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Abstract

Graph Neural Networks (GNNs) are the go-to model for graph data analysis. However,
GNNs rely on two key operations—aggregation and update, which can pose challenges
for low-latency inference tasks or resource-constrained scenarios. Simple Multi-Layer Per-
ceptrons (MLPs) offer a computationally efficient alternative. Yet, training an MLP in a
supervised setting often leads to suboptimal performance. Knowledge Distillation (KD) from
a GNN teacher to an MLP student has emerged to bridge this gap. However, most KD meth-
ods either transfer knowledge uniformly across all nodes or rely on graph-agnostic indicators
such as prediction uncertainty. We argue this overlooks a more fundamental, graph-centric
inquiry: "How important is a node to the structure of the graph?" We introduce a frame-
work, InfGraND, an Inf luence-guided Graph KNowledge Distillation from GNN to MLP
that addresses this by identifying and prioritizing structurally influential nodes to guide the
distillation process, ensuring that the MLP learns from the most critical parts of the graph.
Additionally, InfGraND embeds structural awareness in MLPs through one-time multi-hop
neighborhood feature pre-computation, which enriches the student MLP’s input and thus
avoids inference-time overhead. Our rigorous evaluation in transductive and inductive set-
tings across seven benchmark datasets shows InfGraND consistently outperforms prior GNN
to MLP KD methods, demonstrating its practicality for numerous latency-critical applica-
tions in real-world settings.

Keywords: Graph Neural Networks, Knowledge Distillation, GNN-to-MLP Knowledge Distillation

1 Introduction

Graph-structured data has become increasingly important in a range of applications. For instance, social
networks use graphs to model user interactions to facilitate effective identification of misinformation within
communities (Han et al., 2020; Fan et al., 2020; Sharma et al., 2024). Similarly, e-commerce websites
employ graphs to capture user-product relationships to provide personalized recommendations that increase
revenue (Wu et al., 2022; Wang et al., 2021; Gao et al., 2023). More recently, graphs have been widely
adopted as a powerful source of external knowledge for Large Language Models (LLMs) (Zhao et al., 2023)
through Retrieval-Augmented Generation (RAG) systems, which enable both enhanced factual grounding
and deeper contextual reasoning (Peng et al., 2024; Han et al., 2024). The widespread use of such graph-based
applications demands efficient analytical methods.

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017; Wu
et al., 2023a; Liu et al., 2020; Wu et al., 2020; Zhou et al., 2020; Li et al., 2019; Chen et al., 2020) emerged
as a powerful framework to process graph data. At their core, GNNs utilize a layer-by-layer message-passing
mechanism to learn rich node-level representations, which has proven highly effective in the aforementioned
applications. However, this academic success has not been fully translated into industrial practice. The
high computational and memory demands of message-passing create significant bottlenecks during training
and inference, limiting their use in production environments (Zhang et al., 2020; Min et al., 2021; Jia
et al., 2020). To overcome these constraints, industry often relies on a much simpler alternative, the Multi-
Layer Perceptron (MLP). Although resource efficient, MLPs show less competitive performance because they
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operate exclusively on node features, ignoring valuable structural knowledge within the graph (Zhang et al.,
2022).

To address the performance-efficiency trade-off, one line of research focuses on developing more efficient
GNN architectures (Bojchevski et al., 2019; Huang et al., 2018; Ying et al., 2018; Chen et al., 2018). A
more recent and popular research direction leverages the efficiency of MLPs while preserving the expressive
power of GNNs. This is achieved through Knowledge Distillation (KD). In KD, a well-trained GNN teacher
model transfers its knowledge to an MLP student (Yang et al., 2021; Zhang et al., 2022; Gou et al., 2021;
Hinton, 2015). The GNN-to-MLP distillation field has evolved along several directions. A significant body
of work focuses on enhancing the student side. Some approaches increase the complexity of the student
MLP by employing advanced architectures such as ensemble methods or Mixture-of-Experts (Lu et al., 2024;
Rumiantsev & Coates, 2024). Others aim to enrich the MLP’s input by injecting structural knowledge
through positional encoders or structure-aware tokenizer (Tian et al., 2022; Chen et al., 2024; Yang et al.,
2024). While often effective, these strategies share a common drawback. They increase the overall complexity
and computational overhead. Another drawback of the above approaches are that they treat the graph nodes
uniformly during distillation. This has led to a paradigm of discriminative distillation (Wu et al., 2023c;
2024). These works use entropy to rank nodes and sample them accordingly. However, we argue that this
approach has two limitations. First, they are fundamentally graph-agnostic, relying on the teacher GNN’s
confidence in its predicted label for each node rather than the node’s structural role within the graph. They
discriminate between nodes based on How certain is the teacher GNN about this node’s label?. Second,
stochastic sampling can introduce training instability and discard valuable information from unsampled
nodes.

To overcome these limitations, we propose InfGraND, an influence-guided knowledge distillation method
built on a graph-aware influence metric that moves beyond prediction uncertainty to ask a more fundamental
question: How influential is this node within the structure of the graph? The influence score is a topology-
aware indicator that measures how perturbations in a node’s features affect the representations of the other
nodes after message propagation. For the influence score, we leverage an influence maximization strategy
inspired by previous work in the active learning literature (Li et al., 2018). Our preliminary experiments
confirm that prioritizing high-influence nodes consistently yields superior teacher GNN performance (see
empirical validation in Section 5.2.1, including Figure 2). Based on this observation, InfGraND employs
a deterministic soft-weighting scheme in the distillation via a subgraph-level distillation loss (Yang et al.,
2020). It discriminates among neighbors in the subgraph based on their influence score. This influence
metric is parameter-free. To further incorporate structural knowledge at the input level, InfGraND enriches
the input features of the student. Inspired by practices in large-scale industrial systems (Li et al., 2013) like
pre-computed embedding tables, we utilize an efficient one-time feature propagation and pooling operation.
This approach allows the MLP to access rich multi-hop neighborhood information without adding inference
overhead.

Our evaluation covers both transductive (i.e., training and testing on the same graph) and inductive (i.e.,
training on one graph and testing on another) settings. Widely adopted GNN teachers such as Graph Convo-
lutional Network (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Veličković et al., 2017),
and GraphSAGE (Hamilton et al., 2017) are used, with MLPs serving as students. We benchmark InfGraND
against state-of-the-art (SOTA) GNN-to-MLP models, particularly those designed for non-uniform and dis-
criminative distillation. Our experimental results demonstrate that InfGraND consistently outperforms these
competing approaches. We also conduct experiments in scenarios where labels are limited to demonstrate
the effectiveness of the model. In addition, comprehensive ablation and sensitivity analyses provide further
insights into the behavior of the model. The following are our main contributions.

• We first categorize GNN-to-MLP distillation methods which either enhance the student architecture or
inject structural knowledge often increasing computational overhead. Also, the common practice of non-
uniform distillation relies on graph-agnostic measures.

• We propose InfGraND, a novel framework that, to the best of our knowledge, is the first to perform
node-level discrimination by computing node influence based on the graph structure in GNN-to-MLP
distillation.
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• We validate our framework through a rigorous and comprehensive evaluation. InfGraND is tested on
seven real-world benchmark datasets. These include classic citation networks like Cora (Sen et al., 2008),
Citeseer (Giles et al., 1998), Pubmed (McCallum et al., 2000), larger co-purchase and co-author graphs
such as Amazon-Photo, Coauthor-CS, and Coauthor-Phy (Shchur et al., 2018), and the large-scale OGBN-
Arxiv dataset (Hu et al., 2020). The experiments illustrate that InfGraND surpasses all baselines in both
transductive and inductive settings. It not only substantially outperforms vanilla MLPs and existing
state-of-the-art distillation methods, but in many cases, even surpasses the performance of its own GNN
teachers.

• Also, we evaluate the model in label-limited scenarios and conduct ablation and sensitivity analyses to
further explore its behavior. The reported results validate the effectiveness of our propose method.

The remainder of the paper is structured as follows. In Section 2, we present a review of relevant research and
categorize the GNN-to-MLP distillation paradigm. Section 3 provides the necessary background concepts
to support our approach. Our proposed method and its components are detailed in Section 4. Section 5
outlines the experimental setup and presents the results. We conclude in Section 6 with a summary of our
contributions and a discussion of future research directions.

2 Related Work

GNNs have revolutionized the processing of graph-structured data. They are divided into two main streams:
spectral and spatial. Initially, spectral methods (Bruna et al., 2013; Henaff et al., 2015; Defferrard et al.,
2016; Kipf & Welling, 2016) were introduced. However, their use of graph Fourier transforms causes com-
putational bottlenecks for large graphs. To address these challenges, spatial GNNs were developed. Spatial
methods define convolutions as neighborhood aggregation functions (Micheli, 2009; Scarselli et al., 2008; Xu
et al., 2019). Spatial GNNs facilitate the processing of large graphs with flexible aggregation and update
mechanisms. For example, GAT (Veličković et al., 2017) uses attention mechanisms to weigh the importance
of neighbors. GraphSAGE (Hamilton et al., 2017) employs sampling techniques for scalable aggregation.
Despite their success, spatial GNNs still face challenges in scaling to large graphs in industrial applications
due to the recursive nature of message passing.

2.1 Distilling Graph Knowledge into MLPs

To resolve the GNN-efficiency trade-off, distilling knowledge into an MLP is a key strategy. Graph-less
Neural Networks (GLNN) (Zhang et al., 2022) established the foundational framework by training a student
MLP on the soft labels from a GNN teacher. Since then, the field has evolved along several distinct themes.

Increasing Capacity of Student Model. One line of work increases the student MLP’s capacity to
improve performance. For instance, AdaGMLP (Lu et al., 2024) uses an AdaBoost-style ensemble of MLPs.
Similarly, RbM proposes a Mixture-of-Experts (MoE) (Rumiantsev & Coates, 2024) student model that
enforces expert specialization on different regions of the representation space. These methods increase the
complexity and inference overhead of the model.

Structural Knowledge Injection. Another research direction enriches the input features of MLP with
explicit structural knowledge. NOSMOG (Tian et al., 2022) incorporates positional features from DeepWalk
(Perozzi et al., 2014), concatenating them with node features to make the student MLP structure-aware.
SA-MLP (Chen et al., 2024) directly encodes the adjacency matrix with a linear layer to integrate structural
knowledge. VQGraph (Yang et al., 2024) learns a "structure-aware tokenizer" to create a discrete codebook
of local graph structures, using this for a more expressive distillation target. These strategies often add
overhead by combining structural features with original node features, increase the input dimension of the
student MLP. Also, they usually require separate training for positional information.

Non-Uniform Distillation. A third paradigm focuses on the distillation process itself, moving beyond
uniform knowledge transfer. The most common strategy is to discriminate between nodes using prediction
uncertainty as a guiding metric. For instance, KRD (Wu et al., 2023c) quantifies "knowledge reliability"
using the stability of prediction entropy under noise, then samples more reliable nodes. HGMD (Wu et al.,
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2024) extends this by defining "knowledge hardness" via entropy and extracting a hardness-aware subgraph
to provide more supervision for challenging samples. We argue that entropy-based metrics, while powerful,
are graph-agnostic and assess the final output prediction rather than the node’s intrinsic topological role.

In summary, existing methods have made progress, but a gap remains in node-level discrimination using
a graph-aware metric for importance. Many approaches that incorporate structural knowledge do so at
the cost of increased computational or parametric overhead. Our work, InfGraND, addresses both these
limitations.

3 Background

Notations. Consider G = (V, E , X) as an attributed graph, where V is the set of N nodes with features
X = [x1, x2, · · · , xN ] ∈ RN×d and E denotes the edge set. A d-dimensional features vector xi is assigned
for each node vi ∈ V. Each edge ei,j ∈ E denotes a connection between nodes vi and vj . The graph
structure is represented by an adjacency matrix AN×N ∈ [0, 1] with Ai,j = 1 if ei,j ∈ E and Ai,j = 0 if
ei,j /∈ E . Also for each node, we have an assigned label yi ∈ {0, 1, . . . , C−1} where C is the number of classes.

Node Classification. In semi-supervised node classification tasks, only a subset of nodes Vlab with
labels Ylab are known. The Vlab nodes are labeled as the set Dlab = (Vlab, Ylab). The unlabeled set is
defined as Dunl = (Vunl, Yunl), where Vunl = V \ Vlab. The node classification task aims to learn a mapping
Φ : X → Y via Ylab to infer Yunl. Each label is typically represented as a one-hot vector in Y ∈ RN×C .
The transductive setting utilizes the full graph Gtrain = G = (V, E , X) where V = Vlab ∪ Vunl during training,
with access to all node features X = [x1, x2, ..., xN ] ∈ RN×d, ∀ vi ∈ V. The model is then evaluated on the
nodes Vunl encountered during training. Under the inductive setting, the model is trained on an observed
subgraph Gobs = (Vobs, Eobs, Xobs), where Eobs = {ei,j ∈ E | vi, vj ∈ Vobs} and Vlab ⊆ Vobs. The model
is then tested on completely unseen nodes and their edges in Gunobs, where Vtest ⊆ Vunobs, to evaluate its
ability to generalize to new graph structures.

Graph Neural Networks (GNNs). Most existing GNNs follow a message-passing scheme that
consists of two key computations for each node vi: (1) AGGREGATE: aggregates messages from neigh-
borhood N (vi); (2) UPDATE: updates node representation based on the output of the previous layer and
aggregated messages. For a L-layer GNN, the formulation of the l-th layer is the following:

h(l)
i = UPDATE(l)

(
h(l−1)

i , m(l)
i

)
, m(l)

i = AGGREGATE(l)
(

{h(l−1)
j : vj ∈ N (vi)}

)
, (1)

where 1 ≤ l ≤ L, h(l)
i is the representation of node vi at the l-th layer, and m(l)

i is the aggregated message
from its neighbors. The process is initialized with the input features, where h(0)

i = xi. Common GNN
variants include GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), and GAT (Veličković
et al., 2017).

4 Proposed Method

This section describes the proposed InfGraND framework in detail. First, we introduce our node influence
measurement to quantify node importance (Section 4.1). Next, Section 4.2 explains the pre-computation
step that enables the MLP to capture structural graph knowledge. The section concludes by presenting the
full influence-guided distillation process (Section 4.3).

4.1 Node Influence Measurement

To determine node importance, we adopt a graph-aware node influence framework that quantifies how
perturbations to a single node’s features propagate through the graph to affect the representations of other
nodes (Zhang et al., 2021). Therefore, a node with a greater effect on the graph is considered topologically
more influential.

4



Under review as submission to TMLR

(a) The GNN Teacher, trained using supervised learning, re-
mains frozen during distillation. The MLP Student, which
only sees node features, learns structural information by mim-
icking the teacher output.

(b) In subgraph-level KD, the student learns the represen-
tation of node 1 from neighbors provided by the teacher,
weighted by influence scores. High-influence neighbors yield
stronger supervision.

Figure 1: Overview of Influence-Guided Distillation. Our method uses node structural influence to weight the
knowledge transfer, ensuring that the student learns local structure from its most important neighbors.

Definition 4.1 (Quantifying Node Influence). Within a graph G = (V, E , X), we define the node
influence score of a source node vi on a target node vj after k message-passing iterations as the L1-norm of
the expected Jacobian matrix:

Î(j←i)(vj , vi, k) =

∥∥∥∥∥E
[

∂x(k)
j

∂x(0)
i

]∥∥∥∥∥
1

, (2)

where x(k)
j represents the feature embedding of the target node vj at the k-th iteration, and x(0)

i is the initial
features of the source node vi. To provide a relative measure of influence, we use a normalized influence
score:

I(j←i)(vj , vi, k) =
Î(j←i)(vj , vi, k)∑

vw∈V Î(j←w)(vj , vw, k)
. (3)

This normalized score, I(j←i)(vj , vi, k), represents the proportion of influence of vi on vj relative to the total
influence of all other nodes that feed to vj in the graph.

To practically measure this influence, we must approximate the expected Jacobian term in Eq. 2. A direct
calculation is often intractable. Previous work establishes that the expected influence is equivalent to the
aggregated influence on all k-length random walks between two nodes (Xu et al., 2018). Inspired by Sim-
plifying Graph Convolutional Networks (SGC) (Wu et al., 2019), we remove the non-linear activations and
weight matrices. This simplifies the GCN down to its core function of pure topological propagation, defined
as:

X(k) = ÃX(k−1), (4)

where Ã is the normalized adjacency matrix. For example, with k = 2, the resulting embedding x(2)
j contains

information from its 2-hop neighborhood. We therefore use the cosine similarity, simcos(x(0)
i , x(2)

j ), as an
efficient and parameter-free indicator to determine the influence of node vi on vj . To ensure that the resulting
influence scores lie between 0 and 1, we apply MinMaxScaler (Komer et al., 2014).

To enhance knowledge distillation using a node influence score, instead of a pairwise score (Eq. 3), we define
a Global Influence Score (GIS) that measures the overall impact of each node on the entire graph and
assign that to each node.
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Definition 4.2 (Global Influence Score). The global influence score Ig(vi) of node vi after k message
passing iteration is defined as:

Ig(vi) =
∑

j∈V I(j←i)(vj , vi, k)

max
l∈V

(∑
j∈V I(j←l)(vj , vl, k)

) , (5)

where I(j←i)(vj , vi, k) is defined in Eq. 3. In Eq. 5, the numerator is normalized by the maximum global
influence score across all nodes, which ensures that Ig(vi) lies within the range [0, 1].

4.2 Node Feature Propagation

To provide the student MLP with structural knowledge, InfGraND incorporates an efficient feature prop-
agation scheme. We perform this as a one-time, offline pre-computation step before training begins. This
approach is inspired by common practices in large-scale industrial systems such as using a parameter server
to manage precomputed embedding tables (Li et al., 2013). We use the linear propagation from Eq. 4 to
generate multi-hop feature matrices, {X(p)}P

p=0. To avoid increasing the input dimensionality or adding
parameters, we apply average pooling across these matrices instead of concatenation:

X̃ = POOL
(

{X(p)}P
p=0

)
. (6)

The resulting matrix, X̃, contains multi-hop neighborhood information. It serves as the fixed input to the
student MLP. This pooling is computed once during an offline propagation step. As a result, there is no
added cost at inference time. The model remains efficient during deployment.

4.3 Distillation

An overview of the distillation mechanism is provided in Figure 1 (a). The training process starts with
standard supervised training of the teacher GNN. Once trained, the teacher is frozen. The student MLP
is then trained using a composite objective that learns from both the ground-truth labels and the soft
predictions provided by the teacher.

To ground the student in the true class distributions, we use an influence-weighted supervised loss, Ls. This
loss is applied only to the labeled nodes, Vlab:

Ls = δ1
∑

vi∈Vlab

DCE(σ(hs
i ), yi) + δ2

∑
vi∈Vlab

Ig(vi) · DCE(σ(hs
i ), yi), (7)

where DCE denotes the standard cross-entropy loss, hs
i is the student’s representation for node vi, σ(·) is the

softmax function, and Ig(vi) is the global influence score of node vi. The hyperparameters δ1 and δ2 control
the contribution of the standard and influence-weighted loss terms, respectively.

For KD, our primary loss, Ld, leverages the homophily principle common in graphs (Yang et al., 2020).
Training encourages the student’s prediction for node i, hs

i , to be similar to the teacher’s predictions for its
neighboring nodes j, ht

j , via a Kullback–Leibler (KL) divergence loss, denoted as DKL. The term τ denotes
the distillation temperature. As illustrated in Figure 1 (b), the influence score of the teacher’s node, Ig(vj),
directly weights the distillation process, allowing high-influence neighbors to provide a stronger distillation
signal. The loss is defined as:

Ld =
∑
i∈V

∑
j∈N (vi)

(γ1 + γ2 · Ig(vj)) · 1
|N (vi)|

· DKL(σ(hs
i /τ) ∥ σ(ht

j/τ)). (8)

The design of this loss is crucial. The γ1 term provides a baseline distillation gradient from all neighbors,
while the γ2 · Ig(vj) term acts as a fine-grained amplifier for more influential nodes. We provide a full
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theoretical analysis of this loss function, including a derivation of its gradients (Appendix D.1), the effect of
the influence score (Appendix D.2), and the need for γ1 (Appendix D.3) to rigorously justify this formulation.

The overall training objective for the student model combines these two losses:

Lt = λLs + (1 − λ)Ld, (9)

where λ ∈ [0, 1] is a hyperparameter that balances the supervised and distillation signals.

5 Experiments and Results

We conduct rigorous experiments to comprehensively evaluate the effectiveness of our InfGraND framework
by addressing six key research questions. Q1: Does training a GNN on high-influence nodes lead to better
performance than using low-influence nodes? Q2: How does InfGraND perform on node classification tasks
compared to baseline GNN-to-MLP distillation methods, its corresponding GNN teacher models trained
with supervised loss, and a vanilla MLP trained without distillation? Q3: What is the trade-off between
classification accuracy and inference latency for InfGraND compared to alternatives? Q4: What is the
relative contribution of each component of InfGraND to its final performance? Q5: How robust is InfGraND’s
performance when the number of available training labels is severely limited? Q6: What is the impact of
key hyperparameters on the performance of InfGraND, specifically the influence-related loss weights (γ2, δ2),
the number of propagation steps (P ), and the choice of pooling method?

5.1 Experimental Setting

Datasets. We evaluate InfGraND in both transductive and inductive settings on seven real-world datasets
with inherent graph structures: (1) Cora (Sen et al., 2008), (2) Citeseer (Giles et al., 1998), (3) Pubmed
(McCallum et al., 2000), (4) Amazon-Photo, (5) CoAuthor-CS, (6) CoAuthor-Phy (Shchur et al., 2018),
and (7) the large-scale OGBN-Arxiv dataset (Hu et al., 2020). For small-scale citation datasets (Cora,
Citeseer, and Pubmed), we use the splitting strategy of Kipf et al. (2016). For CoAuthor-CS, CoAuthor-Phy,
and Amazon-Photo, we adopt the random split method as used by Yang et al. (2021) and Zhang et al.
(2022). Finally, for the OGBN-Arxiv dataset, we use the official splits from Hu et al. (2020). We choose a
random seed and apply it consistently to ensure identical splits across experiments for fair and reproducible
evaluation; different seeds produce different splits. Dataset details and splitting statistics are discussed in
the Appendix A.

Implementation. We utilize three GNN architectures as teachers: GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), and GraphSAGE (Hamilton et al., 2017). We select these models as they
represent diverse and widely-adopted design paradigms. We benchmark InfGraND against a strong set
of competitive baselines, including the foundational GLNN (Zhang et al., 2022), and the non-uniform
distillation frameworks KRD (Wu et al., 2023c), HGMD (Wu et al., 2024), and FF-G2M (Wu et al., 2023b).
We reproduced the results for all baselines using their official public implementations. This step was
crucial because our experimental settings and inductive data splits for certain datasets and teacher models
differed from those in the original papers. Note that at the time of our experiments, the official HGMD
implementation only supported the transductive setting with a GCN teacher, limiting our comparison to
that setup. To ensure reproducibility, we used a fixed set of five different random seeds and reported the
average performance on five runs. The hyperparameters were tuned using the WandB platform (Biewald,
2020), with validation accuracy as the tuning criterion. To ensure every model was evaluated at its peak,
we performed random hyperparameter searches for all methods, including baselines and our proposed
InfGraND, until performance on the validation set saturated. Appendix B provides additional information
on reproducibility. Our implementation 1 uses PyTorch (Paszke et al., 2019) and the DGL library (Wang
et al., 2019), with experiments run on a server equipped with an NVIDIA V100 GPU (32GB VRAM).

1The code will be made public upon acceptance.
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Figure 2: Test set classification accuracy of three GNN models (GCN, GAT, GraphSAGE) when trained on a subset
of high-influence vs. low-influence nodes across different datasets (Cora, Citeseer, PubMed). Error bars represent
standard deviation over five runs.

5.2 Evaluation

5.2.1 Q1 - Effect of Influence on GNNs

We evaluate the impact of training GNNs on nodes with different influence scores in the transductive setting.
To do so, we divide the training set into two subsets, each containing 25% of all labeled nodes. We ensure
the selection preserves class balance. One subset contains high-influence nodes (top 25% per class), the
other low-influence nodes (bottom 25%). Then, we train separate GNNs (GCN, GAT, GraphSAGE) on each
subset using a fixed test set.

Discussion. As shown in Figure 2, models trained on high-influence nodes (blue bars) consistently outper-
form those trained on low-influence nodes (red bars) across all datasets (Cora, Citeseer, and PubMed). This
consistent performance gap provides strong empirical evidence that the influence score effectively identifies
nodes most critical to a GNN’s generalization. This finding directly motivates the design of InfGraND, which
prioritizes knowledge transfer from high-influence nodes during the distillation process.

5.2.2 Q2 - Classification Performance

Since we observed that training a teacher on high-influence nodes improves generalization, we prioritize these
nodes during distillation, which should enhance the performance of the distilled MLP. Empirical evidence
supporting this hypothesis is provided in Table 1 and Figure 3. Table 1 reports node classification results
in the transductive and inductive settings. Figure 3 presents results on the large-scale OGBN-Arxiv dataset
for InfGraND, KRD, GraphSAGE, and Vanilla MLP.

Discussion. All the results support the hypothesis and demonstrate the following: (1) InfGraND on average
outperforms all baselines in both transductive and inductive settings and achieves the highest accuracy in
most cases; (2) in nearly all cases, the distilled MLPs surpass their GNN teachers, a key finding that challenges
the assumption that expressive GNNs are always superior to MLPs on graph data; (3) the performance
gains over non-distilled MLPs are substantial. As shown in Table 1, InfGraND effectively bridges the
gap between MLPs and GNNs. Compared to the vanilla MLP, the InfGraND-distilled MLP achieves an
average improvement of 12.6% under the transductive setting and 9.3% under the inductive setting, which
corresponds to the average ∆ across all three teacher architectures; (4) InfGraND outperforms discriminative
distillation methods, including hardness- and reliability-based approaches, with average gains of 0.9% over
KRD (transductive), 3.0% (inductive), and 0.6% over HGMD, based on the ∆ values in Table 1; (5) InfGraND
scales well to large graphs, outperforming the KRD baseline on OGBN-Arxiv under both transductive and
inductive settings (Figure 3); (6) a stronger teacher does not necessarily yield a stronger student. On
Amazon-Photo (transductive), GCN outperforms GAT (90.7% vs. 87.6%), yet the GAT-distilled student
achieves higher accuracy (94.5% vs. 94.2%), indicating that teacher accuracy alone does not determine
distillation effectiveness.
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Table 1: Node classification accuracy (%) for various models under transductive and inductive settings, averaged over
5 runs. Boldface indicates best performance. Dataset abbreviations: Amazon = Amazon-Photo, CS = Coauthor-CS,
Phy = Coauthor-Physics. Gray-shaded rows correspond to models trained using only supervised loss functions (i.e.,
without distillation). ∆ denotes the average accuracy improvement of InfGraND over the corresponding baseline
method across all datasets.
Teacher Method Transductive Accuracy Inductive Accuracy

Cora Citeseer Pubmed Amazon CS Phy ∆ Cora Citeseer Pubmed Amazon CS Phy ∆

GCN

Vanilla GCN 82.2 ± 0.6 71.6 ± 0.2 79.2 ± 0.3 90.7 ± 0.3 89.3 ± 0.0 91.9 ± 1.3 +3.0 80.6 ± 1.4 64.8 ± 0.1 71.6 ± 2.2 88.8 ± 1.2 89.4 ± 0.5 90.0 ± 1.3 +2.5
Vanilla MLP 57.8 ± 1.0 60.5 ± 0.7 72.8 ± 0.4 79.0 ± 1.0 87.8 ± 0.5 89.5 ± 2.0 +12.6 58.4 ± 2.5 55.1 ± 1.0 70.8 ± 1.2 78.6 ± 1.2 88.1 ± 1.3 89.0 ± 0.9 +10.0
GLNN 83.1 ± 0.3 73.0 ± 0.5 79.4 ± 0.6 92.3 ± 0.5 92.6 ± 0.4 93.6 ± 1.1 +1.5 71.0 ± 1.7 65.0 ± 1.5 72.5 ± 0.8 88.1 ± 1.8 88.6 ± 2.9 90.9 ± 2.5 +4.0
KRD 83.3 ± 0.9 73.9 ± 0.8 81.8 ± 0.4 91.7 ± 1.5 93.1 ± 0.5 94.1 ± 0.3 +0.8 71.2 ± 0.4 65.0 ± 0.0 75.0 ± 0.3 87.3 ± 2.8 90.2 ± 1.9 91.6 ± 3.5 +3.3
FF-G2M 83.5 ± 0.7 74.0 ± 0.5 79.9 ± 0.4 93.0 ± 0.2 93.0 ± 0.5 93.7 ± 1.5 +1.0 71.1 ± 0.6 65.8 ± 2.0 72.8 ± 0.5 88.8 ± 2.1 89.2 ± 1.4 91.8 ± 3.0 +3.5
HGMD-mixup 83.9 ± 2.0 74.6 ± 0.1 81.9 ± 0.2 92.3 ± 1.3 93.1 ± 0.5 93.4 ± 1.3 +0.6 - - - - - -
InfGraND 84.0 ± 0.5 75.2 ± 1.1 81.3 ± 0.2 94.2 ± 0.4 93.5 ± 0.6 94.7 ± 0.0 81.5 ± 0.3 68.4 ± 0.5 75.0 ± 0.6 90.7 ± 0.6 91.8 ± 0.7 92.9 ± 1.6

SAGE

Vanilla SAGE 82.5 ± 0.6 70.8 ± 0.6 77.9 ± 0.4 92.6 ± 0.3 89.7 ± 0.0 92.0 ± 0.9 +2.8 79.6 ± 1.5 64.7 ± 0.8 73.0 ± 2.0 91.2 ± 0.8 89.0 ± 0.7 90.5 ± 1.7 +2.1
Vanilla MLP 57.8 ± 1.0 60.5 ± 0.7 72.8 ± 0.4 79.0 ± 1.0 87.8 ± 0.5 89.5 ± 2.0 +12.5 58.4 ± 2.5 55.1 ± 1.0 70.8 ± 1.2 78.6 ± 1.2 88.1 ± 1.3 89.0 ± 0.9 +10.1
GLNN 83.2 ± 0.9 70.4 ± 1.9 79.2 ± 0.5 92.4 ± 0.5 92.3 ± 1.0 93.6 ± 1.5 +1.9 69.6 ± 1.7 64.0 ± 1.1 72.4 ± 0.5 85.0 ± 2.2 89.3 ± 0.7 91.0 ± 3.0 +4.8
KRD 83.6 ± 1.0 73.8 ± 0.6 80.9 ± 0.5 91.7 ± 1.3 93.2 ± 0.7 94.1 ± 1.0 +0.9 71.4 ± 0.4 65.5 ± 0.0 75.0 ± 0.0 88.4 ± 2.3 91.2 ± 1.8 91.0 ± 3.0 +3.0
FF-G2M 83.9 ± 0.8 72.8 ± 0.6 79.5 ± 0.5 92.3 ± 0.7 92.8 ± 0.7 93.5 ± 1.5 +1.3 69.9 ± 0.7 65.6 ± 1.7 73.5 ± 0.5 88.1 ± 1.8 90.1 ± 1.8 92.9 ± 1.3 +3.4
InfGraND 84.5 ± 0.6 74.3 ± 0.5 81.3 ± 0.4 94.6 ± 0.3 93.4 ± 0.5 94.5 ± 1.1 79.9 ± 0.6 67.7 ± 1.1 74.3 ± 1.1 93.5 ± 1.6 91.8 ± 0.7 93.3 ± 3.0

GAT

Vanilla GAT 81.8 ± 1.2 70.4 ± 0.9 77.5 ± 0.2 87.6 ± 1.6 90.5 ± 0.0 91.9 ± 1.2 +3.8 80.1 ± 2.2 65.8 ± 1.6 71.9 ± 0.8 88.6 ± 1.6 90.0 ± 1.2 90.2 ± 5.1 +1.9
Vanilla MLP 57.8 ± 1.0 60.5 ± 0.7 72.8 ± 0.4 79.0 ± 1.0 87.8 ± 0.5 89.5 ± 2.0 +12.6 58.4 ± 2.5 55.1 ± 1.0 70.8 ± 1.2 78.6 ± 1.2 88.1 ± 1.3 89.0 ± 0.9 +9.7
GLNN 83.4 ± 0.4 70.6 ± 2.5 80.5 ± 2.4 91.5 ± 0.6 93.3 ± 0.5 93.3 ± 1.6 +1.7 70.3 ± 0.8 63.5 ± 1.6 72.3 ± 0.6 87.8 ± 2.2 89.8 ± 2.1 92.0 ± 2.3 +3.8
KRD 83.0 ± 1.1 72.9 ± 0.6 81.4 ± 0.4 91.8 ± 1.4 94.3 ± 0.5 94.0 ± 1.3 +0.9 73.0 ± 0.0 66.0 ± 0.0 74.9 ± 0.6 87.6 ± 3.4 89.0 ± 4.0 91.0 ± 2.5 +2.8
FF-G2M 83.5 ± 0.6 71.4 ± 1.4 80.9 ± 0.6 91.0 ± 0.6 93.0 ± 0.3 94.0 ± 1.5 +1.5 71.5 ± 1.8 63.2 ± 2.1 72.5 ± 1.2 89.3 ± 2.1 90.0 ± 2.2 92.0 ± 1.9 +3.3
InfGraND 84.2 ± 0.5 73.9 ± 0.8 81.6 ± 0.5 94.5 ± 0.3 94.2 ± 0.6 94.4 ± 0.0 79.9 ± 0.5 67.3 ± 0.9 75.1 ± 0.7 91.8 ± 0.3 91.2 ± 1.8 93.0 ± 2.2

Figure 3: Transductive and inductive results on OGBN-
Arxiv with a SAGE teacher. Zoomed-in views highlight
the superior performance of InfGraND.
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Figure 4: Trade-off between model accuracy and infer-
ence time on the Citeseer dataset. The x-axis shows
inference time in milliseconds (log scale), and the y-axis
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5.2.3 Q3 - Computational Time and Efficiency

In Figure 4, we present the trade-off between accuracy and inference time under the transductive setting,
using the Citeseer dataset as a representative example. To ensure fairness, we keep the number of layers
and hidden dimensions consistent across MLP, InfGraND, AdaGMLP, and GLNN. While Tian et al. (2022)
report that wider GLNNs with more hidden neurons achieve higher accuracy at the cost of longer inference
time, in our experiments we did not observe this effect: simply increasing the number of hidden dimensions
or layers did not consistently improve performance. In fact, even a small number of hidden dimensions was
sufficient to reach 100% training accuracy, suggesting that greater model complexity does not necessarily
yield better results. Therefore, given that additional complexity did not improve performance, we kept
the hidden dimensions and layers of the distilled MLP methods fixed and did not report results for larger
variants.

Discussion. As shown in Figure 4, GraphSAGE, GCN, and GAT achieve the best results with 3, 2, and 2
layers, respectively. InfGraND gains 4.3% improvement over GraphSAGE-L3, 3.8% over GCN-L2, and 4.8%
over GAT-L2 while being 8.56x, 6.84x, and 13.89x faster respectively. Also, AdaGMLP, which focuses on
enhancing MLPs, required more time than InfGraND and GLNN, as it relies on an ensemble of models for
prediction. We do not report results for FF-G2M, KRD, and HGMD, as they share the same architecture
as InfGraND and thus have identical inference times. These consistent results demonstrate InfGraND as an
efficient and accurate method for graph learning.
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Table 2: Ablation study comparing the full InfGraND model with variants using only influence guidance (w/Influence)
or only feature propagation (w/Propagation). Results report classification accuracy (%) across multiple datasets
under both inductive and transductive settings. Boldface and underline denote the best and second-best performance,
respectively.

Setting Method Cora Citeseer Pubmed Amazon-Photo Coauthor-CS Coauthor-Phy

Transductive

Vanilla GCN 82.2 ± 0.6 71.6 ± 0.2 79.2 ± 0.3 90.7 ± 0.3 89.3 ± 0.0 91.9 ± 1.3
Vanilla MLP 57.8 ± 1.0 60.5 ± 0.7 72.8 ± 0.4 79.0 ± 1.0 87.8 ± 0.5 89.5 ± 2.0
GLNN 83.1 ± 0.3 73.0 ± 0.5 79.4 ± 0.6 92.3 ± 0.5 92.6 ± 0.4 93.6 ± 1.1
InfGraND w/Influence 83.4 ± 0.8 74.6 ± 0.6 81.1 ± 0.4 92.1 ± 0.2 93.2 ± 0.7 93.8 ± 0.8
InfGraND w/Propagation 83.6 ± 0.5 75.0 ± 0.9 81.0 ± 0.4 93.0 ± 0.3 93.0 ± 0.7 94.3 ± 0.3
InfGraND (Full Model) 84.0 ± 0.5 75.2 ± 1.1 81.3 ± 0.2 94.2 ± 0.4 93.5 ± 0.6 94.7 ± 0.0

Inductive

Vanilla SAGE 79.6 ± 1.5 64.7 ± 0.8 73.0 ± 2.0 91.2 ± 0.8 89.0 ± 0.7 90.5 ± 1.7
Vanilla MLP 58.4 ± 2.5 55.1 ± 1.0 70.8 ± 1.2 78.6 ± 1.2 88.1 ± 1.3 89.0 ± 0.9
GLNN 69.6 ± 1.7 64.0 ± 1.1 72.4 ± 0.5 85.0 ± 2.2 89.3 ± 0.7 91.0 ± 3.0
InfGraND w/Influence 70.5 ± 1.6 63.2 ± 1.0 74.0 ± 1.1 85.0 ± 2.2 90.8 ± 1.5 90.6 ± 3.0
InfGraND w/Propagation 79.5 ± 1.6 67.4 ± 1.8 74.1 ± 1.5 89.3 ± 2.2 91.4 ± 1.1 92.6 ± 2.7
InfGraND (Full Model) 79.9 ± 0.6 67.7 ± 1.1 74.3 ± 1.1 93.5 ± 1.6 91.8 ± 0.7 93.3 ± 3.0

5.2.4 Q4 - Ablation Study

We conduct an ablation study to evaluate the contribution of each core component in InfGraND. We use
GCN and GraphSAGE as teacher models in the transductive and inductive settings, respectively, and
evaluate performance on six benchmark datasets. To isolate the effect of each module, we consider two
simplified variants: w/Influence and w/Propagation. In the w/Influence variant, the student MLP
is trained using raw input features X, without the multi-hop propagated version X̃. In contrast, the
w/Propagation variant disables the influence-guided objectives by setting the corresponding loss weights to
zero: γ2 = 0 and δ2 = 0 in Ls and Ld, respectively. Results are summarized in Table 2.

Discussion. Both the influence-guided objective and the feature propagation module independently
contribute to the overall performance of InfGraND, and their effects are complementary. The w/Influence
variant, which selectively transfers knowledge based on node influence within a graph, consistently improves
upon the Vanilla MLP, GLNN, and teacher models across both transductive and inductive settings.
Meanwhile, the w/Propagation variant equips the student with structural knowledge via pre-computed
multi-hop features and yields particularly strong gains in the inductive setting, most notably on Citeseer,
Cora, and Amazon-Photo. Specifically, it outperforms the Vanilla MLP by +10.7%, +12.3%, and +21.1%
on these datasets, respectively. Importantly, these improvements come without introducing additional
parameters or training overhead.

The significant gains observed on Cora, Citeseer, and Amazon-Photo in inductive setting can be attributed to
their splitting characteristics (see Appendix A, Table 5). Citeseer, Cora, and Amazon-Photo exhibit higher
proportions of observed and test nodes relative to the total node count. This broader coverage enables the
propagation of features to capture more useful neighborhood information, thus improving the generalizability
of the student model.

Note that both components are most effective when used together. In our experiments, all hyperparameters
were tuned jointly for the full model. We observed that tuning them independently for the w/Influence or
w/Propagation variants often yields better results than those reported in Table 2, as each variant has its
own optimal configuration.

5.2.5 Q5 - Label-Scarce Setting

A key challenge in semi-supervised node classification is the high cost of labeling, which is inherently tedious,
time-consuming, and resource-intensive. Often, we only have access to a limited number of labeled nodes.
For example, in our main experiments, for the transductive setting, we use only 20 labeled nodes per class,
which is comparatively very low compared to the number of test nodes (1000 nodes). This scarcity of labels,
where |Vlab| << |Vunl|, highlights the need for models that perform comparatively well even with limited
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Figure 5: Accuracy comparison between InfGraND and GLNN under different proportions of labeled training samples
(10%, 20%, 40%) on Cora, Citeseer, and PubMed, using GraphSAGE as the teacher model.

labeled data. To evaluate InfGraND’s performance in this setting, we conduct an experiment by limiting the
number of labeled nodes used in training phase. We compare InfGraND and GLNN using a GraphSAGE
teacher in transductive settings and three datasets: Cora, Citeseer, and Pubmed. In this experiment, we
randomly selected 2, 4, and 8 labeled nodes per class, corresponding to 10%, 20%, and 40% of the original
training set, respectively. We keep the testing set the same across all training settings. We use the same
seed to ensure a fair comparison between the methods.

Discussion. The results, as shown in Figure 5, demonstrate that InfGraND consistently outperforms GLNN
in all three test cases and datasets. InfGraND surpasses GLNN by an average of 4.17%. This superior perfor-
mance under extreme label scarcity suggests that InfGraND’s influence-guided objective effectively prioritizes
influential nodes during training, enabling robust generalization even when labeled data are minimal.

5.2.6 Q6 - Hyperparameter Analysis

To better understand the behavior of InfGraND, we conduct a hyperparameter sensitivity analysis using a
GraphSAGE teacher on Cora and Citeseer. We vary γ2, δ2, and λ across 10 values in [0.0, 1.0], adjust the
number of propagation steps P from 1 to 4, and compare mean, max, and min pooling mechanisms. To
emphasize relative trends rather than absolute performance, results on the Cora dataset are plotted after
subtracting a constant offset of 10 percentage points.
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Figure 6: Sensitivity analysis of key parameters (δ2 (left), γ2 (middle), and λ (right)) on Cora and Citeseer datasets,
showing their impact on test accuracy. δ2 controls influence-guided supervised loss, γ2 governs influence-guided
distillation loss, and λ balances supervised and distillation losses.

Sensitivity of λ. The hyperparameter λ ∈ [0, 1] controls the trade-off between the supervised loss (Ls)
and the distillation loss (Ld) in the total loss function (Eq. 9). A value of λ = 1 corresponds to pure
supervised learning, while λ = 0 results in pure distillation. Importantly, λ does not directly represent the
proportion of knowledge transferred from the teacher versus the ground-truth labels; rather, it modulates
the relative strength of their gradient contributions during optimization. The right plot in Figure 6 shows
model performance as λ varies. Performance peaks at λ = 0.1, indicating that the model benefits most when
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it receives a stronger gradient signal from the teacher soft labels than from the ground-truth hard labels.
However, removing the supervised loss entirely (λ = 0) degrades performance, showing that while distillation
provides the dominant learning signal, a degree of supervision remains beneficial. The worst results occur
at λ = 1.0, where the model relies exclusively on labeled data. This trend is consistent with Table 1, where
the MLP trained solely with supervised loss performs significantly worse than its distilled counterpart.

Effects of γ2 and δ2. The left and middle plots in Figure 6 illustrate the impact of the influence-guided
terms in the supervised and distillation losses, controlled by δ2 and γ2, respectively. The parameter δ2
appears in the influence-guided supervised loss Ls (Eq. 7), while γ2 governs the influence-aware distillation
loss Ld (Eq. 8). As shown in the left plot, setting δ2 = 0.1 yields better results than δ2 = 0 across
datasets, with Cora showing an improvement of approximately 1%. However, increasing δ2 beyond this
point does not consistently improve performance. Similarly, the middle plot shows that any non-zero value
of γ2 improves performance over γ2 = 0, suggesting that incorporating influence information, even with
suboptimal parameters, is preferable to excluding it entirely.

Table 3: Ablation study on features aggregation strategies.
Results show classification accuracy (%) with different num-
bers of neighborhood hops.

Dataset P Hops Mean Maximum Minimum

Cora
1-hop 82.24 ± 0.6 83.82 ± 0.5 82.30 ± 1.0
2-hop 84.50 ± 0.6 84.18 ± 0.2 82.70 ± 0.7
3-hop 84.26 ± 0.5 83.90 ± 0.5 81.58 ± 1.0
4-hop 83.62 ± 0.7 83.94 ± 0.7 81.22 ± 0.9

Citeseer
1-hop 73.16 ± 1.0 73.32 ± 0.4 71.22 ± 2.3
2-hop 74.02 ± 1.0 73.50 ± 0.9 70.10 ± 4.1
3-hop 73.38 ± 1.3 73.62 ± 0.8 69.62 ± 3.7
4-hop 73.08 ± 0.7 72.90 ± 0.6 68.92 ± 6.0

Pubmed
1-hop 80.56 ± 0.3 80.24 ± 0.1 80.74 ± 0.3
2-hop 81.16 ± 0.4 80.28 ± 0.2 80.58 ± 0.4
3-hop 80.80 ± 0.9 80.44 ± 0.5 80.46 ± 0.5
4-hop 80.96 ± 0.2 80.30 ± 0.7 80.88 ± 0.7

Pooling and P. For information propaga-
tion, as defined in Eq. 6, there are two design
choices: the number of propagation steps P ,
and the pooling mechanism. Table 3 shows that
averaging features from 2-hop neighborhoods
yields the best performance across Cora (84.50±
0.6%), Citeseer (74.02 ± 1.0%), and Pubmed
(81.16±0.4%). The ‘minimum’ aggregation con-
sistently performs worst, likely due to informa-
tion loss during feature propagation. Extending
the neighborhood beyond 2-hops does not lead
to further improvements, suggesting that distant
neighbors may introduce noise rather than useful
structure.

6 Conclusion and Future Work

This work advances GNN-to-MLP distillation by challenging the uniform treatment of nodes in the dis-
tillation process. We define and compute node influence scores and show that prioritizing high-influence
nodes improves the generalization of GNNs. Building on this insight, we introduce InfGraND, which dis-
tills influence-guided knowledge from a teacher GNN to an MLP student. The student also leverages a
one-time feature propagation step, inspired by industrial practices such as storing embeddings in lookup
tables. Experiments across seven datasets confirm InfGraND’s superiority. Across six datasets and three
teacher architectures, InfGraND improves over vanilla MLPs by 12.6% (transductive) and 9.3% (inductive),
while also surpassing its GNN teachers by 3.2% and 2.6%, respectively. It also demonstrates clear advan-
tages over prior distillation methods, including FF-G2M, KRD, and HGMD. Additionally, on the large-scale
OGBN-Arxiv dataset, InfGraND improves over MLPs by 19.5% (transductive) and 9.5% (inductive), and
outperforms KRD by 0.4% on average over the two settings. We also conduct a diverse set of experiments
to provide insights into the model’s behavior from different angles and in various scenarios. These results
highlight InfGraND’s strong performance and its potential for practical deployment of models that lever-
age graph structure. Future work includes applying it to broader applications and extending it to support
multi-teacher distillation.
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Appendix

A Dataset Statistics

In this study, we evaluate our approach on seven widely used datasets for graph analysis: three small-scale
citation datasets, Cora (Sen et al., 2008), Citeseer (Giles et al., 1998), and Pubmed (McCallum et al., 2000);
three large-scale datasets, Coauthor-CS, Coauthor-Phy, and Amazon-Photo (Shchur et al., 2018); and the
ogbn-arxiv dataset (Hu et al., 2020); a large-scale benchmark from the Open Graph Benchmark (OGB)
collection. Table 4 summarizes the detailed statistics for all datasets used in our experiments.

Table 4: General dataset statistics.
Dataset #Nodes #Edges #Features #Classes Label Rate

Cora 2,708 5,278 1,433 7 5.2%
Citeseer 3,327 4,614 3,703 6 3.6%
Pubmed 19,717 44,324 500 3 0.3%
Amazon-Photo 7,650 119,081 745 8 2.1%
Coauthor-CS 18,333 81,894 6,805 15 1.6%
Coauthor-Phy 34,493 247,962 8,415 5 0.3%
ogbn-arxiv 169,343 1,166,243 128 40 53.7%

Table 5: Splitting statistics for inductive evaluation.
Dataset #Total #Obs. #Test Obs. (%) Test (%) Obs/Test

Cora 2708 1440 200 53.18% 7.39% 7.20
Citeseer 3327 1420 200 42.68% 6.01% 7.10
Pubmed 19717 1360 200 6.90% 1.01% 6.80
Coauthor-CS 18333 1600 200 8.73% 1.09% 8.00
Coauthor-Phy 34493 1400 200 4.06% 0.58% 7.00
Amazon-Photo 7650 1460 200 19.08% 2.61% 7.30
ogbn-arxiv 169343 164483 4860 97.13% 2.87% 33.85

Table 5 reports node-level splitting statistics used in the inductive setting. We observe a notable variation
in the ratio of observed and test nodes to the total number of nodes. For example, Cora and Citeseer have
a relatively high percentage of observed nodes (over 40%), which facilitates effective feature propagation
during distillation and inference. In contrast, Pubmed and Coauthor-Phy exhibit sparse supervision (under
7% observed), making generalization more challenging. These variations in data availability directly affect
the model’s ability to learn transferable representations in the inductive setting.

B Hyperparameter Settings and Tuning

The model architectures were built using 2-4 layers, with the hidden dimension searched over the set
{128, 256, 512, 1024, 2048}. For optimization, the learning rate was tuned from {0.001, 0.005, 0.01} and the
weight decay was selected from {0.0, 5 × 10−4}. All models were trained for a maximum of 500 epochs,
utilizing an early stopping criterion that halts training if validation accuracy does not improve for 50 con-
secutive epochs. The distillation temperature τ was selected from the range [0.5, 2.0], and the knowledge
distillation weight λ was chosen from the discrete set {0.0, 0.1, 0.2, 0.3, 0.5}. Furthermore, dropout rates for
both teacher and student models were adjusted in the set {0.0, 0.1, . . . , 0.8}. For the influence-guided weights
(δ1, γ1, δ2, γ2), the parameters δ1 and γ1 were selected from the set {0.001, 0.01, 0.1, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0},
while δ2 and γ2 were selected from {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0}. For OGBN-Arxiv,
we used edge dropout during distillation, tuning the drop rate from {0.85, 0.90, 0.95}.

C Visualization of Class Separation

Table 6: Model comparison metrics across different evaluation criteria.
Bold values indicate best performance in each metric. CH: Calinski-
Harabasz, DB: Davies-Bouldin.

CE Cluster Quality
Model Train Test Silhouette CH Score DB Score
Teacher 0.015 0.636 0.243 1215.0 1.78
InfGraND 0.160 0.585 0.002 360.1 4.39
MLP 0.157 1.389 -0.021 262.7 6.49

Table 6 and Figure 7 illustrate the effect
of knowledge distillation on the logit vec-
tor of the student model. The teacher
model (left plot in Figure 7) shows clear
and distinct clusters with a high silhou-
ette score (0.243) and large mean inter-
cluster distance (80.3), which is also ap-
parent in the t-SNE plot where classes are
well separated. The knowledge-distilled
student (the middle plot in Figure 7), al-
though exhibiting less pronounced clustering (silhouette score of 0.002 and mean distance of 50.9), maintains
a structural pattern similar to the teacher and achieves a lower test cross-entropy (0.585 versus 0.636), in-
dicating that it learns a more efficient and generalized representation rather than merely replicating the
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2D Visualization of Logits using t-SNE
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Figure 7: t-SNE visualization of 7-dimensional logits reduced to 2D from the Cora dataset under the inductive setting.
The plots compare the representation spaces of the Teacher (left), Student KD (middle), and Vanilla Student (right)
models. Circles denote training samples and crosses denote test samples, with colors indicating class membership.

teacher’s exact cluster boundaries. In contrast, the vanilla student (right plot in Figure 7) presents very
poor clustering performance, as shown by its negative silhouette score (–0.021) and low mean distance (28.4),
resulting in significant overlap among classes and a much higher test cross-entropy (1.389). Overall, these
results suggest that knowledge distillation effectively transfers the teacher’s structural knowledge to the
student while promoting a representation space that is more conducive to generalization.

D Theoretical Analysis

We define the distillation loss Ld over a set of directed edges E among nodes in a graph, where node i has
source representation hs

i and node j has target representation ht
j . Given a set of representations {hk}, we

denote the softmax probability vector as σ(hk). Without loss of generality, we set τ = 1; the loss is then
given by:

Ld = 1
|E|

γ1
∑

(i,j)∈E

DKL(σ(hs
i ) ∥ σ(ht

j)) + γ2
∑

(i,j)∈E

Ig(vj) · DKL(σ(hs
i ) ∥ σ(ht

j))

 , (10)

where γ1 and γ2 are scalar weights, and Ig(vj) ∈ [0, 1] is the Global Influence Score of the neighbor node vj ,
as defined in Eq. 5. Ld can be rewritten using local neighborhoods as:

Ld =
∑
i∈V

∑
j∈N (vi)

(γ1 + γ2 · Ig(vj)) · 1
|N (vi)|

· DKL(σ(hs
i ) ∥ σ(ht

j)). (11)

The KL divergence is defined as:

DKL(σ(hs
i ) ∥ σ(ht

j)) = σ(hs
i )⊤(log σ(hs

i ) − log σ(ht
j)). (12)

We denote the output of the student model by σ(hs
i ). The student model is a two-layer neural network

with a ReLU activation function in the first layer. We assume that the output of the first layer is positive
element-wise (i.e., W1xi + b1 > 0), since otherwise σ(hs

i ) would reduce to the bias of the second layer.

σ(hs
i ) = σ(W2(W1xi + b1) + b2), (13)

where:
xi ∈ Rd, W1 ∈ Rf×d, b1 ∈ Rf ,

W2 ∈ Rc×f , b2 ∈ Rc.
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D.1 Gradient Derivation of Ld

The distillation process involves training the student model to match the teacher’s representation using the
loss function defined in Eq. 10. The optimizer performs backpropagation based on this objective. Since the
gradient signal dictates how the student model updates its parameters, analyzing this signal is essential to
understanding the behavior of the proposed method.

Recalling that hs
i is the student representation and σ(hs

i ) denotes its softmax output, the Jacobian of the
softmax with respect to hs

i is given by:

∂σ(hs
i )

∂hs
i

= diag(σ(hs
i )) − σ(hs

i ) σ(hs
i )⊤ ∈ Rc×c. (14)

Using the chain rule, the gradients of the softmax output σ(hs
i ) with respect to the model parameters are:

∂σ(hs
i )

∂b2
=

(
diag(σ(hs

i )) − σ(hs
i )σ(hs

i )⊤
)

∈ Rc×c, (15)

∂σ(hs
i )

∂b1
=

(
diag(σ(hs

i )) − σ(hs
i )σ(hs

i )⊤
)

W2 ∈ Rc×f , (16)

∂σ(hs
i )

∂W2
=

(
diag(σ(hs

i )) − σ(hs
i )σ(hs

i )⊤
)

(W1xi + b1)⊤ ∈ Rc×f , (17)

∂σ(hs
i )

∂W1
=

[(
diag(σ(hs

i )) − σ(hs
i )σ(hs

i )⊤
)

W2
]

⊗ x⊤i ∈ Rc×f×d. (18)

While Eqs. 15–18 describe how the softmax output depends on the model parameters, the actual learning
signal during distillation originates from the loss function. To analyze how this signal propagates, we need
to derive the gradient of Ld with respect to the model parameters. We first differentiate Ld with respect to
the softmax output, then apply the chain rule to obtain parameter gradients.

∇Ld =
∑
i∈V

∑
j∈N (vi)

(γ1 + γ2 · Ig(vj)) · 1
|N (vi)|

· D′KL(σ(hs
i ) ∥ σ(ht

j)), (19)

which can be further written as:

∇Ld =
∑
i∈V

∑
j∈N (vi)

(γ1 + γ2 · Ig(vj))
|N (vi)|

· (∇σ(hs
i ))⊤ ·

[
log σ(hs

i ) − log σ(ht
j) + 1

]
. (20)

Incorporating Eqs. 15–18 into the formulation of Eq. 20, we obtain:

∇b2Ld ∈ Rc =
∑
i∈V

∑
j∈N (vi)

γ1 + γ2 · Ig(vj)
|N (vi)|

(21)

·
(

diag(σ(hs
i )) − σ(hs

i )σ(hs
i )⊤

)
·
[

log σ(hs
i ) − log σ(ht

j) + 1
]
,
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∇b1Ld ∈ Rf =
∑
i∈V

∑
j∈N (vi)

(γ1 + γ2 · Ig(vj))
|N (vi)|

(22)

·
(

(diag(σ(hs
i )) − σ(hs

i )σ(hs
i )⊤)W2

)
·
[

log σ(hs
i ) − log σ(ht

j) + 1
]
,

∇W2Ld ∈ Rc×f =
∑
i∈V

∑
j∈N (vi)

γ1 + γ2 · Ig(vj)
|N (vi)|

(23)

·
((

diag(σ(hs
i )) − σ(hs

i )σ(hs
i )⊤

)
(W1xi + b1)⊤

)
·
[

log σ(hs
i ) − log σ(ht

j) + 1
]
,

∇W1Ld ∈ Rf×d =
∑
i∈V

∑
j∈N (vi)

γ1 + γ2 · Ig(vj)
|N (vi)|

(24)

·
([(

diag(σ(hs
i )) − σ(hs

i )σ(hs
i )⊤

)
W2

]
⊗ x⊤i

)
·
[

log σ(hs
i ) − log σ(ht

j) + 1
]
,

These expressions describe how the distillation loss Ld backpropagates gradients to the model parameters.

D.2 Effect of I(j)

In Eq. 20, γ1 and γ2 are scalar coefficients in (0, 1], and Ig(vj) is the GIS of the neighbor node vj . This
gradient expression reveals two key multiplicative components:

• The term (γ1 + γ2 · Ig(vj)) serves as a scalar weight that modulates the contribution of each neighbor
to the gradient. A higher Ig(vj) increases the influence of that neighbor on the gradient update.

• A directional term
[
log σ(hs

i ) − log σ(ht
j) + 1

]
, which captures the distributional divergence between

the predictions of the student and the teacher.

This decomposition shows that Ig(vj) acts as an amplifier, strengthening the gradient signal and helping
the student better identify and correct its mistakes. For example, consider node i = 1 and j = 2. Assuming
γ1 = γ2 = 1, the gradient simplifies to:

∇L1
d = (1 + Ig(v2))

|N (1)| · (∇σ(hs
1))⊤ ·

[
log σ(hs

1) − log σ(ht
2) + 1

]
. (25)

The magnitude of the equation in 25 is given by:

∥∥∇L1
d

∥∥ = 1 + Ig(v2)
|N (1)| ·

∥∥∥(∇σ(hs
1))⊤ ·

[
log σ(hs

1) − log σ(ht
2) + 1

]∥∥∥ . (26)

In Eq. 26, Ig(v2) ∈ [0, 1] scales the gradient magnitude of the distillation loss, assigning greater weight
to more influential neighbors in the update. This mechanism encourages the student model to align more
closely with informative neighbors during distillation.
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Figure 8: Effect of influence score Ig(vj) on gradient magnitude in KD. The diagrams show how increasing
I(v2) ∈ {0.0, 0.3, 0.6, 1.0} scales the magnitude of the gradient vector. Higher scores amplify the correction signal for
semantically important neighbors.

As an example to illustrate Equation 26, consider a scenario with two classes, where the dimension of the
logits is 2. In this case, the student and teacher outputs can be represented as 2D vectors. As shown in
Figure 8, the blue and light blue vectors correspond to the logits of nodes 1 and 2, respectively. The red
vector labeled ”∇L1

d” is approximately the gradient signal, which guides the representation of node 1 to align
with that of node 2. Starting from the leftmost subfigure, we observe how the influence score Ig(v2) ∈ [0, 1]
scales the magnitude of the gradient of the distillation loss. As Ig(v2) increases across the subfigures (e.g.,
0.3, 0.6, 1.0), the magnitude of the gradient vector increases proportionally, amplifying the gradient update.
This effect encourages the model to focus on aligning with more informative neighbors during distillation.
The same scaling behavior generalizes to Equations 21, 22, 23, and 24.

D.3 The Necessity of γ1

The design of the distillation loss encourages the student model to learn more from high-influence nodes.
However, low-influence nodes can also provide valuable knowledge to the student. If γ1 were omitted,
the gradients from low-influence nodes would be suppressed during distillation, as Ig(vj) would shrink the
gradient signal entirely for those nodes.

For example, in the gradient expression of Eq. 20, when Ig(vj) = 0, the update reduces to:

∇L(Ig(vj)=0)
d =

∑
i∈V

∑
j∈N (vi)

γ1

|N (vi)|
· (∇σ(hs

i ))⊤ ·
[
log σ(hs

i ) − log σ(ht
j) + 1

]
, (27)

which remains a meaningful gradient signal aligned with the teacher prediction σ(ht
j). Thus, γ1 plays a

foundational role in preserving knowledge transfer from all neighbors, while γ2 · Ig(vj) provides additional
fine-grained emphasis based on learned importance.
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