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ABSTRACT

As autonomous systems such as drones, become increasingly deployed in high-
stakes, human-centric domains, it is critical to evaluate the ethical alignment
since failure to do so imposes imminent danger to human lives, and long term
bias in decision-making. Automated ethical benchmarking of these systems is
understudied due to the lack of ubiquitous, well-defined metrics for evaluation,
and stakeholder-specific subjectivity, which cannot be modeled analytically. To
address these challenges, we propose SEED-SET, a Bayesian experimental design
framework that incorporates domain-specific objective evaluations, and subjective
value judgments from stakeholders. SEED-SET models both evaluation types
separately with hierarchical Gaussian Processes, and uses a novel acquisition
strategy to propose interesting test candidates based on both models. We validate
our approach for ethical benchmarking of autonomous agents on two applications
and find our method to perform the best. Our method provides an interpretable
and efficient trade-off between exploration and exploitation, by generating up to
2× optimal test candidates compared to baselines, with 1.25× improvement in
coverage of high dimensional search spaces.

1 INTRODUCTION

Artificial intelligence (AI)-enabled autonomous systems have seen increased deployment across a
wide range of high-stakes domains, including automated energy distribution, disaster management
(Battistuzzi et al., 2021). Although such applications can bring significant social benefits (Maslej
et al., 2025; Zeng et al., 2024; Weidinger et al., 2021; Birhane et al., 2024), they raise equally
urgent ethical concerns (Sovacool et al., 2016; Bhattacharya et al., 2024; Amodei et al., 2016; Jobin
et al., 2019; Wang et al., 2025; Grabb et al., 2024; Pałka, 2023) across stakeholder groups. For
example, in the power grid resource allocation problem, energy distribution policies often prioritize
higher-income areas during peak demand periods, leaving marginalized populations more vulnerable
to outages (Fahmin et al., 2024; Chitikena et al., 2023; Cong et al., 2022).

Such examples highlight three core challenges of ethical evaluation in real-world autonomous
systems:

• Measuring ethical behavior is difficult. Standard ethical evaluation metrics such as fairness and
social acceptability often lack ground-truth labels (Mittelstadt et al., 2016; Salaudeen et al., 2025;
Reuel et al., 2024; Wallach et al., 2025).

• Value alignment is uncertain and dynamic. Evaluation standards must quickly adapt to the growing
capabilities of autonomous systems while taking into account the uncertainty introduced by system
and expert feedback (Keswani et al., 2024; Tarsney et al., 2024).

• Ethical evaluation of real-world platforms is expensive. Due to resource constraints such as budget,
real-world systems require sample-efficient evaluation. Disproportionate access to large-scale
human feedback across domains also imposes sample restrictions on stakeholders.

To address the first challenge, guidelines and standards for ethical behavior in AI systems have
been proposed (Tabassi, 2023; Winfield et al., 2021; ISO, 2024; Chance et al., 2023). For example,
NIST’s AI Risk Management Framework (AI RMF 1.0, 2023) that suggests high-level guidelines
(e.g., Govern, Map, Measure, Manage) to promote ‘trustworthy AI’. Although these guidelines serve
as useful heuristics for enforcing measurable ethical behavior, they are not sufficiently concrete for
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Figure 1: SEED-SET Overview. Scalable Evolving Experimental Design for System-level Ethical
Testing (SEED-SET).

direct system-level testing. Some recent efforts in this direction have led to automated evaluation
tools. These works largely focus on rule-based ethical benchmarking techniques based solely on
established guidelines (Reuel et al., 2022; Dennis et al., 2016), or preference-based methods that
elicit human feedback (Keswani et al., 2024; Liu et al., 2024), and often argue in favor of one over the
other. Instead, we argue that in its most general form, ethical evaluation must incorporate objective
feedback from existing guidelines, as well as stakeholder concerns.

Additionally, existing works assume abundant access to cheap simulations or expert annotations,
leading to sample-extensive approaches based on reinforcement learning (RL), reinforcement learning
from human feedback (RLHF), or adaptive stress testing (Reuel et al., 2022; Dennis et al., 2016; Gao
et al., 2024). Such assumptions restrict their applicability to real-world systems, underscoring the
need for methods that unify both forms of evaluation under realistic data and resource constraints.

To address this, we propose Scalable Evolving Experimental Design for System-level Ethical
Testing (SEED-SET), an evaluation methodology that benchmarks autonomous systems against
both objective measurable metrics (e.g. fire damage to buildings) and subjective ethical metrics (e.g.
rescue priority to different vulnerable groups) while maintaining low sampling requirements.

To our knowledge, this is the first framework of its kind to explicitly consider both objective and
subjective ethical evaluation criteria. A key nuance in this design is the interplay of objective metrics
and stakeholder preferences. Stakeholder preferences are affected by and dictate regions of importance
in the objective landscape, and strategy to explore these regions in the objective metrics must adapt
to stakeholders. This dual dependency is highly non-trivial, and not explicitly acknowledged in
prior works. We incorporate this dependency in the design of our novel data acquisition strategy,
that incorporates feedback from both models for proposing challenging test cases ( Section 4). We
evaluate SEED-SET on three tasks for ethical evaluation: Power system resource allocation, Fire
rescue by aerial autonomous agents, and Optimal route design in urban traffic ( Section 5). Our
method successfully generates relevant test cases, with scalability to high dimensional scenarios, by
proposing up to 2X more optimal test cases compared to baselines.

Our contributions can be summarized as follows:

• We introduce a unified, domain-agnostic problem formulation for system-level ethical testing,
modeling it as an adaptive, sample-constrained inference task over both objective metrics and
subjective values.

• We formalize a hierarchical Variational Gaussian Process (VGP) model that maps design parameters
to measurable ethical criteria and learns their utility according to subjective factors.

• We derive a novel joint acquisition criterion for hierarchical models that balances exploration of
uncertain ethical factors with exploitation of learned ethical preferences in our hierarchical VGP.
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2 RELATED WORK

We discuss key related works here, with a detailed discussion in Appendix A.1.

Governance approaches for responsible AI. A wide range of governance frameworks, guidelines
and standards have been proposed to guide the ethical development and deployment of AI systems
(Tabassi, 2023; Organisation for Economic Co-operation and Development, 2019; IEEE Global
Initiative, 2019; Winfield et al., 2021; ISO, 2024)). These works articulate high-level values but are
vague about specific mechanisms for practical enforcement (Hagendorff, 2020). For domain-specific
implementation of these guidelines, automated ethical evaluation tools have been proposed in the
literature.

Automated tools. Prior technical approaches include reinforcement learning and orchestration
for instilling ethical values (Noothigattu et al., 2019), large-scale studies of moral judgment in
LLMs (Zaim bin Ahmad & Takemoto, 2025), and active learning for preference elicitation (Keswani
et al., 2024). With the exception of active learning, these techniques impose large-scale data and
simulation budget requirements and lack interpretability and modularity provided by our framework.

3 PROBLEM STATEMENT

We formulate system-level ethical testing as follows:

Problem 3.1. Given a black-box autonomous system Sπ, parameterized by policy π ∈ Π (such
as power resource allocation, drone navigation in environment), evaluate its ethical alignment by
querying it in scenarios x ∈ X (environment properties such as location of assets), collecting
objective evaluations y ∈ Y (such as cost, resilience), and estimating an unknown ethical compliance
function f : Π×X → R that captures both objective outcomes and subjective value judgments.

We list some design choices to meet the key requirements of our problem formulation:

Multi-faceted ethical criteria. The overall subjective evaluation depends on some task-specific,
and some task-agnostic parameters. For example, a stakeholder in power resource allocation will
prefer low cost and high grid reliability, regardless of the system specifics, such as grid size. Thus,
we decompose ethical compliance f(π, x) into two parts: a set of objective metrics fobj : X → Y
(e.g., cost, reslience) which can be modeled analytically using prior knowledge (domain experts,
guidelines) and user specific subjective evaluation fsubj : Y → R (e.g., perceived fairness using
cost, resilience as metrics), with limited access to ground-truth evaluations. For a given y, fsubj(y)
represents the degree of ethical alignment with the subjective evaluation criteria.

Sample-constrained learning. Evaluation is costly: querying Sπ in scenario x incurs a cost c(π, x).
We approach this using a sequential design paradigm. Given a total testing budget B, the goal of
Bayesian Experimental Design is to sequentially select query points to best learn f within budget, to
maximize the amount of information obtained about the model parameters of interest. This promotes
sample efficiency by utilizing information from collected data D := {(x1, y1), . . . , (xn, yn))}.

Scalability and uncertainty modeling. The space Π×X may be high-dimensional, and complex,
and evaluations may inherit uncertainty from experts and stakeholders. We model this uncertainty
cumulatively in the objective evaluation as y ∼ N (f(x), σ2(x)), by assuming the noise follows a zero-
mean normal distribution with a standard deviation σ. Ethical testing thus requires explicit uncertainty
modeling (e.g., via Bayesian inference) and scalable function approximation (e.g., variational models),
to guide testing toward the most informative scenarios.

Assumptions. We make the following assumptions about the system under test Sπ , and the user:

A1 The policy π is fixed during testing, and the scenario space X is known and fixed a priori. We
additionally assume access to objective evaluations (e.g., damage caused by fire), which are
required for subjective evaluation.

A2 The user provides their true subjective ethical preferences (i.e., users do not misreport), as the ethical
evaluation depends on the user-defined notion of “good” or “preferred” behavior. Additionally, we
assume that the user’s latent ethical model is stationary, corresponding to an unknown but fixed
subjective criterion.
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Following the hierarchical distinction of f , we meet the multifaceted ethical evaluation requirement
using the design of a hierarchical surrogate model, learnt using data queried by our proposed
acquisition strategy, in a Variational Bayesian Experimental Design loop. Furthermore, we mitigate
the scalability constraints with human evaluation using LLM as proxy evaluators, for a fixed ethical
criterion. We now discuss the specifics of our methodology.

4 SEED-SET

Our approach consists of three main modeling components, a hierarchical VGP for surrogate modeling,
a data acquisition strategy to generate test cases, combined with an LLM as a proxy evaluator for
pairwise preferential evaluation. Figure 1 provides an overview of our approach.

4.1 A VARIATIONAL BAYESIAN FRAMEWORK FOR SCALABLE ETHICAL MODELING

Our three main components interact with each other with inherent stochasticity from system ob-
servations and uncertainty from limited user evaluations. To account for these considerations in a
sample-efficient evaluation setting, we adopt a variational Bayesian framework. Specifically, we learn
a surrogate model for f using f(x) ∼ p(f(x)|D) by applying a joint distribution over its behavior
at each sample x ∈ X . The prior distribution of the objective p(f(x)) is combined with the like-
lihood function p(D|f(x)) to compute the posterior distribution p(f(x)|D) ∝ p(D|f(x))p(f(x)),
which represents the updated beliefs about f(x). We approximate the posterior p(f(x)|D) using a
variational distribution qϕ(f(x)), for sample-efficient posterior estimation.

In this work, we use GPs to estimate the posterior distribution, due to their analytical compatibility
with evaluation under limited data. In GP models, the distribution is a joint normal distribution
p(f(x)|D) = N (µ(x), k(x, x′)) completely specified by its mean µ(x) and kernel function k(x, x′),
where µ(x) represents the prediction and k(x, x′) the associated uncertainty. The computational
complexity of GP models scales with O(n3) as the number of observations n increases. To ensure
scalability with the number of observations, we generalize our variational posterior models qϕ
to Variational GPs (VGPs) (Tran et al., 2015), that reduce the computational burden of inference
through sparse approximation of the posterior distribution. A detailed discussion on the computational
efficiency of VGPs is provided in Appendix A.3.

Hierarchical VGP (HVGP) for Modular Modelling. Ethical evaluation in autonomous systems is
inherently hierarchical: system designs give rise to observable behaviors measured by fobj, which in
turn elicit subjective ethical evaluations fsubj from user. To capture this structure in a scalable and
interpretable way, we decompose the ethical evaluation task into two distinct modeling stages, each
represented by a VGP:

• Objective GP, which models the mapping fobj using a surrogate g : x → y, where y ∈ Rd are
objective metrics, intermediate quantities that reflect system behaviors relevant to ethical concerns
(e.g., cost of decision-making, resilience, equity in resource distribution across stakeholders, etc.).

• Subjective GP, which models the mapping fsubj using a surrogate h : y → z, where z ∈ R denotes
a latent utility score representing stakeholder judgments (e.g., perceived fairness or acceptability),
obtained from qualitative evaluations.

Subjective ethical evaluation lacks ground-truth values, i.e., we do not have direct access to label
z. This makes supervised training infeasible. We therefore adopt a common practice for grounding
qualitative information involves preference elicitation using pairwise evaluation from an oracle
T : (y, y′) → {1, 2} (Huang et al., 2025), which are objectives from scenarios (x, x′). Here, the
oracle takes a pair of evaluations y, y′ ∈ Y , and returns a binary label “1” or “2”, indicating its
preferred design (“1” if y ≻ y′ and vice-versa).

This hierarchical structure offers two critical advantages: 1) Interpretability: Ethical preferences
are grounded in observable system outcomes y, not the latent design parameters x. Modeling h(y)
instead of h(x) aligns with how stakeholders assess ethical outcomes in terms of behaviors they can
perceive and evaluate. 2) Data efficiency: By incorporating the subjective criteria’s dependency on a
combination of task-specific and task-agnostic objectives, we promote accurate modeling choices.
For accurate evaluation in limited evaluations, sample efficiency and quality of evaluation is highly
sensitive to modeling choices (Keswani et al., 2024).

4
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Efficient data querying is critical under limited budgets. Naive random sampling wastes evaluations
and often misses key test cases. Moreover, objectives both shape and are shaped by subjective
evaluations, making separate model training ineffective. Instead, one must target regions of objective
space aligned with subjective criteria. We address this through adaptive data acquisition within a
Bayesian Experimental Design (BED) framework.

4.2 A BAYESIAN EXPERIMENTAL DESIGN LOOP FOR ADAPTIVE AND EFFICIENT TESTING

Given a history of experiments D := {(x1, y1), . . . , (xn, yn))}, BED seeks to maximize the Expected
Information Gain (EIG) that a potential experimental outcome can provide about ψ, measured as the
expected reduction in entropy H(·) of the posterior distribution of ψ:

EIG(x) = H[p(θ|D)]− Ep(y|x,D)[H[p(θ|D ∪ (x, y))]] = I(θ; (x, y)|D), (1)

which is the mutual information between θ and (x, y).

We generalize this paradigm into our HVGP models and propose a nested approach that unifies the
exploration and exploitation of both the objective factors and subjective preferences simultaneously.

V (x) = I(gx; y|D) + Eqϕ(y|x)[I(hy; z|D) + Eqψ(hy)[hy]], (2)

where qϕ(·) and qψ(·) represent the variational distribution of the Objective and Subjective GP
models respectively, and x = [x1, x2] are two jointly evaluated candidates using pairwise preferential
elicitation, obtained by maximizing V . The first two terms maximize mutual information in scenario
and objective spaces, while the third enforces preferential alignment with proposed criteria. Balanced
exploration–exploitation requires all three. In Section 5, we study acquisition ablations, and in
Section 5.1, stakeholder ablations on the learned objective space.

4.3 AN LLM-BASED PROXY FOR SUBJECTIVE ETHICAL EVALUATION

The pairwise elicitation oracle is modeled using humans for evaluation. However, using human experts
can lead to constraints on the number of pairwise evaluations that can be performed. Additionally,
getting true experts who are not biased to provide the subjective evaluation can be challenging,
especially for understudied domains, and is not cost-effective. To reduce the dependency on user
evaluation, we leverage LLMs as proxies to make evaluations on behalf of stakeholders according
to certain stakeholder-specified criteria encoded through prompt design (Huang et al., 2025). Our
proposed prompt design accommodates the hierarchical structure proposed so far.

Prompt Design: The prompt has three main parts: 1) Task description: Specifies task-relevant
contextual details, 2) Objective metrics (y1, y2): For two scenarios (x1, x2), corresponding objective
metrics (y1, y2) for chosen objectives are provided for comparison, 3) Subjective criteria: An NLP
description of preference over the objective landscape, that encodes criteria for selecting the preferred
candidate. These details along with response instruction are used to extract a binary preference “1” if
y1 ≻ y2 from the LLM.

5 EXPERIMENTS

Our central hypothesis is that SEED-SET enables scalable, accurate, and data-efficient ethical evalu-
ation of autonomous systems. Using previously discussed ethical evaluation concerns (Battistuzzi
et al., 2021; Luo et al., 2024; Bieler et al., 2024) to guide the design of our observables, we test our
hypothesis on two different case studies. In addition, we conduct several ablations to better understand
our methodology. In all plots, solid lines are the mean µ and shaded areas are one standard deviation
(µ± σ). We run for five seeds per experiment, using GPT-4o for all LLM queries. Additional details
are provided in Appendix A.5.

Benchmarks. We propose two case studies as illustrated in Figure 2. Note that to the best of our
knowledge, there are no standard simulation platforms/benchmarks to test domain-agnostic ethical
benchmarking techniques for low-budget experimental validation. We discuss more about each case
study in the coming sections.
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Figure 2: Environments for the two case studies considered in this work. (Left) Power Grid Allocation
- IEEE 5-Bus and 30-Bus ( Section 5.1). (Right) Fire Rescue ( Section 5.2).
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Figure 3: Power Grid Allocation Preference Scores. Preference scores baseline comparison for
5-Bus (left) and 30-Bus (right).

Baselines. We test our SEED-SET framework against the following relevant baselines. First, the
Random sampling baseline samples uniformly in the design parameter space. Single GP (Keswani
et al., 2024) is a pairwise preferential GP that directly maps design parameters consisting of a pair of
scenarios (x, x′) to ethical evaluations z. VS-AL-1 and VS-AL-2 are Version Space Active Learning
baselines, referenced in (Keswani et al., 2024) that use a Support Vector Machine (SVM) to learn
a preferential decision boundary for pairs of scenarios (x, x′), with a linear kernel and RBF kernel
respectively.

Metrics. Since we optimize over the preferences of LLM-proxy stakeholders, we do not actually
have access to the ground truth preference function. Instead, for each baseline and case study,
we handcraft a deterministic preference score function h : y → z representing the ground truth
preference over objectives given the observables. The function is designed to be proportional to
fsubj. To validate the correctness of the preference score function, we utilize TrueSkill Bayesian skill
ranking (Herbrich et al., 2006) to predict scores for each evaluation point. In Section 5.2 we analyze
the accuracy of LLM response compared to a known ground truth, and report cumulative accuracy.
Several other experiment specific metrics are also used, reported later in the study.

5.1 POWER GRID RESOURCE ALLOCATION

We first study the ethical impact of using different Distributed Energy Resource (DER) deployment
strategies with varying reactive power limits on the Power Grid Allocation IEEE 5-bus and IEEE
30-bus networks (Luo et al., 2024), denoted 5-Bus and 30-Bus for convenience.

Scenario Description. A scenario is parameterized by x := [l, r] ∈ X , where l ∈ {0, 1}20 is a
binary vector indicating if a certain location has DER deployment, and r ∈ R20

+ specifies the reactive
power limits. This is a challenging problem for ethical evaluation due to multifaceted ethical concerns
in distribution of resource arising from various stakeholders (Luo et al., 2024; Bieler et al., 2024).
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Figure 4: Bus-30 Different Stakeholder Groups. We show that our learned preference GP is able to
adapt to the needs of different potential stakeholder groups. The plots show data point for optimum
preference score (shown in red) projected on objective space, with contours of predicted preference
score for Stakeholder A (left) and B (right), with optimum value data point.

Observables. Given scenario x, the resulting observables vector y ∈ R4 has four components.
The voltage Fairness (y1) measures the uniformity of voltage distribution across all buses. The total
Cost (y2) combines the expenses of installing DER units and reactive power provision. The Priority
(y3) area coverage measures how well each design serves under-served or rural buses. Finally, the
Resilience (y4) assesses the network’s ability to maintain voltages above a specified threshold. We
provide more details, including formulas, in Appendix B.0.3.

Evaluation Method. In our prompt, we ask the LLM to prioritize Priority, followed by Cost, and
ignore all other dimensions (prompt example in Appendix B.0.7). Since we do not have access to
ground truth evaluation scores, we approximate the LLM’s preference function with a preference
score function h̃(y) := [0,−0.5, 1, 0]y. We validate in Section 5.3 that this is a good enough
approximation.

Results We evaluate on 5-Bus and 30-Bus and observe that our proposed HVGP achieves a
higher preference score than all other baselines. Although Single GP can do better than Random
on 5-Bus, it cannot solve 30-Bus since the design parameter dimensions grows from 10 to 40,
making it hard to efficiently explore the space. In contrary, our HVGP can mitigate this through
the hierarchical structure, which reduces the complexity of mapping from objectives to subjective
assessment, followed by our acquisition strategy, which prioritizes targeted exploration of objective
space through the second mutual information term (MI2).

Both VS-AL-1 and VS-AL-2 cannot solve either tasks, which we hypothesize is because of the
inaccurate modeling choice in VS-AL-1 due to learning a linear decision boundary. Similar reasoning
as Single GP can be used to explain the inefficiency of VS-AL-2 due to its direct modeling of a
complex decision space.

5.2 FIRE RESCUE

Next, we consider an autonomous drone navigation scenario for fire extinguishing in a semi-urban
setting, as motivated by discussions on ethical concerns in rescue robotics (Battistuzzi et al., 2021).

Scenario description. A Fire Rescue scenario is parameterized by x ∈ [0, 1]30, with only 9
dimensions relevant to scenario design, controlling the placement of assets such as a museum, a
gas station, a food court, and residential blocks with tree covers of variable density. The remaining
dimensions are uncorrelated to the objectives. In Figure 9 of Appendix C), we give examples of
three scenario visualizations. The goal of the autonomous system is to search the area for fire and,
based on its uncertainty, decide whether to continue exploring or spray retardant.

Observables. Given scenario x, the observables vector y = [y1, y2, y3] ∈ R3 quantifies the
cumulative potential Chemical Damage caused by deciding to spraying the retardant (y1), cumulative

7
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Figure 5: Fire Rescue Preference Scores. We report preferences scores for baseline comparisons
(left) and acquisition strategy ablations (right).
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Figure 6: Fire Rescue Coverage. We report coverage scores for baseline comparisons (left) and
acquisition strategy ablations (right).

potential Fire Damage caused by fire due to deciding not to spray the retardant (y2), and Spread
factor(y3), measuring risk of firespread due to proximity of assets.

Evaluation Method. In our prompt, we ask the LLM to prioritize high Chemical damage and high
Spread factor (prompt example in Appendix C). We use preference score function h̃(y) := [1, 0, 1]y
and coverage score function c̃(x) that estimates cumulative standard deviation for x = [x1, . . . , xn]
for n collected data points to measure the coverage of search space to sample novel scenarios.

Results. We observe that HVGP achieves higher preference score than all previously introduced
baselines, with a similar explanation as provided in the results of Section 5.1. We also observe that
our acquisition strategy achieves higher preference score than two HVGP variants: MI1+MI2, and
Pref. MI1+MI2 does not consider the preference term in the acquisition function, and Pref does not
consider the two mutual information terms. We hypothesize that the discrepancy in the preference
scores is due to MI1+MI2’s inefficient exploration in higher dimensions. While Pref performs better
than MI1+MI2, the complete acquisition strategy performs the best with the additional improvement
from targeted exploration. We also compare the coverage scores for baselines and ablations, where
our method still shows higher coverage than baselines.

We also provide an example of scenario generation using the learned model ( Appendix C.0.4).

5.3 ADDITIONAL RESULTS

To better understanding how SEED-SET works, we perform several ablation studies in a question-
and-answer format.

(Q1) What conditions enable SEED-SET to perform well? We observe that our method performs
best when the design parameter space is large. In lower-dimensional settings such as 5-Bus, Single
GP performs well but is still suboptimal compared to our method ( Figure 3 (left)). However, in
higher-dimensional cases such as 30-Bus and Fire Rescue, HVGP outperforms Single GP by
exploring test cases that highly align with the subjective criteria.

8
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(Q2) Do our handcrafted preference score functions well approximate the LLM’s preference
function?

0 47 95
Iterations

15

25

35
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0 47 95
Iterations

15

30

45
30-Bus

HVGP Single GP Random VS-AL-1 VS-AL-2

Figure 7: Power Grid Allocation Skill
Ratings. Skill ratings computed using
a Bayesian skill rating algorithm (Her-
brich et al., 2006).

It does. In Figure 7, we treat each sampled observable
as a player in a free-for-all game, and use the TrueSkill
Bayesian skill rating system (Herbrich et al., 2006) to
evaluate their individual skill ratings (evaluation details in
Appendix B.0.2). This can be a more accurate evaluation
method than our proposed preference scores since it does
not assume the LLM’s optimization objective form. How-
ever, this evaluation process can be extremely expensive
and the skill ratings are not directly comparable across
seeds and baselines. We observe that for both 5-Bus and
30-Bus, the trends roughly match the trends seen from
the heuristic preference scores in Figure 3.

(Q3) How does acquisition strategy support sample efficiency? In the acquisition ablation
studies, we observe that our complete acquisition strategy consistently performs well. In Fire
Rescue (right of Figure 5), while preferential optimization is crucial, mutual information enables
efficient exploration, which is essential in a high-dimensional search space with low volume optima,
leading to incremental improvement over Pref. This validates our idea of prioritizing exploration and
exploitation with the acquisition strategy.

(Q4) How well does our model adapt to different stakeholders? In power resource allocation,
we consider an ablation with two stakeholders. Stakeholder A and B care mainly about high priority,
and low cost respectively. Figure 4 shows the optimum value scenario for Stakeholder A has a high
priority score, and high cost, whereas for Stakeholder B, the optimum corresponds to low cost and
low priority. This shows that the sampling procedure accurately accounts for the stakeholder-specific
criteria, resulting in different explorations, and stakeholder-specific test cases.

6 LIMITATIONS

While the SEED-SET framework effectively mitigates common challenges associated with ethical
assessment, certain limitations remain and along with promising future directions.

Scalability for Extremely Large Datasets. Using sparse variational GPs reduces complexity from
O(N3) to O(NM2) with M inducing points, enabling SEED-SET to handle tens of thousands of
observations. Scaling to hundreds of thousands or more remains challenging, which future work
could address via stochastic variational inference (SVI).

The current model uses a stationary kernel (e.g., RBF), assuming covariance depends only on relative
distance. This can be too restrictive for systems with varying regimes. To relax this, SEED-SET can
be extended with non-stationary kernels (e.g., spectral mixture, input-warped) or deep GPs that warp
inputs through neural layers.

Using LLMs as ethical proxies also risks sensitivity to prompts and context, so ongoing alignment
checks or fine-tuning are needed to keep their judgments in sync with human values. Still, when
no ground truth exists, preference data—though costly—is a practical surrogate, and VGPs with
Bayesian design offer a sample-efficient solution that would be far cheaper than training an LLM
from scratch on preferences.

7 CONCLUSION

We presented SEED-SET, a scalable framework for ethical evaluation of autonomous systems that
combines objective system metrics with subjective stakeholder judgments through a hierarchical
variational Bayesian model. By separating measurable factors from user preferences and guiding
exploration via a principled acquisition strategy, SEED-SET enables efficient and interpretable
evaluation of ethical trade-offs. The integration of large language models as proxy evaluators further
reduces human burden while maintaining value alignment. Experiments across domains demonstrate
SEED-SET’s effectiveness, with future work aimed at extending to multi-agent settings and real-time
applications.

9
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8 ETHICS STATEMENT

In this work, we propose an automated evaluation tool for ethical assessment of autonomous systems.
Our work assumes a provided ethical criteria for evaluation, and associated cost functions. We make
no recommendations or comments on the correctness of any ethical criteria in this work, and mainly
leverage existing instances of ethical evaluation for validation of our pipeline. The paper does not
involve crowdsourcing or research with human subjects.

9 REPRODUCIBILITY STATEMENT

All simulations for Fire rescue and Power resource grid allocation were conducted on a Linux
workstation with Ubuntu 22.04 LTS equipped with an Intel 13th Gen Core i7-13700KF CPU (16
cores, 24 threads, up to 5.4 GHz) and an NVIDIA GeForce RTX 4090 GPU (24 GB VRAM). The
Bayesian Experimental Design (BED) loops were implemented using wrapper BoTorch Balandat
et al. (2020) and GPyTorch Gardner et al. (2018) libraries. The compute requirements were consistent
with standard usage of these libraries and did not require additional specialized hardware beyond
what was used for Webots simulation. Implementation specific details of both the simulations are
provided in Appendix B and Appendix C. Examples of LLM prompts used in the generation of results
reported in the paper are also provided in the Appendix.
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A LITERATURE REVIEW

A.1 ADDITIONAL RELATED WORKS

Governance Approaches, for Responsible AI. A wide range of governance frameworks, guidelines
and standards have been proposed to guide the ethical development and deployment of AI systems
(Tabassi, 2023; Organisation for Economic Co-operation and Development, 2019; IEEE Global
Initiative, 2019). For example, NIST’s AI Risk Management Framework (AI RMF 1.0, 2023),
IEEE’s P7001 on transparency levels (Winfield et al., 2021) or ISO PAS 8800 on ethical design (ISO,
2024)). Hagendorff’s meta-analysis (Hagendorff, 2020) highlights the vagueness and redundancy in
many such documents. Recent reports and position papers also emphasize broader societal impacts,
including the AI Index 2025 report (Maslej et al., 2025), new perspectives on ML harms and domain-
specific risks (Wang et al., 2025; Grabb et al., 2024; Salaudeen et al., 2025; Reuel et al., 2024;
Wallach et al., 2025; Pałka, 2023). These works highlight that evaluating AI systems is not only a
technical task but also a broader measurement challenge.

Recent reports and position papers also emphasize broader societal impacts, including the AI Index
2025 report (Maslej et al., 2025), new perspectives on ML harms and domain-specific risks (Wang
et al., 2025; Grabb et al., 2024), and ongoing debates on measurement validity, governance challenges,
and consumer harms (Salaudeen et al., 2025; Reuel et al., 2024; Wallach et al., 2025; Pałka, 2023).
These works highlight that evaluating AI systems is not only a technical task but also a broader
measurement challenge.

ML-Based Ethical Evaluation. Complementary to governance, researchers have explored ML-based
methods for quantifying ethical properties of AI behavior. Fairness metrics such as demographic
parity and equalized odds are widely studied (Mehrabi et al., 2021), though their applicability varies
across contexts. Risk estimation techniques, including uncertainty-aware classification models, have
been used to quantify prediction confidence and manage potential harm in safety-critical domains
(Xu et al., 2020; Sensoy et al., 2024). Recent work has also highlighted the need for frameworks
that support situated ethical reasoning, emphasizing context, trade-offs, and reflexivity in the design
of responsible AI/ML systems (Domínguez Hernández & Galanos, 2023), while frameworks like
Weidinger et al.’s sociotechnical safety evaluation introduce layered approaches that include systemic
impacts (Weidinger et al., 2023). More recently, LLMs have been used as ethical evaluators: some
systems learn to score the moral acceptability of generated content (Jiang et al., 2021), while others
self-evaluate outputs against behavioral objectives (Ziegler et al., 2022). This motivates the need for
practical, system-level methods that can evaluate ethical behavior empirically and at scale. While
frameworks and metrics exist in isolation, few approaches integrate them into a unified methodology
suitable for continuous testing or deployment, which is addressed by our work.

Automated tools. Prior technical approaches include reinforcement learning and orchestration
for instilling ethical values (Noothigattu et al., 2019), large-scale moral judgment studies on
LLMs (Zaim bin Ahmad & Takemoto, 2025), and active learning for preference elicitation (Keswani
et al., 2024). With the exception of active learning, these techniques impose large-scale data and sim-
ulation budget requirements. Our baseline models are adopted from active learning based techniques.
In addition, ethical concerns have been explored in domain applications such as smart grids (Luo
et al., 2024) and search-and-rescue robotics (Battistuzzi et al., 2021), which we leverage for the case
studies considered in our work.

A.2 VARIATIONAL BAYESIAN METHODS:OVERVIEW

In variational inference, the posterior distribution over a set of unobserved variables u =
{u1, · · · , un} given some data D is approximated by a so-called variational distribution q(u):
p(u|D) ∼ q(u).

Variational Bayesian methods are a family of techniques for efficient posterior approximation in
Bayesian inference. In variational inference, the posterior distribution over a set of unobserved
variables u = {u1, · · · , un} given some data D is approximated by a so-called variational distribution
q(u): p(u|D) ∼ q(u). The distribution q(u) is restricted to belong to a family of distributions of
simpler form than p(u|D) (e.g. a family of Gaussian distributions), selected with the intention to
minimize the Kullback-Leibler (KL) divergence between the approximated variational distribution
q(u) and the exact posterior p(u|D). This is equivalent to maximizing the evidence lower bound
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(ELBO) (Titsias, 2009):
ELBO(q(u)) = Eq(u)[log p(D|u)]−DKL[q(u)||p(u)],

which can be considered as a sum of the expected log-likelihood of the data and the KL divergence
between the variational distribution and the prior p(u) (Titsias, 2009).

A.3 VGPS

In GP models, the distribution is a joint normal distribution p(f(x)|D) = N (µ(x), k(x, x′)) com-
pletely specified by its mean µ(x) and kernel function k(x, x′) with corresponding hyper-parameters
θ, where µ(x) represents the prediction and k(x, x′) the associated uncertainty. The computational
complexity of GP models scales with O(n3) as the number of observations n increases. Sparse
Variational GP (SVGP) reduces the computational burden of inference through sparse approximations
of the posterior distributions by introducing auxiliary latent variables u and Z, where the induc-
ing variables u = [u(z1), · · · , u(zm)]⊺ ∈ Rm are the latent function values corresponding to the
inducing input locations contained in the matrix Z = [z1, · · · , zm]⊺ ∈ Rm×d.

Typically, the variational distribution qϕ(u) is parameterized as a Gaussian with variational mean
mu and covariance Su. Assuming that the latent function values f(x), f(x′) are conditionally
independent given u and x, x′ /∈ {z1, . . . , zm}, the GP posterior can be cheaply approximated as

p(f(x)|D) ≈ qϕ(f(x)) =

∫
p(f(x)|u)qϕ(u)du

= N (µϕ(x), σϕ(x, x
′)),

where
µϕ(x) = ψ⊺

u(x)mu,

σϕ(x, x
′) = kθ(x, x

′)− ψ⊺
u(x)(Kuu − Su)ψu(x

′),

ψu(x) = K−1
uukθ(Z, x).

In this way, the complexity of inference is reduced from O(n3) to O(nm2), which significantly
improves the efficiency if m≪ n.

A.4 PAIRWISE BAYESIAN OPTIMIZATION

Following (Chu & Ghahramani, 2005), we assume that the responses are distributed according to a
probit likelihood used in the construction of V (x) as in equation 2:

L(z(y1, y2) = 1|g(y1), g(y2)) = Φ(
g(y1)− g(y2)√

2λ
),

where λ is a hyper-parameter that can be estimated along with the other hyper-parameters of the
model, and Φ is the standard normal CDF. We extend this concept to LLM as evaluators, with the
same assumptions on probit likelihood modeling.

A.5 BASELINES AND METRICS

We ablate our problem formulation to the Single GP baseline, which is also popularly used in literature
for pairwise preferential elicitation.

Version space active learning (VS-AL) has been adopted from Keswani et al. (2024), and corresponds
to learning an accurate decision boundary for a pair of scenarios as inputs. VS-AL-1 samples next
data-point based on margin maximization from decision boundary using a Support Vector Machine.
VS-AL-2 requires an explicit utility function to be supplied, and performs a weighted exploration-
optimization on this utility function controlled by a hyperparameter λ. In our experiments, we set
the utility function to be the same as preference score. We see that λ = 0 gives fast and efficient
optimization. The results reported in main paper correspond to λ = 0.3.

We note that VS-AL does not perform well in our tasks due to the fact that it is designed for prediction
accuracy, whereas our method is geared towards online test case generation. This also shows the
crucial role of modeling choices in limited data settings, where VS-AL-1 fails due to linear decision
boundary assumptions, which do not capture the complex landscape. The sensitivity of VS-AL-2 to
noise also renders it unsuitable for noisy explorations such as those we focus on.
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B DISTRIBUTED ENERGY RESOURCE ALLOCATION IN POWER GRIDS

We evaluate our distributed energy resource allocation problem on a real-world decision-making
task modeled after an Optimal Power Flow (OPF) scenario in power systems. The objective is to
identify deployment strategies for Distributed Energy Resources (DERs) that align with implicit
ethical preferences across multiple performance dimensions.

B.0.1 SYSTEM SETUP

The testbed is the standard IEEE 5/30-bus network, a widely used benchmark in power system studies.
We consider a variety of DER placement and sizing configurations, each representing a distinct design
candidate. For each configuration, an AC OPF is solved using the pandapower library to compute
physical network states under steady-state conditions. All experiments were conducted using the
same computational resources described in Appendix C.0.2.

B.0.2 RANKING FOR BAYESIAN INFERENCE

We evaluate the alignment of our proposed method’s queried candidates with the LLM evaluator
using the TrueSkill Bayesian rating system (Herbrich et al., 2006) and implemented using tru. The
intuition is that as training progresses, the proposed candidates should achieve higher alignment with
the LLM’s preferences. Thus, later candidates should inherently achieve a higher preference rating
than candidates queried earlier during training.

Informally, let X := {x1, . . . , xN} ⊂ Rd be the sequence of queried candidate points over the course
of a single training session. Define the latent utility function u : Rd → R for the LLM evaluator:
Since candidates should optimize on the LLM’s preference over time, we expect an approximately
monotonic improvement in alignment

u(xi) ≤ u(xi+1) ∀i < N (3)

Consider each latent utility as a random variable

u(xi) ∼ N (µi, σ
2
i ) (4)

We perform Bayesian skill rating inference Herbrich et al. (2006) to obtain the posterior distributions
over each µi, and sorting them to obtain the final rankings.

In practice, for each baseline and seed, we first downsample on the total number of candidate points,
down to N points. We define each of the N points as a player in a free-for-all game (as mentioned
in tru). Then, we take Comb(N, 2) combinations of 1-versus-1 games to approximate the skill rating
(or µi) of each player, which is what we plot in Figure 7. Each 1-versus-1 game is resolved by
treating the game as a pairwise comparison standard to our SEED-SET methodology, where we have
an LLM-proxy select which player has higher preference alignment with the LLM. This choice then
corresponds to the winning player in the game.

B.0.3 PERFORMANCE METRICS

Each design is evaluated using four ethically motivated metrics:

• Voltage Fairness: Measures the variance in bus voltages across the network; lower variance
implies more equitable voltage delivery.

• Total Cost: Combines capital expenditures for DER installation and operational costs related
to reactive power support.

• Priority Area Coverage: Quantifies the share of power delivered to high-priority buses, such
as rural or underserved regions.

• Resilience: Assesses the percentage of time that all bus voltages remain within safe operating
limits under perturbations (e.g., load uncertainty or line outages).
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B.0.4 PREFERENCE MODELING

Instead of assuming explicit utility weights on the objectives, we simulate human-in-the-loop or
policy-driven decision-making via pairwise preference queries. That is, for selected pairs of outcomes
(y1, y2), a preference function indicates which design is ethically preferred. These preferences are
generated based on a latent utility function, not revealed to the optimizer, that reflects nonlinear
trade-offs among the four objectives.

B.0.5 OPTIMIZATION TASK

The goal is to efficiently identify high-utility DER configurations by querying preferences, without
direct access to the utility values. This falls under composite Bayesian optimization with preference
exploration, where the acquisition function balances exploration of uncertain regions in ethics space
with exploitation of inferred preferences.

B.0.6 QUERY STRATEGY

An initial set of 10 pairwise preferences is randomly sampled to initialize the model. Each step of the
optimization selects new pairs to query, guided by the used acquisition strategy.

B.0.7 EVALUATION CRITERIA

Criterion. Priority primary, Cost secondary (with threshold): Your evaluation should consider both
Priority and Cost, with Priority given greater importance. Specifically, you should first compare the
scenarios based on their Priority scores. If the difference in Priority between the two scenarios is
within a small threshold of 0.5 (indicating that their Priority performance is very close), then you
should prefer the scenario with the lower Cost, even if its Priority is slightly lower. The objectives
Fairness and Resilience are not considered in this evaluation. Below, we provide the detailed prompt
design for the Power Grid Resource Allocation experiment, as shown in Figure 8. The other prompts
can be created by modifying various user-specified criteria.

C FIRE RESCUE

We used an open-source simulator Webots simulator Michel (2004) for scenario generation and
drone navigation using a PID controller. We choose to incorporate Chemical Damage as an observable
in response to the ethical criteria of not adding additional risk in rescue robotics tasks suggested in
(Battistuzzi et al., 2021).

C.0.1 FIRE RESCUE SIMULATION DETAILS

Different types of buildings and their spatial locations in this scenario are defined using a scenario
parameter x = [d1, d2, b, g,m, gx, gy,m

1
x,m

1
y,m

2
x,m

2
y,m

3
x,m

3
y] ∈ X , where d1, d2 ∈ [0, 100]

are scalars denoting the tree density, such that higher value denotes higher risk of fire spread.
b ∈ {0, 1, 2, 3} governs the number and placement of food courts in the scenario, and g,m ∈ {0, 1}
are binary variables denoting presence of a Gas station and Museum in a scenario, and gx, gy controls
position of gas station in the scene, and mi

x,m
i
y controls position of ith manor.

Figure 9 shows three generated scenarios sampled from X . As we can see, first image shows larger
density of trees discovered. Also note that the museum is not discovered in any of the scenarios,
since it is excluded from the field of view of the circular trajectory of the robot at all times. The
trajectory is kept constant across all experiments. The shaded colored region corresponds to the part
of the building that has been discovered by the drone and is used to estimate confidence of perception,
which is utilized in the decision-making of whether the building must be further investigated or a
retardant must be sprayed on the building.

Given a scenario x, the simulation rollouts are used to generate a decision di = [w, s] for each
building in scenario, where w = 1 denotes decision to spray the building i with spray strength s,
and w = 0 denotes decision to further explore the area on accounts of uncertainty of discovery.
The cumulative information for all buildings is used to generate a three dimensional observable
y = [y1, y2, y3] for each scenario x, where y1 quantifies cumulative damage caused by chemical

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

*Task: Your task is to compare and evaluate two optimal power flow (OPF)
scenarios in a standard IEEE 30-bus network. Each scenario involves installing
Distributed Energy Resources (DERs) at specified buses. The performance of each
scenario is quantified by four key objectives: Voltage Fairness, Total Cost,
Priority Area Coverage, and Resilience. Given two scenarios and a user-defined
criterion specifying which objectives matter to the user and their relative
importance, your task is to determine which scenario is preferable according to
the criterion.

*Scenario parameters: Each scenario is quantified by an outcome vector consisting
of four dimensions, representing distinct performance measures:
Dimension 1: Fairness (higher is better) - Measures the uniformity of the voltage
across buses, with values closer to 1 indicating more uniform voltages.
Dimension 2: Cost (lower is better) - Represents the total combined cost
associated with DER installations and reactive power provision.
Dimension 3: Priority (higher is better) - Indicates how well the scenario
prioritizes DER installations at underserved or rural buses.
Dimension 4: Resilience (higher is better) - Assesses the network’s capability
to maintain bus voltages above the specified threshold, with values closer to
1 indicating higher resilience.
You will be provided two outcome vectors|one for each scenario|each containing
these four parameters and formatted as follows:
Outcome 1: {[round(num, 5) for num in outcome1.tolist()]}
Outcome 2: {[round(num, 5) for num in outcome2.tolist()]}

*Criteria (Important considerations for evaluation): Priority primary, Cost
secondary (with threshold): Your evaluation should consider both Priority and
Cost, with Priority given greater importance. Specifically, you should first
compare the scenarios based on their Priority scores. If the difference in
Priority between the two scenarios is within a small threshold of 0.5 (indicating
that their Priority performance is very close), then you should prefer the
scenario with the lower Cost, even if its Priority is slightly lower. The
objectives Fairness and Resilience are not considered in this evaluation.

*Response instructions: After carefully evaluating each scenario/outcome
according to the criteria provided above, clearly indicate your decision using
one of the following numerical responses: -Respond ‘1’ if Outcome 1 is preferred.
-Respond ‘2’ if Outcome 2 is preferred.

*Answer format: First, clearly state your numerical choice (1 or 2). Then, in
the next paragraph, provide a detailed justification of your choice. Explicitly
refer to the provided user-defined criteria and clearly discuss the numerical
differences between the two scenarios. Your explanation must directly connect to
the numerical outcome vectors of each scenario and show clear reasoning aligned
with the specified criteria.

1

Figure 8: Example prompt for Power Grid Resource Allocation experiment.

retardant sprayed on the buildings to extinguish fire, and y2 quantifies cumulative damage caused by
fire due to the decision to not spray the retardant, and y3 quantifies spread factor. Spread factor is
calculated as y3 = 1/distance, where distance pertains to euclidean distance between all assets,
therefore, close by assets have high spread factor.

The damage also depends on the type of asset. Gas station poses higher risk of damage due to fire
and therefore accumulates higher damage value.
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Figure 9: Scenario visualization for three values of x. Legend of discovered assets shown above,
details in Appendix C.

C.0.2 EXPERIMENTAL SETUP DETAILS

A singular simulation was conducted in Webots simulation platform to obtain the trajectory of
the robot, which was kept constant across different scenario definitions. We developed a custom
simulator for scenario generation by specification of various assets, perception mapping of the robot,
and the corresponding cumulative damage from fire and chemical retardant estimations. Code for the
simulation will be released upon request.

All simulations for Fire rescue simulation were conducted on a Linux workstation with Ubuntu 22.04
LTS equipped with an Intel 13th Gen Core i7-13700KF CPU (16 cores, 24 threads, up to 5.4 GHz)
and an NVIDIA GeForce RTX 4090 GPU (24 GB VRAM). The system ran CARLA simulations
using CUDA 12.2 and NVIDIA driver version 535.230.02. The Bayesian Experimental Design
(BED) loops were implemented using the BoTorch Balandat et al. (2020) and GPyTorch Gardner et al.
(2018) libraries. The compute requirements were consistent with standard usage of these libraries
and did not require additional specialized hardware beyond what was used for Webots simulation.

C.0.3 LLM PROMPTS AND EVALUATION CRITERIA

We provide the detailed prompt design for the Fire Rescue experiment, as shown in Figure 10.
Alternative prompts can be generated by changing different criteria specified by the user.

C.0.4 EXAMPLE OF SCENARIO GENERATION USING OUR PIPELINE

The assets for constructing scenario (Food court, Museum, etc.) are chosen from pre-available assets
in Webots. Our scenario generation mechanism outputs the location of assets using the x generated
by the acquisition strategy which populates the Webots simulation. A DJI Mavic Pro drone model is
used for navigation around the scenario and discovery of assets. Figure 11 shows an example of the
scenario generated using our custom scenario generation pipeline.

D THE USE OF LARGE LANGUAGE MODELS

In our research framework, our paper relies on Large Language Models (LLMs) as proxies for humans
in performing system-level ethical testing.

However, we do not use LLMs for any writing, other than to occasionally check for spelling and
grammar issues, and recommend how to format figures.
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*Task: Your task is to compare and evaluate two instances of decision making
in a wildfire rescue scenario. Each scenario involves a set of assets on fire,
and a drone first manuevers around the area to estimate the locations of each
asset, and decides whether to continue exploring a certain asset more or spray
a retardant on it. The result of the agent’s decision making policy gives the
location and type of assets to explore further, and location, type and spray
strength of assets on which a chemical retardant will be sprayed. Retardant
strength is used to denote the intensity of the chemical used, where a higher
intensity of retardant is more toxic to the environment. Given two scenarios
and a user-defined criterion specifying which objectives matter to the user
and their relative importance, your task is to determine which scenario is
preferable according to the criterion.

*Scenario parameters: Each scenario is quantified by a 3 dimensional outcome
vector, where first entry of the vector corresponds to damage caused by
toxicity of the retardant, and second corresponds to damage caused by fire left
untreated, and third corresponds to risk of spread.

Scenario-1:
Damage caused by toxicity of spraying of retardant for scenario 1 (DT-1):
{outcome1[0]}.
Damage caused by fire left untreated for scenario 1 (DF-1): outcome1[1].
Spread factor for scenario 1: outcome1[2].
Scenario-2:
Damage caused by toxicity of spraying of retardant for scenario 2 (DT-2):
{outcome2[0]}.
Damage caused by fire left untreated for scenario 2 (DF-2):
Spread factor for scenario 2: outcome2[2]outcome2[2]}.

Your goal is to assess scenario difficulty, a more diffcult scenario is more
preferred in this context, and a more difficult scenario corresponds to one that
involves more damage.

*Criteria (Important considerations for evaluation): Scenario with high spread
factor and high DT are preferred.

*Response instructions: After evaluating each scenario/outcome according to
only the criteria provided above, clearly indicate your decision using one of
the following numerical responses: -Respond ‘1’ if Scenario-1 is preferred.
-Respond ‘2’ if Scenario-2 is preferred. Do not create your own rules, stick to
the above provided criteria.

*Answer format: Respond with a single integer: ‘1’ if Scenario 1 is preferred,
‘2’ if Scenario 2 is preferred. Do not provide explanation.

1

Figure 10: Example prompt for Fire Rescue experiment.
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Figure 11: GUI of webots with the generated buildings using our scenario generation simulator.
Also shown is the perception mapping and discovery of assets as the drone maneuvers around the
environment. The trajectory is generated by navigation of drone in a 2D circular trajectory using a
PID controller.
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