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Abstract

Conformal Prediction (CP) is a powerful statistical machine learning tool to con-
struct uncertainty sets with coverage guarantees, which has fueled its extensive
adoption in generating prediction regions for decision-making tasks, e.g., Trajec-
tory Optimization (TO) in uncertain environments. However, existing methods
predominantly employ a sequential scheme, where decisions rely unidirectionally
on the prediction regions, and consequently the information from decision-making
fails to be fed back to instruct CP. In this paper, we propose a novel Feedback-Based
CP (Fb-CP) framework for shrinking-horizon TO with a joint risk constraint over
the entire mission time. Specifically, a CP-based posterior risk calculation method
is developed by fully leveraging the realized trajectories to adjust the posterior
allowable risk, which is then allocated to future times to update prediction regions.
In this way, the information in the realized trajectories is continuously fed back to
the CP, enabling attractive feedback-based adjustments of the prediction regions
and a provable online improvement in trajectory performance. Furthermore, we
theoretically prove that such adjustments consistently maintain the coverage guar-
antees of the prediction regions, thereby ensuring provable safety. Additionally,
we develop a decision-focused iterative risk allocation algorithm with theoretical
convergence analysis for allocating the posterior allowable risk which closely aligns
with Fb-CP. Furthermore, we extend the proposed method to handle distribution
shift. The effectiveness and superiority of the proposed method are demonstrated
through benchmark experiments.

1 Introduction

In recent years, Trajectory Optimization (TO) has recently garnered significant attention in the aca-
demic community Pan et al. [2024] and has achieved significant success in fields such as autonomous
driving Zhou et al. [2020], autonomous surface vessels Tsolakis et al. [2024], and coverage control
Davis et al. [2016]. However, collision-free TO in uncertain environments is a formidable challenge,
because the intentions of obstacles are unknown. A crucial aspect of collision avoidance involves
predicting obstacle trajectories. Existing trajectory prediction tools are unable to predict fully accurate
trajectories. Therefore, a common approach is to generate the (1− α)-coverage prediction regions of
the obstacle trajectories. If these regions contain the true trajectories with a probability of at least
1 − α, they are considered valid. The key to probabilistic collision-free TO lies in adjusting the
prediction regions while remaining valid to improve the trajectory performance.

Conformal Prediction (CP) is an attractive framework to produce prediction regions with finite-sample
guarantees of validity Vovk et al. [2005], Shafer and Vovk [2008]. Without imposing any assumptions
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about prediction algorithms and data distributions, CP utilizes a calibration dataset to obtain a valid
prediction region for test data. Owing to its simplicity and versatility, CP and its variants have
been widely applied in various safety-critical applications, such as probabilistic collision-free TO
Lindemann et al. [2023], reliable estimation of graph neural networks H. Zargarbashi et al. [2023]
and language modeling Quach et al. [2024].

However, there is a disconnect between existing research on CP theory and CP application for
decision-making. On the side of CP theory, most existing work primarily focuses on upstream data,
developing new CP algorithms to enhance prediction performance, such as addressing distributional
shifts Gibbs and Candes [2021], performing multi-step time forecasting Sun and Yu [2023], and
improving the efficiency of prediction regions Bai et al. [2022]. There is a lack of CP algorithms
focused on enhancing the performance of downstream decisions. On the side of CP application for
decision-making, most existing work embeds the CP into decision-making pipelines as a method for
generating prediction regions, and employs a sequential approach, i.e. the prediction region is first
computed using CP and then the decision depends unidirectionally on the prediction region without
considering the favorable impact of the decision on the prediction region. However, this information
channel blockage from the decision-making to the CP seriously prevents the CP from leveraging
the information of past decisions to boost the performance of future decisions. Therefore, there is
a pressing research need to develop a closed-loop framework that seamlessly integrates CP with
decision-making, fully exploiting the information of past decisions to adjust prediction regions and
thereby remarkably enhance the performance of future decisions.

To fill the aforementioned research gap, we propose a Feedback-Based CP (Fb-CP) framework for
shrinking-horizon TO in uncertain environments and the collision risk over the total mission time is
constrained at all times. The proposed framework leverages CP to construct the prediction regions of
obstacle positions and adjusts these regions online in a closed-loop fashion while ensuring coverage
guarantees, i.e. validity. In particular, we propose a novel posterior probability calculation method
to obtain the posterior probability of collision conditional on realized trajectories. The posterior
collision probability is then used to adjust the allowable collision risk, which is allocated to future
times to yield prediction regions. In this manner, information from past trajectories is fed back to
the CP through the posterior probability calculation, guiding the feedback-based adjustments of the
prediction regions. Such adjustments in Fb-CP not only offer provable performance improvements
but also consistently maintain the validity of the prediction regions. With the adjusted prediction
regions, the trajectory is obtained by solving the resulting TO problem. Additionally, we further
propose a decision-focused risk allocation method, i.e. Iterative Risk Allocation (IRA), which aims to
optimize the trajectory performance by iteratively allocating the allowable risk to future times while
enjoying the convergence guarantee. We highlight the main contributions of our work below.

• We propose, for the first time in the literature Fb-CP, a general uncertainty quantification
framework closely associated with downstream decision-making which enables the adjustment
of prediction regions using the feedback information embedded in decisions.

• We prove that 1) the feedback-based adjustments in Fb-CP do not compromise the coverage guar-
antees of prediction regions, and 2) Fb-CP offers guarantees for decision-making performance
improvement. In other words, Fb-CP enjoys both validity and superior performance.

• We propose a decision-focused risk allocation algorithm with theoretical convergence analysis
for Fb-CP, which optimizes the risk allocation to enhance decision-making performance.

• We extend Fb-CP to handle distribution shift by applying a weighting scheme to the test and
calibration data and demonstrate its effectiveness.

2 Related work

Conformal Prediction. Conformal prediction originated in the early work Vovk et al. [1999, 2005],
Shafer and Vovk [2008] to generate the prediction region. The salient advantage of CP lies in
its ability to offer coverage guarantees regardless of prediction algorithms and data distributions.
Most recently, various variants of CP have been developed to handle upstream data with different
characteristics H. Zargarbashi et al. [2024], Liu et al. [2024] or to produce prediction regions in a
wide array of forms Angelopoulos et al. [2024], Auer et al. [2023]. In response to the distribution shift
in the upstream data, ACI Gibbs and Candes [2021], Podkopaev et al. [2024], Zaffran et al. [2022]
and EnbPI Xu and Xie [2021, 2023] developed CP through online learning and sliding window,
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respectively, and achieved asymptotic validity. In the context of multi-step time series forecasting,
Sun and Yu [2023] combined CP with copula to propose the CopulaCPTS, while Cleaveland et al.
[2024] employed an optimization-based method. Zhou et al. [2024b] presented a new conformal
method for time series forecasting. In addition, numerous studies focused on improving the efficiency
of the prediction region by changing the region shape Xu et al. [2024], minimizing the region length
Kiyani et al. [2024], or optimizing the region construction function Bai et al. [2022]. Note that the
prediction regions are typically utilized by downstream tasks in a sequential manner. However, the
above research work primarily aims to enhance the predictive performance of CP rather than directly
improving the performance of downstream decision-making.

Decision-making with CP. Many studies have focused on the integration of CP with decision-
making. Vovk and Bendtsen [2018] was the first to the method of CP to make it applicable to
decision-making. Additionally, Fannjiang et al. [2022] proposed a CP with coverage guarantee under
one-step Feedback Covariate Shift (FCS), in which the test data depend on the training data. Building
upon the aforementioned work, Prinster et al. [2024] refined its theoretical framework and extended
it to multistep FCS. Furthermore, Lekeufack et al. [2024] introduced a conformal decision theory,
which follows the ACI concept to directly provide provable statistical guarantees of having low risk
for decisions made based on uncertainty-aware predictions.

TO using CP. Lindemann et al. [2023] and Strawn et al. [2023] applied CP to the safe planning for
single-robot systems, while Muthali et al. [2023] and Kuipers et al. [2024] extended it to multi-robot
systems. Additionally, Dixit et al. [2023] and Zhou et al. [2024a] employed the ACI to address the
obstacle trajectory distribution shift. Stamouli et al. [2024] proposed a novel nonconformity score for
shrinking-horizon TO. All the above methods directly employ CP in a sequential way to generate
prediction regions. Nevertheless, the performance of realized trajectories has yet to be conveyed
to the upstream CP as feedback information to adjust the prediction regions, which has the great
potential to further boost the performance of trajectory.

3 Problem formulation and background

3.1 Problem formulation

Consider a discrete-time nonlinear dynamics as follows.

xt+1 = f(xt, ut), x0 = xinit (1)

where xt ∈ X ⊆ Rnx and ut ∈ U ⊆ Rnu are the state and control at time t = 0, ..., T , respectively,
and T ≥ 1 is the total mission time. The sets U and X represent the admissible sets of control inputs
and system states, respectively. The function f : Rnx ×Rnu → Rnx represents the system dynamics
and xinit is the initial state. For brevity, let xt1:t2 := (xt1 , ..., xt2) and ut1:t2 := (ut1 , ..., ut2) denote
the state and control sequences from t1 to t2, respectively. The system operates in an environment
with M dynamic obstacles with a priori unknown trajectories. Let Yt := (Yt,1, ..., Yt,M ) represent
the joint obstacle state at time t, where Yt,j ∈ Rnp denotes the state of obstacle j at time t. The
dynamic of the above joint obstacle system can be expressed as follows.

Yt+1 = g(Yt−h, ..., Yt−1) + ωt (2)

where h is the window length, g(·) represents the model learned from the historical data of the
obstacle using machine learning tool, i.e., Long Short-Term Memory (LSTM). Naturally, readers
may choose to adopt more powerful predictors for improved accuracy, such as Salzmann et al.
[2020], Yuan et al. [2021], Salzmann et al. [2023], Yuan and Kitani [2020]. ωt captures the modeling
error. Additionally, we define Y := (Y0, ..., YT ) as the entire trajectories of the obstacles, which
is generated by sampling the initial state Y0 from an unknown probability distribution D and by
evolving it based on the dynamics (2). The system can observe the joint obstacle states Y0, ..., Yt,
when making the decision at time t. We assume the availability of an offline dataset as follows.

Assumption 3.1 We have a calibration dataset Dcal := {Y (1), ..., Y (N)}, where each of the N joint
obstacle trajectories is generated by independently sampling an initial state Y (i)

0 fromD and evolving
it based on its ground truth dynamics.

With Assumptions 3.1, we can conclude that the real joint obstacle trajectory Y and the N available
joint obstacle trajectories Y (i) are independently and identically distributed (i.i.d.), and are also
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exchangeable. Assumption 3.1 is not restrictive in practice, e.g. the historical trajectories of obstacles.
In Appendix G, we introduce an extension to address the case where a shift exists between the initial
state distributions of calibration data and test data, and the error ωt represents state-dependent noise
rather than being i.i.d..

We focus on the TO problem whose objective is to find the sequences x1:T and u0:T−1 that minimize
the cost function J(x1:T , u0:T−1) subject to the dynamics and constraints. The TO is performed in a
shrinking-horizon fashion, with the optimization problem at time t formulated as follows.

min
xt+1:T ,ut:T−1

J(xt+1:T , ut:T−1) = lT (xT ) +
∑T−1

τ=t
lτ (xτ , uτ ) (3a)

s.t. xτ+1 = f(xτ , uτ ), ∀τ = t, ..., T − 1 (3b)
xτ ∈ X , ∀τ = t+ 1, ..., T (3c)
uτ ∈ U , ∀τ = t, ...T − 1 (3d)

P
{⋂T

τ=1
{c(xτ , Yτ ) ≥ 0}

}
≥ 1− α (3e)

where P{X} denotes the probability of event X , the constraint function c := Rnx × Rnp → R is
L-Lipschitz continuous, which can encode various tasks, such as collision avoidance. Due to the
uncertainty of the joint obstacle state Yτ , we impose the joint chance constraint (3e) with failure
probability α ∈ (0, 1) to ensure that the joint probability of satisfying the constraint over the total
mission time is no less than 1− α. To ensure the initial feasibility of the TO problem, we assume
that the initial state satisfies the constraint, i.e. c(x0, Y0) ≥ 0, with probability 1.

3.2 Conformal prediction

In this subsection, we provide a brief introduction to the theoretical results for CP and refer readers
to Angelopoulos and Bates [2021] for a thorough introduction. Given N + 1 exchangeable random
variables R(0), R(1), ..., R(N) which is usually referred to as the nonconformity score, CP aims to
find a probabilistic upper bound for R based on R(1), ..., R(N) such that R is less than this upper
bound with high probability. In practice, R(0) represents the test data point, while R(1), ..., R(N)

denote the calibration dataset. Formally, the central idea behind CP is summarized in Lemma A.1
provided in Appendix A.1.

4 Feedback-based conformal prediction

The challenge in solving the TO problem (3) lies in the computation of the joint probability (3e).
Existing literature predominantly employs a sequential way of using CP, i.e. the prediction regions of
obstacle positions are first computed based on the failure probability α, and then the decision of TO
depends one-way on the prediction regions. However, it is important to note that in the shrinking-
horizon TO framework, at time t the past decisions x0:t are available and typically contain rich
information that can instrumentally assist in refining the prediction regions at subsequent time steps,
thereby considerably improving the performance of TO. Therefore, we propose a novel Feedback-
based Conformal Prediction (Fb-CP). Fb-CP not only exploits the feedback information provided by
realized trajectories to perform closed-loop adjustments of the prediction regions but also maintains
coverage guarantees. To begin with, the joint chance constraint (3e) can be reformulated as a set of
individual chance constraints and a total risk constraint by using Boole’s inequality as follows.

P
{⋂T

τ=1
{c(xτ , Yτ ) ≥ 0}

}
≥ 1− α⇐=

{
P {c(xτ , Yτ ) ≥ 0} ≥ 1− ατ , ∀τ = 1, ..., T∑T

τ=1 ατ ≤ α
(4)

The risk ατ at each time can be initially allocated uniformly at time t = 0, i.e. ατ = α/T , and
remains constant throughout the shrinking-horizon TO process, as in Lindemann et al. [2023].
However, at time t, the system states xτ for τ ≤ t are available, which grants us to compute the
posterior probability βτ = P {c(xτ , Yτ ) > 0|xτ} and the permissible risk for future times, which
is then used to adjust the prediction regions. Using the information in the realized trajectories,
the feedback-based adaptation of the prediction regions tremendously reduces the conservatism of
trajectory online while ensuring coverage guarantees. In Subsection 4.1, we present the individual
chance constraint reformulation using the prediction regions derived. In Subsection 4.2, we present a
CP-based method for calculating βτ . We reformulate the TO problem in Subsection 4.3.
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4.1 Constraint reformulation using conformal prediction region

We randomly divide the calibration dataset Dcal into two subsets D1
cal and D2

cal with K and L joint
obstacle trajectories, respectively, where K +L = N . Without loss of generality, we reassign indices
to the joint obstacle trajectories as D1

cal := {Y (1), ..., Y (K)} and D2
cal := {Y (K+1), ..., Y (K+L)}.

At time t, we can obtain the prediction of the joint obstacle state Ŷτ |t for all future time τ = t+1, ..., T

using g(·) described in (2). Similarly, the prediction Ŷ (i)
τ |t for each trajectory Y (i) in D1

cal is derived
by using the same method. We define the nonconformity score as follows.

Rτ |t = ∥Yτ − Ŷτ |t∥, R
(i)
τ |t = ∥Y

(i)
τ − Ŷ (i)

τ |t ∥ ∀i = 1, ...,K (5)

Note that Yτ , Y
(1)
τ , ..., Y

(K)
τ are exchangeable and the prediction function g(·) is trained from Dtrain

independent of D1
cal. Therefore, given an allocated risk ατ for future time τ , the random variables

Rτ |t, R
(1)
τ |t , ..., R

(K)
τ |t are exchangeable and the prediction region with coverage guarantee is derived

according to Lemma A.1 as follows.

P{∥Yτ − Ŷτ |t∥ ≤ C1−ατ

τ |t } ≥ 1− ατ (6a)

C1−ατ

τ |t = Quantile1−ατ (R
(1)
τ |t , ..., R

(K)
τ |t ,∞) (6b)

Based on the (1− ατ )-coverage prediction region {y : ∥y − Ŷτ |t∥ ≤ C1−ατ

τ |t }, the individual chance
constraint in (4) can be reformulated as the following lemma proven in Appendix B.1.

Lemma 4.1 (chance constraint) If Assumption 3.1 holds, the constraint function c is L-Lipschitz
continuous and c(xτ , Ŷτ |t) ≥ LC1−ατ

τ |t is satisfied where C1−ατ

τ |t is calculated by (6b), then the
individual chance constraint P{c(xτ , Yτ ) ≥ 0} ≥ 1− ατ is satisfied.

For a general collision avoidance chance constraint of the form P{∥xτ − Yτ∥ − r ≥ 0} ≥ 1− ατ ,
Lemma 4.1 effectively converts it into a deterministic constraint that requires the distance between
xτ and the predicted location Ŷτ |t to exceed the inflated radius derived from the prediction error, i.e.,
∥xτ − Yτ∥ − r − C1−ατ

τ |t ≥ 0.

4.2 Posterior probability conditional on past decisions

At time t, the states x∗τ for all past time τ = 1, ..., t are deterministic and available to the trajectory
optimizer. We assume that x∗τ is the true system state at time τ . Note that x∗τ is a feasible solution to
the TO problem (3) at time τ − 1 with the reformulated constraints through Lemma 4.1. Therefore,
the individual chance constraint P{c(x∗τ , Yτ ) ≥ 0} ≥ 1− ατ is satisfied at time τ − 1 and will be
naturally satisfied for all time τ ′ ≥ τ − 1. However, the constraint violation probability ατ is a priori
probability allocated before time τ that tends to overestimate the violation probability and thus leads
to conservative results. Fortunately, the determined x∗τ allows us to compute the posterior probability
of constraint violation βτ , which, as we theoretically prove, is less than ατ with high probability. The
risk redundancy between ατ and βτ can be allocated across future times. In this way, the information
embedded in x∗τ is fed back from the decision-making to the CP to readjust the prediction region and
to achieve a trajectory with notably improved performance. To compute βτ using Lemma A.1, we
propose a novel nonconformity score as follows.

Sτ = c(x∗τ , Ŷτ |τ−1 + ωτ ) = c(x∗τ , Yτ ), S(i)
τ = c(x∗τ , Ŷτ |τ−1 + ω(i)

τ ) ∀i = 1, ...,K + L (7)

where ω(i)
τ is the modeling error of the joint obstacle trajectory Y (i) at time τ , which can be

obtained through ω(i)
τ = Y

(i)
τ − g(Y (i)

τ−1). We note that ωτ , ω
(1)
τ , ..., ω

(K+L)
τ are i.i.d., and if x∗τ is

fixed and independent of ωτ , ω
(1)
τ , ..., ω

(K+L)
τ , the random variables Sτ , S

(1)
τ , ..., S

(K+L)
τ are also

exchangeable. However, as x∗τ is derived through the TO problem (3) at time τ − 1, it depends on
D1

cal and the random variables Sτ , S
(1)
τ , ..., S

(K)
τ are no longer exchangeable. Therefore, we only use

the subset D2
cal, i.e. S(K+1)

τ , ..., S
(K+L)
τ , to compute βτ . The upper bound of the posterior violation

probability βτ is computed via the following lemma, whose proof is given in Appendix B.2.
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Lemma 4.2 (posterior probability calculation) Assume that x∗τ is the true state of the system at time
τ , then the upper bound of the posterior violation probability at time τ is as follows.

P{c(x∗τ , Yτ ) < 0} ≤ βτ =
(
1 +

∑L
i=1 I

(
S
(K+i)
τ < 0

))/
(1 + L) (8)

where I(·) is the indicator function.

Lemma 4.2 essentially computes the posterior probability by evaluating the fraction of calibration
set D2

cal samples whose actual trajectories would collide with the given realized position x∗τ . Some
might raise the concern that βτ could be higher than ατ , which could result in a more conservative
trajectory when using βτ in subsequent times. However, we can restricts the upper bound of the
expectation of βτ in Corollary A.2 provided in Appendix A.2. Additionally, we report the empirical
observation that our method consistently tends to improve performance in practice, which is further
discussed in Remark A.3 provided in Appendix A.2.

4.3 Optimization problem reformulation

By making use of the joint chance constraint reformulation (4), the individual constraint reformulation
in Lemma 4.1 and the posterior probability in Lemma 4.2, the TO (3) is transformed as follows.

min
xt+1:T ,ut:T−1,αt+1:T

J(xt+1:T , ut:T−1) = lT (xT ) +
∑T−1

τ=t
lτ (xτ , uτ ) (9a)

s.t. (3b)− (3d) (9b)

c(xτ , Ŷτ |t) ≥ LC1−ατ

τ |t , ∀τ = t+ 1, ..., T (9c)

ατ ≥ 0, ∀τ = t+ 1, ..., T (9d)∑T

τ=t+1
ατ ≤ α−

∑t

τ=0
βτ (9e)

where Constraint (9c) ensures the satisfaction of individual chance constraints (4) for future times
τ = t + 1, ..., T through Lemma 4.1, and C1−α

τ is calculated by (6b). Constraint (9d) is imposed
to ensure the non-negativity of ατ . Constraint (9e) is the most important part for feedback-based
adjustments of the prediction region and online performance enhancement of the optimized trajectory.
It is derived by replacing ατ for past time τ = 1, ..., t in the total risk constraint (4) with βτ calculated
through Lemma 4.2. The information embedded in past decisions x∗1, ..., x

∗
t influences the future

values of αt+1, ..., αT through the calculation of β1, ..., βt thereby reshaping the prediction region of
CP in an end-to-end way. Based on Corollary A.2 and Remark A.3, βτ is highly likely to be less than
ατ in practice. Consequently, using βτ grants more risk to be reserved for future times, resulting in
much compact prediction regions and tremendously improved optimization performance.

However, it is important to note that C1−ατ

τ |t depends on ατ and D1
cal. Consequently, treating

αt+1:T as decision variables alongside xt+1:T and ut:T−1 would make the optimization problem (9)
computationally demanding to solve for larger values of T and K. Therefore, we will present an
allocation method for αt+1:T that aligns with the optimization problem (9) in the next section.

5 Shrinking-horizon trajectory optimization using Fb-CP

The shrinking-horizon TO framework using Fb-CP is illustrated in Figure 1. The information in x∗0:t
guides the feedback-based adjustments of the size of the prediction regions C1−ατ

τ |t through posterior
probability calculations. Solving the TO problem (9) is divided into two steps: 1) risk allocation and
2) TO with the fixed αt+1:T . The TO problem (9) with the fixed αt+1:T is formalized as follows.

min
xt+1:T ,ut:T−1

J(xt+1:T , ut:T−1) s.t.(9b)− (9c) (10)

The problem (10) can be readily solved to obtain x∗t+1:T and u∗t:T−1 and only the first system input
u∗t is implemented as the control input. Therefore, as the actual time t progresses, the optimization
horizon gradually shrinks. For the risk allocation, a general approach is the Average-based Risk
Allocation (ARA), i.e. the allocable risk is evenly allocated across future times at time t below.

ατ = (α−
∑t

τ=0 βτ )/(T − t) ∀τ = t+ 1, ..., T (11)
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Figure 1: Shrinking-horizon trajectory optimization framework using Fb-CP.

Although the ARA method has the advantage of computational efficiency, the fixed proportion
allocation significantly diminishes the flexibility in modifying the prediction regions for future times.
Therefore, we extend the IRA Ono and Williams [2008] to the Fb-CP. We refer to the TO problem
with the fixed αt+1:T (10) and the risk allocation problem as the lower-stage and the upper-stage
problem, respectively. The system states x∗t+1:T and inputs u∗t:T−1, as well as the risk allocation
αt+1:T are obtained by iteratively solving the lower and upper-stage problems. We denote the feasible
region of (10) with fixed αt+1:T asRt(αt+1:T ). The upper-stage problem is formally stated below.

minαt+1:T
J∗(αt+1:T ) (12a)

s.t.ατ ≥ 0, ∀τ = t+ 1, ..., T (12b)∑T
τ=t+1 ατ ≤ α−

∑t
τ=0 βτ (12c)

αt+1:T ∈ {αt+1:T : ∃ (x, u) ∈ Rt(αt+1:T )} (12d)

where J∗(αt+1:T ) is the optimal objective function of (10) given αt+1:T . If a risk allocation αt+1:T

satisfies (12b)-(12d), then we refer to αt+1:T a feasible risk allocation. However, the lower-stage
problem (12) is challenging to solve due to the computational complexity arising from its objective
(12a) and Constraint (12c). To solve (12) efficiently, we introduce a descent algorithm, i.e. IRA for
Fb-CP which is based on the monotonicity of J∗(αt+1:T ) below, which is proven in Appendix B.4.

Lemma 5.1 (monotonicity of J∗) At time t, the following inequalities always hold.

∂J∗(αt+1:T )

∂ατ
≤ 0 ∀τ = t+ 1, ..., T (13)

The monotonicity of J∗ in Lemma 5.1 shows that increasing the allocated risk ατ at any time step will
strictly decrease the optimal cost of the trajectory optimizer. This insight enables our risk reallocation
strategy: by reducing redundant risk at inactive time steps and reallocating it to active ones, we can
lower the overall optimal cost.

We assume that αn
t+1:T represents the feasible risk allocation obtained after the nth iteration at time t.

IRA aims to obtain a feasible risk allocation αn+1
t+1:T in the (n+1)th iteration such that J∗(αn+1

t+1:T ) ≤
J∗(αn

t+1:T ). In the (n+ 1)th iteration, IRA first solves the lower-stage problem (10) using αn
t+1:T to

obtain the optimal solution xnt+1:T and unt:T−1. Subsequently, based on xnt+1:T , Constraint (9c) in the
lower-stage problem (10) is categorized into active and inactive constraints. The active and inactive
constraint sets are formally defined as Iact := {τ : c(xnτ , Ŷτ |t) = LC

1−αn
τ

τ |t , τ = t+ 1, ..., T} and
Iina := {τ : τ /∈ Iact, τ = t+ 1, ..., T}, respectively. In summary, IRA consists of two steps: 1)
tightening the inactive constraints and 2) relaxing the active constraints.

Tightening the inactive constraints is first implemented to construct α̃n
t+1:T from αn

t+1:T . Specifically,
for τ ∈ Iact, set α̃n

τ = αn
τ . Based on the definition of C1−ατ

τ |t (6b), C1−ατ

τ |t is non-increasing with
respect to ατ for the fixed D1

cal. Thus for τ ∈ Iina, we choose α̃n
τ ≤ αn

τ so that

c(xnτ , Ŷτ |t) ≥ LC
1−α̃n

τ

τ |t ≥ LC1−αn
τ

τ |t (14)
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Based on (14), it can be deduced that (xnt+1:T , u
n
t:T−1) ∈ Rt(α̃

n
t+1:T ) ⊆ Rt(α

n
t+1:T ). Therefore,

the optimal solution (xnt+1:T , u
n
t:T−1) for αn

t+1:T is also the optimal solution for α̃n
t+1:T , and thus

J∗(αn
t+1:T ) = J∗(α̃n

t+1:T ). Finally, it is straightforward to show that α̃n
t+1:T is a feasible risk

allocation, because (i) (12b) follows from (14) and the fact that when ατ → 0, C1−ατ

τ |t → ∞; (ii)

(12c) is satisfied since
∑T

τ=t+1 α̃
n
τ ≤

∑T
τ=t+1 α

n
τ ≤ α−

∑t
τ=1 βτ ; (iii) (12d) is satisfied because

(xnt+1:T , u
n
t:T−1) is feasible for α̃t+1:T . The specific construction of α̃n

τ is as follows.

α̃n
τ =

{
αn
τ , τ ∈ Iact

(1− η)αn
τ + ηαn

τ , τ ∈ Iina (15)

where η ∈ (0, 1) is the step size and αn
τ is the lower bound of α̃n

τ calculated as in Lemma 5.2.

Lemma 5.2 (constraint tightening) Assume that xnt+1:T is feasible for the problem (10) with αn
t+1:T

and αn
t+1:T < 1. For τ ∈ Iina, the lower bound of α̃n

τ while satisfying (14) is as follows.

αn
τ =

(
1 +

∑K
i=1 I

(
c(xnτ , Ŷτ |t) < LR

(i)
τ |t

))/
(1 +K) (16)

Furthermore, it is deterministic that αn
τ ≤ αn

τ .

Lemma 5.2 is proven in Appendix B.5. Then αn+1
t+1:T is constructed from α̃n

t+1:T to relax the active
constraints as follows.

αn+1
τ =

{
α̃n
τ + (α−

∑t
τ=1 βτ −

∑T
τ=t+1 α̃

n
τ )/Nact, τ ∈ Iact

α̃n
τ , τ ∈ Iina

(17)

where Nact represents the number of elements in the set Iact. It can be easily verified that αn+1
t+1:T

satisfies (12b)-(12d), and thus αn+1
t+1:T is a feasible risk allocation. Note that αn+1

τ ≥ α̃n
τ since α̃n

τ
satisfies (12c). Therefore, the following inequality is obtained by implying Lemma 5.1.

J∗(αn+1
t+1:T ) ≤ J

∗(α̃n
t+1:T ) = J∗(αn

t+1:T ) (18)

By recursively constructing α1
t+1:T , ..., α

n
t+1:T in this manner, J∗ monotonically decreases. The

algorithm of Fb-CP using IRA at time t isis delineated in Algorithm 5. Note that at time t = 0, the
input parameter α0:T is initialized and ϵ is a given small tolerance. At time t, the robot first obtains
xt and Yt (Line 2). Then, based on Y0, ...Yt, the future joint obstacle states Ŷt+1|T , ..., ŶT |t are
predicted using LSTMs (Line 3). Additionally, based on xt and D2

cal, the posterior collision risk can
be calculated through (8) (Line 4). After initialization (Line 5), IRA jointly optimizes risk allocation
and trajectory through iteration (Line 6-12). Specifically, in each iteration, IRA first computes the
optimal control unt:T−1, state xnt+1:T , and cost J∗(αn

t+1:T ) for the current iteration based on the risk
allocation αn

t+1:T obtained from the previous iteration (Line 7). The active and inactive constraint
sets Iact, Iina are determined based on the optimal state xnt+1:T (Line 8). And then, by sequentially
applying the inactive constraint tightening (15) (Line 9) and the redundant risk reallocation (17)
(Line 10), the updated risk allocation αn+1

t+1:T is obtained. Finally, if the convergence condition is
satisfied, the the optimal control un−1

t:T−1 and the risk allocation un−1
t+1:T are output; otherwise, the next

iteration begins (Line 12). Finally, the convergence of Algorithm 5 and the overall risk guarantee
are established in Theorems 5.3 and 5.4, whose proofs are provided in Appendices B.6 and B.7,
respectively.

Theorem 5.3 (convergence guarantee) Assume that x0t+1:T , u
0
t:T−1 are feasible in problem (10) with

risk allocation α0
t+1:T . If the sets X , U are bounded and the objective function J(xt+1:T , ut:T−1) is

continuous, then the sequence of the optimal objective {J∗(αn
t+1:T )}n∈N converges to a finite limit.

Theorem 5.4 (overall risk guarantee for entire trajectory) Given an overall risk tolerance α, if the
posterior risk β1:t is calculated through Lemma 4.2, the risk αt+1:T is allocated through ARA (11) or
IRA (12), the planned state x∗t+1:T is a feasible solution of the TO problem (10) with αt+1:T , then the
entire trajectory at time t satisfies the overall risk guarantee P{

⋂T
τ=1{C(x∗τ , Yτ ) ≥ 0}} ≥ 1− α.

Remark 5.5 One may notice that the calculation of βτ in Lemma 4.2 is similar to the computation
of α̃n

τ in Lemma 5.2. This observation is correct. The key difference between the two lies in that the
former utilizes the dataset D2

cal independent with D1
cal to achieve the coverage guarantee for βτ . By

contrast, as a step in solving (11), the latter does not need to consider the coverage guarantee and
thus directly uses D1

cal. The use of different datasets results in the former providing probabilistic
guarantee, while the latter achieves deterministic guarantee (αn

τ ≤ αn
τ ).
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Algorithm 1 Fb-CP using IRA at time t
1: Input: α, αt:T , β0:t−1, ϵ, η, D1

cal, D
2
cal

2: Observe the system state xt and joint obstacle states Yt
3: Ŷt+1|t, ..., ŶT |t ← Trajectory prediction using LSTMs based on Y0, ..., Yt
4: βt ← Posterior probability calculation (8) {Using xt and D2

cal}
5: J∗(α−1

t+1:T )←∞, α0
t+1:T ← αt+1:T , n← 0 {Initialization of IRA}

6: repeat
7: J∗(αn

t+1:T ), x
n
t+1:T , u

n
t:T−1 ← Solve the lower-stage problem (10) with αn

t+1:T
8: Iact, Iina, Nact ← Identification of active and inactive constraints
9: α̃n

t+1:T ← Transitional risk allocation calculation (15)
10: αn+1

t+1:T ← New risk allocation calculation (17)
11: n← n+ 1
12: until |J∗(αn−1

t+1:T )− J∗(αn−2
t+1:T )| < ϵ

13: Output: β0:t, un−1
t:T−1, αt+1:T = αn−1

t+1:T

6 Experiments
All the experiments are performed on a personal computer with 2.10 GHz Inter Core i7-13700
CPU and 32 GB RAM. We conduct 1,000 Monte Carlo experiments on a kinematic vehicle model
Lekeufack et al. [2024], a 3D linear quadrotor model Dixit et al. [2023], a dynamic bicycle model
Hakobyan and Yang [2021] and the Stanford Drone Dataset Robicquet et al. [2016] to compare our
method with the state-of-art methods as follows 2.
(i) Conformal Control (CC) proposed in Lekeufack et al. [2024].
(ii) ACI for Motion Planning (ACI-MP) proposed in Dixit et al. [2023].
(iii) Recursively Feasible MPC using CP (RF-CP) proposed in Stamouli et al. [2024]
(iv) Sequential CP (S-CP) proposed in Lindemann et al. [2023].
(v) Fb-CP with ARA (Fb-CP-ARA): The method based on Fb-CP using average risk allocation.
(vi) Fb-CP with IRA (Fb-CP-IRA): The method based on Fb-CP using iterative risk allocation.
In this section, we present the main experimental results, while the full set of results can be found in
Appendix C. Figure 2 shows the simulation results from one of the 1,000 simulations using the 2D
vehicle model. At t = 0, the vehicle performs the first TO. For Fb-CP-IRA, IRA allows for flexible
allocation of the risks across future times. Therefore, by assigning more risk to τ = 9, which leads to
a compact prediction region, a trajectory passing between Obstacles 2 and 3 is obtained. However,
with the fixed risk allocation at t = 0, S-CP and Fb-CP-ARA can only optimize the trajectory based
on fixed prediction regions. Consequently, they can only navigate around to pass between Obstacles
1 and 2. Note that at t = 0, no deterministic vehicle position is available for posterior probability
calculation. Thus Fb-CP-ARA degenerates into S-CP, resulting in both methods obtaining essentially
the same trajectory. As time progresses, more and more vehicle positions become available. For
Fb-CP-ARA, β1:3 can be computed at t = 3 and is with high probability less than α1:3, as outlined in
Corollary A.2. The reduction from α1:3 to β1:3 leads to an increased allowable risk for future times,
corresponding to a narrowing in the prediction regions.Therefore, compared with S-CP, Fb-CP-ARA
generates a less conservative trajectory. Similarly, Fb-CP-IRA also leverages β1:3 to increase the
total allocable risk, thereby further enhancing the flexibility in allocating risks. As shown in Figure 2,
the trajectory obtained by Fb-CP-IRA at t = 3 exhibits reduced conservativeness compared with the
trajectory obtained at t = 0.

Table 1 summarizes the average cost, computation time, and collision avoidance rate of 1,000
simulations using the quadrotor model with different methods. As shown in Table 1, the Fb-CP-ARA
reduces the cost by an average of 11.34% compared with S-CP thanks to the feedback information of
posterior probabilities, with a negligible additional computational burden. Furthermore, by flexibly
allocating the additional allowable risk provided by posterior probabilities, Fb-CP-IRA achieves an
58.50% reduction in average cost compared with S-CP. However, since IRA needs to solve the TO
problem (10) iteratively, the average computation time increases significantly. Additionally, since CC
and ACI-MP fail to fully utilize the information in the calibration dataset, they incur higher costs,
which are 184% and 296% higher than those of Fb-CP-IRA, respectively. Particularly for CC, it
directly controls the collision avoidance rate by adjusting the weight of the collision penalty term

2https://github.com/DOCU-Lab/Feedback-based_Conformal_Prediction
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Figure 2: Trajectories of the vehicle with different TO methods. (Numbers on the circles denote the
indices of obstacles. The diamond and pentagon symbols represent the initial and target points of the
vehicle, respectively. The translucent circles represent the planned positions of the vehicle and the
prediction regions for further time. In particular, the colored and transparent circles with black edges
denote the planned positions and the prediction regions for τ = 9, respectively.)

in the objective function, which results in a higher average cost. However, it should be noted that,
in practice, CC and ACI-MP are better suited for scenarios where the test data exhibit distribution
shift, rather than the setup considered in our work. For RF-CP, thanks to the proposed normalized
nonconformity score, its average cost is comparable to that of Fb-CP-ARA, but it remains 85.8%
higher than Fb-CP-IRA. However, the normalized nonconformity score introduces mixed-integer
variables into the TO problem, significantly increasing the computation time. Specifically, the average
computation time of RF-CP is more than an order of magnitude higher than that of Fb-CP-IRA.

Additionally, we have investigated the impact of using prior versus posterior probabilities on the
prediction regions by analyzing the prediction region radius at different time t and τ in Appendix H.
Furthermore, we have also extended Fb-CP to handle distribution shift and empirically demonstrate
its effectiveness. Detailed methodology and corresponding experiments can be found in Appendix G.

Table 1: Average cost, computation time, and collision avoidance rate using the quadrotor model with
different methods (η is the learning rate of CC).

CC ACI-MP RF-CP S-CP Fb-CP

ARA IRA

Average
cost

η = 1000 59.25 α = 0.05 17.970 15.794 17.321 15.356 7.189
η = 500 47.50 α = 0.10 17.263 14.378 16.17 14.228 6.798
η = 100 22.46 α = 0.15 16.096 11.922 14.83 12.354 6.191
η = 50 21.34 α = 0.20 15.310 10.032 13.217 10.22 5.398

Average
computation

time

η = 1000 0.019 α = 0.05 0.022 0.487 0.022 0.027 0.038
η = 500 0.019 α = 0.10 0.026 0.494 0.020 0.021 0.039
η = 100 0.021 α = 0.15 0.021 0.545 0.021 0.020 0.037
η = 50 0.022 α = 0.20 0.022 0.500 0.020 0.019 0.036

Collision
avoidance

rate

η = 1000 97.0% α = 0.05 98.6% 98.7% 98.8% 98.2% 96.3%
η = 500 92.8% α = 0.10 93.3% 96.9% 93.5% 94.6% 94.1%
η = 100 82.5% α = 0.15 91.5% 92.4% 92.0% 90.2% 91.9%
η = 50 79.1% α = 0.20 87.9% 90.0% 88.2% 86.7% 88.2%

7 Conclusion and Limitations

In this paper, we proposed a Fb-CP framework for shrinking-horizon TO with a joint risk constraint
in uncertain environments. This method enables the feedback of the information in the realized
trajectory from the decision-making to the CP, guiding the closed-loop adjustments of the prediction
regions. The proposed adjustment rule balances both performance and safety, offering provable
performance and coverage guarantees. The limitations are discussed in detail in Appendix L.
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made in the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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whether the code and data are provided or not.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code
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Feedback-based_Conformal_Prediction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting is provided in Section 6 of the main text and details
are provided in Section C of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviations and coefficients of variation from multiple randomized
experiments are reported in Section J of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The CPU model and RAM size are described in Section 6 of the main text,
while the computational time for the experiments is included in the results table of each
experiment. No additional computational effort beyond the reported experiments was
required for the entire research project.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics in
every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A detailed discussion of the broader impacts is provided in Appendix M.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper makes use of the TrajNet++ code, which was originally re-
leased by VITA Lab at EPFL. This code is publicly available at https://github.com/vita-
epfl/trajnetplusplusbaselines and is licensed under the MIT License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Auxiliary Results

A.1 Conformal Prediction Lemma

Lemma A.1 [Lemma 1 in Tibshirani et al. [2019]] (coverage guarantee) If R(0), R(1), ..., R(N) are
N + 1 exchangeable random variables, then for a failure probability α ∈ (0, 1), it holds that

P
{
R(0) ≤ Quantile1−α(R

(1), ..., R(N),∞)
}
≥ 1− α (19)

where the functionQuantile1−α(R
(1), ..., R(N),∞) denotes the level 1−α quantile of the empirical

distribution of the values R(1), ..., R(N),∞ as follows.

Quantile1−α(R
(1), ..., R(N),∞) = inf{z : P{Z ≤ z} ≥ 1− α}, (20a)

Z ∼
(∑N

i=1 δR(i) + δ∞

)/
(N + 1) (20b)

where δR(i) and δ∞ denote the Dirac delta function at R(i) and∞, respectively.

A.2 Upper bound of the expectation of posterior risk

Corollary A.2 (upper bound of βτ ) Suppose that δ ∈ (0, 1) and K > (− ln δ)/(2α2
τ ), we have

P
{
E(βτ ) ≤

(
1 + L

(
ατ +

√
− ln δ/(2K)

))/
(1 + L)

}
≥ 1− δ (21)

Furthermore if K,L→∞, then E(βτ ) ≤ ατ holds with probability one.

Remark A.3 Corollary A.2 provides a performance guarantee for Fb-CP, i.e. Fb-CP performs at
least as well as the sequential method Lindemann et al. [2023] with high probability. Furthermore,
the experiments in Section 6 demonstrate that the proposed method performs significantly better in
practice. This is attributed to the conservatism of the inequality (38) in the proof of Corollary A.2.
Since c(x∗τ , Yτ ) contains the information provided by c(·) (e.g. the shape of the robot and obstacles)
and x∗τ , it typically occurs that P{c(x∗τ , Yτ ) < 0} ≪ P{∥Yτ − Ŷτ |t∥ > C1−ατ

τ |t }.

B Proofs

B.1 Proof of Lemma 4.1

According to Assumptions 3.1 as well as the calculation of C1−ατ

τ |t (6b), the (1 − ατ )-coverage
guarantee of the prediction (6a) is obtained through Lemma A.1. Note that the function c is L-
Lipschitz continuous, the following inequality is obtained.

∥c(xτ , Yτ )− c(xτ , Ŷτ |t)∥ ≤ L∥Yτ − Ŷτ |t∥ =⇒ c(xτ , Yτ ) ≥ c(xτ , Ŷτ |t)− L∥Yτ − Ŷτ |t∥ (22)

If the constraint c(xτ , Ŷτ |t) ≥ LC1−ατ

τ |t is satisfied, we have the following inequality.

c(xτ , Yτ ) ≥ L(C1−α
τ |t − ∥Yτ − Ŷτ |t∥) (23)

According to the (1 − ατ )-coverage guarantee (6a) P{C1−α
τ |t − ∥Yτ − Ŷτ |t∥ ≥ 0} ≥ 1 − ατ , the

lemma is proven.

B.2 Proof of Lemma 4.2

According to Assumption 3.1, we know that all trajectories Y (i) are generated by sampling their
initial state Y (i)

0 from the same distribution D and then evolving using a common dynamics (the
ground truth dynamics). As a result, the random variables ωτ , ω

(1)
τ , ..., ω

(K+L)
τ are i.i.d.. Note that x∗τ

is the true state of the system at time τ , thus x∗τ is fixed and independent of ωτ , ω
(K+1)
τ , ..., ω

(K+L)
τ .

Therefore, the random variables Sτ , S
(K+1)
τ , ..., S

(K+L)
τ are exchangeable.
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Without loss of generality, we assume that the dataset {−S(K+i)
τ : i = 1, ..., L} are sorted in non-

decreasing order. We first assume that −S(K+1)
τ ≤ 0, and then we define the maximum index ℓ that

makes −S(K+ℓ)
τ ≤ 0 hold as follows.

ℓ = max
l=1,...,L

l

s.t. − S(K+ℓ)
τ ≤ 0

(24)

Then the posterior satisfaction probability can be computed below.

P{c(x∗τ , Yτ ) ≥ 0} = P{−Sτ ≤ 0} ≥ P{−Sτ ≤ −S(K+ℓ)
τ } (25)

It is assumed that there are t terms in {−S(K+i)
τ : i = 1, ..., L} identical to −S(K+ℓ)

τ , i.e.

−S(K+ℓ−t)
τ < −S(K+ℓ−t+1)

τ = ... = −S(K+ℓ)
τ ≤ 0 < −S(K+ℓ+1)

τ (26)

Then −S(K+ℓ)
τ can be equivalently reformulated as follows.

−S(K+ℓ)
τ = Quantileβ(−S(K+1)

τ , ...,−S(K+L)
τ ,∞), ∀β ∈

(
ℓ− t
1 + L

,
ℓ

1 + L

]
(27)

Combining (25) and (27) we have

P{c(x∗τ , Yτ ) ≥ 0} ≥ P{−Sτ ≤ Quantileβ(−S(K+1)
τ , ...,−S(K+L)

τ ,∞)} (28)

Note that the random variables Sτ , S
(K+1)
τ , ..., S

(K+L)
τ are exchangeable and β ∈

(
ℓ−t
1+L ,

ℓ
1+L

]
⊂

(0, 1), and thus we can apply Lemma A.1 and obtain

P{c(x∗τ , Yτ ) ≥ 0} ≥ β, ∀β ∈
(
ℓ− t
1 + L

,
ℓ

1 + L

]
(29)

Therefore, the upper bound of the posterior violation probability can be computed by

P{c(x∗τ , Yτ ) < 0} ≤ 1− β, ∀β ∈
(
ℓ− t
1 + L

,
ℓ

1 + L

]
(30)

To minimize this upper bound, we take the maximum value of β and (30) becomes (31).

P{c(x∗τ , Yτ ) < 0} ≤ 1− ℓ

1 + L
(31)

According to the definition of ℓ (24), we can compute ℓ as follows.

ℓ =

L∑
i=1

I
(
S(K+i)
τ ≥ 0

)
= L−

L∑
i=1

I
(
S(K+i)
τ < 0

)
(32)

Combining (31) and (32), we have

P{c(x∗τ , Yτ ) < 0} ≤
1 +

∑L
i=1 I

(
S
(K+i)
τ < 0

)
1 + L

(33)

Finally, we consider the scenario in which −S(K+1)
τ > 0, which means S(K+i)

τ < 0 ∀i = 1, ..., L.
Then the inequality (33) is simplified as follows.

P{c(x∗τ , Yτ ) < 0} ≤ 1 (34)

which is always true. Thus, the Lemma is proven.
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B.3 Proof of Corollary A.2

Taking expectations on both sides of Equation (8), we can obtain

E(βτ ) =
1 + LP{S(K+i)

τ < 0}
1 + L

=
1 + LP{Sτ < 0}

1 + L
=

1 + LP{c(x∗τ , Yτ ) < 0}
1 + L

(35)

The second equality holds because Sτ , S
K+1
τ , ..., SK+L

τ are exchangeable. Note that the function
c()̇ is L-Lipschitz continuous and x∗τ is a feasible solution of problem (3) with the reformulated
constraint through Lemma 4.1, and the following inequality can be derived in the same manner as
inequalities (22) and (23) in the Proof of Lemma 4.1 (Appendix B.1).

c(x∗τ , Yτ ) ≥ L(C
1−ατ

τ |t − ∥Yτ − Ŷτ |t∥) (36)

Based on (36), we can obtain

c(x∗τ , Yτ ) < 0⇒ ∥Yτ − Ŷτ |t∥ > C1−ατ

τ |t (37)

And the following inequality is derived.

P{c(x∗τ , Yτ ) < 0} ≤ P{∥Yτ − Ŷτ |t∥ > C1−ατ

τ |t } (38)

Combining (35) and (38), we have

E(βτ ) ≤
1 + LP{∥Yτ − Ŷτ |t∥ > C1−ατ

τ |t }
1 + L

(39)

For ατ , δ ∈ (0, 1) and K > (− ln δ)/(2α2
τ ), we can apply [Vovk [2012], Proposition 2a] so that

P
{
P
{
∥Yτ − Ŷτ |t∥ ≤ C1−ατ

τ |t

}
≥ 1−

(
ατ +

√
− ln δ/(2K)

)}
≥ 1− δ (40)

which can be equivalently transformed into the following expression.

P
{
P
{
∥Yτ − Ŷτ |t∥ > C1−ατ

τ |t

}
≤ ατ +

√
− ln δ/(2K)

}
≥ 1− δ (41)

Combining (39) and (41), we can finally obtain the inequality (21).

When K,L→∞, we can further assume that L ≥ 1/δ and K ≥ max{(− ln δ)/(2α2
τ ), 1/δ}. Note

that for a fixed ατ , we can always find a small enough positive δ such that ατ +
√

(− ln δ)/(2K) <

ατ +
√
(−δ ln δ)/2 < 1. Therefore for a small enough positive δ we have

P

{
E(βτ ) ≤

δ + ατ +
√
−δ ln δ/2

δ + 1

}

≥P

E(βτ ) ≤
1 + L

(
ατ +

√
− ln δ/(2K)

)
1 + L

 ≥ 1− δ

(42)

Let δ → 0+, we finally obtain that E(βτ ) ≤ ατ holds with probability one.

B.4 Proof of Lemma 5.1

Let α1
t+1:T and α2

t+1:T be two risk allocations at time t. Based on the definition of C1−ατ

τ |t (6b),

C1−ατ

τ |t is non-increasing with respect to ατ for fixed D1
cal. Therefore, if α1

τ ≤ α2
τ , ∀τ = t+1, ..., T ,

then C1−α1
τ

τ |t ≥ C
1−α2

τ

τ |t which further leads to Rt(α
1
t+1:T ) ⊆ Rt(α

2
t+1:T ). Since J∗(αt+1:T ) is

the minimum of the objective problem (10) with the feasible region Rt(αt+1:T ), J∗(α1
t+1:T ) ≥

J∗(α2
t+1:T ) can be obtained and the lemma is proven.
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B.5 Proof of Lemma 5.2

The computation of the lower bound is analogous to the calculation of βτ in Lemma 4.1, except
that Lemma A.1 is not required to obtain coverage guarantees. Therefore, the computation is based
on D1

cal. Without loss of generality, we assume that the dataset {R(i)
τ |t : i = 1, ...,K} is sorted in

non-decreasing order. Note that xnt+1:T is feasible for the problem (10) with αn
t+1:T and τ ∈ Iina,

the inequality c(xnτ , Ŷτ |t) > LC
1−αn

τ

τ |t = LQuantile1−αn
τ
(R

(1)
τ |t , ..., R

(K)
τ |t ,∞) holds true. Since

αn
τ < 1, it follows that c(xnτ , Ŷτ |t) > R

(1)
τ |t . Therefore, we define the maximum index K that makes

c(xnτ , Ŷτ |t) ≥ LR
(K)
τ |t hold as follows.

K = max
k=1,...,K

k

s.t. c(xnτ , Ŷτ |t) ≥ LR
(k)
τ |t

(43)

It is assumed that there are t terms in {R(i)
τ |t : i = 1, ...,K} identical to RK

τ |t, and thus we can obtain

R
(K−t)
τ |t < R

(K−t+1)
τ |t = ... = R

(K)
τ |t ≤ c(x

n
τ , Ŷτ |t)/L < R

(K+1)
τ |t (44)

We aim to determine the maximum value of C1−α̃n
τ

τ |t (the minimum value of α̃n
τ ) while satisfying

C
1−α̃n

τ

τ |t ≤ c(xnτ , Ŷτ |t)/L, which is equivalent to C1−α̃n
τ

τ |t ≤ RK
τ |t because C1−α̃n

τ

τ |t can only take

values at a finite number of discrete points R(1)
τ |t , ..., R

(K)
τ |t ,∞. Furthermore, RK

τ |t can be equivalently
reformulated as follows.

RK
τ |t = Quantileβ(R

(1)
τ |t , ..., R

(K)
τ |t ,∞) = Cβ

τ |t, ∀β ∈
(
K − t
1 +K

,
K

1 +K

]
(45)

Therefore, the constraint C1−α̃n
τ

τ |t ≤ RK
τ |t is equivalent to the following expression.

C
1−α̃n

τ

τ |t ≤ Cβ
τ |t, ∃β ∈

(
K − t
1 +K

,
K

1 +K

]
(46)

Note that Cβ
τ |t is non-decreasing with respect to β for fixed D1

cal. Constraint (46) is further reformu-
lated as follows.

α̃n
τ ≥ 1− K

1 +K
(47)

According to the definition of K (43), we can compute K in (48).

K =

K∑
i=1

I
(
c(xnτ , Ŷτ |t) ≥ LR

(i)
τ |t

)
= K −

K∑
i=1

I
(
c(xnτ , Ŷτ |t) < LR

(i)
τ |t

)
(48)

Combining (47) and (48), the lower bound of α̃n
τ is computed as follows.

αn
τ =

1 +
∑K

i=1 I
(
c(xnτ , Ŷτ |t) < LR

(i)
τ |t

)
1 +K

(49)

We note that αn
τ is the lower bound of α̃n

τ that ensures the constraint c(xnτ , Ŷτ |t) ≥ LC
1−α̃n

τ

τ |t .

Furthermore, since xnt+1:T is feasible for the problem (10) with αn
t+1:T , the constraint c(xnτ , Ŷτ |t) ≥

LC
1−αn

τ

τ |t is satisfied. Therefore, αn
τ ≤ αn

τ is naturally obtained. Thus the Lemma is proven.

B.6 Proof of Theorem 5.3

The proof adapts elements of the proof from Zymler et al. [2013]. If x0t+1:T , u
0
t:T−1 is a feasible

solution for the risk allocation α0
t+1:T , the update law of αt+1:T guarantees that the sequence of the

optimal objective values {J∗(αn
t+1:T )}n∈N is monotonically decreasing, as previously mentioned.

Since the sets X and U are bounded, xt+1:T and ut:T−1 are bounded. Because the objective function
J(xt+1:T , ut:T−1) is continuous, the boundedness of xt+1:T , ut:T−1 and the monotonicity of the
optimal objective value sequence imply that {J∗(αn

t+1:T )}n∈N converges to a finite limit.
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B.7 Proof of Theorem 5.4

At each time t, the realized state x∗1:t is available. According to Lemma 4.2, we know that

P{c(x∗τ , Yτ ) < 0} ≤ βτ , ∀τ = 1, ..., t (50)

For the planned state x∗t+1:T , the corresponding risk allocations αt+1:T are obtained either via ARA
(11) or IRA (12). In both cases, they satisfy

T∑
τ=t+1

ατ ≤ α−
∑
τ=1

βτ (51)

We note that if the planned state x∗t+1:T is a feasible solution of the TO problem (10) with αt+1:T ,
the following inequality can be obtained through Lemma 4.1.

P{c(x∗τ , Yτ ) ≥ 0} ≥ 1− ατ , ∀τ = t+ 1, ..., T (52)

Finally, by combining the above three inequalities (50), (51), and (52), together with Boole’s
inequality, we obtain

P{
T⋂

τ=1

{C(x∗τ , Yτ ) ≥ 0}} ≥ 1− α (53)

which means that the overall risk of the entire trajectory at time t, x∗1:T is below the risk tolerance α.
Thus, Theorem 5.4 is proven.

C Experiment details and additional results

C.1 Simulation for a kinematic vehicle model

We examine the kinematic vehicle model Lekeufack et al. [2024] with the following nonlinear
dynamics.  px,t+1

py,t+1

θt+1

vt+1

 =

 px,t +∆vt cos θt
py,t +∆vt sin θt
θt +∆ vt

l tanϕt
vt +∆at

 (54)

where pt := (px,t, py,t), θt, vt are the position, orientation, and velocity of the vehicle, respectively.
l := 0.2 is the length, and ∆ = 0.125 is the sampling time. The system inputs are the steering angle
ϕt ∈ [−π/6, π/6] and the acceleration at ∈ [−5, 5]. The total time is set to T = 20. The objective
is to reach the vicinity of the target point while avoiding collisions with obstacles. Formally, the
objective function is defined as J =

∑T−1
τ=t 100ϕ2τ + a2τ to minimize energy consumption and the

constraint ∥pT − ptar∥2 ≤ 0.2 is incorporated into (9) to ensure the vehicle reaches the target point,
where ptar is the target point. The constraint function for collision avoidance is as follows.

c(pτ , Yτ ) = minj=1,...,M ∥pτ , Yτ,j∥2 − rr − ro − rs (55)

where rr and ro are the inflation radius of the vehicle and obstacle, respectively. rs is the safety
margin. The interior-point method-based solver IPOPT (v3.12.9) was used to solve the TO problem
(9). Similar to Lindemann et al. [2023], we consider M = 3 obstacles, with their trajectories
generated by TrajNet++ Kothari et al. [2021] which is publicly available at https://github.com/vita-
epfl/trajnetplusplusbaselines and is licensed under the MIT License. We generate 13,000 joint obstacle
trajectories and randomly divide them into training Dtrain, calibration Dcal, and test Dtest datasets
with the set sizes 2,000, 10,000, and 1,000, respectively. We train an LSTM Alahi et al. [2016] using
Dtrain as the trajectory predictor. For the proposed Fb-CP, Dcal is further divided into D1

cal and D2
cal

with sizes |D1
cal| = 2, 000 and |D2

cal| = 8, 000. We conduct 1,000 Monte Carlo simulations using
Dtest. As we discussed in Section 6, the methods S-CP, Fb-CP-ARA, and Fb-CP-IRA are analyzed.

Table 2 shows the average cost, average computation time, and collision avoidance rate of 1,000
simulations using the kinematic vehicle model with different methods. We collect the simulation
data under different total risk tolerances α = 0.05, 0.10, 0.15, 0.20. On one hand, with an increase in
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total risk tolerance, the average cost of all methods decreases. On the other hand, benefiting from the
feedback information of posterior probabilities, the average cost of Fb-CP-ARA shows a reduction of
7.21% to 11.26% compared to S-CP. Furthermore, by flexibly allocating the allowable risk provided
by posterior probabilities, the average cost of Fb-CP with IRA exhibits a significant reduction
compared with S-CP. Additionally, the increase in total risk tolerance provides greater flexibility in
the risk allocation of Fb-CP-IRA, resulting in a significant reduction in its average cost. As mentioned
in Section 6, the calculation of posterior probabilities does not incur additional computational burden.
Therefore, the average computation time of Fb-CP-ARA is essentially comparable to that of S-CP.
The collision rates of all methods do not exceed their corresponding total risk tolerances.

Table 2: Average cost, computation time, and collision avoidance rate using the kinematic vehicle
model with different methods.

Sequential CP Fb-CP

with ARA with IRA

Average cost

α = 0.05 22.20 20.46 4.77
α = 0.10 20.24 18.78 3.52
α = 0.15 19.22 17.35 3.18
α = 0.20 17.05 15.13 2.89

Average computation time

α = 0.05 0.111 0.100 0.128
α = 0.10 0.093 0.087 0.126
α = 0.15 0.078 0.085 0.130
α = 0.20 0.076 0.078 0.131

Collision avoidance rate

α = 0.05 95.4% 95.7% 98.4%
α = 0.10 93.9% 93.1% 98.3%
α = 0.15 90.8% 89.8% 97.6%
α = 0.20 88.4% 89.1% 91.2%

C.2 Simulation for linear quadrotor model

We examine the quadrotor model Dixit et al. [2023] with the following linear dynamics.
ẍ = gθ ÿ = −gϕ z̈ = 1

mQ
u1

ϕ̈ =
lQ
Ixx

u2 θ̈ =
lQ
Iyy
u3 ψ̈ =

lQ
Izz
u4

(56)

where g = 9.81 represents the gravitational acceleration, mQ = 0.65 denotes the mass, and
lQ = 0.23 is the distance between the quadrotor and the rotor. Ixx = 0.0075, Iyy = 0.0075,
and Izz = 0.013 correspond to the area moments of inertia about the principle axes in the body
frame. The states are the position and orientation with the corresponding velocities and rates —
(x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇) ∈ R12. The control inputs u1, u2, u3, u4 correspond to the thrust
force in the body frame and three moments. The system (56) is discretized using the sampling time
∆ = 0.125, and the total time is also set to T = 20.

Similar to the experiments based on the kinematic vehicle model in Appendix C.1, the objective is to
control the quadrotor to reach the target point ptar while navigating around M = 3 moving obstacles.
The target point constraint and obstacle avoidance constraints are consistent with those used in the
simulation using the kinematic vehicle model. We randomly generate 13,000 obstacle trajectories
and assign them as in Appendix C.1. The following state-of-art methods recently proposed in the
literature are analyzed through 1,000 Monte Carlo simulations.
(i) Conformal Control (CC) proposed in Lekeufack et al. [2024].
(ii) ACI for Motion Planning (ACI-MP) proposed in Dixit et al. [2023].
(iii) Recursively Feasible MPC using CP (RF-CP) proposed in Stamouli et al. [2024]
(iv) Sequential CP (S-CP) proposed in Lindemann et al. [2023]. Computation of the CP region and
TO is performed sequentially.
(v) Fb-CP with ARA (Fb-CP-ARA): The method based on Fb-CP using average risk allocation.
(vi) Fb-CP with IRA (Fb-CP-IRA): The method based on Fb-CP using iterative risk allocation.

Table 3 shows the average cost, average computation time, and collision avoidance rate of 1,000
simulations using the quadrotor model with different methods. For the methods S-CP, Fb-CP-ARA,
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Table 3: Average cost, computation time, and collision avoidance rate using the quadrotor model with
different methods (η is the learning rate of CC).

CC ACI-MP RF-CP S-CP Fb-CP

ARA IRA

Average
cost

η = 1000 59.25 α = 0.05 17.970 15.794 17.321 15.356 7.189
η = 500 47.50 α = 0.10 17.263 14.378 16.17 14.228 6.798
η = 100 22.46 α = 0.15 16.096 11.922 14.83 12.354 6.191
η = 50 21.34 α = 0.20 15.310 10.032 13.217 10.22 5.398

Average
computation

time

η = 1000 0.019 α = 0.05 0.022 0.487 0.022 0.027 0.038
η = 500 0.019 α = 0.10 0.026 0.494 0.020 0.021 0.039
η = 100 0.021 α = 0.15 0.021 0.545 0.021 0.020 0.037
η = 50 0.022 α = 0.20 0.022 0.500 0.020 0.019 0.036

Collision
avoidance

rate

η = 1000 97.0% α = 0.05 98.6% 98.7% 98.8% 98.2% 96.3%
η = 500 92.8% α = 0.10 93.3% 96.9% 93.5% 94.6% 94.1%
η = 100 82.5% α = 0.15 91.5% 92.4% 92.0% 90.2% 91.9%
η = 50 79.1% α = 0.20 87.9% 90.0% 88.2% 86.7% 88.2%

and Fb-CP-IRA, the experimental results using the quadrotor model are fundamentally consistent
with those derived from the experiments using the kinematic vehicle model. Specifically, compared
with S-CP, Fb-CP-ARA benefits from the posterior probabilities calculation, leading to a moderate
improvement in performance. Fb-CP-IRA, leveraging the combined use of posterior probabilities
and a more flexible risk allocation, exhibits a significant enhancement in performance. Additionally,
since CC and ACI-MP fail to fully utilize the information in the calibration dataset, they incur higher
costs, which are 184% and 296% higher than those of Fb-CP-IRA, respectively. Particularly for CC,
it directly controls the collision avoidance rate by adjusting the weight of the collision penalty term
in the objective function, which results in a higher average cost. However, it should be noted that,
in practice, CC and ACI-MP are better suited for scenarios where the test data exhibit distribution
shift, rather than the setup considered in our work. For RF-CP, thanks to the proposed normalized
nonconformity score, its average cost is comparable to that of Fb-CP-ARA, but it remains 85.8%
higher than Fb-CP-IRA. However, the normalized nonconformity score introduces mixed-integer
variables into the TO problem, significantly increasing the computation time. As shown in Table
3, the average computation time of RF-CP is more than an order of magnitude higher than that of
Fb-CP-IRA.

C.3 Simulation for dynamic bicycle model

We examine a vehicle with the following dynamic bicycle model Hakobyan and Yang [2021].

ẋ = vx cos θ − vy sin θ (57)
ẏ = vx sin θ + vy cos θ (58)

θ̇ = r (59)

v̇y =
−2(Cf + Cr)

mV vx
vy −

(
2lfCf − 2lrCr

mV vx
+ vx

)
r +

2Cf

mV
δf (60)

ṙ =
−2(lfCf + lrCr)

Izvx
vy −

2l2fCf − 2l2rCr

Izvx
r +

2lfCf

Iz
δf (61)

where x, y are the vehicle’s central of mass, θ, vy, and r are lateral velocity, orientation, and yaw
rate, respectively. Furthermore, vx is the constant longitudinal velocity, mV denotes the mass
of the vehicle, Cf and Cr represent the cornering stiffness coefficients of the front and rear tires
respectively, Lf and Lr denote the distances from the center of mass to the front and rear wheels,
and Iz corresponds to the moment of inertia around the z-axis. The input variable is the front wheel
steering angle δf . The system (57) is discretized using the sampling time ∆ = 0.125, and the total
time is also set to T = 20. According to Hakobyan and Yang [2021], the parameters of the dynamic
bicycle model used in this simulation are listed in Table 4.
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Table 4: Dynamic bicycle model parameters.

mV Cf Cr Iz Lf Lr vx

1700kg 50kN/rad 50kN/rad 6000kg ·m2 1.2m 1.3m 5m/s

The task is to steer the vehicle to its target point p while avoiding M = 2 moving obstacles. Similar
to the experiments in Appendix C.1, the target point constraint and obstacle avoidance constraints
are incorporated into the optimization problem to ensure the vehicle reaches the target point while
avoiding collisions with obstacles. We collect 13,000 joint obstacle trajectories and assign them as in
Appendix C.1. The methods S-CP, Fb-CP-ARA, and Fb-CP-IRA are analyzed through 1,000 Monte
Carlo simulations.

Table 5 shows the average cost, average computation time, and collision avoidance rate of 1,000
simulations using the dynamic bicycle model with different methods. The experimental results are
generally consistent with those obtained from the experiments using the kinematic vehicle mode and
the quadrotor model. The performance of Fb-CP shows a certain degree of improvement over S-CP
based on posterior probability calculations. Based on posterior probability calculations, Fb-CP-ARA
demonstrates a certain level of performance improvement compared to S-CP, while Fb-CP-IRA
further attains significant performance by leveraging the combined use of posterior probabilities and
a more flexible risk allocation. It should be noted that, due to the simulation of a relatively complex
nonlinear model in this experiment, the average computation time inevitably increases. Furthermore,
it may be observed that the reduction in average cost achieved by Fb-CP-IRA compared to S-CP
decreases in this experiment (47.2% reduction) compared with the experiment using the kinematic
vehicle model in Appendix C.1 (81.9% reduction). This is because, compared to relatively simple
scenarios (2 obstacles, dynamic bicycle model experiment), more complex scenarios (3 obstacles,
kinematic vehicle model experiment) better highlight the performance improvements enabled by the
flexibility in risk allocation.

Table 5: Average cost, computation time, and collision avoidance rate using the dynamic bicycle
model with different methods.

S-CP Fb-CP

ARA IRA

Average cost

α = 0.05 23.05 20.91 13.77
α = 0.10 22.38 18.39 11.35
α = 0.15 20.71 16.99 10.17
α = 0.20 16.55 14.78 8.58

Average computation time

α = 0.05 0.365 0.361 0.884
α = 0.10 0.339 0.335 0.817
α = 0.15 0.494 0.506 1.292
α = 0.20 0.309 0.407 1.003

Collision avoidance rate

α = 0.05 96.8% 96.5% 97.0%
α = 0.10 94.8% 94.0% 94.3%
α = 0.15 91.5% 90.0% 91.5%
α = 0.20 89.5% 87.8% 89.5%

In summary, the three simulation experiments demonstrate the general applicability of the proposed
method, achieving significant performance improvements across various system models while satisfy-
ing probabilistic collision avoidance requirements. In fact, the complexity of different system models
only affects the average computation time. In addition, simulations demonstrate that Fb-CP-IRA
achieves more significant performance improvements in relatively complex scenarios.

C.4 Stanford Drone Dataset

We perform a comparative evaluation of different methods on the Stanford Drone Dataset. Specifically,
the task is to steer the vehicle to its target point while avoiding moving obstacles (humans). Similar
to the experiments in Appendix C.1, the target point constraint and obstacle avoidance constraints
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are incorporated into the optimization problem to ensure the vehicle reaches the target point while
avoiding collisions with obstacles. The average cost of different methods aresummarized in Table 6.

As shown in Table 6, compared with S-CP, Fb-CP-ARA benefits from the posterior probabilities
calculation, resulting in an average cost reduction of at least 20.7%. Fb-CP-IRA reduces the cost by at
least 46% compared to S-CP. Additionally, since CC and ACI-MP fail to fully utilize the information
in the calibration dataset, they incur higher costs, which are 176% and 113% higher than those of
Fb-CP-IRA, respectively. Note that RF-CP is not included as a baseline because its formulation
introduces mixed-integer variables through nonconformity score definitions, which—when combined
with the nonlinear vehicle dynamics—leads to highly complex trajectory optimization problems with
prohibitively long computation times.

Table 6: Average cost of different methods on the Real-World Stanford Drone Dataset with different
methods.

CC ACI-MP S-CP Fb-CP

ARA IRA

Average
cost

η = 1000 95.51 α = 0.05 40.02 38.58 30.58 20.81
η = 500 77.68 α = 0.10 35.94 34.75 27.52 18.52
η = 100 41.27 α = 0.15 32.57 30.48 23.75 15.58
η = 50 38.73 α = 0.20 29.89 28.59 21.25 14.02

D Experiment with different trajectory predictor

As noted in Subsection 3.1, employing the more advanced trajectory predictors can enhance control
performance. Accordingly, we perform experiments on the kinematic vehicle model (54) to compare
the average costs of S-CP and Fb-CP when using different predictors Social LSTM Alahi et al. [2016],
Trajectron++ Salzmann et al. [2020], AgentFormer Yuan et al. [2021], with the results summarized
in Table 7. As shown in Table 7, when switching to more advanced predictors Trajectron++ and
AgentFormer, both Fb-CP and S-CP see improved performance, but the proposed method (Fb-CP)
continues to outperform the S-CP under all tested predictors.

Table 7: Average Cost of Different Methods using Different Trajectory Predictors (α = 0.2).

S-CP Fb-CP-ARA Fb-CP-IRA
Social LSTM 17.30 15.49 2.97
Trajectron++ 13.58 10.58 1.81
AgentFormer 12.83 9.71 1.72

E Experiment with small calibration size

As discussed in the Limitation (Appendix L), the proposed method requires a larger calibration
dataset because the calibration dataset must be divided into two parts. To rigorously evaluate its
performance under data-scarce conditions, we conduct experiments on the kinematic vehicle model
(54), where both S-CP and Fb-CP are tested using the same small calibration dataset (N = 400). The
corresponding average costs, computation time, and collision avoidance rate are reported in Table 8.
As shown in Table 8, although all methods see a decrease in performance under limited data, Fb-CP
still achieves substantially lower cost than S-CP and remains safety. This highlights the robustness
and practical effectiveness of the proposed method, even when the calibration dataset is small.

F Experiment with higher-dimensional settings

In this appendix, we validate the performance of the proposed method in high-dimensional settings.
Specifically, we conduct an additional case study on controlling the trajectory of a high-dimensional
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Table 8: Average Cost, computation time, and collision avoidance rate of Different methods with
calibration data size of N = 400.

S-CP Fb-CP-ARA Fb-CP-IRA
Average cost 18.03 16.82 3.52
Average computation time 0.078 0.081 0.122
Collision avoidance rate 88.9% 89.5% 91.7%

double integrator model, where shrinking-horizon trajectory optimization is performed in 5- and
10-dimensional spaces. The average costs and collision probabilities of different methods under
various dimensions are summarized in Table 9. As shown in Table 9, the proposed Fb-CP framework
consistently outperforms S-CP while maintaining safety, even in these higher-dimensional scenarios.
These results validate the applicability and effectiveness of the proposed approach in high-dimensional
problems.

Table 9: Average cost and collision avoidance rate of different methods (α = 0.2) with varying
dimensions.

Dimension S-CP Fb-CP-ARA Fb-CP-IRA

Average cost 5 44.52 39.67 30.25
10 72.66 65.33 60.18

Collision avoidance rate 5 92.5% 92.1% 93.5%
10 91.2% 93.5% 91.4%

G Extension and experiments on distribution shift

The individual chance constraint reformulation in Lemma 4.1 and the posterior probability calculation
in Lemma 4.2 rely on Assumption 3.1 and the i.i.d. property of ω, which imply that real joint obstacle
trajectory and those in the training and calibration datasets follow the same distribution. To enhance
the generalizability of the proposed method across different scenarios, we extend our method to
address the case where a shift exists between the initial state distributions of calibration data and test
data, and the error ωt represents state-dependent noise rather than being i.i.d.

Specifically, there exists a shift between the initial obstacle state distribution Dtest of the test data and
the initial obstacle state distribution Dcal of the calibration data. Moreover, the error ωt constitutes
state-dependent noise, i.e., its distribution Dωt

is conditioned on the current state Yt. Clearly, the
difference between Dtest and Dcal, along with the state-dependent nature of ωt, implies that the test
trajectories Yt and the calibration trajectories Y (i)

t are not exchangeable. Fortunately, the distribution
shift between Yt and Y (i)

t can be characterized as a covariate shift, as defined in Tibshirani et al.
[2019]. This allows us to adapt the approach proposed in Tibshirani et al. [2019] to extend our method
accordingly. The extended method is described in detail below.

Intuitively, we reweight the calibration data by computing the likelihood ratio between the test and
calibration distributions. The reweighted data are then used to compute the prediction regions and the
posterior probabilities, thereby enabling robustness to covariate shift. Specifically, at each time t, we
begin by applying an uncertainty propagation technique to derive the distributions D̃Yt and DYt of
the test obstacle state Yt and calibration obstacle state Y (i)

t , respectively. As a result, given a data Y ,
we can calculate the likelihood ratio as follows.

v(Y ) = dPD̃Yt
(Y )/dPDYt

(Y ) (62)

In the forward phase of confidence region computation, the weights for the test data and the calibration
data in D1

cal are computed using the likelihood ratios (62) as follows.

p1(Yt) =
v(Yt)∑K

j=1 v(Y
(j)
t ) + v(Yt)

, p1(Y
(i)
t ) =

v(Y
(i)
t )∑K

j=1 v(Y
(j)
t ) + v(Yt)

, ∀i = 1, ...,K (63)
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Following the approach in Tibshirani et al. [2019], we replace the (1− α)-quantile in equation 6b
with the following weighted form.

C1−ατ

τ |t = Quantile1−ατ

(
K∑
i=1

p1(Y
i
t )δR(i)

τ|t
+ p1(Yt)δ∞

)
(64)

In the process of backward posterior probability computation, we calculate the weights for the test
data and the calibration data in D2

cal as follows.

p2(Yt) =
v(Yt)∑K+L

j=K v(Y
(j)
t ) + v(Yt)

, p2(Y
K+i
t ) =

v(Y
(K+i)
t )∑K+L

j=K v(Y
(j)
t ) + v(Yt)

, ∀i = 1, ..., L (65)

For the posterior probability computation, we replace equation (8) in Lemma 4.2 with the following
weighted form.

P{c(x∗τ , Yτ ) < 0} ≤ βτ = p2(Yt) +

L∑
i=1

p2
(
Y K+i
t

)
I
(
S(K+i)
τ < 0

)
(66)

It is evident that when p2(Yt) = p2(Y
K+i
t ) = 1/(L+ 1), equation (66) degenerates to equation (8).

By applying the weighting schemes in equations (65) and (66) to the test and calibration data, the
extended method is capable of handling the covariate shift between them. We refer to this extended
approach as Weighted Fb-CP.

To demonstrate the Weighted Fb-CP exhibits robustness to the covariate shift, we design experiments
to compare the effects of covariate shift between test trajectories and calibration trajectories on the
performance and safety of the proposed method. Apart from the method of generating obstacle
trajectories, the experimental setup is identical to that of the kinematic vehicle model experiment in
Appendix C.1. To obtain obstacle trajectories with different distributions, the obstacles are modeled
using the following double integrator model. px,t+1

py,t+1

vx,t+1

vy,t+1

 =


px,t +∆vx,t +

∆2

2 ax,t
py,t +∆vy,t +

∆2

2 ay,t
vx,t +∆ax,t
vy,t +∆ay,t

+ ωte (67)

where (px, py, vx, vy) is the state of an obstacle, consisting of its center of mass and velocity vector.
The control input u = (ax, ay) is the acceleration vector. Similarly, the sampling time ∆ is selected
as 0.125. The obstacle trajectories from a given start point to the target point are obtained by
solving an optimization problem. ωt is sampled from a zero-mean Gaussian distribution, with its
variance determined by the current state (px, py, vx, vy). The initial states of the trajectories in the
test dataset are sampled from a Gaussian distribution with mean (−5, 0, 0, 0)T , while the initial states
of the trajectories in the calibration dataset are sampled from a Gaussian distribution with mean
(0,−5, 0, 0)T . As a result, there exists a distribution shift between the trajectories in the test dataset
and the calibration dataset. We conducted 1,000 Monte Carlo experiments in this scenario to compare
the Weighted Fb-CP, Fb-CP, S-CP Lindemann et al. [2023], and ACI-MP Dixit et al. [2023].

Table 10: Average cost, computation time, and collision avoidance rate using the kinematic vehicle
model with different methods (α = 0.2).

ACI-MP S-CP Fb-CP Weighted Fb-CP

ARA IRA ARA IRA
Average cost 19.27 17.56 14.35 11.37 16.27 13.72
Collision avoidance rate 84.8% 78.7% 78.6% 76.8% 84.6% 83.4%

Table 10 shows the average cost and collision avoidance rate of 1,000 simulations using the kinematic
vehicle model with different methods. It can be observed that due to the covariate shift, both the
S-CP and the proposed Fb-CP methods exceed the specified risk tolerance (α = 0.2). Owing to
the reweighting of the test and calibration data, the Weighted Fb-CP method is able to maintain the
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collision probability within the prescribed risk tolerance, accompanied by a justifiable and expected
increase in average cost. For ACI-MP, since it does not rely on the calibration set, it naturally does not
exceed the risk tolerance. However, precisely because it cannot leverage the information contained
in the calibration dataset, its average cost is 40.5% higher than that of Weighted Fb-CP-IRA. In
summary, we empirically demonstrate that the Weighted Fb-CP is capable of maintaining the risk
probability below the specified tolerance under covariate shift, while also achieving a favorable
trade-off in terms of average cost.

H Details about the prediction regions

In this Section, we investigate the impact of using prior versus posterior probabilities on the prediction
regions. To this end, we collect the prediction region radius for time t, denoted as C20|t, using the
vehicle model with different methods across 1,000 simulations, as illustrated in Figure 3. It can be
observed that C20|t decreases as t increases, which is reasonable since the error of the trajectory
predictor diminishes as t approaches τ . Note that since S-CP only uses prior probabilities to compute
C20|t throughout the entire planning process, which depends solely on Dcal, C20|t remains constant
for a fixed t. By contrast, for Fb-CP-ARA, C20|t also depends on the actual obstacle positions and
past decisions due to the use of the posterior probabilities, which leads to the variability of C20|t
across 1,000 simulations. The distribution of C20|9 is shown in the right panel of Figure 3. It can
be seen that C20|t computed by Fb-CP-ARA is typically smaller than that computed by S-CP. As
t increases, more posterior probabilities can be used, leading to a growing gap between the C20|t
calculated by the two methods, which corroborates Corollary A.2.

Figure 3: Left: prediction region radius for τ = 20 at each time t (C20|t) using the vehicle model
with different methods across 1,000 simulations. Right: distributions of C20|9.

Furthermore, Table 11 shows the prediction region radius for different time t and τ (Cτ |t). At the
initial state (t = 0), no realized state is available for calculating posterior probabilities. As a result,
Cτ |0 for all τ obtained by S-CP and Fb-CP-ARA are essentially identical, with minor differences
arising from the fact that S-CP utilizes the calibration Dcal, whereas Fb-CP-ARA only employs D1

cal.
As the system operates, an increasing number of realized states x∗t are available for the calculation of
posterior probabilities, enabling Fb-CP to yield a relatively narrower prediction region, corresponding
to a smaller Cτ |t. As shown in Table 11, the average ratio of the predicted region radius obtained by
Fb-CP-ARA to those by S-CP generally exhibits a decreasing trend as time t increases. Moreover,
when t > 10, based on sufficient posterior probabilities, the prediction region radius obtained by
Fb-CP-ARA is reduced by more than 50% compared to that of S-CP.
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Table 11: Prediction region radius for different τ and t (Cτ |t) using the kinematic vehicle model with
different methods (S-CP and Fb-CP-ARA) across 1,000 simulations (α = 0.2).

τ = 3 τ = 6 τ = 9 τ = 12 τ = 15 τ = 18 Ratio

t = 0
Fb-CP-ARA 0.125 0.258 0.374 0.519 0.698 0.913

1.005S-CP 0.129 0.247 0.374 0.520 0.691 0.902

t = 3
Fb-CP-ARA 0.102 0.216 0.351 0.527 0.705

0.793S-CP 0.129 0.263 0.409 0.598 0.738

t = 6
Fb-CP-ARA 0.141 0.289 0.442 0.604

0.956S-CP 0.152 0.304 0.451 0.625

t = 9
Fb-CP-ARA 0.134 0.268 0.414

0.889S-CP 0.149 0.305 0.466

t = 12
Fb-CP-ARA 0.059 0.139

0.453S-CP 0.138 0.291

t = 15
Fb-CP-ARA 0.054

0.470S-CP 0.115

I Computation time of IRA and the hybrid method of ARA and IRA

Table 12 shows the average computation time at each time t using the kinematic vehicle model
with Fb-CP-IRA (α = 0.2). It can be observed that, in practice, the majority of the additional
computational burden introduced by IRA arises at the initial time t = 0, where it is used to obtain the
initial risk allocation and initial trajectory. At subsequent time steps, by using the optimal solution
from the previous time step (or iteration) as the initial value for the next time step (or iteration), the
IRA algorithm can converge quickly. It is important to note that the TO problem at the initial time
step can be solved offline, while the average computation time for TO at subsequent time steps is
much smaller than the sampling time (0.125s). Therefore, Fb-CP-IRA is well-suited for real-time
TO.

Table 12: Average Computation Time (ACT) at each time t using the kinematic vehicle model with
Fb-CP-IRA (α = 0.2).

t 0 1 2 3 4 5 6 7 8 9
ACT 2.302 0.035 0.033 0.032 0.028 0.026 0.024 0.022 0.021 0.022

t 10 11 12 13 14 15 16 17 18 19
ACT 0.015 0.011 0.010 0.009 0.008 0.007 0.006 0.005 0.005 0.002

Furthermore, we explore a hybrid method of ARA and IRA to achieve a trade-off between average
cost and average computation time. Specifically, we define a switching time ts, such that when
t < ts, the IRA method is used, and when t ≥ ts, the ARA method is applied. Table 13 shows the
average cost and computation time using the kinematic vehicle model with different switching time ts
(α = 0.2). It can be observed that using IRA only at the initial time step results in a 66.56% reduction
in average cost. This is because the trajectory obtained at the initial time step determines the overall
path of the entire trajectory. As ts increases, the average cost naturally decreases. When ts reaches
11, further increases in ts no longer lead to significant reduction in the average cost. This is because,
in our scenario, the interaction between obstacles and the vehicle is most intensive at the middle of
the mission time. After t > 11, the obstacles and the vehicle have moved apart, significantly reducing
the collision risk, which results in ARA and IRA optimizing nearly identical trajectory. Although the
aforementioned hybrid method balances the trade-off between average cost and computation time,
as previously mentioned, executing IRA at the initial time step is the primary source of both cost
reduction and increased computation time.
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Table 13: Average cost and computation time using the kinematic vehicle model with different
switching time ts (α = 0.2).

ts 0 (ARA) 1 6 11 16 20 (IRA)
Average cost 15.13 5.06 3.74 2.90 2.89 2.89

Average computation time 0.078 0.118 0.121 0.129 0.129 0.131

J Sensitivity analysis of the calibration set division

Table 14 shows the average cost, average computation time and collision avoidance rate using
the kinematic vehicle model and Fb-CP-ARA (α = 0.2) with 10 different random calibration set
divisions. Specifically, for each experiment, we randomly divide the calibration dataset Dcal into
D1

cal and D2
cal. It can be observed that, for the ten random experiments, the standard deviation of

the average cost is 0.643, and the coefficient of variation is 4.2%, indicating relatively low volatility.
For the collision avoidance rate, its volatility is only 2.3%, and all values do not exceed the given
tolerance (80%). Therefore, the proposed method is insensitive to the calibration set division.

Table 14: Average Cost (AC), Average Computation Time (ACT) and Collision Avoidance Rate
(CAR) using the kinematic vehicle model and Fb-CP-ARA (α = 0.2) with 10 different random
calibration set divisions.

Index 1 2 3 4 5 6 7 8 9 10
AC 15.13 14.78 15.11 16.03 15.96 14.37 14.60 15.73 15.64 16.19

ACT 0.078 0.078 0.079 0.077 0.072 0.080 0.065 0.074 0.086 0.084
CAR 89.1% 89.2% 90.5% 88.2% 88.6% 88.4% 90.5% 89.2% 89.3% 89.9%

K An extension using the normalized nonconformity score

Stamouli et al. [2024] proposed a normalized nonconformity score, which can improve performance
compared to S-CP [Lindemann et al., 2023]. In this section, we incorporate this normalized noncon-
formity score into Fb-CP to further enhance its performance as follows. First, we still follow the
content outlined prior to Section 4.1. Instead of using the original nonconformity score as in Section
4.1, we can redefine the nonconformity score at time τ as follows to replace (5).

Rτ = max
t=0,...,τ−1

{
∥Yτ − Ŷτ |t∥

στ |t

}

R(i)
τ = max

t=0,...,τ−1

∥Y
(i)
τ − Ŷ (i)

τ |t ∥
στ |t

 ∀i = 1, ...,K

(68)

where
στ |t = max

j∈Itrain

∥Y (j)
τ − Ŷ (j)

τ |t ∥, ∀t, τ > t (69)

where Itrain = {j : Y (j) ∈ Dtrain} denotes the set of indices of the data in the training set
Dtrain. We note that, compared to the nonconformity score in Stamouli et al. [2024], we separate the
nonconformity score at each time τ , which facilitates the reallocation of the risk at each time step.
Similarly, given an allocated risk ατ for future time τ , the random variables Rτ , R

(1)
τ , ..., R

(K)
τ are

exchangeable and the prediction region with coverage guarantee is derived as follows.

P

{
max

t=0,...,τ−1

{
∥Yτ − Ŷτ |t∥

στ |t

}
≤ C1−ατ

τ

}
≥ 1− ατ (70a)

C1−ατ
τ = Quantile1−ατ (R

(1)
τ , ..., R(K)

τ ,∞) (70b)

Based on the (1− ατ )-coverage prediction region defined in (70a), the individual chance constraint
P {c(xτ , Yτ ) ≥ 0} ≥ 1− ατ can be reformulated as the following lemma.

34



Lemma K.1 (chance constraint) If Assumption 3.1 holds, the constraint function c is L-Lipschitz
continuous and max0≤s≤t{c(xτ , Ŷτ |t) − LC1−ατ

τ |t } ≥ 0 is satisfied where C1−ατ

τ |t = στ |tC
1−ατ
τ ,

then the individual chance constraint P{c(xτ , Yτ ) ≥ 0} ≥ 1− ατ is satisfied.

Proof: According to the (1− ατ )-coverage prediction region defined in 70a, we can obtain that

P

{
τ−1⋂
t=0

{
∥Yτ − Ŷτ |t∥

στ |t

}
≤ C1−ατ

τ

}
≥ 1− ατ (71)

According to that fact t ≤ τ − 1 and the definition, we have the following inequality.

P

{
t⋂

t=0

{
∥Yτ − Ŷτ |t∥ − C1−ατ

τ |t

}
≤ 0

}
≥ P

{
τ−1⋂
t=0

{
∥Yτ − Ŷτ |t∥ − C1−ατ

τ |t

}
≤ 0

}
≥ 1− ατ

(72)

Based on (72), we can further obtain the following inequality.

P
{
C1−ατ

τ |s − ∥Yτ − Ŷτ |s∥ ≥ 0
}
≥ 1− ατ , ∀s = 0, ..., t (73)

Note that the function c is L-Lipschitz continuous, the following inequality is obtained.

∥c(xτ , Yτ )− c(xτ , Ŷτ |t)∥ ≤ L∥Yτ − Ŷτ |t∥ =⇒ c(xτ , Yτ ) ≥ c(xτ , Ŷτ |t)− L∥Yτ − Ŷτ |t∥ (74)

If the constraint max0≤s≤t{c(xτ , Ŷτ |t)−LC1−ατ

τ |t } ≥ 0 is satisfied, we have the following inequality.

∃s = 0, ..., t c(xτ , Yτ ) ≥ L(C1−ατ

τ |s − ∥Yτ − Ŷτ |s∥) (75)

By combining (73) and (75), we ultimately obtain P{c(xτ , Yτ ) ≥ 0} ≥ 1− ατ .

Finally, it is sufficient to replace constraint (11e) in the TO problem (11) with max0≤s≤t{c(xτ , Ŷτ |t)−
LC1−ατ

τ |t } ≥ 0. For the posterior probability calculation and risk allocation method, since
we have separated the nonconformity score at each time step τ , our proposed framework re-
mains fully applicable. It is important to note that, as described in Section C, the constraint
max0≤s≤t{c(xτ , Ŷτ |t) − LC1−ατ

τ |t } ≥ 0 introduces mixed-integer variables into the TO problem,
which significantly increases the solution time, especially when using the IRA method and dealing
with nonlinear systems.

L Limitations

The main limitation lies in the reliance of the proposed method on the size of the calibration dataset.
As previously mentioned, to ensure coverage guarantees within the closed-loop framework, the
calibration dataset needs to be split into two parts: one for forward computation of prediction regions
and the other for backward computation of posterior probabilities. This requirement results in the
proposed method needing a larger calibration dataset compared to standard CP methods. However,
extensive data can be sourced from advanced high-fidelity simulators or robotic applications like
autonomous vehicles, where datasets are increasingly accessible. Thus we believe that the reliance
on data quantity will not present a substantial challenge.

M Broader Impacts

This work proposes a novel Fb-CP framework for trajectory optimization under uncertainty, with
provable safety guarantees and adaptive risk control. The method has potential positive societal
impacts on safety-critical applications such as autonomous vehicles, robotics, and disaster response,
by improving the reliability and efficiency of decision-making under uncertainty. It also contributes to
the development of trustworthy AI through its theoretical guarantees and feedback-based adaptability.

However, potential negative societal impacts include misuse in high-risk or adversarial settings
(e.g., autonomous weapons), privacy concerns from trajectory data collection, and overconfident
decisions if the system fails under distribution shift. To mitigate these risks, future deployments
should incorporate rigorous validation, privacy safeguards, and oversight mechanisms to ensure safe
and ethical use of the proposed method.
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