with the functional
pseudometric improves during training and is a key to high
predictive performance. In contrast, the alignment with
the structural psudometrics does not improve and is not
correlated with performance. To understand how MPNNs
learn and reflect the functional distance between graphs, we
propose a theoretically sound and efficiently computable
new pseudometric on graphs using WILT. By examining the
edge weights of the distilled WILT, we found that only a
tiny fraction of the entire WL colors influence dMPNN. The
identified colors correspond to subgraphs that are known to
be functionally important from domain knowledge.

One limitation of our study is that we only distilled two
GNN architectures (GCN and GIN) with fixed hyperparam-
eters to WILT. Thus, it remains to be seen how different
architectures and hyperparameters affect the edge weights of
WILT. We also limited our analysis to the final embeddings
of MPNNs, but in principle, WILT can be trained to approx-
imate the MPNN embedding distance at internal layers. It
would be interesting to investigate the embedding distances
at different layers, and how they relate to the performance.
We expect results similar to Liu et al. (2024), which showed
that consistency between distances at different iterations is
a key to high performance. While we investigated MPNNs
specifically, there is a hierarchy of more and more expressive
GNNs that are bounded in expressiveness by corresponding
WL test variants. In this paper, we have defined WILT on the
hierarchy of 1-WL labels. Still, it is straightforward to ex-
tend the proposed WILT metric to color hierarchies obtained
from higher-order WL variants (Morris et al., 2023; Geerts
& Reutter, 2022) or extended message passing schemes
(Frasca et al., 2022; Graziani et al., 2024). While beyond

8

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

the scope of this work, higher-order WILTing trees may
prove useful in interpreting a range of GNNs. However,
as the number of trainable WILT weights scales with the
number of colors, the practical relevance of higher-order
WILTs remains an open question. It is also worth exploring
extending WILT to the analysis of GNNs for node classifi-
cation on large graphs such as social networks or citation
networks. Kothapalli et al. (2023) showed that GNNs are
trained such that their node embeddings respect the func-
tional alignment, but their analysis was limited to unrealistic
graphs generated from a stochastic block model. We believe
that the node embedding space of GNNs can also be dis-
tilled to WILT in a similar way, i.e., by tuning the weights
to approximate the node embedding distance with a path
distance on WILT. Using WILT for a purpose other than
understanding GNNs is also interesting. For example, by
training WILT’s edge parameters from scratch, we might
be able to build a high-performance, interpretable graph
learning method.

Acknowledgements
PW acknowledges TGs ability to devise great paper titles
involving puns on some authors’ last names. This work
was supported by the Vienna Science and Technology Fund
(WWTF) and the City of Vienna project StruDL (10.47379/
ICT22059) and by the Austrian Science Fund (FWF) project
NanOX-ML (6728). We express our gratitude to the Japan
Student Services Organization for financially supporting the
first author’s five-month research stay in Vienna. Finally,
we thank the reviewers for their insightful comments.

Impact Statement
This paper advances our understanding of what and how
competitive MPNNs learn. We hope that this will contribute
to safe and robust machine learning. We are not aware of
any immediate negative consequences of our work.

References
Azzolin, S., Longa, A., Barbiero, P., Liò, P., and Passerini,

A. Global explainability of GNNs via logic combina-
tion of learned concepts. In International Conference on
Learning Representations, 2023.

Böker, J., Levie, R., Huang, N., Villar, S., and Morris, C.
Fine-grained expressivity of graph neural networks. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Cai, J., Fürer, M., and Immerman, N. An optimal lower
bound on the number of variables for graph identification.
Combinatorica, 12(4):389–410, 1992.

Chuang, C.-Y. and Jegelka, S. Tree mover’s distance:
Bridging graph metrics and stability of graph neural net-
works. Advances in Neural Information Processing Sys-
tems, 2022.

Franks, B. J., Morris, C., Velingker, A., and Geerts, F.
Weisfeiler-leman at the margin: When more expressivity
matters. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024, 2024.

Frasca, F., Bevilacqua, B., Bronstein, M. M., and Maron, H.
Understanding and extending subgraph GNNs by rethink-
ing their symmetries. In Advances in Neural Information
Processing Systems, 2022.

Geerts, F. and Reutter, J. L. Expressiveness and approxima-
tion properties of graph neural networks. In International
Conference on Learning Representations, 2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
2017.

Graziani, C., Drucks, T., Jogl, F., Bianchini, M., Scarselli, F.,
and Gärtner, T. Expressiveness and approximation proper-
ties of graph neural network. In International Conference
on Machine Learning, 2024.

Kazius, J., McGuire, R., and Bursi, R. Derivation and
validation of toxicophores for mutagenicity prediction.
Journal of Medicinal Chemistry, 48(1):312–320, 2005.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kothapalli, V., Tirer, T., and Bruna, J. A neural collapse
perspective on feature evolution in graph neural networks.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Kriege, N. M., Giscard, P., and Wilson, R. C. On valid opti-
mal assignment kernels and applications to graph classi-
fication. In Advances in Neural Information Processing
Systems, 2016.

Kriege, N. M., Johansson, F. D., and Morris, C. A survey on
graph kernels. Applied Network Science, 5:1–42, 2020.

Köhler, D. and Heindorf, S. Utilizing description logics
for global explanations of heterogeneous graph neural
networks. arXiv preprint:2405.12654, 2024.

Le, T., Yamada, M., Fukumizu, K., and Cuturi, M. Tree-
sliced variants of Wasserstein distances. Advances in
Neural Information Processing Systems, 2019.

9

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Li, P. and Leskovec, J. The expressive power of graph neu-
ral networks. In Graph Neural Networks: Foundations,
Frontiers, and Applications. 2022.

Liu, N., Feng, Q., and Hu, X. Interpretability in graph neu-
ral networks. In Graph Neural Networks: Foundations,
Frontiers, and Applications. 2022a.

Liu, X., Cai, Y., Yang, Q., and Yan, Y. Exploring consistency
in graph representations: from graph kernels to graph
neural networks. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Liu, Y., Jin, M., Pan, S., Zhou, C., Zheng, Y., Xia, F., and
Yu, P. S. Graph self-supervised learning: A survey. IEEE
Transactions on Knowledge and Data Engineering, 35
(6):5879–5900, 2022b.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. Advances in Neural
Information Processing Systems, 2019.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman
go neural: Higher-order graph neural networks. In AAAI
Conference on Artificial Intelligence, 2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P.,
and Neumann, M. Tudataset: A collection of benchmark
datasets for learning with graphs. In ICML Workshop on
Graph Representation Learning and Beyond, 2020.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M.,
Grohe, M., Fey, M., and Borgwardt, K. M. Weisfeiler and
leman go machine learning: The story so far. Journal of
Machine Learning Research, 24:333:1–333:59, 2023.

Morris, C., Frasca, F., Dym, N., Maron, H., Ceylan, İ. İ.,
Levie, R., Lim, D., Bronstein, M. M., Grohe, M., and
Jegelka, S. Position: Future directions in the theory of
graph machine learning. In International Conference on
Machine Learning, 2024.

Müller, P., Faber, L., Martinkus, K., and Wattenhofer, R.
GraphChef: Decision-tree recipes to explain graph neu-
ral networks. In International Conference on Learning
Representations, 2024.

Pluska, A., Welke, P., Gärtner, T., and Malhotra, S. Logical
distillation of graph neural networks. In International
Conference on Knowledge Representation and Reasoning,
2024.

Sanfeliu, A. and Fu, K. A distance measure between at-
tributed relational graphs for pattern recognition. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
13(3):353–362, 1983.

Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B.,
and Borgwardt, K. Wasserstein Weisfeiler-Lehman graph
kernels. Advances in Neural Information Processing
Systems, 2019.

Villani, C. Optimal transport: old and new, volume
338 of Grundlehren der mathematischen Wissenschaften.
Springer, 2009.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical Science, 9(2):513–530, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Yuan, H., Yu, H., Gui, S., and Ji, S. Explainability in graph
neural networks: A taxonomic survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45
(5):5782–5799, 2022.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI open, 1:57–81, 2020.

10

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

A. Theoretical Analysis
In this section, we present the proofs of our theoretical results in the main paper. We formally define related structural
pseudometrics and show that dWILT generalizes them.

A.1. Structural Pseudometrics

Here we introduce the definitions of the graph edit distance (dGED, Sanfeliu & Fu, 1983), Weisfeiler Leman optimal
assignment distance (dWLOA, Kriege et al., 2016), and Wasserstein Weisfeiler Leman graph distance (dWWL, Togninalli et al.,
2019). For the definition of tree mover’s distance, please refer to the original paper (Chuang & Jegelka, 2022).
Definition A.1 (Graph Edit Distance (Sanfeliu & Fu, 1983)). Let E be the set of graph edit operations, and c : E → R≥0 be
a function that assigns a cost to each operation. Then, the graph edit distance (GED) between G and H is defined as the
minimum cost of a sequence of edit operations that transform G into H . Formally,

dGED(G,H) := min
s∈S(G,H)

∑
e∈s

c(e),

where S(G,H) is a set of sequences of graph edit operations that transform G into H .

In the experiments in Appendix D, E consists of insertion and deletion of single nodes and single edges, as well as
substitution of single node or edge attributes. We set the cost of each operation to 1, i.e., c(e) ≡ 1. Next, we move on to the
Weisfeiler Leman optimal assignment (WLOA) kernel.
Definition A.2 (Weisfeiler Leman Optimal Assignment Kernel (Kriege et al., 2016)). Consider G = (VG, EG) and
H = (VH , EH). Let V ′

G and V ′
H be the extended node sets resulting from adding special nodes z to G or H so that G and

H have the same number of nodes. Let the base kernel k be defined as:

k(v, u) :=

{∑L
l=0 1c

(l)
v =c

(l)
u

(v ̸= z ∧ u ̸= z)

0 (v = z ∨ u = z),

where c
(l)
v and c

(l)
u represent the colors of vertices v and u at iteration l of the WL algorithm (see Section 3). Then, the

Weisfeiler Leman optimal assignment (WLOA) kernel is defined as:

kWLOA(G,H) := max
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

k(vG, uH),

where B(V ′
G, V

′
H) denotes the set of all possible bijections between V ′

G and V ′
H .

Kriege et al. (2016) proved that kWLOA is a positive semidefinite kernel function. While they focused only on the kernel, a
corresponding graph pseudometric can be defined in the following way:
Definition A.3 (Weisfeiler Leman Optimal Assignment (WLOA) Distance). The function dWLOA below is a pseudometric
on the set of pairwise nonisomorphic graphs G:

dWLOA(G,H) := (L+ 1) ·max(|VG|, |VH |)− kWLOA(G,H)

Proof. Theorem A.8 shows that dWLOA defined as above is a special case of d̄WILT. Since d̄WILT is a pseudometric on the set
of pairwise nonisomorphic graphs G, so is dWLOA.

We will show later that the above WLOA distance is a special case of our WILT distance with dummy node normalization
(Theorem A.8). Togninalli et al. (2019) proposed another graph pseudometric based on the WL algorithm, called Wasserstein
Weisfeiler Leman graph distance.
Definition A.4 (Wasserstein Weisfeiler Leman (WWL) Distance (Togninalli et al., 2019)). Let dham(v, u) be the hamming
distance between

[
c
(0)
v , c

(1)
v , . . . c

(L)
v

]
and

[
c
(0)
u , c

(1)
u , . . . c

(L)
u

]
, where c

(l)
v is the color of node v at iteration l of the WL

algorithm (see Section 3). Specifically,

dham(v, u) :=
1

L+ 1

L∑
l=0

1
c
(l)
v ̸=c

(l)
u
.

11

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Then the WWL distance is defined as

dWWL(G,H) := min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,jdham(vi, uj),

where ΓWWL := {P ∈ R|VG|×|VH |
≥0 | P1 = 1

|VG|1, P
T1 = 1

|VH |1} is a set of valid transports between two uniform discrete
distributions.

Togninalli et al. (2019) have shown that dWWL is a pseudometric. In addition, they proposed a corresponding kernel
kWWL(G,H) := e−λdWWL(G,H), and showed that it is positive semidefinite. We will prove later in Theorem A.7 that our
WILT distance with size normalization includes this WWL distance as a special case.

A.2. Functional Pseudometrics

Here, we show that dfunc is a pseudometric.

Definition 3.2 (Functional Pseudometric). Let yG be the target label of graph G in a given task. In classification, yG is a
categorical class, while yG is a numerical value in regression. We assume the space for yG is bounded. Then, the functional
pseudometric space (G, dfunc) is obtained from dfunc : G × G → [0, 1] defined as:

dfunc(G,H) :=

1yG ̸=yH
(classification)

|yG−yH |
sup
I∈G

yI− inf
I∈G

yI
(regression),

where 1yG ̸=yH
is the indicator function that returns 1 if yG ̸= yH , otherwise 0.

Proof. We start with the classification case.

dfunc(G,G) = 1yG ̸=yG

= 0

dfunc(G,H) = 1yG ̸=yH

= 1yH ̸=yG

= dfunc(H,G)

dfunc(G,F) = 1yG ̸=yF

≤ 1yG ̸=yH
+ 1yH ̸=yF

= dfunc(G,H) + dfunc(H,F)

For the regression case we can assume that sup
I∈G

yI ̸= inf
I∈G

yI as the regression problem is trivial otherwise. Then we can

12

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

show:

dfunc(G,G) =
|yG − yG|

sup
I∈G

yI − inf
I∈G

yI

= 0

dfunc(G,H) =
|yG − yH |

sup
I∈G

yI − inf
I∈G

yI

=
|yH − yG|

sup
I∈G

yI − inf
I∈G

yI

= dfunc(H,G)

dfunc(G,F) =
|yG − yF |

sup
I∈G

yI − inf
I∈G

yI

≤ |yG − yH |
sup
I∈G

yI − inf
I∈G

yI
+

|yH − yF |
sup
I∈G

yI − inf
I∈G

yI

= dfunc(G,H) + dfunc(H,F)

In both cases, identity, symmetry, and triangle inequality are satisfied.

If the supremum (resp. infimum) of yG in G are unknown, they can be approximated by the maximum (resp. minimum)
distance in a training dataset D, and we can similarly prove that dfunc is a pseudometric.

A.3. Normalized WILTing Distances and Relationship to Existing Distances

We present the formal definitions of the size normalization and dummy node normalization. We then show that ḋWILT with
size normalization generalizes the WWL distance dWWL and that d̄WILT with dummy node normalization generalizes the
WLOA distance dWLOA.

Definition A.5 (WILTing Distance with Size Normalization). We define the WILTing distance with size normalization as:

ḋWILT(G,H;w) := min
P∈Γ̇

∑
vi∈VG

∑
uj∈VH

Pi,jdpath(c
(L)
vi , c(L)

uj
),

where Γ̇ := {P ∈ R|VG|×|VH | | Pi,j ≥ 0, P1 = 1
|VG|1, P

T1 = 1
|VH |1}. It is equivalent to:

ḋWILT(G,H;w) =
∑

c∈V (TD)\{r}

w(e{c,p(c)})
∣∣ν̇Gc − ν̇Hc

∣∣ ,
where ν̇G := 1

|VG|ν
G.

The only difference between Definition 5.1 and Definition A.5 is the mass assigned to each node. The equivalence between
the two definitions of ḋWILT is a straightforward consequence of (Le et al., 2019). The other normalization is defined as
follows.

Definition A.6 (WILTing Distance with Dummy Node Normalization). Let V̄G be an extension of VG with additional
N − |VG| isolated dummy nodes with a special attribute, where N := maxG∈D |VG|. Let T̄D be WILT built from the
extended graphs {(V̄G, EG)}G∈D. Note that T̄D is just a slight modification of TD (see Figure 3). We define the WILTing
distance with dummy node normalization as:

d̄WILT(G,H;w) := min
P∈Γ̄

∑
vi∈V̄G

∑
uj∈V̄H

Pi,jdpath(c̄
(L)
vi , c̄(L)

uj
),

13

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

where Γ̄ := {P ∈ R|V̄G|×|V̄H | | Pi,j ≥ 0, P1 = 1, PT1 = 1}, and c̄
(L)
v is the color of node v on T̄D after L iterations. An

equivalent definition is:
d̄WILT(G,H;w) =

∑
c̄∈V (T̄D)\{r}

w(e{c̄,p(c̄)})
∣∣ν̄Gc̄ − ν̄Hc̄

∣∣ ,
where ν̄G is the WILT embedding of G using T̄D.

Intuitively speaking, we add dummy nodes to all the graphs so that they have the same number of nodes1, and compute the
WILTing distance in exactly the same way as shown in Section 5.2.

Next, we show that ḋWILT includes the Wasserstein Weisfeiler Leman distance and d̄WILT includes the Weisfeiler Leman
optimal assignment distance as a special case, respectively.

Theorem A.7 (dWWL as A Special Case of ḋWILT). The WWL distance in Definition A.4 is equal to the WILTing distance
with size normalization with all WILT edge weights set to 1

2(L+1) . Specifically,

dWWL(G,H) = ḋWILT

(
G,H;w ≡ 1

2(L+ 1)

)
.

Proof.

dWWL(G,H) := min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,jdham(vi, uj)

= min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,j
1

L+ 1

L∑
l=0

1clv ̸=clu

= min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,jdpath

(
c(L)
vi

, c(L)
uj

;w ≡ 1

2(L+ 1)

)

= min
P∈Γ̇

∑
vi∈VG

∑
uj∈VH

Pi,jdpath

(
c(L)
vi , c(L)

uj
;w ≡ 1

2(L+ 1)

)

= ḋWILT

(
G,H;w ≡ 1

2(L+ 1)

)
.

Theorem A.8 (dWLOA as A Special Case of d̄WILT). The WLOA distance in Definition A.3 is equal to the WILTing distance
with dummy node normalization with all WILT edge weights set to 1

2 . Specifically,

dWLOA(G,H) = d̄WILT

(
G,H;w ≡ 1

2

)
.

Proof. First, dWLOA(G,H) can be transformed as follows.

dWLOA(G,H) := (L+ 1) ·max(|VG|, |VH |)− kWLOA(G,H)

= (L+ 1) ·max(|VG|, |VH |)− max
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

k(vG, uH)

= min
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

(L+ 1− k(vG, uH))

Next, we introduce an equivalent definition of k(v, u). In Definition A.2, the WL algorithm is applied only on VG

and VH , not on special nodes. Assume w.l.o.g. that |V (G)| ≤ |V (H)|, i.e., V (G) is extended with |V (H)| − |V (G)|
1In fact, d̄WILT remains a pseudometric even on D = G, as it can be defined without explicit use of N . To this end, note that

limN→∞ |ν̄G
ci¬

− ν̄H
ci¬

| = |V (G)− V (H)| for any dummy node color ci¬.

14

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

dummy nodes. By treating the special nodes in V ′
G as dummy nodes, we can define WL colors for the special nodes z:

(c
(0)
z , c

(1)
z , . . . , c

(L)
z) = (c0¬, c

1
¬, . . . , c

L
¬). Then, as only V ′

G contains special nodes, k(v, u) can be simplified to:

k(v, u) =

L∑
l=0

1
c̄
(l)
v =c̄

(l)
u
,

where c̄
(l)
v is the color of node v on the WILT T̄D with dummy node normalization after l iterations. Then, L+ 1− k(v, u)

is equivalent to dpath(c̄
(L)
v , c̄

(L)
u ;w ≡ 1

2):

L+ 1− k(v, u) = L+ 1−
L∑

l=0

1
c̄
(l)
v =c̄

(l)
u

=

L∑
l=0

1
c̄
(l)
v ̸=c̄

(l)
u

= dpath

(
c̄(L)
v , c̄(L)

u ;w ≡ 1

2

)

Therefore, dWLOA is a special case of d̄WILT:

dWLOA(G,H) = min
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

(L+ 1− k(vG, uH))

= min
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

dpath

(
c̄(L)
vG , c̄(L)

uH
;w ≡ 1

2

)
⋆
= min

P∈Γ̄

∑
vi∈V̄G

∑
uj∈V̄H

Pi,jdpath

(
c̄(L)
vi , c̄(L)

uj
;w ≡ 1

2

)

= d̄WILT

(
G,H;w ≡ 1

2

)

Note that ⋆ holds since adding the same number of dummy nodes to both G and H does not change the left side, and the
optimal transport on WILT always delivers a mass on a node to only one node.

A.4. Expressiveness of Graph Pseudometrics

We now discuss in detail the expressiveness of graph pseudometrics, which was summarized in Section 5.5. We split
Theorem 5.4 in Section 5.5 into three theorems below, and prove each one separately. The discussion below provides a
possible explanation for some results in Section 6 and Appendices D and E. First, we introduce a pseudometric defined by
the WL test:

dWL(G,H) := 1{{c(L)
v |v∈VG}}≠{{c(L)

v |v∈VH}},

where L is the number of WL iterations. In other words, dWL(G,H) = 1 if the L-iteration WL test can distinguish G and
H , otherwise 0. With this definition, we start with the comparison of dWILT and dWL for a better understanding of dWILT.

Theorem A.9 (Expressiveness of the WILTing Distance). Suppose ḋWILT and d̄WILT are pseudometrics defined with WILT
with some edge weight functions. We assume that all edge weights are positive for d̄WILT. Then,

ḋWILT < d̄WILT ∼= dWL.

15

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Proof. We first show ḋWILT ≤ d̄WILT.

d̄WILT(G,H) = 0 =⇒ ν̄G = ν̄H ∧ |VG| = |VH |
=⇒ ∀ leaf color c : |{v ∈ VG | c(L)

v = c}| = |{v ∈ VH | c(L)
v = c}| ∧ |VG| = |VH |

=⇒ ∀ leaf color c :
|{v ∈ VG | c(L)

v = c}|
|VG|

=
|{v ∈ VH | c(L)

v = c}|
|VH |

=⇒ ν̇G = ν̇H

=⇒ ḋWILT(G,H) = 0.

Note that leaf color c means that c is a leaf of the WILT. The first implication follows from the fact that dummy node
normalization implies that only graphs with identical numbers of nodes can have a distance of zero if the weights are
positive. To see that d̄WILT(G,H) is more expressive than ḋWILT(G,H), note that there are G and H s.t. d̄WILT(G,H) ̸=
0 ∧ ḋWILT(G,H) = 0: for example, let G and H be k-regular graphs (such as cycles) with different numbers of nodes and
identical node and edge attributes. Next, we show d̄WILT = dWL.

d̄WILT(G,H) = 0 ⇐⇒ ν̄G = ν̄H

⇐⇒ ∀ leaf color c : |{v ∈ VG | c(L)
v = c}| = |{v ∈ VH | c(L)

v = c}|
⇐⇒ {{c(L)

v | v ∈ VG}} = {{c(L)
v | v ∈ VH}}

⇐⇒ dWL(G,H) = 0.

The first equivalence again follows from the fact that weights are positive.

Since dMPNN ≤ dWL holds for any MPNN (Xu et al., 2019), the above theorem implies that dMPNN ≤ d̄WILT if all edge
weights are positive. At first glance, this seems to suggest that d̄WILT can better align with dMPNN of any MPNN than ḋWILT
because of its high expressiveness. However, the results in Section 6 and Appendix E show that ḋWILT is suitable for MPNNs
with mean pooling, while d̄WILT is suitable for MPNNs with sum pooling. Next, we compare dMPNN and dWILT in more
detail to interpret these results. We start with MPNNs with mean pooling, whose pseudometrics we will call dmean

MPNN.

Theorem A.10 (Expressiveness of the Pseudometric of MPNN with Mean Pooling). Suppose ḋWILT and d̄WILT are pseudo-
metrics defined with WILT with some edge weight functions. We assume that all edge weights are positive. Then,

dmean
MPNN ≤ ḋWILT(< d̄WILT).

Proof. We first show the left inequality.

ḋWILT(G,H) = 0 =⇒ ν̇G = ν̇H

=⇒ ∀ leaf color c :
|{v ∈ VG | c(L)

v = c}|
|VG|

=
|{v ∈ VH | c(L)

v = c}|
|VH |

=⇒ ∀ leaf color c :
1

|VG|
∑

v∈VG:c
(L)
v =c

h(L)
v =

1

|VH |
∑

v∈VH :c
(L)
v =c

h(L)
v

=⇒ 1

|VG|
∑
v∈VG

h(L)
v =

1

|VH |
∑
v∈VH

h(L)
v

=⇒ dmean
MPNN(G,H) = 0.

The first implication follows from the fact that w(e{c,p(c)}) > 0 for all colors. The third implication follows from Xu et al.
(2019) by noting that c(L)

u = c
(L)
v =⇒ h

(L)
u = h

(L)
v for any MPNN. ḋWILT < d̄WILT follows from Theorem A.9.

In Section 6 and Appendix E, we show that RMSE(dmean
MPNN, ḋWILT) is smaller than RMSE(dmean

MPNN, d̄WILT). The above theorem
and the proof yield an interpretation of the result. In terms of expressiveness, ḋWILT is a stricter upper bound on dmean

MPNN than
d̄WILT, since the mean pooling and the size normalization are essentially the same procedure. Both ignore the information

16

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

about the number of nodes in graphs. When we try to fit d̄WILT to dmean
MPNN, it is difficult to tune edge parameters so that d̄WILT

can ignore the number of nodes in graphs, but ḋWILT satisfies this property by definition. This may be the reason why ḋWILT
can be trained to be better aligned with dmean

MPNN than d̄WILT. A similar discussion can be applied to dWWL and dWLOA, which
are special cases of ḋWILT and d̄WILT, respectively. Next, we analyze MPNNs with sum pooling.

Theorem A.11 (Expressiveness of the Pseudometric of MPNN with Sum Pooling). Suppose d̄WILT is defined with WILT
with an edge weight function that assigns a positive value to all edges. Then,

dsum
MPNN ≤ d̄WILT.

In addition, if ∃G ∈ G s.t.
∑

v∈VG
h
(L)
v ̸= 0, then

dsum
MPNN@≤ḋWILT

Proof. We begin with dsum
MPNN ≤ d̄WILT.

d̄WILT(G,H) = 0 =⇒ ν̄G = ν̄H

=⇒ ∀ leaf color c : |{v ∈ VG | c(L)
v = c}| = |{v ∈ VH | c(L)

v = c}|

=⇒ ∀ leaf color c :
∑

v∈VG:c
(L)
v =c

h(L)
v =

∑
v∈VH :c

(L)
v =c

h(L)
v

=⇒
∑
v∈VG

h(L)
v =

∑
v∈VH

h(L)
v

=⇒ dsum
MPNN(G,H) = 0.

Next, we show dsum
MPNN@≤ḋWILT. Let G be a graph that satisfies

∑
v∈VG

h
(L)
v ̸= 0. We can consider a graph H that consists of

two copies of G. Then, ν̇G = ν̇H , since 2νG = νH and 2|VG| = |VH |. Therefore, ḋWILT(G,H) = 0. On the other hand,

dsum
MPNN(G,H) =

∥∥∥∥∥ ∑
v∈VG

h(L)
v −

∑
v∈VH

h(L)
v

∥∥∥∥∥
2

=

∥∥∥∥∥ ∑
v∈VG

h(L)
v − 2

∑
v∈VG

h(L)
v

∥∥∥∥∥
2

=

∥∥∥∥∥ ∑
v∈VG

h(L)
v

∥∥∥∥∥
2

̸= 0.

In terms of expressiveness, dsum
MPNN is almost always not bounded by ḋWILT except for the trivial MPNN which embeds all

graphs to zero. In fact, the opposite ḋWILT ≤ dsum
MPNN holds if the MPNN is sufficiently expressive, e.g. GIN. These analyses

may explain why RMSE(dsum
MPNN, d̄WILT) is generally smaller than RMSE(dsum

MPNN, ḋWILT) in Section 6 and Appendix E. No
matter how much it is trained, ḋWILT cannot capture the information about the number of nodes that dsum

MPNN can. On the other
hand, d̄WILT is expressive enough to capture the information, and thus has a chance of aligning well with dsum

MPNN. Again, a
similar reasoning can be applied to dWWL and dWLOA.

B. Algorithm to Construct the WILT
Algorithm 2 shows how to build the WILT of a graph dataset D. It starts with the initialization of a root node of the WILT
and adds each node color appearing in D as child of the root. The algorithm then runs L iterations of the Weisfeiler Leman
algorithm. Whenever a new vertex color cv is encountered at some node v in iteration l, it is added to the WILT TD as a
child of the color of node v in iteration l − 1.

17

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Algorithm 2 Building WILT

Input: Graph dataset D
Parameter: L ≥ 1
Output: WILT TD
TD ←Initial tree with only the root r
for G in D do
cpre ← [] # Keeping colors in the previous iteration
cnow ← [] # Keeping colors in the current iteration
/* Add initial colors as children of root */
for v in VG do

if lnode(v) /∈ V (TD) then
V (TD)← V (TD) ∪ {lnode(v)}
E(TD)← E(TD) ∪ {(r, lnode(v))}

cpre[v]← lnode(v)
/* L-iteration WL test on G */
for l = 1 to L do

for v in VG do
cv ← HASH((cpre[v], {{(cpre[u], ledge(euv)) | u ∈ N (v)}})) # Compute iteration l WL color
/* Add new colors to WILT */
if cv /∈ V (TD) then
V (TD)← V (TD) ∪ {cv}
E(TD)← E(TD) ∪ {(cpre[v], cv)}

cnow[v]← cv
cpre ← cnow
cnow ← []

return TD

C. Experimental Details for Section 4
Here, we present the detailed experimental setup for the results in Figure 2 and Table 1. We conduct experiments on three
different datasets: Mutagenicity and ENZYMES (Morris et al., 2020), and Lipophilicity (Wu et al., 2018). We chose these
datasets to represent binary classification, multiclass classification, and regression tasks, respectively. For the models, we
adopt two popular MPNN architectures: GCN and GIN. For each model architecture, we vary the number of message
passing layers (1, 2, 3, 4), the embedding dimensions (32, 64, 128), and the graph pooling methods (mean, sum). This results
in a total of 2× 4× 3× 2 = 48 different MPNNs for each dataset. In each setting, we split the dataset into Dtrain,Deval, and
Dtest (8:1:1). We train the model for 100 epochs and record the performance on Deval after each epoch. We set the batch size
to 32, and use the Adam optimizer with learning rate of 10−3. ALIk(dMPNN, dfunc) and the performance metric (accuracy for
Mutagenicity and ENZYMES, RMSE for Lipophilicity) are calculated with the model at the epoch that performed best on
Deval. The code to run our experiments is available at https://github.com/masahiro-negishi/wilt.

Next, we offer additional experimental results on non-molecular datasets: IMDB-BINARY and COLLAB (obtained from
Morris et al., 2020). Figure 7 visualizes the distribution of ALIk(dMPNN, dfunc) on these datasets and varying k. Similar
to Figure 2, ALIk consistently improves with training. Table 3 also offers results similar to Table 1, showing that there
is a positive correlation between ALIk of trained MPNNs and their accuracy in general. Figure 8 shows the data used to
compute the Spearman’s rank correlation coefficient (SRC) in Table 1 and Table 3 for better understanding. Each blue dot

Table 3: Correlation (SRC) between ALIk(dMPNN, dfunc) and accuracy on Dtrain and Dtest under different k.

IMDB-BINARY COLLAB

k 1 5 10 20 1 5 10 20

train 0.36 0.57 0.55 0.54 0.95 0.94 0.92 0.91
test -0.43 0.10 0.14 0.16 0.81 0.79 0.77 0.76

18

https://github.com/masahiro-negishi/wilt

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

1 5 10 20

k

0.10

0.15

0.20

A
L

I k
IMDB-BINARY

1 5 10 20

k

0.2

0.3

0.4

COLLAB

untrained

trained

Figure 7: The distribution of ALIk(dMPNN, dfunc) under different k and datasets.

0.20 0.25 0.30 0.35 0.40

ALI5

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

tr
ai

n
A

C
C

SRC: 0.65
PCC: 0.69

Mutagenicity

0.1 0.2 0.3 0.4 0.5 0.6

ALI5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tr
ai

n
A

C
C

SRC: 0.87
PCC: 0.81

ENZYMES

0.10 0.12 0.14 0.16

ALI5

0.45

0.50

0.55

0.60

0.65

0.70

0.75

tr
ai

n
R

M
S

E

SRC: -0.63
PCC: -0.72

Lipophilicity

0.14 0.16 0.18

ALI5

0.66

0.68

0.70

0.72

0.74

tr
ai

n
A

C
C

SRC: 0.57
PCC: 0.60

IMDB-BINARY

0.20 0.25 0.30 0.35

ALI5

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

tr
ai

n
A

C
C

SRC: 0.94
PCC: 0.90

COLLAB

0.20 0.25 0.30 0.35 0.40

ALI5

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

te
st

A
C

C

SRC: 0.69
PCC: 0.69

0.1 0.2 0.3 0.4 0.5 0.6

ALI5

0.35

0.40

0.45

0.50

0.55

te
st

A
C

C

SRC: 0.50
PCC: 0.43

0.10 0.12 0.14 0.16

ALI5

0.7

0.8

0.9

1.0

te
st

R
M

S
E

SRC: -0.56
PCC: -0.53

0.14 0.16 0.18

ALI5

0.625

0.650

0.675

0.700

0.725

0.750

0.775

te
st

A
C

C

SRC: 0.10
PCC: 0.14

0.20 0.25 0.30 0.35

ALI5

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

te
st

A
C

C

SRC: 0.79
PCC: 0.83

Figure 8: Scatter plots between ALI5(dMPNN, dfunc) and the performance on the train/test set. SRC and PCC stand for
the Spearman’s rank correlation coefficient and the Pearson’s correlation coefficient, respectively. In general, higher
ALI5(dMPNN, dfunc), i.e., higher alignment between dMPNN and dfunc, indicates higher performance.

represents one of the 48 different models. We also fit a linear function and show Pearson’s correlation coefficient (PCC). For
ALIk with k ̸= 5, similar plots were observed.

D. MPNN Pseudometric and Structural Pseudometrics
There has been intensive research on graph kernels, which essentially aims to manually design graph pseudometrics dstruc
that lead to good prediction performance. Recent studies have theoretically analyzed the relationship between dMPNN
and such dstruc, but they only upper-bounded dMPNN with dstruc (Chuang & Jegelka, 2022), or showed the equivalence for
untrained MPNNs on dense graphs (Böker et al., 2024). Therefore, this section examines if dMPNN really aligns with dstruc in
practice, and if the alignment explains the high performance of MPNNs. Specifically, we address the following questions:

Q1.3 What kind of dstruc is dMPNN best aligned with?

Q1.4 Does training MPNN increase the alignment?

Q1.5 Does a strong alignment between dMPNN and dstruc indicate high performance of the MPNN?

19

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

We first define an evaluation criterion for the alignment between dMPNN and dstruc to answer them, which is the same as the
one used in Section 6 and Appendix E.

Definition D.1 (Evaluation Criterion for Alignment Between dMPNN and dstruc). Consider a graph dataset denoted by D. Let
d̂MPNN and d̂struc be normalized versions of dMPNN and dstruc, respectively:

d̂MPNN(G,H) :=
dMPNN(G,H)

max
(G′,H′)∈D2

dMPNN(G′, H ′)
, d̂struc(G,H) :=

dstruc(G,H)

max
(G′,H′)∈D2

dstruc(G′, H ′)
.

We measure the alignment between dMPNN and dstruc by the RMSE after fitting a linear model with the intercept fixed at zero
to the normalized pseudometrics:

RMSE(dMPNN, dstruc) :=

√√√√min
α∈R

1

|D|2
∑

(G,H)∈D2

(
d̂MPNN(G,H)− α · d̂struc(G,H)

)2

.

The closer the RMSE is to zero, the better the alignment is. Zero RMSE means perfect alignment. That is, dMPNN is a
constant multiple of dstruc. Note that the evaluation criterion is different from ALIk (Definition 4.1) for measuring the
alignment between dMPNN and dfunc. There are multiple reasons for this. First, the RMSE is in principle designed for
non-binary dstruc. Therefore, RMSE(dMPNN, dfunc) is not a meaningful value when dfunc is a binary function, which is the
case when the task is classification. Second, the computation of ALIk(dMPNN, dstruc) is computationally too expensive. We
explain this in terms of how many graph pairs we need to compute the distance for. Both the RMSE and ALIk require the
calculation of the distance between |D|2 pairs in the original definition. This is too demanding, especially when dstruc is
dGED, which is NP-hard to compute. Therefore, in practice, we approximate the RMSE with 1000 randomly selected pairs
from D2. This kind of approximation is difficult for ALIk. To approximate ALIk, we first choose a subset Dsub of D, and
then compute dstruc of all pairs in D2

sub. Even if we set |Dsub| = 100, which is quite small, we still need about 10 times more
computation than the RMSE.

We evaluate four structural pseudometrics: graph edit distance (dGED, Sanfeliu & Fu, 1983), tree mover’s distance (dTMD,
Chuang & Jegelka, 2022), Weisfeiler Leman optimal assignment distance (dWLOA, Kriege et al., 2016), and Wasserstein
Weisfeiler Leman graph distance (dWWL, Togninalli et al., 2019). See Appendix A.1 for detailed definitions. dTMD, dWLOA,
and dWWL are pseudometrics on the set of pairwise nonisomorphic graphs G. Only dGED for strictly positive edit costs is a
metric, i.e., dGED(G,H) = 0 if and only if G and H are isomorphic. We will also call dGED a pseudometric for simplicity.
We chose dGED because it is a popular graph pseudometric. The others were chosen because they are based on the message
passing algorithm, like MPNNs, and classifiers based on their corresponding kernels were reported to achieve high accuracy.
In addition, dTMD has been theoretically proven to be an upper bound of dMPNN (Chuang & Jegelka, 2022). Note that the
exact calculation of dGED is in general NP-hard due to the combinatorial optimization over the set of valid transformation
sequences (see Definition A.1). Therefore, in our experiment, we limit the computation time of dGED of each graph pair
(G,H) to a maximum of 30 seconds. If this time limit is exceeded, we consider the lowest total cost at that point to be
dGED(G,H). When we compute the RMSE between dMPNN and any of dTMD, dWLOA, and dWWL, we set the depth of the
computational trees used to compute these dstruc as the number of message passing layers in the MPNN for a fair comparison.

Figure 9 presents the distributions of the RMSE in different datasets (Morris et al., 2020; Wu et al., 2018), dstruc, and
the readout functions used in MPNN. We followed exactly the same procedure for training and evaluating MPNNs as
shown in Appendix C. Each distribution consists of RMSE(dMPNN, dstruc) of 24 MPNNs with different architectures and
hyperparameters. We also provide results for untrained MPNNs to see the effect of training. As can be seen from the
plots, the distributions of the untrained and trained MPNNs overlap, and there is no strong and consistent improvement
in RMSE after training (answer to Q1.4). Regarding Q1.3, none of the four dstruc performs best in all cases. The best one
depends on the choice of dataset and pooling. One intersting observation is that dMPNN with sum pooling is more aligned
with dWLOA than dWWL, while the reverse is true for dMPNN with mean pooling. This difference between pooling methods
can be explained by different normalizations of the structural pseudometrics (see Section 5.5 and Appendix A.4).

Another insight from Figure 9 is that the degree of alignment between dMPNN and dstruc varies by model. To see if the
alignment is crucial for the high predictive performance of MPNNs, we examined the SRC between RMSE(dMPNN, dstruc)
of trained models and their performance on the training and test sets. We used accuracy and RMSE as performance criteria.
Table 4 shows that the correlation is neither strong nor consistent across settings. Thus the alignment between dMPNN and
dstruc is not a key to high MPNN performance. This answers Q1.5 negatively.

20

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

dGED dTMD dWLOA dWWL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

S
E

Mutagenicity

dGED dTMD dWLOA dWWL

0.05

0.10

0.15

0.20

0.25

ENZYMES

dGED dTMD dWLOA dWWL

0.05

0.10

0.15

0.20

Lipophilicity

dGED dTMD dWLOA dWWL

0.0

0.2

0.4

R
M

S
E

IMDB-BINARY

dGED dTMD dWLOA dWWL

0.0

0.2

0.4

0.6

COLLAB

untrained/mean

trained/mean

untrained/sum

trained/sum

Figure 9: The distributions of RMSE(dMPNN, dstruc) under different dstruc and datasets. Each color represents whether the
MPNNs are trained or not and which graph pooling function they use.

E. Experimental Details for Section 5
For the experiments in Section 6, we trained 3-layer GCN and GIN with embedding dimensions of 64 on the three datasets.
We explored both mean and sum pooling. Each model was trained on the full dataset for 100 epochs using the Adam
optimizer with a learning rate of 10−3. Then, each model was distilled to WILT by minimizing the loss L defined in
Section 5.4. We used the entire data set for D in L. The distillation was done using gradient descent optimization with the
Adam optimizer for 10 epochs. The learning rate and batch size were set to 10−2 and 256, respectively. See Algorithm 1 for
details.

In Table 2, we only show the results for GCN. Here, we show results for GIN in Table 5. The overall trend is the same
between Tables 2 and 5: ḋWILT and d̄WILT are much better aligned with dMPNN than dWWL and dWLOA. In addition, dWWL and
ḋWILT approximate dMPNN(mean) better, while the opposite is true for dMPNN(sum). We also observed the same trend in the
IMDB-BINARY and COLLAB datasets (see Table 6).

Next, we plot the distribution of WILT edge weights after distillation in Figure 10. While the range of edge weights varies
by model and dataset, all the distributions are skewed to zero (note that the y-axis is log scale). This suggests that only a
small fraction of all WL colors influence dMPNN. In other words, MPNNs build up their embedding space based on a small
subset of entire WL colors, regardless of model and dataset.

Finally, we visualize the WL colors with the largest weights, i.e., whose presence or absence influence dWILT and therefore –
by approximation – dMPNN the most. We use the Mutagenicity dataset as functionally important substructures are known
from domain knowledge (Kazius et al., 2005). It should be noted that we only consider colors that appear in at least 1%
of all graphs in the dataset. Table 7 and 8 show graphs with substructures corresponding to the WL colors with the top
ten largest weights. Table 7 is the result for GCN with sum pooling, while Table 8 is for GCN with mean pooling. If the
highlighted subgraph matches one of the seven toxicophore substructures listed in Table 1 of Kazius et al. (2005), we show

21

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

0 6 12 18 24 30 36 42 48

100

101

102

103

104

105

G
C

N
/s

u
m

Mutagenicity

0 2 4 6 8 10 12 14

ENZYMES

0 2 4 6 8 10 12 14

Lipophilicity

0 3 6 9 12 15 18 21

IMDB-BINARY

0 5 10 15 20 25 30 35 40

COLLAB

0 6 12 18 24 30 36 42 48 54

100

101

102

103

104

105

G
C

N
/m

ea
n

0 1 2 3 4 5 6 7 8 0 3 6 9 12 15 18 21 0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35 40

0 8 16 24 32 40 48 56

100

101

102

103

104

105

G
IN

/s
u

m

0 1 2 3 4 5 6 7 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 36 0 3 6 9 12 15 18 21 24

0 10 20 30 40 50 60 70 80

100

101

102

103

104

105

G
IN

/m
ea

n

0 1 2 3 4 5 6 7 8 0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27 0 4 8 12 16 20 24 28

Weight value

F
re

qu
en

cy

Figure 10: The distribution of edge weights of WILT after distillation from varying models trained on different datasets.
The models with sum pooling were distilled into WILT with dummy normalization, while the models with mean pooling
were distilled into WILT with size normalization. The log scale y-axis is shared across all plots.

22

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Table 4: Correlation (SRC) between RMSE(dMPNN, dstruc) and the performance on the training and test sets. Performance
was measured based on accuracy for Mutagenicity and ENZYMES, and based on RMSE for Lipophilicity.

Train Test

GED TMD WLOA WWL GED TMD WLOA WWL

Mutagenicity mean 0.33 0.19 -0.09 0.46 0.36 0.36 0.05 0.66
sum 0.09 0.25 0.38 0.20 0.10 0.31 0.14 0.09

ENZYMES mean 0.32 0.27 0.30 0.15 0.33 0.53 0.44 0.12
sum -0.36 0.71 0.44 0.35 -0.60 0.14 -0.25 -0.22

Lipophilicity mean -0.57 -0.61 -0.58 -0.46 -0.55 -0.77 -0.65 -0.65
sum -0.12 -0.62 -0.54 -0.32 -0.53 -0.85 -0.85 -0.64

IMDB-BINARY mean 0.04 0.10 -0.53 -0.20 -0.30 -0.31 -0.39 0.41
sum 0.37 0.65 -0.54 -0.51 0.01 0.22 -0.23 0.02

COLLAB mean 0.60 0.58 0.57 -0.39 0.64 0.56 0.61 -0.42
sum -0.40 0.63 -0.50 -0.54 -0.31 0.53 -0.39 -0.48

Table 5: The mean±std of RMSE(dMPNN, d) [×10−2] over five different seeds. Each row corresponds to GIN with a given
graph pooling method, trained on a given dataset.

dWWL dWLOA ḋWILT d̄WILT

Mutagenicity
mean 11.47±0.24 17.99±2.79 3.70±0.57 4.98±0.78
sum 14.08±0.77 13.05±1.44 3.86±0.40 3.56±0.36
ENZYMES
mean 11.54±0.30 23.71±0.81 5.32±0.20 7.55±0.24
sum 12.10±0.84 9.94±1.88 8.60±0.35 3.86±0.68
Lipophilicity
mean 14.12±0.60 16.95±0.52 6.31±0.46 9.52±0.70
sum 14.97±0.58 13.97±0.75 6.49±0.50 6.59±0.51

the toxicophore name as well. Four out of ten WL colors in Table 7 correspond to toxicophore substructures, while three out
of ten in Table 8. These are quite a lot considering that only seven toxicophore substructures are listed in Table 1 of Kazius
et al. (2005). Furthermore, there are some colors that not fully but partially match one of the substructures in Kazius et al.
(2005). For instance, (6) and (9) in Table 7 and (8) in Table 8 partially match “aromatic nitro”, while (7) in Table 8 is part
of “polycyclic aromatic system”. Note that it is impossible to identify subgraphs that perfectly match these toxicophore
substructures, since our method can only identify subgraphs corresponding to a region reachable within fixed steps from a
root node. For example, the subgraph in (1) of Table 7 is a region reachable in 2 steps from the oxygen O. This limiation may
seem to be a drawback of our proposed method, but in fact it is not. It is natural to identify only subgraphs corresponding
WL colors to interpret dMPNN, because MPNNs can only see input graphs as a multiset of WL colors.

23

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Table 6: The mean±std of RMSE(dMPNN, d) [×10−2] over five different seeds. Each row corresponds to a GCN or GIN
with a given graph pooling method, trained on IMDB-BINARY or COLLAB dataset.

dWWL dWLOA ḋWILT d̄WILT

IMDB-BINARY

GCN
mean 16.98±2.06 19.04±4.39 6.19±1.24 7.62±1.27
sum 16.21±2.45 12.01±3.81 9.08±4.37 4.69±3.70
GIN
mean 21.32±0.25 19.65±0.45 2.61±0.34 3.09±0.37
sum 23.49±0.42 21.23±0.39 8.09±0.89 0.85±0.13

COLLAB

GCN
mean 16.74±1.83 32.60±3.42 8.34±1.56 19.49±1.61
sum 16.97±0.77 6.17±1.26 2.21±0.29 2.03±0.41
GIN
mean 20.37±0.73 13.31±0.17 3.58±0.65 10.54±2.14
sum 25.61±0.42 14.38±1.19 2.38±1.15 1.11±0.21

Table 7: Example graphs with highlighted significant subgraphs corresponding to colors with top 10 largest weights. GCN
with sum pooling was used. The toxicophore name is shown if the highlighted subgraph matches toxicophore substructures
reported in Table 1 of Kazius et al. (2005)

(1) three-membered
heterocycle
(epoxide)

(2) (3) (4) alphatic halide (5)

H O H
C

N

NO2

CH2

N

H3C N

O

F

CH3 CH

Br

Br
N

N

O

O

N
CH3

(6) nitroso (7) (8) (9) (10) alphatic halide

N

N

O

CH2

OH

S

C CH2Cl

CH2Cl

ClH2C

CH2Cl

N

N

O

CH2

OH

S

N

N

O

O

N
CH3

F

N

24

WILTing Trees: Interpreting the Distance Between MPNN Embeddings

Table 8: Example graphs with highlighted significant subgraphs corresponding to colors with top 10 largest weights. GCN
with mean pooling was used. The toxicophore name is shown if the highlighted subgraph matches toxicophore substructures
reported in Table 1 of Kazius et al. (2005)

(1)
(2) three-membered

heterocycle
(epoxide)

(3) alphatic halide (4) (5)

C CH2Cl

CH2Cl

ClH2C

CH2Cl
H O H

CH3 CH

Br

Br

P

N

O2N

(6) (7) (8) nitroso (9) (10)

C CH2 CH3

O CH3

H3C

CH3

N

N

N

O

CH2

OH

S

C

N

NO2

O

25

