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Abstract001

Retrieval-Augmented Generation (RAG) has002
proven effective in enabling LLMs to produce003
more accurate and reliable responses. How-004
ever, it remains a significant challenge how to005
effectively integrate external retrieved knowl-006
edge with internal parametric knowledge in007
LLMs. In this work, we propose a novel Self-008
Selection RAG framework, where the LLM is009
made to select from pairwise responses gener-010
ated with internal parametric knowledge solely011
and with external retrieved knowledge together012
to achieve enhanced accuracy. To this end,013
we devise a Self-Selection-RGP method to en-014
hance the capabilities of the LLM in both gener-015
ating and selecting the correct answer, by train-016
ing the LLM with Direct Preference Optimiza-017
tion (DPO) over a curated Retrieval-Generation018
Preference (RGP) dataset. Experimental results019
with three open-source LLMs (i.e., Llama2-020
13B-Chat, Mistral-7B and Qwen2.5-7B) well021
demonstrate the superiority of our approach022
over other baseline methods on Natural Ques-023
tions (NQ), TrivialQA and HotpotQA datasets.024

1 Introduction025

Large Language Models (LLMs) have demon-026

strated remarkable capabilities across various027

tasks (Brown et al., 2020; Touvron et al., 2023a;028

OpenAI, 2024). However, their reliance on static029

parametric knowledge (Kasai et al., 2023; Mallen030

et al., 2023) often leads to inaccuracy or halluci-031

nations in responses (Welleck et al., 2020; Min032

et al., 2023). Retrieval-Augmented Generation033

(RAG) (Lewis et al., 2020; Guu et al., 2020; Ram034

et al., 2023; Asai et al., 2023) supplements LLMs035

with relevant knowledge retrieved from external036

sources, attracting increasing research interest. One037

critical challenge for existing RAG systems is how038

to effectively integrate internal parametric knowl-039

edge with external retrieved knowledge to generate040

more accurate and reliable results.041

Query : What does ctrl+shift+t do?

Answer 1: LLM answer

Explanation：Ctrl+Shift+T is a keyboard 
shortcut that opens a new tab … 
Answer: New tab

Answer 2: RAG answer

1

Passage: To type a letter \"\"T\"\", for example, 
the user would tap the top thumb button …

Explanation：Ctrl+Shift+T is a keyboard 
combination to type the letter \"T\“…
Answer: T

2

Prompt : Choose the correct explanation and answer.

1 2Query+

Explanation：Ctrl+Shift+T
is a keyboard shortcut that 
opens a new tab … 
Answer: New tab

LLM

Retriever

√

×

√

Figure 1: An illustration of the proposed Self-
Selection framework. Given a query, an LLM is
prompted to generate answers and corresponding ex-
planations both with and without external knowledge.
These outputs are then fed back into the LLM, which se-
lects one as the final answer along with its explanation.

In existing RAG approaches, LLMs depend ei- 042

ther highly or conditionally upon external knowl- 043

edge. The former consistently uses the retrieved 044

content as supporting evidence (Lewis et al., 2020; 045

Guu et al., 2020; Trivedi et al., 2023), which often 046

introduces irrelevant or noisy information and over- 047

looks the valuable internal knowledge in LLMs, 048

resulting in sub-optimal results. In comparison, 049

the latter integrates external knowledge into LLMs 050

conditionally based on specific strategies, such as 051

characteristics of input query (Mallen et al., 2023; 052

Jeong et al., 2024; Wang et al., 2023), probability 053

of generated tokens (Jiang et al., 2023b; Su et al., 054

2024), or relevance of retrieved content (Zhang 055

et al., 2023; Xu et al., 2024; Liu et al., 2024). The 056

query-based and token-based strategies generally 057

utilize a fixed question set or a predefined threshold 058

to decide whether to incorporate external knowl- 059

edge, limiting their effectiveness due to incomplete 060
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information; the relevance-based strategy employs061

an additional validation module to assess the re-062

trieved content, with its accuracy largely determin-063

ing the quality of the final responses.064

In this work, we explore empowering the LLM065

itself to determine the correct result by holistically066

evaluating the outputs generated with and with-067

out external knowledge. As illustrated in Figure 1,068

given a query “What does Ctrl+Shift+T do?”, we069

instruct the LLM to generate the LLM Answer (i.e.,070

“New tab”) and corresponding explanation (i.e., rea-071

soning steps) with its internal parametric knowl-072

edge. Meanwhile, we employ a retriever to ob-073

tain the relevant passages from external knowledge074

bases and feed the query and retrieved passages075

to LLMs to produce the RAG Answer (i.e., “T”)076

and the corresponding explanation. Next, we in-077

struct LLMs to take the query, LLM Answer with078

its explanation and RAG Answer with its expla-079

nation as input to choose the more accurate one080

(i.e., “New tab”). In this manner, both internal081

and external knowledge related to the query are082

comprehensively considered, enabling the LLM to083

generate more accurate responses, while the RAG084

framework remains simple by avoiding the need085

for additional modules.086

Accordingly, we devise a novel Self-Selection087

RAG framework that leverages the LLM itself088

to identify the more accurate answer to a query089

by evaluating both LLM Answer and RAG An-090

swer, along with their respective explanations.091

We validate the performance of the proposed092

Self-Selection framework with three open-sourced093

LLMs (see Section 3.2) and find that it tends094

to fail in some scenarios, which we attribute095

to its limited capacity in distinguishing the cor-096

rect answer from the incorrect one. To enhance097

the accuracy of the LLM selecting the right one098

among multiple responses generated from different099

knowledge sources, we develop a Self-Selection-100

RGP method, leveraging Direct Preference Op-101

timization (DPO) (Rafailov et al., 2023) to fine-102

tune the LLM with a curated Retrieval-Generation103

Preference (RGP) dataset. To construct this RGP104

dataset, we employ GPT-3.5 (OpenAI, 2024) to105

generate an LLM Answer and an RAG Answer for106

each query sampled from WebQuestions (Berant107

et al., 2013), SQuAD 2.0 (Rajpurkar et al., 2018)108

and SciQ (Welbl et al., 2017), and then retain only109

the pairs consisting of one correct answer and one110

incorrect answer, each accompanied by its corre-111

sponding explanation. It consists of 3, 756 pairs of112

LLM Answer and RAG answer with their respective 113

explanations, which we promise to release to the 114

public to facilitate future research. 115

With this dataset, we train three different LLMs, 116

including Mistral-7B (Jiang et al., 2023a), LLaMa- 117

2-13B-Chat (Touvron et al., 2023b) and Qwen- 118

2.5-7B- Instruct (Qwen et al., 2025), and evaluate 119

them on three widely used datasets, i.e., Natural 120

Questions (NQ) (Kwiatkowski et al., 2019), Triv- 121

ialQA (Joshi et al., 2017), and HotpotQA (Yang 122

et al., 2018). It is demonstrated that our Self- 123

Selection-RGP method consistently achieves high 124

effectiveness across various retrieval settings and 125

different LLMs, enhancing the robustness and sta- 126

bility of RAG systems. Moreover, additional exper- 127

iments reveal that our Self-Selection-RGP method 128

not only enhances LLMs’ ability to distinguish 129

valid answers from noisy ones but also improves 130

their answer generation capabilities. We further 131

validate the rationale of each design in our method 132

through ablation studies. 133

Major contributions of our paper are three-fold: 134

• We introduce a novel Self-Selection RAG 135

framework that leverages the LLM itself to 136

determine the correct answer by evaluating 137

a pair of responses generated with internal 138

parametric knowledge solely and also with 139

external retrieved knowledge. 140

• We propose a Self-Selection-RGP method 141

that applies Direct Preference Optimization 142

(DPO) to enhance LLMs in both identifying 143

and generating correct answers with a cu- 144

rated Retrieval-Generation Preference (RGP) 145

dataset. 146

• Extensive experiments with three open- 147

sourced LLMs achieve superior performance 148

on three widely-used datasets, demonstrat- 149

ing the effectiveness of our proposed Self- 150

Selection method. 151

2 Self-Selection 152

In this section, we elaborate on the proposed 153

Self-Selection framework for enhanced Retrieval- 154

Augmented Generation (RAG). 155

2.1 Preliminaries 156

For an LLM represented by M, given a prompt p̄ 157

and a query q as inputs, it returns a textual answer 158
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WebQuestions

SQuAD 2.0

SciQ

Questions Set

Retriever Top-k Passages
Golden Answer

LLM Answer

RAG Answer

(1) Retrieval-Generation Preference Dataset Construction

RAG Explanation

LLM

(2) Retrieval-Generation Preference Alignment

RAG Answer

LLM Explanation

LLM Answer

Similarity Search

Reorder

Direct Response

RAG Response

Subset LLM Answer

RAG Answer

Positive Answer 
& Explanation

Question

RGP Dataset

Negative Answer 
& Explanation

RGP Dataset Question

Positive E&A
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Negative E&A

…
Negative E&A

Positive E&A

Prompt: Choose the more correct explanation and answer...

Open-Source LLM
＞

Preference Order

Direct Preference Optimization 
(DPO)

RGP  Aug. Dataset

(2.1) Dataset Augmentation (2.2) Retrieval-Generation Preference Training

Figure 2: An illustration of the proposed Self-Selection-RGP method.

ā as the output, which is formally expressed as159

ā = M(p̄, q). (1)160

An Retrieval-Augmented Generation (RAG) sys-161

tem employs a retriever to enhance the capabil-162

ity of the LLM by enabling it to access external163

knowledge beyond its internal parametric knowl-164

edge (Lee et al., 2019; Guu et al., 2020). Given165

a query q, the retriever R searches for the rele-166

vant knowledge (e.g., passages) C from an external167

knowledge base or corpus. A common approach168

for RAG is to include the retrieved passages C169

in the input to the LLM to improve the response170

quality. Formally,171

C = R(q), (2)172

173
â = M(p̂, q, C), (3)174

where p̂ represents the prompt used in RAG and â175

denotes the answer predicted by the LLM taking176

into account the retrieved passages C.177

2.2 Task Formulation178

In this part we present the formulation of our Self-179

Selection framework. An illustration is provided in180

Figure 1. Given a query q, we first prompt an LLM181

M with p̄ denoting the prompt to output the answer182

ā with its explanation ē, where we refer to ā as the183

LLM Answer and ē as the LLM Explanation. Next,184

we use the retriever R to gather relevant passages185

C (Eq. (2)) to the same query q. Then, we prompt186

the LLM M with p̂ while providing q and C in the187

input, to generate â with its explanation ê, where188

we refer to â and ê as the RAG Answer and the RAG189

Explanation. Finally, we prompt the LLM M with190

a prompt p by taking the query q, the LLM Answer191

ā with its LLM Explanation ē, the RAG Answer192

â with its RAG Explanation ê as inputs to select 193

one as the final answer a and final explanation e. 194

Formally, 195

(ā, ē) = M(p̄, q); (4) 196
197

(â, ê) = M(p̂, q, C); (5) 198
199

(a, e) = M(p, q, (ā, ē), (â, ê)). (6) 200

2.3 Self-Selection-RGP 201

Motivation. We evaluate the performance of the 202

proposed Self-Selection framework on widely used 203

QA datasets using existing open-source models, 204

without any model parameter updates. We report 205

the experimental results in Table 2 of Section 3. 206

The Self-Selection framework is promising in en- 207

hancing LLMs’ answer generation by fusing in- 208

ternal knowledge with external knowledge, but di- 209

rectly applying such knowledge fusion does not 210

always bring enhancements. One assumption is 211

that LLMs struggle to reliably discern the correct 212

answer between two candidates generated from dif- 213

ferent knowledge sources. In essence, this knowl- 214

edge selection process is consistent with the goal 215

of preference alignment in LLMs, i.e. generating 216

the desired (positive) sample while rejecting the 217

undesired (negative) one from a pair of preference 218

data. To address this challenge, we explore tuning 219

LLMs through preference alignment techniques 220

to enhance their ability to discern and select the 221

correct answer from two candidates generated by 222

different knowledge sources. 223

Retrieval-Generation Preference Dataset. Here 224

we explain how we build the Retrieval-Generation 225

Preference (RGP) dataset used for fine-tuning 226

LLMs in Self-Selection-RGP: 227

• Preference Candidate Generation. We first em- 228

ploy an LLM to produce two sets of responses for 229

each query q: (i) an LLM Answer ā with its LLM 230
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Explanation ē, derived from the model’s internal231

parametric knowledge; and (ii) an RAG Answer â232

with its RAG Explanation ê, relying on the exter-233

nally retrieved information. Specifically, we ran-234

domly select a subset of QA pairs from three exist-235

ing open-domain QA datasets, including WebQues-236

tions (Berant et al., 2013), SQuAD2.0 (Rajpurkar237

et al., 2018), and SciQ (Welbl et al., 2017). Let D238

denote the obtained set of QA pairs. Formally,239

D =
{
q(i), a(i)g

}N

i=1
(7)240

where ag is the golden answer to the query q, N is241

the number of QA pairs and i is the i-th QA pair in242

D. For each query q in D, we utilize a retriever R243

to retrieve the top-K passages C from a corpus (Eq.244

(2)). To ensure the quality of the constructed pref-245

erence dataset, we employ GPT-3.5 (Ouyang et al.,246

2022) as the model M for candidate answer and247

explanation generation given a query. According to248

Eq. (4) and Eq. (5), we generate the answers and249

explanations (ā, ē) and (â, ê). Finally, we obtain a250

collection of preference candidates for constructing251

the RGP datasets. Formally, the D is expanded as252

D =
{
q(i), a(i)g , ā(i), ē(i), â(i), ê(i)

}N

i=1
. (8)253

• Preference Data Filtering. In the RGP dataset,254

each instance should include both a desired (pos-255

itive) answer and an undesired (negative) answer.256

We filter these required instances from the collec-257

tion D. For each instance in D, we first employ258

GPT-3.5 to assess whether the LLM Answer ā and259

the RAG Answer â are correct by comparing each260

to the golden answer ag. After that, we only retain261

the instances that contain one right answer and one262

wrong answer, where (i) ā is correct but â is incor-263

rect; or (ii) â is correct but ā is incorrect. Based on264

this strategy, we gather all appropriate instances in265

D to build our RGP dataset D. Formally,266

D =
{
q(j), a(j)g , (a(j)p , e(j)p ), (a(j)n , e(j)n )

}M

j=1
(9)267

where ap and ep represent the positive answer and268

its explanation, an and en represent the negative269

answer and its explanation, M denotes the num-270

ber of instances and j denotes the j-th instance in271

D. Finally, we retain 3, 756 preference instances272

in the RGP dataset. We promise to release it for273

facilitating future reseach.274

Retrieval-Generation Preference Alignment.275

With the constructed RGP dataset, we train open-276

source LLMs to enhance their ability to distinguish277

the positive answer from the negative counterpart.278

• Dataset Augmentation. To improve LLMs’ pref- 279

erence alignment, we first augment the RGP dataset 280

through a simple yet effective approach to produce 281

more preference instances. In particular, given a 282

query q in RGP, we search for the top-K similar 283

queries in the RGP datasets and we regard all an- 284

swers to these K queries as negative answers to 285

the query q. Formally, for each query q in the RGP 286

dataset D, we denote the obtained most similar 287

queries and their responses in RGP as G: 288

G(i) = {q(j), y(j)w , y
(j)
l | argmax

top-K
S
(
q(i), q(j)

)
} ∀q(i) ∈ D, i ̸= j

(10) 289

where S(q(i), q(j)) represents the similarity score 290

between q(i) and q(j), and y
(j)
w and y

(j)
l represent 291

the corresponding positive and negative response 292

(i.e., answer with its explanation) for q(j) in RGP. 293

For one query q(i), y(i)w and y
(i)
l are the original 294

positive and negative response in RGP. Then, we 295

regard all y(j)w and y
(j)
l in the obtained set G(i) as 296

the additional negative responses to q(i). For each 297

query, now we have 1 positive response and 2K + 298

1 negative responses, which can be used to form 299

2K + 1 pairs of preference instances. Let Daug 300

denote the augmented RGP dataset. Formally, 301

D(i)
aug =

{(
q(i), y

(i)
w , y

(i)
lj

)}M

i=1
, j = 1, 2, . . . , 2K + 1,

(11) 302

where y(i)lj is the j-th negative response to the query 303

q(i). 304

• Retrieval-Generation Preference Training. With 305

the augmented preference dataset, our goal is to 306

train open-sourced LLMs to enhance their capabili- 307

ties in distinguishing the correct answers from the 308

incorrect ones. During the preference alignment 309

phase of LLM training, each instance in the aug- 310

mented dataset Daug comprises three key elements: 311

an input x, a desired response yw, and an unde- 312

sired response yl, which is denoted as yw ≻ yl | x. 313

Specifically, the input x consists of a query q, the 314

desired response yw, the undesired response yl, and 315

a prompt p designed to instruct the LLM M to 316

choose between yw and yl (see Eq. (6)). The de- 317

sired response yw includes the correct answer along 318

with its explanation, while the undesired response 319

yl contains an incorrect answer and its explanation. 320

To enhance the robustness of the trained model, we 321

randomly alternate the order of yw and yl within 322

the input x. 323

We adopt Direct Preference Optimization 324
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(DPO) (Rafailov et al., 2023) to train LLMs. It325

enables preference data to be directly associated326

with the optimal policy, eliminating the need for327

any additional reward model. DPO formulates a328

maximum likelihood objective as follows:329

LDPO(πθ;πref ) = −E(x,yw,yl)∼D[
log σ

(
β log

πθ(yw | x)
πref (yw | x) − β log

πθ(yl | x)
πref (yl | x)

)]
,

(12)330

where β represents the deviation of the policy πθ331

from the reference model πref . Our proposed opti-332

mization method aims to enhance LLMs’ answer333

selection capability, enabling them to holistically334

evaluate multiple responses generated from diverse335

knowledge sources and identify the most accurate336

one among them. In addition, we also hope this337

optimization method can further improve the inher-338

ent ability of LLMs in answer generation (more339

analysis is provided in Section 3.3).340

3 Experiments341

We evaluate the proposed method with extensive342

experiments. We experiment with two variants343

based on the proposed Self-Selection framework:344

i) Self-Selection-Ori, i.e. the RAG method that345

applies Self-Selection on vanilla LLMs, and ii)346

Self-Selection-RGP, i.e. the RAG method that347

applies Self-Selection on the LLMs trained with348

our augmented RGP dataset. For a comprehen-349

sive evaluation, we seek to address the following350

questions: RQ1: How does Self-Selection-RGP351

perform compared to other compared methods?352

RQ2: To what extent can Self-Selection-RGP af-353

fect the LLMs’ inherent ability in answer genera-354

tion? RQ3: What is the effect of each design in355

our proposed Self-Selection-RGP? RQ4: Whether356

Self-Selection-RGP is generalizable across differ-357

ent retrieval settings?358

3.1 Experimental Setup359

Datasets. We use three open-domain QA datasets,360

namely, Natural Question (NQ) (Kwiatkowski361

et al., 2019), TriviaQA (Joshi et al., 2017) and Hot-362

potQA (Yang et al., 2018), along with the retriever363

BGE (Xiao et al., 2024). Following prior works364

(Trivedi et al., 2023; Jeong et al., 2024), we use365

the same test split for each dataset with the same366

external corpus to evaluate RAG methods. We pro-367

vide their statistics in Table 1, and implementation368

details are deferred to the appendix.369

Table 1: Statistics of the test datasets.
Dataset # Passages # QA Pairs

Natural Questions (NQ) 21,015,324 500
TriviaQA 21,015,324 500
HotpotQA 5,233,329 500

Baselines. We compare our methods with below 370

baselines: 371

• LLM Only: The response to each query is gen- 372

erated solely by LLMs. 373

• Standard RAG: The response to each query is 374

produced by LLMs after appending the retrieved 375

passages to the input. 376

• Self-RAG (Asai et al., 2024): Specialized re- 377

flection tokens are utilized to enable LLMs to 378

control retrieval and evaluate the relevance of the 379

retrieved content during reasoning. 380

• SURE (Kim et al., 2024): LLMs first generate 381

summaries of the retrieved passages for each can- 382

didate answer, and then identify the most plausi- 383

ble answer by evaluating each summary’s validity 384

and ranking. 385

Evaluation Metrics. We use Exact Match (EM), 386

F1 score and Accuracy (Acc) as evaluation met- 387

rics (Mallen et al., 2023). 388

3.2 Main Results (RQ1) 389

We verify the effectiveness of the proposed Self- 390

Selection framework by comparing its perfor- 391

mance with baseline methods. Table 2 shows our 392

main results, from which we make below key ob- 393

servations: 1) With Mistral-7B and Qwen-2.5-7B- 394

Instruct as the base LLMs, our Self-Selection-RGP 395

model consistently outperforms all compared meth- 396

ods on three datasets. On the TriviaQA dataset, 397

Self-Selection-RGP scores 67.0 and 70.2 in ac- 398

curacy, making significant improvements of 5.4 399

and 8.0 points, respectively, compared to the best 400

baselines, which score 61.6 and 62.2. On the NQ 401

and HotpotQA datasets, the performance gains 402

of Self-Selection-RGP in accuracy are relatively 403

smaller compared to those observed on the Triv- 404

iaQA dataset. These performance improvements 405

highlight the effectiveness of our Self-Selection- 406

RGP method. 2) With LLama2-13B-Chat as the 407

base LLM, our Self-Selection-RGP model consis- 408

tently delivers strong performance. In particular, 409

Self-Selection-RGP exhibits superior performance 410

on the TriviaQA and HotpotQA datasets, achieving 411

accuracies of 66.0 and 36.8, respectively, i.e., 2.2 412

and 3.8 points higher than the best baseline SURE. 413
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Table 2: Main results of our proposed methods and all baseline methods.

NQ TriviaQA HotpotQA
LLM Method EM F1 acc EM F1 acc EM F1 acc

Mistral(7B)

LLM Only 21.8 35.5 34.0 41.2 53.4 52.6 20.4 28.0 24.0
Standard RAG 35.8 51.2 51.0 45.8 58.1 59.8 30.8 41.0 36.8
Self-RAG - - - 29.0 43.2 60.6 14.0 24.6 35.4
SURE 39.0 52.4 47.6 48.6 59.7 61.6 22.4 34.1 28.8
Self-Selection-Ori 34.6 50.1 50.2 48.4 61.2 62.8 30.6 41.7 36.8
Self-Selection-RGP 37.8 52.5 53.6 54.4 66.2 67.0 30.0 42.4 37.2

Qwen2.5(7B)

LLM Only 22.6 32.6 28.8 49.4 57.8 54.6 19.0 25.6 20.8
Standard RAG 43.2 56.3 52.8 55.6 63.8 62.2 38.4 47.2 40.8
SURE 35.0 48.3 39.4 51.2 61.0 58.6 30.0 39.3 32.2
Self-Selection-Ori 42.0 55.1 52.0 58.8 66.9 65.2 38.8 47.5 40.6
Self-Selection-RGP 44.0 56.3 53.2 61.8 72.2 70.2 40.6 49.9 43.4

Llama2(13B)

LLM Only 21.2 31.9 28.2 43.2 50.1 48.0 18.8 26.5 22.4
Standard RAG 24.6 37.0 45.2 35.2 46.1 55.0 28.6 39.9 35.0
Self-RAG - - - 17.2 36.6 63.4 5.8 18.2 31.8
SURE 39.4 52.3 52.0 50.4 63.0 63.8 24.8 37.4 33.0
Self-Selection-Ori 31.6 43.8 45.2 43.0 53.5 56.6 27.4 39.8 34.2
Self-Selection-RGP 36.6 49.2 46.2 56.6 66.3 66.0 29.0 41.4 36.8
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Figure 3: Analysis of answer generation capability be-
fore and after preference alignment training. “Mistral-
7B” denotes the vanilla LLM before preference align-
ment training; “Self-Selection-RGP-7B” refers to the
LLM obtained after training Mistral-7B with the prefer-
ence alignment dataset.

In comparison, on the NQ dataset, it underperforms414

SURE. This discrepancy likely stems from the in-415

herent difficulty of NQ questions for the model,416

which hampers our method’s ability to distinguish417

correct answers effectively.418

3.3 Analysis of Answer Generation Capability419

of LLMs (RQ2)420

The main results have shown that LLMs trained421

with the preference dataset acquire remarkable422

improvements in distinguishing correct responses423

from incorrect ones. We then address RQ2 by424

comparing LLMs’ answer generation performance425

before and after preference alignment training.426

We adopt Mistral-7B as the base LLM and com-427

pare it with Self-Selection-RGP-7B model trained428

on the augmented RGP dataset. We evaluate their429

answer generation capabilities on the three datasets.430

See results in Figure 3. We make the following431

observations: 1) When not using external knowl-432

edge, Self-Selection-RGP-7B exhibits improved433
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Figure 4: Ablation study. “Std RAG” denotes Stan-
dard RAG; “w/o Aug”, “w/o Align” denote the method
without Dataset Augmentation or Preference Alignment;
“SS-RGP” is our Self-Selection RAG method.

performance on TriviaQA and slightly worse per- 434

formance than Mistral-7B on NQ and HotpotQA. 2) 435

Under RAG setting, Self-Selection-RGP-7B consis- 436

tently outperforms Mistral-7B on the three datasets, 437

showing enhanced answer generation abilities. 438

These empirical findings reveal that the Self- 439

Selection-RGP-7B model exhibits enhanced capa- 440

bilities not only in answer selection, but also in 441

answer generation when using external knowledge. 442

This indicates that training LLMs on the augmented 443

RGP dataset can enhance their ability to generate 444

high-quality answers. 445

3.4 Ablation Study (RQ3) 446

To verify the effect of each design in our proposed 447

method, we conduct an ablation study with Mistral- 448

7B on NQ, TriviaQA and HotpotQA datasets. We 449

utilize three methods for ablation in addition to our 450

Self-Selection-RGP: 1) Standard RAG, which 451

appends the retrieved passages to the input of 452

the vanilla LLM; 2) w/o Dataset Augmentation, 453

which removes the step of dataset augmentation 454

6
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Figure 5: Effects of using a different retriever. Our
Self-Selection-RGP and Standard RAG both use BM25
as the new retriever. We adopt Mistral-7B as the base
LLM for Standard RAG (7B) and Self-Selection-RGP
(7B), and Llama2-13B-Chat for Standard RAG (13B)
and Self-Selection-RGP (13B).

and trains Mistral-7B with the original RGP dataset455

only; 3) w/o Preference Alignment, which re-456

moves the step of preference alignment for the457

LLM and applies the Self-Selection on the vanilla458

LLM. For fair comparisons, we use the same459

prompt as input for generating candidate answers460

in both the Standard RAG model and other models.461

We present the results in Figure 4, from which462

we observe: 1) Removing either the step of dataset463

augmentation or preference alignment results in464

a performance drop in F1 and Accuracy on all465

three datasets, highlighting the rationale of the de-466

sign in our proposed Self-Selection-RGP method.467

2) Comparably, the removal of preference align-468

ment results in a more substantial decrease in per-469

formance, revealing the importance of teaching470

LLMs to choose the correct answer from multiple471

candidates. 3) Compared to the Standard RAG472

method, our method consistently yields superior473

performance on all three datasets, demonstrating474

great effectiveness in enhancing RAG systems.475

3.5 Impact of Retrieval Settings (RQ4)476

Effects of A Different Retriever. We test the477

compatibility of the proposed Self-Selection frame-478

work with different retrieval methods. Beyond479

the BGE retriever considered in Table 2, we also480

use BM25 (Robertson et al., 1994) as the retriever,481

and compare our Self-Selection-RAG method with482

Standard RAG to see if our method still maintains483

superior performance.484

We use Mistral-7B and Llama2-13B-Chat as the485

base models and present their performance on NQ486

and TriviaQA in Figure 5, from which we make fol-487

lowing obersevations. With BM25 as the retriever,488

our proposed Self-Selection-RGP method consis-489

tently outperforms the Standard RAG method in490

each setting as illustrated in Figure 5, revealing the491

compatibility and generalizability of our method re-492

garding new retrieval techniques like BM25. To be493

25
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Figure 6: Effects of retrieved passage counts with
Mistral-7B as the base LLM.

more specific, as shown in Figure 5 (a) and (c), our 494

Self-Selection-RGP (7B) and Self-Selection-RGP 495

(13B) outperform the Standard RAG (7B) and Stan- 496

dard RAG (13B) models by substantial margins 497

on all three metrics over both NQ and TriviaQA 498

datasets. This underscores the high effectiveness 499

and strong compatibility of our Self-Selection-RGP 500

method across different retrievers. 501

Effects of Retrieved Passage Count. Next, we in- 502

vestigate the effects of the number of retrieved pas- 503

sages on the performance. Specifically, we adopt 504

BGE and BM25 as the retriever and Mistral-7B as 505

the base LLM. We compare performance across 506

three RAG methods, i.e. Standard RAG, Self- 507

Selection-Ori, and Self-Selection-RGP, on both NQ 508

and TriviaQA datasets. The experimental results in 509

Figure 6 lead to following observations: 1) Increas- 510

ing the number of retrieved passages improves ac- 511

curacy in all three RAG methods initially. However, 512

beyond a certain threshold, adding more passages 513

yields marginal or negative effects, likely due to 514

information overload within the LLM’s constrained 515

context window. 2) On the TriviaQA dataset, Self- 516

Selection-RGP consistently achieves the highest 517

performance across different retrieved passages and 518

retrievers, followed by Self-Selection in second, 519

and Standard RAG in last. 3) On the NQ dataset, 520

Self-Selection-RGP consistently ranks the first us- 521

ing BM25. When using BGE, all methods perform 522

competitively across varying numbers of retrieved 523

passages. Notably, Self-Selection-RGP performs 524

best with 5 retrieved passages. Standard RAG out- 525

7



performs the LLM-only approach by integrating526

retrieved passages, establishing a strong baseline,527

as shown in Table 2. Our method achieves compara-528

ble performance, demonstrating great effectiveness529

across varying retrieved passage counts.530

4 Related Work531

4.1 Retrieval-Augmented Generation532

Retrieval-Augmented Generation (RAG) (Lewis533

et al., 2020; Guu et al., 2020) has been widely used534

for improving LLMs’ performance across various535

tasks by incorporating an Information Retriever536

(IR) module to leverage external knowledge. Most537

RAG systems (Lewis et al., 2020; Ram et al., 2023;538

Izacard et al., 2023) integrate retrieved knowl-539

edge directly into the input; some utilize Chain540

of Thought (CoT) (Wei et al., 2022; Trivedi et al.,541

2023) or task decomposition (Xu et al., 2024; Wang542

et al., 2024; Kim et al., 2024) to integrate external543

knowledge in intermediate reasoning steps or sub-544

tasks. Though effective, the indiscriminate use of545

external knowledge may introduce noise, degrad-546

ing quality of generated responses. Conditional use547

of external knowledge in RAG has also been inves-548

tigated. Adaptive retrieval methods decide whether549

to retrieve and utilize external knowledge based on550

query characteristics (Mallen et al., 2023; Wang551

et al., 2023; Jeong et al., 2024) or next token gen-552

eration probability (Asai et al., 2024; Jiang et al.,553

2023b; Su et al., 2024; Wang et al., 2024), while554

relevance-based methods (Zhang et al., 2023; Xu555

et al., 2024; Liu et al., 2024) employ a relevance556

verification module to filter retrieved passages. The557

former often rely solely on the input query or gen-558

erated tokens, with limited effectiveness as they559

may only acquire incomplete information; the lat-560

ter largely rely on an additional verification mod-561

ule, leading to increased complexity of RAG sys-562

tems and final response’s quality highly sensitive to563

its verification accuracy. Compared with previous564

methods, our approach empowers the LLM itself to565

holistically evaluate and reconcile responses from566

only its internal parametric knowledge and also567

from externally retrieved information, aiming to568

produce more accurate responses.569

4.2 Preference Alignment for LLMs570

Preference alignment is aimed at improving the571

reliability of LLMs (Ouyang et al., 2022) by en-572

abling them to evolve from their generated re-573

sponses and environmental feedback. Among exist-574

ing techniques, Reinforcement Learning from Hu- 575

man Feedback (RLHF) leverages human-provided 576

feedback to train reward models, ensuring that 577

LLMs produce responses aligned well with hu- 578

man preferences (Christiano et al., 2017; Ziegler 579

et al., 2019), which however tends to suffer limited 580

scalability and high training complexity. However, 581

RLHF requires extensive human annotation to train 582

the reward model and involves a complex three- 583

stage process, resulting in limited scalability and 584

high training complexity. To improve the scala- 585

bility, Reinforcement Learning from AI Feedback 586

(RLAIF) (Bai et al., 2022; Lee et al., 2024) utilizes 587

the feedback from the LLM itself to train a reward 588

model to optimize LLM performance through re- 589

inforcement learning. Direct Preference Optimiza- 590

tion (DPO) (Rafailov et al., 2023) defines prefer- 591

ence loss directly via a change of variables, treating 592

the LLM itself as its reward model, which substan- 593

tially reduces the training complexity by eliminat- 594

ing the need for an additional reward model. In 595

RAG systems, some works use the signals gener- 596

ated by LLMs to optimize the retriever (Bonifa- 597

cio et al., 2022; Shi et al., 2024) to retrieve LLM- 598

preferred data, and some align LLMs with specific 599

domain knowledge and specific tasks through rein- 600

forcement learning (Zhang et al., 2024; Yang et al., 601

2024; Salemi et al., 2024; Dong et al., 2024; Song 602

et al., 2024). In this work, we construct a retrieval- 603

generation preference dataset automatically and 604

utilize it to strengthen LLMs’ answer selection and 605

generation capabilities in RAG systems via DPO. 606

5 Conclusion 607

In this work, we propose a novel Self- 608

Selection framework to improve the accuracy and 609

reliability of responses generated by LLMs in RAG 610

systems. Our method allows the LLM to select the 611

more accurate one from a pair of responses gener- 612

ated based on internal parametric knowledge solely 613

and by integrating external retrieved knowledge, to 614

achieve enhanced performance. To strengthen the 615

capabilities of the LLM in generating and select- 616

ing correct answers, we develop a Self-Selection- 617

RGP method that trains the LLM with Direct Pref- 618

erence Optimization over a newly built Retrieval- 619

Generation Preference (RGP) dataset. We conduct 620

extensive experiments and analyses, which well val- 621

idate the effectiveness of the proposed method. We 622

hope this work paves the way for the development 623

of more robust and reliable LLMs in RAG. 624
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Limitations625

Although we have made some discoveries and im-626

provements, we must acknowledge some limita-627

tions in our work:628

First, the limitation of computing resources re-629

stricts our experiments to open source LLM models630

of limited and medium scale, such as Mistral 7B,631

and Llama2-13B-Chat. We will explore applying632

our method to larger open source models in future633

work. The indicators used in our experiments, such634

as F1 and Accuracy, may overestimate the correct-635

ness of the response. These indicators only verify636

the degree of overlap of the answer or whether it637

exists in the response.638

Second, the knowledge base and the retriever639

have an important impact on the quality of the re-640

trieved data. We only use Wikipedia paragraph641

pairs to verify the effectiveness of our method642

on BGE and BM25 respectively. The application643

of RAG in real situations usually involves multi-644

source retrieval. We will explore applying our645

method to the combination of internal knowledge646

and multi-source knowledge in future work.647

Ethical Statements648

All datasets used are publicly available and com-649

ply with the terms set by the original authors. The650

QA pairs are from WebQuestions (Berant et al.,651

2013), SQuAD2.0 (Rajpurkar et al., 2018), and652

SciQ (Welbl et al., 2017), with proper citations.653

The external knowledge base is the 2018 English654

Wikipedia, used in accordance with fair use poli-655

cies (Karpukhin et al., 2020; Jeong et al., 2024).656

We use open-source models, including the BGE657

retriever (Xiao et al., 2024), GPT-3.5 for answer658

generation, and a Sentence transformer (Reimers659

and Gurevych, 2020) for dataset augmentation. All660

models (Mistral 7B (Jiang et al., 2023a), Qwen-661

2.5-7B-Instruct (Qwen et al., 2025), Llama2-13B-662

Chat (Touvron et al., 2023b)) are based on open-663

source frameworks to ensure transparency and re-664

producibility.665

We prioritize privacy and ensure that all data666

used is anonymized and does not contain person-667

ally identifiable information, conducting research668

responsibly and ethically.669
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A Appendix 1012

A.1 Implementation Details 1013

A.1.1 Dataset Construction 1014

In total, we sample 11,756 QA pairs from We- 1015

bQuestions (Berant et al., 2013), SQuAD2.0 (Ra- 1016

jpurkar et al., 2018), and SciQ (Welbl et al., 1017

2017). We use the official 2018 English Wikipedia 1018

as the external knowledge base, similar to prior 1019

works (Karpukhin et al., 2020; Jeong et al., 2024; 1020

Asai et al., 2024). We use pre-trained BGE (i.e., 1021

bge-large-en-v1.5) (Xiao et al., 2024) as the re- 1022

triever to obtain the relevant passages for each 1023

question. For each query, we retrieve a variable 1024

number of passages, ranging from 1 to 5. 1025

We adopt GPT-3.5 as our LLM for generating 1026

answers and explanations for each question, as well 1027

as evaluating the consistency between two given an- 1028

swers. We control the ratio of correct label retrieval 1029

data to non-retrieval data in the dataset to be 1:1, 1030

and construct a paired-answer dataset. The training 1031

set consists of 3,756 pairs of LLM answers and 1032

RAG answers with respective explanations, while 1033

the test set consists of 426 pairs. 1034

We utilize a Sentence transformer model (i.e., 1035

all-mpnet-base-v2) (Reimers and Gurevych, 2020) 1036

to identify the top-K similar questions for dataset 1037

augmentation.To control the label balance in the 1038

training data, we also consider randomly mixing 1039

the order of candidate answers. After augmentation, 1040

we retain 21,928 preference instances for model 1041

training. 1042

Specifically, we construct preference-based train- 1043

ing data (RGP dataset) from paired labeled QA data. 1044

The prompt used for this process is shown in Table 1045

Table 3. 1046

A.1.2 Model Training Setup 1047

For model training, we adopt the widely-used Mis- 1048

tral 7B (i.e., Mistral-7B-Instruct-v0.2) (Jiang et al., 1049

2023a), Qwen-2.5-7B- Instruct (Qwen et al., 2025) 1050

and Llama2-13B-Chat (Touvron et al., 2023b) as 1051

the base LLMs. We apply DPO with Low-Rank 1052

Adapters (LoRA) (Hu et al., 2022) to train LLMs. 1053

We conduct all our experiments on a GPU machine 1054

with 4 A800 NVIDIA RTX GPUs. We explore 1055

learning rates within the range of 5 × 10−6 to 1056

7× 10−5 and train each model for 3 epochs. The 1057

checkpoint with the highest accuracy on the vali- 1058

dation set is selected for further use. The training 1059

process takes approximately 2-4 hours for each 1060

model. 1061
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Retrieval-Generation Preference Alignment Prompt

### Task ###
Based on the given question, choose the more correct and reasonable answer.
1. For each question, provide two alternative answers and their corresponding explanations, and
select one based on the explanations.
2. Read the answers and explanations, and choose the more accurate answer based on the content
of the explanations.
3. Directly output the final answer and explanation without any irrelevant content."
### Output Format ###
Explanation: Explanation
Answer: Answer
### Question ###
In what century were the first modern greenhouses constructed?
### Explanations and Answers ###
1.
Explanation:The first modern greenhouses were constructed in the 19th century as advancements
in glass production and architecture allowed for larger structures with better temperature regulation
and ventilation. This century saw significant innovations in horticulture and agriculture, leading to
the development of greenhouse technology as we know it today. Additionally, during this time,
there was a growing interest in exotic plants and botanical collections, further fueling the need for
controlled environments provided by greenhouses.
Answer:19th century
2.
Explanation:The first modern greenhouses were built in Europe in the 16th century to house
exotic plants brought back from explorations abroad. This information is contained in the third
passage which states that the “first modern greenhouses were built in Europe in the 16th century to
keep exotic plants brought back from explorations abroad.” Therefore, based on the information
provided in the passages, the correct answer to the question is the 16th century.
Answer:16th century",

Table 3: The prompt for Retrieval-Generation Preference.

A.1.3 Inference Settings1062

For model inference, we use the same retriever1063

BGE (i.e., bge-large-en-v1.5) (Xiao et al., 2024)1064

across all compared methods for a fair compari-1065

son. We retrieve the top 5 passages for each query1066

from the external knowledge base.For the zero-1067

shot setting, we follow the official settings of prior1068

work (Asai et al., 2024; Kim et al., 2024). Since the1069

training data of Self-RAG includes the NQ dataset,1070

we do not consider the results of Self-RAG on the1071

NQ dataset in our experiments.In all experiments,1072

we use greedy decoding with a temperature setting1073

of 0.1074

A.2 Error Analysis1075

We conduct an error analysis to investigate the1076

limitations of our Self-Selection-RGP method.1077

With the Mistral-7B as the base LLM, we sample 1078

100 from the errors made by our Self-Selection- 1079

RGP method on the TriviaQA dataset to conduct 1080

our analysis. We categorize the errors into five 1081

groups, as shown in Table 6, each with an example: 1082

(1) Lack of Evidence (51%): The LLM itself does 1083

not have sufficient internal knowledge to answer 1084

the question, and the retrieved passages also fail to 1085

provide enough information; (2) Partial Matching 1086

(20%): The final prediction captures part of the 1087

correct answer only; (3) Reasoning Error (14%): 1088

The generated explanation(s) contain the answer 1089

or the relevant information to infer the answer, but 1090

the LLM fails to predict the answer; (4) Selection 1091

Error(12%): One of the pairwise predictions is cor- 1092

rect, but the model fails to identify the correct one; 1093

(5) Formatting Error(3%): The correct answer is 1094
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Answer Generation Prompt

### Task ###
Provide a detailed explanation and your best answer to the following question.
### Requirements ###
1. The explanation must provide specific factual evidence and reasoning steps. It must be truthful
and cannot include fabricated information. If you don’t know the answer or lack information, state
’Answer: unknown’.
2. Strictly follow the output format. Avoid any irrelevant content.
3. The answer must be concise, typically one or a few words . Do not repeat the question or add
unnecessary context.
### Output Format ###
Explanation: [Your detailed explanation]
Answer: [Concise answer]
### Question ###
Question

Table 4: The prompt for Answer Generation without retrieval passages.

Answer Generation Prompt

### Task ###
Read the following question and passages, provide detailed explanation and your best answer for
the question.
### Requirements ###
1. The explanation must be detailed and include specific factual evidence, references to the
provided passages, and clear reasoning steps. It must be truthful and cannot include fabricated
information. If you don’t know the answer or lack information, state ’Answer: unknown’.
2. Strictly follow the output format. Avoid any irrelevant content.
3. The answer must be concise, typically one or a few words . Do not repeat the question or add
unnecessary context.
### Output Format ###
Explanation: [Your detailed explanation]
Answer: [Concise answer]
### Question ###
Question
### Passage ###
Passage
### Output ###
Give your explanation and concise answer for the question:

Table 5: The prompt for Answer Generation with retrieval passages.

included in the prediction but the output format1095

does not follow the instruction, leading to a failed1096

interpretation.1097

From the table, we make the following observa-1098

tions:1099

• Over half of the errors are caused by the fail- 1100

ure to obtain the knowledge that is necessary 1101

for predicting the answer, i.e., Lack of Evi- 1102

dence. This reflects the importance of develop- 1103

ing advanced techniques to fetch the relevant 1104

information given a question from external 1105
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knowledge bases to complement LLMs’ inter-1106

nal knowledge for producing more accurate1107

results.1108

• Approximately 39% of errors, including Par-1109

tial Matching, Reasoning Errors, and Format-1110

ting Errors, originate from LLMs’ inadequa-1111

cies in accurately interpreting the human in-1112

struction or the relevant knowledge required to1113

infer the precise answer in the correct format.1114

To address this issue, LLMs with enhanced1115

reasoning capabilities are required.1116

• 12% errors arise from the LLMs’ inability to1117

effectively distinguish the correct answer from1118

plausible ones, underscoring the demand for1119

LLMs with enhanced reasoning capabilities.1120
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Table 6: Examples of errors and corresponding percentages. Q, G, and P denote the question, golden answer, and
prediction, respectively. C1 and C2 represent two candidate responses.

Lack of
Evidence
(51%)

Q: The Express, The Telegraph, The Economist, The Times, The Star, and The Independent were all what in
1830’s London? (Not Newspapers)
G: Stagecoaches
C1: Explanation: The Express, The Telegraph...were not entities in London during the 1830s... Answer:
Unknown
C2: Explanation: ...the passages provided only discuss their histories and developments starting from the
mid-1800s... Answer: Unknown
P: Explanation: The Express, The Telegraph...were not entities in London during the 1830s... Answer:
Unknown

Partial
Matching
(20%)

Q: In which Parliamentary constituency did Michael Portillo replace Alan Clark as MP in 1999?
G: Kensington and Chelsea (borough)
C1: Explanation: ...Portillo is most famously known for defeating Clark...in the constituency of
Wellingborough. Answer: Wellingborough.
C2: Explanation: Michael Portillo replaced Alan Clark as MP in Kensington and Chelsea... Answer:
Kensington and Chelsea(borough)
P: Explanation: Michael Portillo replaced Alan Clark as MP in Kensington and Chelsea... Answer:
Kensington and Chelsea(borough)

Reasoning
Error
(14%)

Q: Richard Nixon was Vice President to which US state?
G: Dwight D Eisenhower
C1: Explanation: Richard Nixon served as the Vice President under Dwight D. Eisenhower from 1953 to
1961... However, it’s important to note that Nixon didn’t directly represent Kansas as Vice President; instead,
he assisted President Eisenhower. Answer: Kansas (through Eisenhower)
C2: Explanation: Richard Nixon was the Vice President of the United States for the state of California.
Answer: California.
P: Explanation: Richard Nixon was the Vice President of the United States for the state of California.
Answer: California.

Selection
Error
(12%)

Q: The Greek word praxis refers to what, contrasting with theory?
G: Practice
C1: Explanation: In ancient Greek philosophy, the term "praxis" refers to the application or practice of...
Answer: practice
C2: Explanation: The Greek word praxis refers to the process of enacting... Answer: The enactment or
realization of a theory
P: Explanation: The Greek word praxis refers to the process of enacting... Answer: The enactment or
realization of a theory

Formatting
Error
(3%)

Q: What do ’Barb’ charts show?
G: Television Ratings
C1: Explanation: Bar charts are a type of chart that display... Answer: Bar charts show categorical data...
C2: Explanation: ...and other research findings related to television audience measurement and ratings in the
United Kingdom. Answer: Barb charts show comparisons... In the context of television ratings...
P: Research ... television audience measurement and ratings in the United Kingdom. In the context of
television ratings...
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