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Abstract

A popular approach to decrease the need for001
costly manual annotation of large data sets002
is weak supervision, which introduces prob-003
lems of noisy labels, coverage and bias. Meth-004
ods for overcoming these problems have ei-005
ther relied on discriminative models, trained006
with cost functions specific to weak supervi-007
sion, and more recently, generative models,008
trying to model the output of the automatic009
annotation process. In this work, we explore010
a novel direction of generative modeling for011
weak supervision: Instead of modeling the012
output of the annotation process (the labeling013
function matches), we generatively model the014
input-side data distributions (the feature space)015
covered by labeling functions. Specifically,016
we estimate a density for each weak labeling017
source, or labeling function, by using normal-018
izing flows. An integral part of our method019
is the flow-based modeling of multiple simul-020
taneously matching labeling functions, and021
therefore phenomena such as labeling function022
overlap and correlations are captured. We an-023
alyze the effectiveness and modeling capabil-024
ities on various commonly used weak super-025
vision data sets, and show that weakly super-026
vised normalizing flows compare favorably to027
standard weak supervision baselines.028

1 Introduction029

Currently an important portion of research in nat-030

ural language processing is devoted to the goal of031

reducing or getting rid of large labeled datasets. Re-032

cent examples include language model fine-tuning033

(Devlin et al., 2019), transfer learning (Zoph et al.,034

2016) or few-shot learning (Brown et al., 2020).035

Another common approach is weakly supervised036

learning. The idea is to make use of human in-037

tuitions or already acquired human knowledge to038

create weak labels. Examples of such sources are039

keyword lists, regular expressions, heuristics or in-040

dependently existing curated data sources, e.g. a041

movie database if the task is concerned with TV042

shows. While the resulting labels are noisy, they 043

provide a quick and easy way to create large labeled 044

datasets. In the following, we use the term labeling 045

functions, introduced in Ratner et al. (2017), to de- 046

scribe functions which create weak labels based on 047

the notions above. 048

Throughout the weak supervision literature gen- 049

erative modeling ideas are found (Takamatsu et al., 050

2012; Alfonseca et al., 2012; Ratner et al., 2017). 051

Probably the most popular example of a system 052

using generative modeling in weak supervision is 053

the data programming paradigm of Snorkel (Ratner 054

et al., 2017). It uses correlations within labeling 055

functions to learn a graph capturing dependencies 056

between labeling functions and true labels. 057

However, such an approach does not directly 058

model biases of weak supervision reflected in the 059

feature space. In order to directly model the rele- 060

vant aspects in the feature space of a weakly super- 061

vised dataset, we investigate the use of density esti- 062

mation using normalizing flows. More specifically, 063

in this work, we model probability distributions 064

over the input space induced by labeling functions, 065

and combine those distributions for better weakly 066

supervised prediction. 067

We propose and examine four novel models for 068

weakly supervised learning based on normalizing 069

flows (WeaNF-*): Firstly, we introduce a stan- 070

dard model WeaNF-S, where each labeling func- 071

tion is represented by a multivariate normal distri- 072

bution, and its iterative variant WeaNF-I. Further- 073

more WeaNF-N additionally learns the negative 074

space, i.e. a density for the space where the label- 075

ing function does not match, and a mixed model, 076

WeaNF-M, where correlations of sets of labeling 077

functions are represented by the normalizing flow. 078

As a consequence, the classification task is a two 079

step procedure. The first step estimates the densi- 080

ties, and the second step aggregates them to model 081

label prediction. Multiple alternatives are discussed 082

and analyzed. 083

1



We benchmark our approach on several com-084

monly used weak supervision datasets. The results085

highlight that our proposed generative approach is086

competitive with standard weak supervision meth-087

ods. Additionally the results show that smart ag-088

gregation schemes prove beneficial.089

In summary, our contributions are i) the devel-090

opment of multiple models based on normalizing091

flows for weak supervision combined with density092

aggregation schemes, ii) a quantitative and qualita-093

tive analysis highlighting opportunities and prob-094

lems and iii) an implementation of the method1. To095

the best of our knowledge we are the first to use096

normalizing flows to generatively model labeling097

functions.098

2 Background and Related Work099

We split this analysis into a weak supervision and100

a normalizing flow section as we build upon these101

two areas.102

Weak supervision. A fundamental problem in103

machine learning is the need for massive amounts104

of manually labeled data. Among others, weak105

supervision provides a way to counter the problem.106

The idea is to use human knowledge to produce107

noisy, so called weak labels. Typically, keywords,108

heuristics or knowledge from external data sources109

is used. The latter is called distant supervision110

(Craven and Kumlien, 1999; Mintz et al., 2009).111

In Ratner et al. (2017), data programming is intro-112

duced, a paradigm to create and work with weak113

supervision sources programmatically. The goal is114

to learn the relation between weak labels and the115

true unknown or latent labels (Ratner et al., 2017;116

Varma et al., 2019; Bach et al., 2017; Chatterjee117

et al., 2019). A recent trend is to use additional118

information to support the learning process.119

Chatterjee et al. (2019) allow labeling functions to120

assign a score to the weak label. In Ratner et al.121

(2018) the human provided class balance is used.122

Additionally Awasthi et al. (2020); Karamanolakis123

et al. (2021) use semi-supervised methods for124

weak supervision, where the idea is to use a small125

amount of labeled data to steer the learning process.126

127

Normalizing flows. While the concept of128

normalizing flows is much older, Rezende and129

Mohamed (2016) introduced the concept to deep130

learning. In comparison to other generative131

neural networks, such as Generative Adversarial132

1To be published upon acceptance.

networks (Goodfellow et al., 2014) or Variational 133

Autoencoders (Kingma and Welling, 2014), 134

normalizing flows provide a tractable way to 135

model high-dimensional distributions. So far, 136

normalizing received rather little attention in the 137

natural language processing community. Still, Tran 138

et al. (2019) and Ziegler and Rush (2019) applied 139

them successfully to language modeling. An 140

excellent overview over recent normalizing flow 141

research is given in Papamakarios et al. (2021). 142

Normalizing flows are based on the change of 143

variable formula, which uses a bijective function 144

g : Z → X to transform a base distribution Z into 145

a target distribution X: 146

pX(x) = pZ(z)

∣∣∣∣det(∂g(z)∂zT

)∣∣∣∣−1 147

where Z is typically a simple distribution, e.g. mul- 148

tivariate normal distribution, and X is a compli- 149

cated data generating distribution. Typically, a 150

neural network learns a function f : X → Z by 151

minimizing the KL-divergence between the data 152

generating distribution and the simple base distri- 153

bution. As described in Papamakarios et al. (2021) 154

this is achieved by minimizing negative log likeli- 155

hood 156

log pX(x) = log pZ(f(x)) + log

∣∣∣∣det(∂f(x)∂xT

)∣∣∣∣ 157

The tricky part is to design efficient architectures 158

which are invertible and provide an easy and effi- 159

cient way to compute the determinant. The compo- 160

sition of bijective functions is again bijective which 161

enables deep architectures f = f1◦· · ·◦fn. Recent 162

research focuses on the creation of more expressive 163

transformation modules (Lu et al., 2021). In this 164

work, we make use of an early, but well established 165

model, called RealNVP (Dinh et al., 2017). In each 166

layer, the input x is split in half and transformed 167

according to 168

y1:d = x1:d (1) 169

yd+1:D = xd+1:D � exp (s(x1:d)) + t (x1:d) (2) 170

where� is the pointwise multiplication and s and t 171

neural networks. Using this formulation to realize 172

a layer fi, it is easy and efficient to compute the in- 173

verse and the determinant. Normalizing flows were 174

used for semi-supervised learning classification (Iz- 175

mailov et al., 2019; Atanov et al., 2020) but not for 176

weakly supervised learning, which we introduce in 177

the next chapter. 178
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(a) Schematic view of the densities estimated by WeaNF-S/I.
The concatenated input [x;λ] is fed into the flow to learn the
probability P (x|λ). The graph shows the posterior P (λ|x).

(b) WeaNF-N and WeaNF-M aim to smoothen the probabil-
ity space, aiming to generalize more robustly to instances not
directly matched by labeling functions.

Figure 1: Schematic overview of our approach. The X−axis represents the labeling function embedding λ, the
Y−axis the text input x. The Z−axis represents the learned density related to a labeling function. In this example
we use the task sentiment analysis and keyword search as labeling functions. Blue denotes a negative sentiment
and red a positive sentiment.

3 Model Description179

In this section the models are introduced. The180

following example motivates the idea. Consider181

the sentence s, "The movie was fascinating, even182

though the graphics were poor, maybe due to a low183

budget.", the task sentiment analysis and labeling184

functions given by the keywords "fascinating" and185

"poor". Furthermore, "fascinating" is associated186

with the class POS, and "poor" with the class NEG.187

We aim to learn a neural network, which translates188

the complex object, text and a possible labeling189

function match, to a density, in the current exam-190

ple P (s|fascinating) and P (s|poor). We combine191

this information using basic probability calculus to192

make a classification prediction.193

Multiple models are introduced. The standard194

model WeaNF-S naively learns to represent195

each labeling function as a multivariate normal196

distribution. In order to make use of unlabeled197

data, i.e. data where no labeling function matches,198

we iteratively apply the standard model (WeaNF-I).199

Based on the observation that labeling functions200

overlap, we derive WeaNF-N modeling the201

negative space, i.e. the space where the labeling202

function does not match and the mixed model,203

WeaNF-M, using a common space for single204

labeling functions and the intersection of these.205

Furthermore, multiple aggregation schemes are206

used to combine the learned labeling function207

densities. See table 1 for an overview. 208

209

Before we dive into details, we introduce 210

some notation. From the set of all possible inputs 211

X , e.g. texts, we denote an input sample by x and 212

its corresponding vector representation by x. The 213

set of t labeling functions is T = {λ1, . . . , λt} and 214

the classes are Y = {y1, . . . , yc}. Each labeling 215

function λ : X → ∅ ∪ {y} maps the input to a 216

specific class y ∈ Y or abstains from labeling. 217

In some of our models, we also associate an 218

embedding with each labeling function, which we 219

denote by λ ∈ Rh. The set of labeling functions 220

corresponding to label y is Ty. 221

WeaNF-S/I. The goal of the standard model is 222

to learn a distribution P (x|λ) for each labeling 223

function λ. Similarly to Atanov et al. (2020) in 224

semi-supervised learning, we use a randomly ini- 225

tialized embedding λ ∈ Rh to create a representa- 226

tion for each labeling function in the input space. 227

We concatenate input and labeling function vector 228

and provide it as input to the normalizing flow, thus 229

learning P ([x;λi]), where [·] describes the con- 230

catenation operation. A standard RealNVP (Dinh 231

et al., 2017), as described in section 2 is used. See 232

appendix B.1 for implementational details. In order 233

to use the learned probabilities to perform label pre- 234

diction, an aggregation scheme is needed. For the 235

sake of simplicity, the model predicts the label cor- 236
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P (y|x) ∝ WeaNF-S/I WeaNF-N WeaNF-M

Maximum maxλ∈Ty Pθ(x|λ)
√ √

Union
∑

λ∈Ty P (λ|x)
√

NoisyOr 1−
∏
λ∈Ty (1− P (λ|x))

√

Simplex P
([
x; 1
|Ty |
∑

λ∈Ty λ
]) √

Table 1: Overview over the used aggregation schemes. Note that P (λ|x) is only accessible with WeaNF-N (see
equation 4). Bold symbols denote vector representations.

responding to the labeling function with the highest237

likelihood, y = argmaxy∈Y maxλ∈Ty P (x|λ).238

Additionally, to make use of the unlabeled data,239

i.e. the data points where no labeling function240

matches, an iterative version WeaNF-I is tested.241

For this, we use an EM-like (Dempster et al.,242

1977) iterative scheme where the predictions of the243

model trained in the previous iteration are used as244

labels for the unlabeled data. The corresponding245

pseudo-code is found in algorithm 1.246

247

248

Algorithm 1 Iterative Model (WeaNF-I)

Require: Xl ∈ Rnl×d, corresponding matches
λl ∈ {0, 1}nl×t, unmatched Xu ∈ Rnu×d

F = train_flow(Xl, λl)
for i = 1, . . . , r do

(λu)i = argmaxλ F ((Xu)i;λ)
X = concat(Xl, Xu), λ = concat(λl, λu)
F = train_flow(X,λ)

end for

Negative Model. In typical classification sce-249

narios it is enough to learn P (x|y) to compute250

a posterior P (y|x) by applying Bayes’ formula251

twice, resulting in252

P (y|x) = P (x|y)P (y)
P (x|y)P (y) + P (x|¬y)P (¬y)

(3)253

where the class prior P (y) is typically approx-254

imated on the training data or passed as a pa-255

rameter. This is not possible in the current set-256

ting as often two labeling functions match simul-257

taneously. In order to learn P (λ|x), we explore258

a novel variant that additionally learns P (x|¬λ).259

The learning process is similar to P (x|λ), so a260

second embedding λ̃ is introduced to represent261

¬λ. We optimize P ([x;λ] and P
([
x; λ̃

])
simul-262

taneously. In each batch I , the positive sample263

pairs (xi, λi)i∈I and negative pairs (xi, λj), sam- 264

pled such that (xi, λj) /∈ {(xi, λi)}i∈I , are used to 265

train the network. The number of negative samples 266

per positive sample is an additional hyperparameter. 267

Now Bayes’ formula can be used as in equation 3 268

to obtain 269

P (λ|x) = P (x|λ)P (λ)
P (x|λ)P (y) + P (x|¬λ)P (¬λ)

. (4) 270

The access to the posterior probability P (λ|x) pro- 271

vides additional opportunities to model P (y|x). 272

After initial experimentation we settled on two op- 273

tions. A simple addition of probabilities neglecting 274

intersection probability, equation 5, which we call 275

Union, and the NoisyOr formula, equation 7, which 276

has previously shown to be effective in weakly su- 277

pervised learning (Keith et al., 2017): 278

P (y|x) ∝
∑
λ∈Ty

P (λ|x) (5) 279

P (y|x) = P ({∨λ∈Tyλ}|x) (6) 280

= 1−
∏
λ∈Ty

(1− P (λ|x)) (7) 281

Mixed Model. It was already mentioned that 282

it is common that two or multiple labeling func- 283

tions hit simultaneously. While WeaNF-N pro- 284

vides access to a posterior distribution which al- 285

lows to model these interactions, the goal of the 286

mixed model WeaNF-M is to model these intersec- 287

tions explicitly already in the density of the nor- 288

malizing flow. More specifically, we aim to learn 289

P (x|{λi}i∈I) for arbitrary index families I . Once 290

again, the embeddings space is used to achieve this 291

goal. For a given sample x and a family I of match- 292

ing labeling functions, we uniformly sample from 293

the simplex of all possible combinations and ob- 294

tain λI =
∑

i∈I αiλi, αi ≥ 0,
∑

i∈I αi = 1. Af- 295

terwards we concatenate the weighted sum of the 296

labeling function embeddings λI with the input x 297
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Dataset #Classes #Train / #Test samples #LF’s Coverage(%) Class Balance

IMDb 2 39741 / 4993 20 0.60 1:1
Spouse 2 8530 / 1187 9 0.30 1:5
YouTube 2 1440 / 229 10 1.66 1:1
SMS 2 4208 / 494 73 0.51 1:6
Trec 6 4903 / 500 68 1.73 1:13:14:14:9:10

Table 2: Some basic statistics describing the datasets. Coverage is computed on the train set by #matches /
#samples.

and learn P ([x;λI ]). Now that the density is able298

to access the intersections of labeling functions, we299

derive a new direct aggregation scheme. By σy we300

denote the simplex generated by the set of bound-301

ary points {λ}λ∈Ty . It is important to think about302

this simplex, as it theoretically describes the input303

space where the model learns the density related304

to class y. We use the naive but efficient variant305

which just computes the center of the simplex:306

P (y|x) ∝ P

x; 1

|Ty|
∑
λ∈Ty

λ

 (8)307

Implementation. In practice, sampling of data308

points has to be handled on multiple occasions.309

Empirically and during the inspection of related310

implementations, e.g. the Github repository ac-311

companying Atanov et al. (2020), we found that312

it is beneficial if every labeling function is seen313

equally often during training. It supports prevent-314

ing a biased density towards specific labeling func-315

tions. When training WeaNF-N, the negative space316

is much larger than the actual space, so an addi-317

tional hyperparameter controlling the amount of318

negative samples is needed. WeaNF-M aims to319

model intersecting probabilities directly. Most in-320

tersections occur too rarely to model a reasonable321

density. Thus we decided to only take co-occures322

into account which occur more often than a certain323

threshold. See appendix A.3 to get a feeling for the324

correlations in the used datasets.325

4 Experiments326

In order to analyze the proposed models experi-327

ments on multiple standard weakly supervised clas-328

sification problems are performed. In the follow-329

ing, we introduce datasets, baselines and training330

details.331

4.1 Datasets 332

Within our experiments, we use five classification 333

tasks. Table 2 gives an overview over some key 334

statistics. Note that these might differ slightly com- 335

pared to other papers due to the removal of dupli- 336

cates. For a more detailed overview of our prepro- 337

cessing steps, see appendix A.1. 338

The first dataset is IMDb (Internet Movie 339

Database) and the accompanying sentiment analy- 340

sis task (Maas et al., 2011). The goal is to classify 341

whether a movie review describes a positive or a 342

negative sentiment. We use 10 positive and 10 nega- 343

tive keywords as labeling functions. See Appendix 344

A.2 for a detailed description. 345

The second dataset is the Spouse dataset (Cor- 346

ney et al., 2016). The task is to classify whether 347

a text holds a spouse relation, e.g. "Mary is mar- 348

ried to Tom". Here, 90% of the samples belong 349

to the no-relation class, so we use macro-F1 score 350

to evaluate the performance. As the third dataset 351

another binary classification problem is given by 352

the YouTube Spam (Alberto et al., 2015) dataset. 353

The model has to decide whether a YouTube com- 354

ment is spam or not. For both, the Spouse and 355

the YouTube dataset, the labeling functions are 356

provided by the Snorkel framework (Ratner et al., 357

2017). 358

The SMS Spam detection dataset (Almeida et al., 359

2011), we abbreviate by SMS, also asks for spam 360

but in the private messaging domain. The dataset is 361

quite skewed, so once again macro-F1 score is used. 362

Lastly, a multi-class dataset, namely TREC-6 (Li 363

and Roth, 2002), is used. The task is to classify 364

questions into six categories, namely Abbreviation, 365

Entity, Description, Human and Location. The la- 366

beling functions provided by (Awasthi et al., 2020) 367

are used for the SMS and the TREC dataset. We 368

took the preprocessed versions of the data available 369

within the Knodle weak supervision programming 370

framework (Sedova et al., 2021). 371
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IMDb Spouse(F1) YouTube SMS (F1) Trec

MV 56.84 49.87 81.66 56.1 61.2
MV + MLP 73.20 29.96 92.58 92.41 53.27
DP + MLP 67.79 57.05 88.79 84.40 43.00
WeaNF-S 73.06 52.28 89.08 86.71 67.4
WeaNF-I 74.08 57.96 89.08 93.54 67.8
WeaNF-N (NoisyOr) 72.96 54.60 90.83 79.63 54.8
WeaNF-N (Union) 71.98 50.83 91.70 83.48 60.2
WeaNF-M (Max) 70.16 55.16 85.15 88.23 49.8
WeaNF-M (Simplex) 63.53 56.91 86.03 76.29 25.4

Table 3: Comparison of baselines to our model variants. The numbers reflect accuracies, or F1-scores, where
explicitly mentioned. Names in parenthesis describe the aggregation mechanism.

4.2 Baselines372

Three baselines are used. While there are many373

weak supervision systems, most use additional374

knowledge to improve performance. Examples375

are class balance (Chatterjee et al., 2019), semi-376

supervised learning with very little labels (Awasthi377

et al., 2020; Karamanolakis et al., 2021) or multi-378

task learning (Ratner et al., 2018). To ensure a379

fair comparison, only baselines are used that solely380

take input data and labeling function matches into381

account. First we use majority voting (MV) which382

takes the label where the most rules match. For in-383

stances where multiple classes have an equal vote384

or where no labeling function matches, a random385

vote is taken. Secondly, a multi-layer perceptron386

(MLP) is trained on top of the labels provided by387

majority vote. The third baseline uses the data388

programming (DP) paradigm. More explicitly, we389

use the model introduced by Ratner et al. (2018)390

implemented in the Snorkel (Ratner et al., 2017)391

programming framework. It performs a two-step392

approach to learning. Firstly, a generative model is393

trained to learn the most likely correlation between394

labeling functions and unknown true labels. Sec-395

ondly, a discriminative model uses the labels of the396

generative model to train a final model. The same397

MLP as for second baseline is used for the final398

model.399

4.3 Training Details400

Text input embeddings are created with the Sen-401

tenceTransformers library (Reimers and Gurevych,402

2019) using the bert-base-nli-mean-tokens model.403

They serve as input to the baselines and the nor-404

malizing flows. Hyperparameter search is per-405

formed via grid search over learning rates of406

{1e− 5, 1e− 4}, weight decay of {1e− 2, 1e− 3} 407

and epochs in {30, 50, 100, 300, 450}, and label 408

embedding dimension in 10, 15, 20 times the num- 409

ber of classes. Additionally, the number of layers 410

is in {6, 8}, and the negative sampling value for 411

WeaNF is in {2, 3}. The full set up ran 30 hours 412

on a single GPU on a DGX 1 server. 413

5 Analysis 414

The analysis is divided into three parts. Firstly, a 415

general discussion of the results is given. Secondly, 416

an analysis of the densities predicted by WeaNF-N 417

is shown and lastly, a qualitative analysis is per- 418

formed. 419

5.1 Overall Findings 420

Table 3 exposes the main evaluation. The horizon- 421

tal line separates the baselines from our models. 422

For WeaNF-N and WeaNF-M, no iterative schemes 423

were trained. This enables a direct comparison to 424

the standard model WeaNF-I. 425

Interestingly, the combination of Snorkel and 426

MLP’s is often not performing competitively. In 427

the IMDb data set there is barely any correlation 428

between labeling functions, complicating Snorkel’s 429

approach. The large number of labeling functions 430

e.g. Trec, SMS, could also complicate correlation 431

based approaches. Appendix A.3 shows correlation 432

graphs. 433

As indicated by the bold numbers, the WeaNF-I 434

is the best performing model. Only on the YouTube 435

dataset, an iterative scheme could not improve 436

the results. Related to this observation, in Ren 437

et al. (2020) the authors achieve promising results 438

using iterative discriminative modeling for semi- 439

supervised weak supervision. 440
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Labeling Function Example Dataset P (x|λ) Label (λ) Gold Prediction

won .* claim ...won ... call ... SMS ↑ Spam Spam Spam
.* I’ll .* sorry, I’ll call later SMS ↑ No Spam No Spam No Spam
.* i .* i just saw ron burgundy captaining a

party boat so yeah
SMS ↓ No Spam No Spam No Spam

(explain|what) .* mean .* What does the abbreviation SOS
mean ?

Trec ↑ DESCR ABBR DESCR

(explain|what) .* mean .* What are Quaaludes ? Trec ↑ DESCR DESCR DESCR
who.* Who was the first man to ... Pacific

Ocean ?
Trec ↓ HUMAN HUMAN HUMAN

check .* out .* Check out this video on YouTube: YouTube ↑ Spam Spam Spam
#words < 5 subscribe my YouTube ↑ Spam Spam No Spam
.* song .* This Song will never get old YouTube ↓ No Spam No Spam No Spam
.* dreadful .* ...horrible performance .... annoying IMDb ↑ NEG NEG NEG
.* hilarious .* ...liked the movie...funny catch-

phrase...WORST...low grade...
IMDb ↑ POS NEG POS

.* disappointing .* don’t understand stereotype ... goofy
..

IMDb ↓ NEG NEG POS

.* (husband|wife) .* ...Jill.. she and her husband... Spouse ↑ Spouses Spouses Spouses

.* married .* ... asked me to marry him and I said
yes!

Spouse ↑ Spouses No Spouses Spouses

family word Clearly excited, Coleen said: ’It’s
my eldest son Shane and Emma.

Spouse ↓ No Spouses No Spouses No Spouses

Table 4: Examples selected from the 10 most likely (↑) and 10 most unlikely (↓) combinations of sentences and
labeling functions, using the density P (x|λ) provided by WeaNF-I. Labeling function matches are bold. We
observe that the flow often generalizes to unmatched examples. We slightly simplified some rules and shortened
some texts in order to fit the page size.

IMDb Spouse YouTube SMS Trec

Acc 72.38 74.04 78.17 88.71 72.63
P 5.93 5.1 38.95 23.3 13.65
R 37.53 39.31 55.01 44.34 61.07
F1 10.25 9.02 45.61 30.55 22.31
Cov 4.31 5.74 19.31 3.01 4.39

Table 5: Evaluation of the labeling function prediction
P (λ|x). Precision, Recall and F1 score are computed
via the weighted average of the statistics of all label-
ing functions. Coverage is computed as #matches/#all
possible matches.

WeaNF-N outperforms the standard model in441

three out of five datasets. We observe that these442

are the datasets with a large amount of labeling443

functions. Possibly, this biases the model towards444

a high value of P (x|¬λ) which confuses the pre-445

diction.446

The simplex aggregation scheme only outper-447

forms the maximum aggregation on two out of five448

datasets. We infer that the probability density over449

the labeling function input space is not smooth450

enough. Ideally, the simplex method should always451

have a high confidence in the prediction of a label-452

ing function λ if its confident on the non-mixed453

embedding λ which is what Max is doing.454

Dataset Labeling Function Cov(%) Prec Recall

IMDb *boring* 5.8 13.12 26.87
Spouse family word 9. 0 16.53 35.96
YouTube *song* 23.58 56.72 70.73
SMS won *call* 0.81 66.67 1.0
Trec how.*much 2.4 60.0 75.0

Table 6: Statistics for the labeling functions obtaining
the highest F1 score for the prediction P (λ|x), using
the WeaNF (NoisyOr) model.

Dataset Labeling Function Cov(%) Prec Recall

IMDb *imaginative* 0.42 0.77 52.38
Spouse spouse keyword 14.5 0 0
YouTube person entity; short 2.62 6.45 33.33
SMS I .* miss 0.6 0 0
Trec what is .* name 2.2 2.26 100

Table 7: Same as table 6, but here the labeling functions
obtaining the lowest F1 score are shown. Only those
are taken into account which occur more often than 10
times in the test set.
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5.2 Density Analysis455

We divide into a global analysis and a local, i.e.456

a per-labeling function, analysis. Table 5 pro-457

vides some global statistics, table 6 and 7 subse-458

quently show statistics related to the best and worst459

performing labeling function estimations. In the460

local analysis a labeling function is predicted if461

P (λ|x) ≥ 0.5. The WeaNF-N model is used be-462

cause it is the only model with direct access to463

P (λ|x).464

It is important to mention that in the local anal-465

ysis, a perfect prediction of the matching labeling466

function is not wanted, as this would mean that467

there is no generalization. Thus, a low precision468

might be necessary for generalization, and a the469

recall would indicate how much of the original se-470

mantic or syntactic meaning of a labeling function471

is retained.472

Interestingly, while the overall performance of473

WeaNF-N is competitive on the IMDb and the474

Spouse data sets, it is failing to predict the cor-475

rect labeling function. One explanation might be476

that these are the data sets where the texts are sub-477

stantially longer which might be complicated to478

model for normalizing flows. In table 7 typically479

the worst performing approximation of labeling480

function matches seems to be due to low coverage.481

An exception is the the Spouse labeling function.482

5.3 Qualitative Analysis483

In table 4 a number of examples are shown. We484

manually inspected samples with a very high or485

low density value. Note that density values re-486

lated to P (x|λ), λ ∈ Ty are functions f tak-487

ing arbitrary values which only have to satisfy488

Ex:λ(x)=y[f(x)] = 1.489

We observed the phenomenon that either the490

same labeling functions take the highest density491

values P (x|λ) or that a single sample often has a492

high likelihood for multiple labeling functions. In493

the table 4 one can find examples where the learned494

flows were able to generalize from the original495

labeling functions. For example, for the IMDb496

dataset, it detects the meaning "funny" even though497

the exact keyword is "hilarious".498

6 Conclusion499

This work explores the novel use of normalizing500

flows for weak supervision. The approach is di-501

vided into two logical steps. In the first step, nor-502

malizing flows are employed to learn a probability503

distribution over the input space related to a label- 504

ing function. Secondly, principles from basic prob- 505

ability calculus are used to aggregate the learned 506

densities and make them usable for classification 507

tasks. Motivated by aspects of weakly supervised 508

learning, such as labeling function overlap or cov- 509

erage, multiple models are derived each of which 510

uses the information present in the latent space 511

differently. We show competitive results on five 512

weakly supervised classification tasks. Our anal- 513

ysis shows that the flow-based representations of 514

labeling functions successfully generalize to sam- 515

ples otherwise not covered by labeling functions. 516
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positive negative

beautiful poor
pleasure disappointing

recommendation senseless
dazzling second-rate

fascinating silly
hilarious boring
surprising tiresome
interesting uninteresting
imaginative dreadful

original outdated

Table 8: Keywords used to create rules for the IMDb
dataset.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin663
Knight. 2016. Transfer Learning for Low-Resource664
Neural Machine Translation.665

A Additional Data Description666

A.1 Preprocessing667

A few steps were performed, to create a unified668

data format. The crucial difference to other pa-669

pers is that we removed duplicated samples. There670

were two cases. Either there were very little du-671

plicates or the duplication occurred because of the672

programmatic data generation, thus not resembling673

the real data generating process. Most notably, in674

the spouse data set 60% of all data points are du-675

plicates. Furthermore, we only used rules which676

occurred more often than a certain threshold as it677

is impossible to learn densities on only a handful678

of examples. The threshold is In order to have un-679

biased baselines, we ran the baseline experiments680

on the full set of rules and the reduced set of rules681

and took the best performing number.682

A.2 IMDb rules683

The labeling functions for the IMDb dataset are684

defined by keywords. We manually chose the key-685

words. We defined them in such a way that their686

meaning has rather little semantic overlap. The687

keywords are shown in table 8.688

A.3 Labeling Function Correlations689

In order to use labeling functions for weakly super-690

vised learning, it is important to know the correla-691

tion of labeling functions to i) derive methods to692

combine them and ii) help to understand phenom-693

ena of the model predictions.694

Thus we decided to add correlation plots. More 695

specifically, we use the Pearson Correlation coeffi- 696

cient. 697

B Additional Implementationial Details 698

B.1 Architecture 699

As mentioned in section 3, the backbone of our flow 700

is RealNVP architecture, which we introduced in 701

section 2. With sticking to the notation in formula 702

2 the network layers to approximate the functions 703

s and t are shown below 704

705
1 s = nn.Sequential( 706
2 nn.Linear(dim, hidden_dim), 707
3 nn.LeakyReLU(), 708
4 nn.BatchNorm1d(hidden_dim), 709
5 nn.Dropout(0.3), 710
6 nn.Linear(hidden_dim, dim), 711
7 nn.Tanh() 712
8 ) 713
9 t = nn.Sequential( 714

10 nn.Linear(dim, hidden_dim), 715
11 nn.LeakyReLU(), 716
12 nn.BatchNorm1d(hidden_dim), 717
13 nn.Dropout(0.3), 718
14 nn.Linear(hidden_dim, dim), 719
15 nn.Tanh() 720
16 ) 721722

Hyperparameters are the depth, i.e. number of 723

stacked layers, and the hidden dimension. 724

B.2 WeaNF-M Sampling 725

For the mixed model WeaNF-M the sampling pro- 726

cess becomes rather complicated. 727

Next up, the code to produce the convex combi- 728

nation α1, . . . , αt is shown. The input tensor takes 729

values in {0, 1} and has shape b × t where b is 730

the batch size and t the number of labeling func- 731

tions.Note that some mass is put on every labeling 732

functions. We realized that this bias imrpoves per- 733

formance. 734

735
1 def weight_batch(self, batch_y: torch.Tensor): 736
2 """Returns weighting array forming convex suma 737
3 738
4 shape: (batch_dim, num_rules) 739
5 """ 740
6 batch_y = batch_y.float() 741
7 batch_y += 0.1 * torch.ones(batch_y.shape) 742
8 batch_y = batch_y * torch.rand(batch_y.shape) 743
9 row_sum = batch_y.sum(axis=1, keepdims=True) 744

10 nbatch_y = batch_y / row_sum 745
11 return nbatch_y 746747
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(a) IMDb (b) Spouse

(c) YouTube (d) SMS

(e) Trec
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