
(FL)2: Overcoming Few Labels in Federated
Semi-Supervised Learning

Seungjoo Lee Thanh-Long V. Le Jaemin Shin Sung-Ju Lee
KAIST

Republic of Korea
{seungjoo.lee,thanhlong0780,jaemin.shin,profsj}@kaist.ac.kr

Abstract

Federated Learning (FL) is a distributed machine learning framework that trains
accurate global models while preserving clients’ privacy-sensitive data. However,
most FL approaches assume that clients possess labeled data, which is often not the
case in practice. Federated Semi-Supervised Learning (FSSL) addresses this label
deficiency problem, targeting situations where only the server has a small amount
of labeled data while clients do not. However, a significant performance gap exists
between Centralized Semi-Supervised Learning (SSL) and FSSL. This gap arises
from confirmation bias, which is more pronounced in FSSL due to multiple local
training epochs and the separation of labeled and unlabeled data. We propose (FL)2,
a robust training method for unlabeled clients using sharpness-aware consistency
regularization. We show that regularizing the original pseudo-labeling loss is
suboptimal, and hence we carefully select unlabeled samples for regularization.
We further introduce client-specific adaptive thresholding and learning status-
aware aggregation to adjust the training process based on the learning progress
of each client. Our experiments on three benchmark datasets demonstrate that
our approach significantly improves performance and bridges the gap with SSL,
particularly in scenarios with scarce labeled data. The source code is available at
https://github.com/seungjoo-ai/FLFL-NeurIPS24

1 Introduction

Federated learning (FL) [1] is a distributed machine learning system that trains accurate global models
while preserving clients’ privacy-sensitive data. Each FL client trains its local model on their device
using only their data, and the server aggregates these local models into a global model. As a result,
clients’ private data is protected as only the local models’ weights are shared with the server.

Because of its privacy-preserving nature, FL has garnered recent attention, with efforts to make it
reliable and efficient [2, 3, 4]. However, most previous FL studies assumed that clients have labeled
data, which is unrealistic in practical settings for two reasons. First, clients are often reluctant or lack
the motivation to label data. Second, certain data types require domain expertise during the labeling
process [5, 6]. For example, labeling medical data demands specialized knowledge and expertise.
Similarly, sensory data, which can have multiple dimensions, is difficult for most clients to interpret
accurately. Therefore, we envision a labels-at-server [7] scenario as more realistic for FL, where a
small amount of labeled data is available only at the server while the clients’ data remains unlabeled.

Various Federated Semi-Supervised Learning (FSSL) approaches [8, 7, 9, 10, 11] have been developed
for the labels-at-server scenario. However, there is a substantial performance gap between FSSL
and centralized Semi-Supervised Learning (SSL), particularly when labeled data is limited. Fig. 1
illustrates this issue across varying amounts of labeled data on the CIFAR10 dataset [12]. When a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/seungjoo-ai/FLFL-NeurIPS24

Figure 1: Comparison of SSL and FSSL algorithms on CIFAR-10 with varying numbers of labeled
samples, where FreeMatch [19] represents SSL, and SemiFL [8], FedCon [9], and FedMatch [7]
represent FSSL.

sufficient amount of labeled data is available, the performance difference between SSL and FSSL is
minimal. However, this gap widens considerably as the quantity of labeled data decreases.

We point out confirmation bias as the primary cause, where the model tends to overfit to easy-to-learn
samples or incorrectly pseudo-labeled data [13]. This issue is particularly pronounced in FSSL as
the training process involves multiple local epochs on clients [8, 14, 15]. This extended training on
localized data accelerates the overfitting process, making the model more susceptible to confirmation
bias. Moreover, labeled and unlabeled data are kept separate in a labels-at-server setting. Unlike in
centralized SSL where labeled and unlabeled objectives could be jointly optimized, this separation in
FSSL prevents effective co-optimization, further contributing to the performance gap.

We propose Few-Labels Federated semi-supervised Learning, abbreviated as (FL)2, to mitigate
confirmation bias in FSSL using (1) client-specific adaptive thresholding, (2) sharpness-aware
consistency regularization, and (3) learning status-aware aggregation. Previous FSSL approaches [7,
8] use a fixed threshold to obtain high-confidence pseudo-labels but are prone to confirmation bias as
only a small portion of data is utilized in the early stages of training. Instead, we adaptively change
the threshold according to the clients’ learning status. In the early stages, we use a low threshold to
include more data for training. As training progresses and the model becomes more confident, we
increase the threshold to obtain more accurate pseudo-labels. We profile the learning status of each
client and determine client-specific adaptive thresholds.

Recently, Sharpness-Aware Minimization (SAM) has demonstrated strong generalization capabilities
across various tasks [16, 17, 18]. Inspired by this, we hypothesized that applying SAM could
effectively mitigate confirmation bias among clients. However, our findings revealed that naïvely
applying SAM degrades performance. This issue occurs as SAM generalizes not only correctly
pseudo-labeled samples, but also incorrectly pseudo-labeled ones. Generalization of incorrect data
samples leads to the propagation of errors, thereby degrading the model’s performance. Therefore,
we apply consistency regularization to carefully selected data samples that are highly likely correct.
We also uncover that the standard SAM objective (i.e., achieving flatter local minima) does not work
well in FSSL. We thus propose a novel consistency regularization between the model outputs of
adversarially perturbed and original weight parameters.

Finally, we propose a novel learning status-aware aggregation. In FSSL, the learning difficulty
can vary across clients. Since the server can access only a small labeled dataset, clients whose data
closely resembles the server’s data will face lower learning difficulty. In comparison, those with more
distinct data will encounter higher difficulty. Additionally, due to the non-iid data distribution of
clients, the learning difficulty naturally differs among them. To account for different client learning
difficulties, we assign higher aggregation weights to clients with higher learning difficulty, enabling
the global model to learn more effectively from these clients. In contrast, previous FSSL approaches
did not consider these variations in learning difficulty and relied on fixed aggregation weights.

Our main contributions are summarized as follows:

• We propose a client-specific adaptive threshold that adjusts the pseudo-labeling threshold accord-
ing to each client’s learning status. By using a low threshold at the early stage of training, we
effectively reduce confirmation bias by utilizing more data.

2

• We demonstrate that applying the SAM objective in FSSL is non-trivial and requires careful
considerations. Minimizing the sharpness of incorrectly pseudo-labeled samples reduces the
model performance. We also identify that the original SAM objective is ineffective in FSSL and
propose a novel sharpness-aware consistency regularization that regularizes consistency between
original and perturbed model outputs.

• We propose learning status-aware aggregation that adjusts the weight based on the client’s
learning status. Clients with lower learning status receive higher aggregation weights, ensuring
their updates are well reflected in the global model.

• Our evaluation shows that our approach significantly outperforms existing methods across differ-
ent settings, particularly when labeled data is scarce. (FL)2 improves the classification accuracy
of up to 23.0% compared with existing FSSL methods.

2 Related work

Semi-supervised learning (SSL) Recent SSL methods primarily stem from two key ideas: pseudo-
labeling [20] and consistency regularization [21]. Pseudo-labeling artificially creates pseudo-labels
and uses them as hard labels for supervised training. On the other hand, consistency regularization
trains models by minimizing the variance between stochastic outputs, typically achieved through
various weak or strong augmentations. FixMatch [22] generates high-quality pseudo labels via
static probability thresholding and trains models to predict these labels from strongly augmented
inputs. FlexMatch [23] enhances this approach by incorporating class-specific local thresholds
alongside a fixed global threshold, adjusting based on the model’s learning status. FreeMatch [19]
dynamically adjusts the confidence threshold according to the model’s learning status and introduces
a self-adaptive class fairness regularization penalty to encourage diverse predictions during early
training. FlatMatch [24] increases generalization by adopting sharpness-awareness minimization [25]
into a cross-sharpness measure in SSL settings to ensure consistent learning performance between
the labeled and unlabeled data.

Federated semi-supervised learning (FSSL) Federated Learning (FL) enables collaborative
training of a global model while ensuring data remains on the client side, thereby preserving data
privacy (further discussed in Appendix D). FSSL leverages FL in scenarios where labeled data is
limited. FSSL research addresses two primary settings: labels-at-clients [26, 27, 7, 28, 29] and
labels-at-server [9, 7, 8]. In the labels-at-server scenario, FedMatch [7] encourages similar outputs
from similar clients using inter-client consistency loss. It employs disjoint training between the
server and clients to mitigate forgetting issues. FedCon [9] utilizes contrastive learning to assist
clients’ networks in learning embedding projections. SemiFL [8] achieves state-of-the-art results in
the label-at-server setting by introducing alternate training, which finetunes the global model with
labeled data after each communication round. It generates pseudo-labels with the global model at the
start of every communication round, rather than the common per-batch generation.

Real-world labels-at-server FL scenarios to have extremely limited labeled data as labeling data
requires domain expertise and could be costly [5, 6]. However, existing FSSL approaches target
scenarios with hundreds of labeled data points (> 250) on the server, and their accuracy significantly
deteriorates when only tens of labeled data points are available (Section 5.2). In contrast, (FL)2
achieves high accuracy even in extremely label-scarce settings, such as when only 10 labeled data
points are available on the server, demonstrating increased usability and practicality for real-world
applications.

3 Preliminaries

3.1 Federated learning

Federated Learning (FL) collaboratively trains a global model via coordinated communication with
multiple clients. In communication round t, the server selects K clients among available clients.
The server transmits the current global model weights W t

g to selected clients. The selected clients
update the model weight W t

k with the local dataset for E epochs, where k indicates the client index.
Formally, W k

t = W k
t − η∇WLclient, where Lclient denotes the objective function of clients, e.g.,

3

cross-entropy loss for the classification task. After local training, the server aggregates the trained
model weights with βk as aggregation weight of each client, which is

W g
t+1 =

K∑
k=1

βkW k
t . (1)

3.2 Federated semi-supervised learning

In Federated Semi-Supervised Learning (FSSL), especially in the labels-at-server scenario, labeled
dataset DS

L = {(xb, yb) : b ∈ [NL]} is only available at the server, while clients have only unlabeled
dataset Dk

U = {ub : b ∈ [Nk
U]}, where NL and NU =

∑K
k=1 N

k
U are the total number of labeled data

and unlabeled data, respectively. In general, NL ≪ NU . At each communication round t, the server
updates its model weight WS

t with supervised loss Lserver for E local epochs with

Lserver =
1

B

B∑
b=1

H(yb, pWS
t
(y|w(xb))), WS

t = WS
t − η∇WLserver, (2)

where data batch (xb, yb) is randomly drawn from DS
L with batch size B. H(·, ·) refers to the cross-

entropy loss, ω(·) is the weak data augmentation (e.g., random horizontal flip and crop), and pW (·) is
the output probability from model W . Clients update their model weight W k

t using cross-entropy
loss with pseudo-labeling, which can be expressed as

Lclient =
1

µB

µB∑
b=1

1(max(qb) > τ) · H(q̂b, Qb), W k
t = W k

t − η∇WLclient, (3)

where qb and Qb are the abbreviations of pWk
t
(y|ω(ub)) and pWk

t
(y|Ω(ub)), respectively. Data batch

ub is randomly selected from Dk
U with a batch size of B. The one-hot label form of qb is denoted as

q̂b, and the ratio of data with confidence above τ is represented by µ. The indicator function 1(· > τ)
is used for confidence-based thresholding. Ω(·) represents strong augmentation (e.g., RandAugment
[30]).

We adopt “fine-tune global model with labeled data” and “generate pseudo-labels with global model”
strategies from SemiFL [8]. In communication round t, the server distributes the current global model
W g

t to K selected clients. Before training, clients generate pseudo-labels for a local dataset with a
fixed global model W g

t . The changed local objective function is

Lclient =
1

µB

µB∑
b=1

1(max(qgb) > τ) · H(q̂gb , Qb), (4)

where qgb stands for pW g
t
(y|ω(ub)). Subsequently, the server aggregates trained local models with

Eq 1. The server fine-tunes the aggregated model with Lserver, yielding a new global model W g
t+1.

3.3 Sharpness-aware minimization

Sharpness-Aware Minimization (SAM) [25, 31] has been increasingly applied to various tasks [16,
17, 18] due to its ability to enhance generalization. SAM improves generalization by minimizing the
sharpness of the loss landscape, which helps in finding flatter minima that generalize better across
different tasks and datasets. Traditional optimization methods could lead to sharp minima, resulting in
poor generalization to unseen data. SAM addresses this issue by incorporating weight perturbations
into the optimization objective to find flatter minima. The core objective of SAM is defined as:

min
w

max
∥ϵ∥2<ρ

Lw+ϵ, (5)

where ϵ is a perturbation vector constrained within a ρ-ball around the model weight w. The inner
maximization seeks to find the perturbation ϵ that maximizes the loss L within the specified ρ-ball.

To make this optimization feasible, SAM approximates the perturbation ϵ as:

ϵ∗ = ρ
∇wLw

∥∇wLw∥2
. (6)

4

Figure 2: Overview of (FL)2: (1) client-specific adaptive thresholding adjusts the pseudo-labeling
threshold according to each client’s learning status, (2) sharpness-aware consistency regularization
ensures consistency between the original model and the adversarially perturbed model with carefully
selected high-confident pseudo labels, and (3) learning status-aware aggregation aggregates client
models considering each client’s learning progress.

This approximation simplifies the inner maximization by scaling the gradient direction to have a
norm of ρ. The outer minimization updates the weights using the gradient evaluated at the perturbed
weights w + ϵ∗. Specifically, the gradient used for the weight update is∇wLw+ϵ∗ .

4 Method

Few-Labels Federated semi-supervised Learning, abbreviated as (FL)2, has three key components:
(1) client-specific adaptive thresholding, which leverages more unlabeled data by dynamically
adjusting thresholds for pseudo-labeling, (2) sharpness-aware consistency regularization, which
minimizes sharpness for carefully selected data to ensure better generalization, and (3) learning
status-aware aggregation, which aggregates local models from clients while considering their learning
progress. Fig. 2 overviews (FL)2 and Appendix A details the algorithm.

4.1 Client-specific adaptive thresholding

We use an adaptive thresholding mechanism rather than a fixed threshold to incorporate more
unlabeled data from the beginning of training. This approach is inspired by FreeMatch [19] that
gradually increases the threshold according to the model learning status. At round t, each client
profiles its learning status during the pseudo-label generation stage using local unlabeled dataset Dk

U

with global model W g
t . Adaptive threshold τkt of client k at round t is

τkt =
1

|Dk
U |

|Dk
U |∑

b=1

max(qgb), (7)

5

where qgb is qb calculated with global model W g
t . This approach sets a low initial threshold value, as

the model exhibits lower confidence in the data at the beginning of training. The threshold gradually
increases as training progresses, allowing the model to focus on high-confidence data. Additionally,
we estimate the learning status specific to each class and apply different thresholds for each class.
This is achieved by utilizing the output probabilities of the global model’s predictions for each class,
which can be expressed as

p̃kt (c) =
1

|Dk
U |

|Dk
U |∑

b=1

qgb (c). (8)

We calculate client-specific adaptive thresholds for each class using τkt and p̃kt (c) as

τkt (c) = MaxNorm(p̃kt (c)) · τkt =
p̃kt (c)

max{p̃kt (c) : c ∈ [C]}
· τkt . (9)

The unsupervised training objective La of client k with adaptive thresholding at each iteration is:

Lk
a =

1

µB

µB∑
b=1

1(max(qgb) > τkt (argmax(qgb)) · H(q̂
g
b , Qb). (10)

4.2 Sharpness-aware consistency regularization

While Sharpness-Aware Minimization (SAM) generalizes well in many tasks [16, 17, 18], it is
not trivial to apply it to FSSL, as SAM generalizes not only correctly pseudo-labeled samples
but also incorrect samples. This indiscriminate generalization results in the propagation of errors,
thereby degrading the model’s performance (Section 5.4). To tackle this issue, we apply consistency
regularization to a carefully curated subset of data samples with a high confidence of correctness.
While we use client-specific adaptive threshold (Section 4.1), we use a high fixed threshold to get
high-confidence data samples. (FL)2 adversarially perturbs the weight parameters that maximize loss
calculated with high-confidence data samples and regularizes consistency using the perturbed weight.

Adversarial weight perturbation When a client k trains its local model W k with mini-batch, the
model weight is perturbed with ϵ∗ that increases Lk

p the most, where ϵ∗ and Lk
p are defined as

Lk
p =

1

µB

µB∑
b=1

1(max(qgb) > τf) · H(q̂gb , Qb), (11)

ϵ∗p = argmax
∥ϵ∥2≤ρ

Lk
p ≈ ρ

∇WkLk
p

∥∇WkLk
p∥2

, W k∗ = W k + ϵ∗p. (12)

where ρ stands for perturbation strength. We use a large fixed threshold τf to get a high-confidence
pseudo-label.

Consistency regulation With the perturbed weight W k∗, we calculate Q∗
b , which is the output

probability of a strongly augmented sample for W k∗. Unlike traditional SAM objective that takes
∇Wk∗Lp, we measure the difference of model outputs between the original and the perturbed
models (Section 5.5). Formally,

Lk
cs = ℓd(Q

∗
b , Qb),where Q∗

b = pWk∗(y|Ω(ub)), (13)

in which ℓd(·, ·) measures the distance (e.g., L2 distance or KL divergence). Finally, local training
objective of client k with client-specific adaptive thresholding (Section 4.1) and sharpness-aware
consistency regularization is

Lk
client = waLk

a + wcsLk
cs (14)

with wa and wcs being the loss weights. (FL)2 effectively leverages both low-confidence data
with client-specific adaptive threshold and high-confidence data with sharpness-aware consistency
regularization to minimize the confirmation bias of clients.

6

4.3 Learning status-aware aggregation

After the local training of the selected K clients, the server aggregates the trained local models using
weights βk, as shown in Eq. 1. While existing FSSL approaches use uniform weights (βk = 1/K),
we propose a learning status-aware aggregation that adjusts the aggregation weight based on the
client’s learning status. For a client with a low learning status, indicated by a low adaptive threshold
τkt , we increase the aggregation weight so that the local learning is better reflected in the global
model. We calculate the aggregation weight as

βk
t =

1− τkt∑K
k=1(1− τkt)

. (15)

Our aggregation method complements the client-specific adaptive thresholds (Section 4.1). In this
scheme, we use lower thresholds for clients with a lower learning status to enable more extensive
learning from their data. By extending this notion to the client level, clients with lower thresholds,
which indicate more valuable learning updates, are given a greater influence on the global model.
This ensures that the most informative updates are prioritized.

5 Experiments

5.1 Setup

Data setup We evaluate (FL)2 in three public datasets: CIFAR10, CIFAR100 [12], and SVHN [32].
We test our method under balanced IID and unbalanced non-IID data distribution settings. Each
client receives an equal amount of unlabeled data in the balanced IID setting. We sample data using
a Dirichlet distribution Dir(α) for the unbalanced non-IID setting. Each client receives a different
number of data samples and samples per class. As α→∞, the distribution approaches IID. We set
α = {0.1, 0.3} in our experiments. The number of labeled data samples at the server (NL) is set to
{10, 40} for CIFAR10, {100, 400} for CIFAR100, and {40, 250} for SVHN, following widely-used
evaluation settings for SSL [19, 24].

Learning setup In our experiments, we use 100 clients, with a participation ratio of 0.1 per
communication round (K = 10). We adopt the WideResNet [33] as our backbone, employing
WideResNet28x2 for the CIFAR10 and SVHN datasets, and WideResNet28x8 for the CIFAR100
dataset. Both the server and clients optimize their local datasets for five local epochs, with 800
communication rounds. We employ the momentum SGD optimizer with a learning rate of 0.03,
momentum of 0.9, and weight decay of 5e-4, following previous work [8]. For sharpness-aware
consistency regularization (Section 4.2), we use the KL-divergence loss function for ℓd(·, ·). For
adversarial weight perturbation (Eq. 12), we use ASAM [31], which implements scale invariance
on standard SAM [25]. Based on a grid search, the perturbation strength ρ is set to 0.1 for the
CIFAR10 and SVHN datasets and 1.0 for the CIFAR100 dataset. For strong data augmentation, we
use RandAugment [30]. We also adopt the static Batch Normalization (sBN) [34] strategy, as utilized
in SemiFL. Further details on sBN are in Appendix E. We used RTX3090 GPUs throughout the
experiment. Additional details are in Appendix C.

5.2 Performance comparison with FSSL algorithms

We evaluate (FL)2 against existing FSSL methods: FedMatch [7], FedCon [9], and SemiFL [8].
Table 1 shows that (FL)2 consistently delivers the best or nearly the best performance across all
settings. For instance, although SemiFL performs the best in the non-IID-0.3 setting of CIFAR100
with 100 labels, it struggles to generalize to other scenarios. SemiFL achieves only around 10%
accuracy in CIFAR10 with 10 labels and about 43% accuracy in SVHN with 250 labels. In contrast,
(FL)2 consistently maintains high accuracy across all tasks. The performance gap compared with the
best-performing algorithm (SemiFL) in non-IID-0.3/CIFAR100/100-labels is only 0.3%. Except for
that, (FL)2 consistently outperforms the baseline methods across all other settings. Additionally, (FL)2
demonstrates a substantial improvement over existing methods, achieving 20.3% higher performance
in non-IID-0.3/SVHN/250-labels and 23.0% higher performance in IID/SVHN/250-labels. These
findings indicate that (FL)2 effectively mitigates confirmation bias among clients, leading to robust
generalization even with limited data across different settings.

7

Table 1: Evaluation of (FL)2 compared with existing FSSL methods. We report the average accu-
racy(%) and standard deviation across three runs with different random seeds. (FL)2 shows significant
performance improvements over existing methods across different settings. Bold indicates the best
result and underline indicates the second-best result.

Dataset CIFAR10 SVHN CIFAR100

of labeled data samples (NL) 10 40 40 250 100 400

Unbalanced Non-IID,
Dir(0.1)

FedMatch 16.0(2.3) 25.6(2.2) 20.7(2.7) 70.1(2.2) 6.3(0.3) 10.0(1.8)
FedCon 16.6(2.1) 25.4(2.3) 20.5(1.4) 73.1(2.0) 4.0(0.4) 8.2(0.6)
SemiFL 10.0(0.0) 19.9(7.5) 18.0(2.6) 82.3(1.8) 9.8(2.4) 13.5(5.0)
(FL)2 19.2(5.7) 36.4(1.4) 21.5(3.3) 88.0(1.0) 10.4(1.3) 23.5(1.2)

Unbalanced Non-IID,
Dir(0.3)

FedMatch 15.3(1.3) 25.2(3.5) 22.3(0.7) 72.3(3.0) 5.5(1.5) 9.8(1.1)
FedCon 16.9(2.4) 26.5(2.1) 21.6(1.7) 68.7(2.7) 5.8(0.6) 13.3(0.9)
SemiFL 10.0(0.0) 38.0(2.7) 26.3(2.5) 42.7(40.1) 12.4(1.2) 18.9(9.7)
(FL)2 24.3(4.5) 43.5(7.5) 31.0(4.2) 92.6(0.5) 12.1(1.1) 25.4(1.0)

Balanced IID

FedMatch 16.2(1.9) 25.4(2.8) 18.4(4.7) 66.2(0.8) 6.4(0.6) 10.0(1.7)
FedCon 16.7(2.0) 23.3(6.2) 20.3(1.0) 71.6(1.5) 5.7(0.6) 12.4(1.6)
SemiFL 10.0(0.0) 75.3(2.8) 53.4(13.3) 43.3(41.0) 13.9(3.3) 27.9(6.1)
(FL)2 38.9(11.1) 81.5(7.4) 75.3(2.4) 94.6(1.1) 14.4(2.3) 28.1(2.2)

We emphasize that (FL)2 significantly outperforms other methods when labeled data is extremely
limited: by 22.2% on the IID setting of CIFAR10 with 10 labels and by 21.9% on the IID setting
of SVHN with 40 labels. This substantial margin highlights (FL)2’s exceptional ability to leverage
scarce labeled data, making it practical for real-world federated learning applications. Additional
experiments are provided in Appendix B.

Table 2: Contribution of each component of (FL)2 on the SVHN dataset (NL = 40, balanced IID). By
applying Client-specific Adaptive Thresholding (CAT) and Sharpness-Aware Consistency Regulariza-
tion (SACR) to the baseline (FixMatch + FedAvg), performance is boosted. The combination of CAT
and SACR further improves the accuracy. Incorporating Learning Status-Aware Aggregation (LSAA)
leads to the best performance, finally achieving (FL)2. The result demonstrates the importance of
each component in (FL)2.

Algorithm Accuracy

FixMatch + FedAvg 50.2

SACR + FixMatch + FedAvg 60.9
CAT + FedAvg 68.2
CAT + SACR + FedAvg 71.7
(FL)2: CAT + SACR + LSAA 73.2

Significance of each component of (FL)2 We assess the contribution of each component of (FL)2:
Client-specific Adaptive Thresholding (CAT), Sharpness-Aware Consistency Regularization (SACR),
and Learning Status-Aware Aggregation (LSAA) in Table 2. The accuracy improvements provided
by each component are evaluated using the SVHN dataset with 40 labeled data points and a balanced
IID setting. We use FixMatch + FedAvg as the baseline, where FixMatch [22] employs a fixed
threshold for pseudo-labeling. Our results indicate that both SACR and CAT significantly enhance
the performance over the baseline. Combining SACR and CAT yields further accuracy improvements.
Finally, integrating LSAA for model aggregation, equivalent to (FL)2, achieves the highest accuracy.
These findings demonstrate that each component of (FL)2 contributes uniquely and complementarily
to the overall performance.

5.3 Effect of (FL)2 on confirmation bias

Since incorrect pseudo-labels usually lead to confirmation bias [35], we evaluated pseudo-label
accuracy, label ratio, correct label ratio, wrong label ratio, and C/W ratio in addition to test accuracy.
We compared (FL)2 against baseline methods using the SVHN dataset with 40 labels in a balanced

8

(a) Test accuracy. (b) Pseudo label accuracy. (c) Pseudo label ratio.

(d) Correct label ratio. (e) Wrong label ratio. (f) C/W ratio.

Figure 3: Comparison of SemiFL, (FL)2, and its variants on the SVHN dataset (NL = 40, balanced
IID). Pseudo-label accuracy measures the percentage of correct pseudo-labels. The label ratio is
the proportion of pseudo-labeled samples among all unlabeled data. Correct and wrong label ratios
indicate the percentages of correctly and incorrectly labeled samples, respectively. The C/W ratio
shows the number of correct labels relative to wrong labels. All subgraphs share the legend of Fig. 3a.

IID setting, as reported in Fig. 3. A high pseudo-label accuracy indicates that the method produces
reliable pseudo-labels. A high correct label ratio suggests that the method supplies the model with
more accurate labels. Conversely, a low wrong label ratio indicates that the model encounters fewer
incorrect labels, which is crucial for minimizing confirmation bias [35]. Lastly, a high C/W ratio
signifies that the model is exposed to more correct labels than incorrect ones, further helping to
reduce confirmation bias.

We observed that (FL)2 consistently outperforms SemiFL across all metrics. While SemiFL generates
more incorrect labels (C/W ratio < 1), (FL)2 produces twice as many correct labels than incorrect
ones (Fig. 3f). Additionally, the wrong label ratio for (FL)2 is approximately 30%, significantly
lower than SemiFL’s 45% (Fig. 3e). These results suggest that (FL)2 effectively reduces incorrect
pseudo-labels while increasing correct ones, thereby mitigating confirmation bias. Furthermore, we
observe the effectiveness of each component of (FL)2, which are CAT, SACR, and LSAA. Using
CAT and SACR alone delivers better performance than the baseline for all metrics. If we use CAT +
SACR, pseudo label accuracy increases, correct label ratio increases, and wrong label ratio decreases,
which means we reduce the confirmation bias. When LSAA is added, which is (FL)2, it achieves
the best performance across all metrics. This suggests that the synergistic effect of CAT, SACR, and
LSAA effectively reduces confirmation bias.

5.4 Impact of incorrect pseudo-labels on sharpness-aware consistency regularization

We investigate the impact of incorrect pseudo-labeled data on Sharpness-Aware Consistency Reg-
ularization (SACR). We compare the performance of SACR in two scenarios: when applied only
to correctly pseudo-labeled data assuming that we know the ground truth labels to assess the upper
bound of SACR, and when applied to all pseudo-labeled data, including incorrectly pseudo-labeled
samples. We examine when Client-specific Adaptive Thresholding (CAT) is used in both scenarios.

Fig. 4 reports the test accuracy and pseudo-label accuracy for the following cases: CAT alone,
CAT+SACR (all data), and CAT+SACR (only correct pseudo-labels). CAT+SACR (only correct
pseudo-labels) achieves high pseudo-label accuracy, indicating that SACR can effectively reduce

9

(a) Test accuracy. (b) Pseudo-label accuracy.

Figure 4: Test accuracy and pseudo-label accuracy on the CIFAR10 dataset with 40 labels, bal-
anced IID setting. Client-specific Adaptive Thresholding (CAT) is used as the baseline. Applying
Sharpness-aware Consistency Regularization (SACR) to all data, including wrongly pseudo-labeled
data, degrades performance than using only CAT, while applying SACR to correctly labeled data
improves performance. SACR also outperforms the standard SAM objective (CAT+SAM).

confirmation bias when applied to correctly pseudo-labeled data. Conversely, when SACR is applied
to all data, including wrongly pseudo-labeled samples, the performance significantly decreases and
shows worse performance than using only CAT. This emphasizes the importance of applying SACR
exclusively to carefully selected data samples that are highly likely to be correct.

5.5 Comparison with the standard SAM objective

We compare the proposed Sharpness-aware Consistency Regularization (SACR) to the standard
Sharpness-Aware Minimization (SAM) objective. Both SAM and SACR perturb the model to
maximize the given loss function. However, in SACR, the distance between the model outputs of
perturbed and original model weights is minimized, while SAM takes the gradient of the given loss
function at the perturbed weights.

Fig. 4 shows the test and pseudo-label accuracy using the standard SAM objective versus SACR. We
examine the effects of SAM and SACR when applied only to correctly labeled samples in conjunction
with Client-specific Adaptive Thresholding (CAT). Although SAM improves the performance over
standalone CAT, SACR outperforms the standard SAM in convergence speed and final accuracy. The
effectiveness of SACR can be attributed to the fundamental differences between SAM and SACR.
SAM explores the given loss landscape in search of a flat local minima. In contrast, SACR changes
the loss landscape by explicitly incorporating an additional consistency regularization term.

6 Discussion and conclusion

We introduced a novel federated learning algorithm, Few-Labels Federated semi-supervised Learning,
(FL)2, that addresses the challenge of few-labels settings in Federated Semi-Supervised Learn-
ing (FSSL) for unlabeled clients. (FL)2 effectively reduces the confirmation bias through three key
strategies: (1) client-specific adaptive thresholding, which adjusts the pseudo-labeling threshold
based on each client’s learning status; (2) sharpness-aware consistency regularization, which ensures
consistency between the original and the adversarially perturbed models with carefully selected
high-confidence pseudo labels; and (3) learning status-aware aggregation, which incorporates each
client’s learning progress into the aggregation of client models. (FL)2 closes the performance gap
between SSL and FSSL, making FSSL an effective solution for practical scenarios.

Limitations and future work Our approach introduces additional computational demands on
clients, as client-specific adaptive thresholding generates more pseudo-labels than traditional fixed
threshold methods. Furthermore, sharpness-aware consistency regularization adds an extra inference
step with a perturbed model, increasing the computational burden. While our study is grounded in
empirical findings, a promising future direction is to theoretically analyze the impact of the proposed
methods, particularly in understanding how the generalization of incorrectly pseudo-labeled data
affects overall performance.

10

Acknowledgments and Disclosure of Funding

This work was funded by the National Research Foundation of Korea (NRF), funded by the Ministry
of Science and ICT (MSIT) under grant RS-2024-00464269 and the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-00337007). ※ MSIT:
Ministry of Science and ICT.

References

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[2] Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. Fedbalancer: data and pace control
for efficient federated learning on heterogeneous clients. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services, pages 436–449, 2022.

[3] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. Oort: Efficient
federated learning via guided participant selection. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pages 19–35, 2021.

[4] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid data. IEEE transactions on neural
networks and learning systems, 31(9):3400–3413, 2019.

[5] Dong Yang, Ziyue Xu, Wenqi Li, Andriy Myronenko, Holger R Roth, Stephanie Harmon,
Sheng Xu, Baris Turkbey, Evrim Turkbey, Xiaosong Wang, et al. Federated semi-supervised
learning for covid region segmentation in chest ct using multi-national data from china, italy,
japan. Medical image analysis, 70:101992, 2021.

[6] Ahmet M Elbir, Burak Soner, Sinem Çöleri, Deniz Gündüz, and Mehdi Bennis. Federated
learning in vehicular networks. In 2022 IEEE International Mediterranean Conference on
Communications and Networking (MeditCom), pages 72–77. IEEE, 2022.

[7] Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Federated semi-supervised
learning with inter-client consistency & disjoint learning. In International Conference on
Learning Representations, 2021.

[8] Enmao Diao, Jie Ding, and Vahid Tarokh. Semifl: Semi-supervised federated learning for
unlabeled clients with alternate training. Advances in Neural Information Processing Systems,
35:17871–17884, 2022.

[9] Zewei Long, Jiaqi Wang, Yaqing Wang, Houping Xiao, and Fenglong Ma. Fedcon: A contrastive
framework for federated semi-supervised learning. arXiv preprint arXiv:2109.04533, 2021.

[10] Zhengming Zhang, Yaoqing Yang, Zhewei Yao, Yujun Yan, Joseph E Gonzalez, Kannan
Ramchandran, and Michael W Mahoney. Improving semi-supervised federated learning by
reducing the gradient diversity of models. In 2021 IEEE International Conference on Big Data
(Big Data), pages 1214–1225. IEEE, 2021.

[11] Woojung Kim, Keondo Park, Kihyuk Sohn, Raphael Shu, and Hyung-Sin Kim. Federated
semi-supervised learning with prototypical networks. arXiv preprint arXiv:2205.13921, 2022.

[12] Krizhevsky Alex. Learning multiple layers of features from tiny images. https://www. cs.
toronto. edu/kriz/learning-features-2009-TR. pdf, 2009.

[13] Khanh-Binh Nguyen and Joon-Sung Yang. Boosting semi-supervised learning by bridging high
and low-confidence predictions. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1028–1038, 2023.

[14] Xinchi Qiu, Yan Gao, Lorenzo Sani, Heng Pan, Wanru Zhao, Pedro PB Gusmao, Mina Alibeigi,
Alex Iacob, and Nicholas D Lane. Fedanchor: Enhancing federated semi-supervised learning
with label contrastive loss for unlabeled clients. arXiv preprint arXiv:2402.10191, 2024.

[15] Gihun Lee, Minchan Jeong, Sangmook Kim, Jaehoon Oh, and Se-Young Yun. Fedsol: Stabilized
orthogonal learning with proximal restrictions in federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12512–
12522, June 2024.

11

[16] Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. In International conference on machine learning, pages
10–32. PMLR, 2022.

[17] Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching
for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3769–3778, 2023.

[18] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and
scalable sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12360–12370, 2022.

[19] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang,
Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, et al. Freematch: Self-adaptive thresh-
olding for semi-supervised learning. In The Eleventh International Conference on Learning
Representations, 2023.

[20] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method
for deep neural networks. ICML 2013 Workshop : Challenges in Representation Learning
(WREPL), 07 2013.

[21] Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. Advances
in neural information processing systems, 27, 2014.

[22] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. Advances in neural information processing
systems, 33:596–608, 2020.

[23] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo
labeling. Advances in Neural Information Processing Systems, 34:18408–18419, 2021.

[24] Zhuo Huang, Li Shen, Jun Yu, Bo Han, and Tongliang Liu. Flatmatch: Bridging labeled data
and unlabeled data with cross-sharpness for semi-supervised learning. Advances in Neural
Information Processing Systems, 36, 2024.

[25] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[26] Xiaoxiao Liang, Yiqun Lin, Huazhu Fu, Lei Zhu, and Xiaomeng Li. Rscfed: Random sampling
consensus federated semi-supervised learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10154–10163, 2022.

[27] Chenyou Fan, Junjie Hu, and Jianwei Huang. Private semi-supervised federated learning.
In Lud De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pages 2009–2015. International Joint Conferences on Artificial
Intelligence Organization, 7 2022. Main Track.

[28] Ming Li, Qingli Li, and Yan Wang. Class balanced adaptive pseudo labeling for federated
semi-supervised learning. In 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16292–16301, 2023.

[29] Yonggang Zhang, Zhiqin Yang, Xinmei Tian, Nannan Wang, Tongliang Liu, and Bo Han. Robust
training of federated models with extremely label deficiency. In The Twelfth International
Conference on Learning Representations, 2024.

[30] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 702–703, 2020.

[31] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International
Conference on Machine Learning, pages 5905–5914. PMLR, 2021.

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

12

[33] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[34] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication effi-
cient federated learning for heterogeneous clients. In International Conference on Learning
Representations, 2021.

[35] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In 2020 International joint
conference on neural networks (IJCNN), pages 1–8. IEEE, 2020.

[36] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[37] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

[38] Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha
Raj, and Marios Savvides. Softmatch: Addressing the quantity-quality tradeoff in semi-
supervised learning. In The Eleventh International Conference on Learning Representations,
2023.

[39] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[40] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[41] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning
and systems, 2:429–450, 2020.

[42] Chamath Palihawadana, Nirmalie Wiratunga, Anjana Wijekoon, and Harsha Kalutarage. Fedsim:
Similarity guided model aggregation for federated learning. Neurocomputing, 483:432–445,
2022.

[43] Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[44] D Ulyanov. Instance normalization: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[45] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[46] Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

13

(FL)2: Overcoming Few Labels in Federated Semi-Supervised
Learning
Appendix

A Algorithm

Algorithm 1 (FL)2: Few-Labels Federated semi-supervised Learning

1: Input: Small labeled dataset DS
L = {(xb, yb) : b ∈ [NL]} at server. Unlabeled dataset

Dm
U = {ub : b ∈ [Nm

U]},m ∈ [M] distributed over M clients. τf is fixed threshold. Bc is client
batch size. ω(·) indicates weak data augmentation, and Ω(·) indicates strong data augmentation.
H(·, ·) indicates cross-entropy loss. ℓd(·, ·) is KL-divergence loss.

2: Initialize global model weight W g
0

3: for each communication round t do
4: W g

t ← ServerUpdate(W g
t ,DS

L) ▷ Supervised server update with DS
L

5: Update sBN statistics
6: Server samples clients K ∈ [M]

7: Server broadcasts W g
t to selected K clients

8: for each client k ∈ [K] do parallel
9: τkt ← AdaptiveThreshold(W g

t ,Dk
U)

10: W k
t ←W g

t

11: for each local step do
12: Sample Bs sized batch ub from Dk

U

13: qgb ← pW g
t
(y|ω(ub))

14: q̂gb ← OneHot(qgb)
15: Qb ← pWk

t
(y|Ω(ub))

16: Lk
a ← 1

µBc

∑µBc

b=1 1(max(qgb) > τkt (argmax(qgb)) · H(q̂
g
b , Qb)

17: Lk
p ← 1

µBc

∑µBc

b=1 1(max(qgb) > τf) · H(q̂gb , Qb)

18: W k∗
t ←W k

t +
∇

Wk
t
Lk

p

∥∇
Wk

t
Lk

p∥2

19: Q∗
b ← pWk∗

t
(y|Ω(ub))

20: Lk
cs ← ℓd(Q

∗
b , Qb)

21: W k
t ←W k

t − η∇Wk
t
(wcsLk

cs + waLk
a)

22: end for
23: end for
24: Clients uploads W k

t , τ
k
t to server

25: βk ← 1−τk
t∑K

k=1(1−τk
t)

26: W g
t+1 ←

∑K
k=1 βkW

k
t

27: end for

B More experiment results

We conducted additional experiments on the Fashion-MNIST [36] and AGNews [37] datasets, and the
result is shown in Table 3. For Fashion-MNIST, we used the WideResNet28x2 architecture, consistent
with the SVHN and CIFAR-10 experiments. We compared (FL)2 with the previous state-of-the-art,
SemiFL. When trained with only 40 labeled samples, SemiFL failed in all three runs under the

14

Table 3: More evaluation results of (FL)2 compared with SemiFL on Fashion-MNIST and AGNews
dataset. We report the average accuracy(%) and standard deviation across three runs with different
random seeds.

Dataset Fashion-MNIST AGNews

of labeled data samples (NL) 40 20

Unbalanced Non-IID,
Dir(0.3)

SemiFL 12.8(4.8) 59.1(13.7)
(FL)2 63.2(0.5) 73.6(3.7)

Balanced IID
SemiFL 10.0(0.0) 47.4(14.3)
(FL)2 49.8(34.5)1 87.0(0.6)

1 One run failed, resulting in only 10% accuracy, while the other two runs
achieved accuracies of 69.0% and 70.4%.

balanced IID setting and in two out of three runs under the non-IID-0.3 setting, resulting in accuracies
around 10%. In the single successful run under non-IID-0.3, SemiFL achieved an accuracy of 18.4%.
In contrast, (FL)2 successfully trained in all three runs under non-IID-0.3 and in two out of three runs
under balanced IID. In the one failed balanced IID run, the accuracy dropped to around 10%, while
in the successful runs, it reached 69% and 70.4%. On average, (FL)2 achieved 63.2% accuracy under
the non-IID-0.3 setting, demonstrating its robustness and effectiveness even with minimal labeled
data.

For the AGNews dataset, we randomly sampled 12,500 training samples per class from a total
of 50,000 samples and applied back-translation for strong data augmentation, following the Soft-
Match [38] approach. We used the bert-base-uncased [39] model as the backbone, freezing the BERT
parameters and training only the linear classifier for 20 epochs. Since the mixup loss cannot be
applied to NLP datasets, we compared (FL)2 to SemiFL without the mixup loss. (FL)2 significantly
outperformed the baseline, with a 39.6% accuracy improvement under the balanced IID setting
and a 14.5% improvement under the non-IID-0.3 setting. With only 20 labeled samples, SemiFL
showed substantial performance variability, with standard deviations of 14.3 and 13.7 for the IID and
non-IID-0.3 settings, respectively. In contrast, (FL)2 delivered more consistent results, achieving
standard deviations of 0.6 for IID and 3.7 for non-IID-0.3.

C Details of learning setup

All experimental results for FedMatch and FedCon were reproduced using the official PyTorch
implementation of FedCon (zewei-long/fedcon-pytorch), which is included in our repository. For
SemiFL and (FL)2 results, we implemented our own pipeline based on the GitHub repository
for SemiFL (diaoenmao/SemiFL-Semi-Supervised-Federated-Learning-for-Unlabeled-Clients-with-
Alternate-Training).

In Table 4, we list the hyperparameters used in the experiments. We utilized SGD as our optimizer
and a cosine learning rate decay as our scheduler. Additionally, we adapted the principles of adaptive
federated optimization [40] into our FedAvg algorithm by introducing a FedAvg optimizer. Instead of
simply aggregating the local models’ weights from clients and using this as the new global model’s
weights, as done in FedAvg, we calculated the difference between the aggregated local models’
weights and the global model’s weights. This difference was treated as the gradient of the global
model’s weights, which was then used to optimize the global model through the FedAvg optimizer.
We set βl = 0.9 for the local optimizer and βg = 0.5 for the FedAvg optimizer.

For training with labeled data at the server, we used the standard supervised loss. For local training at
unlabeled clients, our objective function was a weighted sum of the unsupervised loss, the fairness
loss (from client-specific adaptive thresholding), and the consistency loss (from sharpness-aware
regularization), with loss weights of wa = 1, and wcs = 1, respectively. For sharpness-aware
regularization, we used ρ = 0.5 and τf = 0.95. We also used an unlabeled batch size of 32, except
for SemiFL, where training became unstable with this batch size, so we opted for a batch size of 10
as in the original paper.

15

https://github.com/zewei-long/fedcon-pytorch
https://github.com/diaoenmao/SemiFL-Semi-Supervised-Federated-Learning-for-Unlabeled-Clients-with-Alternate-Training
https://github.com/diaoenmao/SemiFL-Semi-Supervised-Federated-Learning-for-Unlabeled-Clients-with-Alternate-Training

Table 4: Hyperparameters in our experiments
Method FedMatch [7] FedCon [9] SemiFL [8] (FL)2

Server

Batch size 10
Epoch 5

Optimizer SGD
Learning rate 0.03
Weight decay 0.0005
Momentum 0.9

Nesterov ✓

Client

Epoch 5
Optimizer SGD

Learning rate 0.03
Weight decay 0.0005
Momentum 0.9

Nesterov ✓
Batch size 32 32 10 32

Unsupervised loss weight (wa) N/A N/A N/A 1.0
Consistency loss weight (wcs) N/A N/A N/A 1.0

ρ N/A N/A N/A 0.1, 1.0
τf N/A N/A N/A 0.95

Global
Communication round 800

FedAvg momentum 0.5
Scheduler Cosine Annealing

D Federated learning (FL)

FL enables collaborative learning by sharing model updates while maintaining data privacy and
distribution across clients. A widely used FL algorithm is FedAvg [1], which creates a global model
by weighted-aggregating parameters from randomly selected clients, achieving convergence after
multiple communication rounds. FedProx [41] enhances the stability of FedAvg in non-IID settings
by averaging local updates uniformly and incorporating proximal regularization against the global
weights. FedOpt [40] improves performance over FedAvg by introducing federated versions of
adaptive optimizers. FedSim [42] uses a similarity-guided approach, which clusters clients with
similar gradients to enable local aggregations. However, most FL methods assume that labeled data
is available to the client, which is impractical.

E Static batch normalization (sBN)

Following HeteroFL [34] and SemiFL [8], we adopt the Static Batch Normalization (sBN) into our
client-weight aggregation algorithm at the server. This approach is specifically designed for federated
learning (FL) settings and has been shown to accelerates convergence and improve the performance
of the trained model compared to naive adoption of other normalization method for centralized setting
such as Batch Normalization (BN) [43], InstanceNorm [44], GroupNorm [45], and LayerNorm [46].

In detail, unlike the normal training phase where each client tracks its own running statistics and
affine parameters of the BN layer to send to the server for aggregation, sBN disables the tracking of
running statistics during local training at clients. At the beginning of each communication round,
before local training begins, the server sequentially sends the model to all active clients. At each
client, running statistics tracking is temporarily enabled (without momentum), and all training data is
fed into the global model to cumulatively compute the mean and variance for the BN layers in the
model.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state our scope and contribution in abstract and last part of introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our limitation in conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17

Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experiment details in Section 5.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [Yes]
Justification: We open-sourced the code, which can be found in abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experiment details in Section 5.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviation across 3 random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the corresponding information in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We use public datasets, and we do not violate other criteria.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss about potential positive societal impacts in introduction and
conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: We do not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly mentioned when we use existing assets throughout the paper, and
in Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide our code and documentation in the provided link in abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Related work
	Preliminaries
	Federated learning
	Federated semi-supervised learning
	Sharpness-aware minimization

	Method
	Client-specific adaptive thresholding
	Sharpness-aware consistency regularization
	Learning status-aware aggregation

	Experiments
	Setup
	Performance comparison with FSSL algorithms
	Effect of (FL)2 on confirmation bias
	Impact of incorrect pseudo-labels on sharpness-aware consistency regularization
	Comparison with the standard SAM objective

	Discussion and conclusion
	Algorithm
	More experiment results
	Details of learning setup
	Federated learning (FL)
	Static batch normalization (sBN)

