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ABSTRACT

Recent years, researchers focused on personalized federated learning (pFL) to ad-
dress the inconsistent requirements of clients causing by data heterogeneity in
federated learning (FL). However, existing pFL methods typically assume that
local data distribution remains unchanged during FL training, the changing data
distribution in actual heterogeneous data scenarios can affect model convergence
rate and reduce model performance. In this paper, we focus on solving the pFL
problem under the situation where data flows through each client like a flowing
stream which called Flowing Data Heterogeneity under Restricted Storage, and
shift the training goal to the comprehensive performance of the model throughout
the FL training process. Therefore, based on the idea of category decoupling, we
design a local data distribution reconstruction scheme and a related generator ar-
chitecture to reduce the error of the controllable replayed data distribution, then
propose our pFL framework, pFedGRP, to achieve knowledge transfer and per-
sonalized aggregation. Comprehensive experiments on five datasets with multiple
settings show the superiority of pFedGRP over eight baseline methods.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al. (2017)) is an emerging distributed machine learning
framework with privacy protection. In FL, the clients upload the locally trained model to the server
for aggregation to reduce communication bandwidth and real-time requirements while avoiding di-
rect exposure of potential sensitive data on the client, and the server aggregates the local models into
a global model and distributes it to each client. However, in real-world applications, the data distri-
bution within client and between clients varies over time(Li et al. (2020a)), and the accessible data on
the client side is often limited by storage space and relevant regulations and policies(Voigt & Buss-
che (2017), Vizitiu et al. (2019)). For example, in the context of the COVID-19 pandemic, health
institutions in different regions can use FL to conduct research while protecting data privacy(Yang
et al. (2020)), but the high mutation rate of the virus can lead to differences in the distribution and
trends of medical data across institutions (see Figure 1), and the original medical data usually cannot
be stored for a long time in medical institutions(Voigt & Bussche (2017)), meaning that FL methods
need to have strong robustness to be applied in such practical situation. We call the FL situation
where data flows like a stream on each client as ”Flowing Data Heterogeneity under Restricted Stor-
age”. Since the existence of a single global model can applicable to all clients is at odds with the

Figure 1: The proportion of virus types prevalent in various regions of Europe in July 2024, and the
variation of COVID-19 BA.2.86 strain in various parts of Europe from August 2023 to July 2024.
The data is sourced from https://gisaid.org/hcov19-variants/
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fact of the statistical heterogeneity of data observed between different clients(Sattler et al. (2020),
Kairouz et al. (2021)), FL methods should provide personalized global models for each client when
data heterogeneity is unknown, which is also known as personalized Federated Learning (pFL).

Personalized Federated Learning methods improve the performance of the global models on the
client side by trade-off the individual utility and collaborative benefits. Specifically, Chatterjee
(2020) found that the similar small-batch gradients can improve model generalization and acceler-
ate model convergence in machine learning, then Li et al. (2023) validated the conclusion above
in FL setting and found that the similarity of local gradients are inversely proportional to the data
heterogeneity between clients, meaning that clients with significant differences in data distribution
will get less benefits when collaborating. However, since clients can’t transmit real data to calcu-
lating data heterogeneity in FL setting, this trade-off is difficult to handle. Although previous pFL
works(Li et al. (2021), Collins et al. (2021), Zhang et al. (2021)) proposed different solutions from
multiple perspectives including model distance, partial aggregation and knowledge transfer, these
works are generally proposed based on the assumption of the static local data distribution which
leads to the following issues when directly applied to FL scenarios of Flowing Data Heterogeneity
under Restricted Storage: Firstly, existing pFL works typically estimate data heterogeneity between
clients based on the information from local models, meaning that these pFL methods can not focus
on the performance of the model on the inaccessible previous data, known as catastrophic forget-
ting(Kemker et al. (2018)). Thereby, the personalized global model obtained by the client may not
necessarily meet its requirements(Sabah et al. (2023)). Secondly, client may meet the data of the
same category that other clients have previously encountered during FL training, but the person-
alized global models obtained by the pFL methods under high data heterogeneity usually contains
less global information, thereby slowing down the convergence rate of the model during FL training
and reducing the generalization of the model on the data that may be encountered in the future (Zhu
et al. (2021)). The issues above mean that existing pFL methods often perform poorly when directly
applied to real-world scenarios.

Inspired by Continuous Learning (CL) based on generated replay(Zenke et al. (2017), Serrà et al.
(2018)), we consider combining the pFL method with the data distribution replayed by the gener-
ator to achieve the goals above. Although there are already many Federated Continuous Learning
(FCL) works(Qi et al. (2023), Ma et al. (2022), Zhang et al. (2023)) that combine FL with CL based
on generated replay, the optimization objective of these FCL methods is to obtain a single optimal
global model, meaning that directly applying these methods’ replay generation scheme based on
a single global generator to pFL methods with different optimization objective will result in two
problems: Firstly, a single global generator is often difficult to replay the local data distribution of
a specific client, making it difficult for pFL method to perform personalized aggregation based on
the replayed distribution. Secondly, due to the low gradient similarity between clients under high
data heterogeneity, the global generator requires more FL rounds to achieve convergence, there will
be significant replay error in the early and middle stages of FL training(Li et al. (2023)). Since
the global generator needs to mitigate catastrophic forgetting on its training by generated replay,
the replay error will be further expanded, ultimately reducing the effectiveness of mitigating catas-
trophic forgetting and personalized aggregation. Therefore, we need to redesign the generated replay
scheme to meet the requirements of pFL.

To address the challenges above, we propose our pFL framework: pFedGRP, to simultaneously
achieve the goals of personalized aggregation, mitigating catastrophic forgetting and improving
model generalization ability while protecting privacy. Due to the continuously arriving data over
time under the FL setting of Flowing Data Heterogeneity under Restricted Storage which making
it difficult to determine whether the model has converged, we focus on the comprehensive perfor-
mance of the pFL method on the current and previous data distribution during each FL communica-
tion round rather than the final performance of the model obtained at the end of FL training. Then
we attempt to solve the challenges above from both the data level and the model level. At the data
level, in order to achieve the goals of reducing replay errors and controlling replay distribution, we
design a local data distribution reconstruction scheme that effectively reduces the amount of replay
data, then propose a category decoupled data generator architecture for the scheme to achieving the
goals above and reducing training cost by partial updating. At the model level, we design a personal-
ized aggregation scheme with learnable weights to flexibly trade-off the collaborative relationships
between clients based on the low error local data distribution replayed by the local generator, then
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we design a local knowledge transfer scheme to improve the generalization and convergence rate of
the personalized global model. Our contributions can be summarized as follows:

1. We extend the optimization problem of pFL to the FL setting of Flow Data Heterogeneity under
Restricted Storage where the FL methods focus on the comprehensive performance of the global
model on all known local data distributions in each FL round during FL training.

2. We propose a local data distribution reconstruction scheme and a related category decoupled
data generator architecture, then propose our pFedGRP framework with personalized aggregation
and local knowledge transferring based on the replayed data distribution which is low error and
controllable.

3. We conducted comparative experiments between our method and various FL, pFL, FCL methods
on multiple benchmark datasets under various setting, and performed ablation experiments on our
method. The experimental results validated the effectiveness of our pFL framework.

2 RELATED WORK

2.1 FEDERATED LEARNING AND PERSONALIZED FEDERATED LEARNING

Federated Learning (McMahan et al. (2017)) is a distributed machine learning paradigm that does
not require the transmission of real data, the challenge faced in FL is how to aggregate the global
model that performs well on all clients when the data distributions between clients are Non-IID. One
approach to solving this challenge is to improve the performance of the global model by optimizing
the knowledge transfer within the model space. Based on this approach, Li et al. (2020b) added a
regularization term that penalizes the deviation between the local model parameters and the global
model parameters during local training to improve convergence performance; Li et al. (2023) pro-
posed fine-tuning the trainable aggregation weight on the validation set of the server to improve the
generalization ability of the global model. Another approach to solving this challenge is to control
the degree of collaboration between clients to improve the performance of the global model on each
client, which is also known as personalized federated learning methods. Based on this idea, Marfoq
et al. (2021) considered local data distribution as a weighted mixture of multiple underlying distri-
butions, and calculates the weights of each sub model corresponding to each underlying distribution
based on a EM algorithm on the client’s local dataset; Ye et al. (2023) proposed constructing person-
alized client collaboration graphs based on cosine similarity of parameters between local models.
However, the existing FL and pFL methods are designed based on the assumption of static local
data distribution, meaning that they are difficult to achieve good performance when applied to the
FL situation of Flowing Data Heterogeneity under Restricted Storage.

2.2 FEDERATED CONTINUE LEARNING BASED ON GENERATED REPLAY

The goal of Federated Continue Learning based on generative replay is to mitigate the negative
impact of client environment changes on global model performance while protecting privacy, the
challenges faced in FCL are mitigating catastrophic forgetting and transferring knowledge between
tasks. One approach to addressing these challenges is to directly combine FL with CL by Weighted
aggregating the local models obtained from local CL to achieve FCL. Based on this approach, Yoon
et al. (2021) proposed decomposing the model into a weighted combination of global parameters
for learning general knowledge and adaptive parameters related to the task to improve model per-
formance; Liu et al. (2023) proposed a transformer based partial model component enhancement
scheme to alleviate catastrophic forgetting Another approach to addressing these challenges is to
obtain global knowledge through FL to assist in local CL. Using this approach, Babakniya et al.
(2023) proposed a knowledge distillation scheme that trains a generator based on a global model
on server to generate high-quality data for local replay of global features; Wuerkaixi et al. (2024)
proposed to train local modes and local generator alternately based on the real data and the replay
features of the global generator during the local training on the client side to extract data features,
and send the local generator to the server for aggregation to update the global generator. Another
way to addressing these challenges is to use model distillation to enable local models to acquire
knowledge from other models. Based on this way, Dong et al. (2022) designed a distillation scheme
based on class aware gradient compensation loss and class semantic relation distillation loss to en-
sure local cross task inter class relationship consistency; Qi et al. (2023) proposed a knowledge
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distillation scheme based on the ACGAN model which uses generative replay for feature alignment
and consistency enhancement during local training and global fine-tuning stages. Compared with
the works above, the goal of our method is to customize personalized global models for each client
rather than training a model that performs well globally, meaning that these works are basically
orthogonal to our work.

3 PRELIMINARY

In this section, we first define the symbols to be used in our work, then elaborate on the optimization
problem we need to solve. For the representation of the models, we use C to represent the model
used to solve practical problems (referred to as the Task Model), with its parameters denoted as θC ,
and use A to represent the model used to generate replay (referred to as the Auxiliary Model), with
its parameters denoted as θA. For the representation of the distribution and the data, we use P =
(X ,Y) to represent the joint distribution P of the distributions X and Y , use P1&P2 to represent
the weighted mixture of two distributions P1,P2 based on the data volume of each distribution, use
&n

i=1Pi to represent the weighted mixture of n distributions P1, ...,Pn based on the data volume of
each distribution, and use D1 ∪ D2 to represent the merging of two datasets D1,D2.

3.1 NOTATIONS AND PROBLEM FORMULATION

Federated Learning and Personalized Federated Learning: Assuming there are n clients par-
ticipating in FL, the set of clients is denoted as C = {C1, . . . , Cn}. For each client Ci ∈ C, we
use PCi = (XCi ,YCi) to represent its local data distribution, and use Ci and C∗,i to represent the
local task model uploaded to the server and the global task model received from the server whose
model parameters are denoted as θCi and θC∗,i . The Federated Learning methods aggregate the local
task model parameters {θCi

}ni=1 of each client to obtain a global task model Cg whose parameter
is denoted as θCg

that minimizes the expected value of task driven loss L(·, ·) on the local data
distributions {PC1

, . . . ,PCn
} (i.e. θC∗,i = θCg

). The personalized Federated Learning methods ag-
gregate a personalized global task model Cg,i whose parameter is denoted as θCg,i

for each client Ci
that minimizes the expected value of L(·, ·) on PCi

(i.e. θC∗,i = θCg,i
). Therefore, the optimization

objectives of FL and pFL can be expressed as the following F1:

F1 =

{
min
θC∗,i

E
(x,y)∼PCi

[
L(θC∗,i , (x, y))

]
,∀Ci ∈ C

}
(1)

However, most existing methods on FL and pFL typically assume that each local data distribution
PCi

are static in all T communication rounds of FL, that is, for any FL round t, t′ ∈ {1, ..., T}, it
satisfies Pt

Ci
= Pt′

Ci
,∀Ci ∈ C. Therefore, these methods usually only focus on the performance of

the global model on the data distribution of currently accessible data.

Continual Learning and Federated Continual Learning: The Continuous Learning setting in a
centralized training environment consists of a sequence T = {T 1, . . . , T T } of T tasks in time
series. when executing the t-th task T t ∈ T , the real-time data distribution is denoted as Pt =

(X t,Yt), and the actual data distribution is a mixture of the real-time data distributions &t
t′=1Pt′

of the previous t tasks, and it will not be possible to access the real data of the previous t − 1 tasks
during task T t. The goal of CL at each moment t is to obtain a task model Ct that performs well
in the current task and can maintain the performance on all previous tasks. Federated Continuous
Learning typically refers to the FL where the client’s local training process is in a CL setting, and
the task switching on the client occurs at the beginning of each FL round. If the instant local data
distribution of client Ci in the t-th FL round is defined as Pt

i , the local data distribution Pt
Ci

of client
Ci is a weighted mixture of the real-time local data distributions of the previous t FL rounds (i.e.
Pt
Ci

= &t
t′=1Pt′

i ). Due to the fact that different clients Ci, Cj typically work in different working
environments, their instant local data distributions Pt

i ,Pt
j are usually different during the same FL

round t. The goal of FCL is to aggregate a global task model Ct
g based on the locally trained model

parameters {θCt
1
, . . . , θCt

n
} of each client in each FL round t which can minimize the expected value

of L(·, ·) on the local data distributions {Pt
C1
, . . . ,Pt

Cn
} of all clients. Using θCt

g
to represent the

parameters of Ct
g on t-th FL round, the optimization objective of FCL is represented as the following

F2:

4
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F2 =

{
min
θCt

g

E
(x,y)∼Pt

Ci

[
L(θCt

g
, (x, y))

]
,∀Ci ∈ C,∀t ∈ {1, ..., T}

}
(2)

Problem Formulation: To simplify the modeling of Flowing Data Heterogeneity under Restricted
Storage, we consider the case where the local distribution on the client switches with FL rounds
which is similar to the definition of FCL. That is, the instant local data distribution Pt

i of each client
Ci within any FL round t ∈ {1, . . . , T} is static. At this point, the optimization objective of the pFL
method is extended to aggregate a personalized global model Ct

g,i for each client Ci that minimizes
the expectation of L(·, ·) on its local data distribution Pt

Ci
. Using θCt

g,i
to represent the parameters

of Ct
g,i on t-th FL round, the optimization objective of pFL can be extended as the following F3:

F3 =

{
min
θCt

g,i

E
(x,y)∼Pt

Ci

[
L(θCt

g,i
, (x, y))

]
,∀Ci ∈ C,∀t ∈ {1, ..., T}

}
(3)

3.2 OPTIMIZATION PROBLEM

The challenges of solving the optimization objective F3 lies in the following two points: Firstly,
each client Ci needs to alleviate the catastrophic forgetting caused by the inability to access the real
samples corresponding to {P1

i , . . . ,P
t−1
i } during local training in each FL round t ∈ {2, . . . , T}.

Secondly, the local data distribution Pt
Ci

on each client Ci may vary with the FL round t, meaning
that a mechanism needs to be designed to estimate the distribution changes between clients to help
the server perform personalized aggregation for each client Ci.
To address the first challenge, inspired by the generation replay based CL methods, we configure
an auxiliary model Ai for each client Ci that can generate replay the history feature distributions.
Specifically, use XAi

to represent the replayed feature distribution of the auxiliary model Ai, before
the local training of task T t

i begins, the local replay distribution (XAt−1
i

,Yt−1
Ci

) composed of XAt−1
i

which replayed by At−1
i and the local label distribution Yt−1

Ci
= &t−1

t′=1Yt′

i is close to the local data
distribution Pt−1

Ci
at task T t−1

i . Therefore, client Ci can train the local task model Ct
i on the data

distribution {(XAt−1
i

,Yt−1
Ci

)&Pt
i } to alleviate the catastrophic forgetting on task T t

i , then obtain

the optimal local task model Ct,∗
i whose model parameters are denoted as θCt,∗

i
. Finally, client Ci

updates the auxiliary model At−1
i to At

i to replay the approximation of the local feature distribution.

To address the second challenge, we propose using auxiliary model At
i to replay the approximation

of Pt
Ci

(i.e. (XAt
i
,Yt

Ci
)) on the server to aggregate a personalized global model for client Ci. Without

loss of generality, we concretize the collaborative relationship between client Ci and other n − 1
clients through weight vector W t

i = {wt
i,1, . . . , w

t
i,n}, then the server optimizes the aggregated

weights for client Ci by minimizing the task driven loss of the personalized global model parameter∑n
j=1 w

t
i,jθCt,∗

j
which aggregated from the optimal task model parameters {θCt,∗

1
, . . . , θCt,∗

n
} on

(XAt
i
,Yt

Ci
). Finally, server aggregates the personalized global task model Ct

g,i for client Ci based
on the optimal aggregation weight W t,∗

i = {wt,∗
i,1 , . . . , w

t,∗
i,n} (i.e. θCt

g,i
=

∑n
j=1 w

t,∗
i,j θCt,∗

j
). Now

The optimization problem F3 can be transformed into the following optimization problem F4 for
solving:

F4 =

min
W t

i

E
(x,y)∼

{
(XAt

i
,Yt

Ci
)
}
L

 n∑
j=1

wt
i,jθCt,∗

j
, (x, y)

 ,∀Ci ∈ C,∀t ∈ {1, ..., T}

 (4)

where θCt,∗
i
← argmin

θCt
i

E
(x,y)∼

{
(X

A
t−1
i

,Yt−1
Ci

)&Pt
i

}
[
L(θCt

i
, (x, y))

]
; s.t.

n∑
j=1

wt
i,j = 1

However, there are still two challenges in efficiently solving optimization problem F4: Firstly, the
auxiliary model usually cannot fully fit the actual feature distribution(Feng et al. (2021)). Especially,
as the number of tasks increases, it may underfit the distribution which caused by insufficient model
parameters(Bubeck & Sellke (2021)), ultimately affecting the effectiveness of local training and
personalized aggregation(Wang et al. (2024), Domingos (2012)). Secondly, even if the auxiliary
model has sufficient parameters to fit the local feature distribution, it still needs to alleviate its
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catastrophic forgetting on training by generating replay, and the larger auxiliary model also require
longer training time and more computing resources to fit new feature distributions. In the next
chapter, we will elaborate on how to solve the optimization problem F4 in the face of the two
challenges above.

4 METHODOLOGY

4.1 PROBLEM DECOMPOSITION

To address the two challenges mentioned above, we design a local data distribution reconstruction
scheme that can effectively reduce the amount of replay data and an auxiliary model architecture
corresponding to this scheme to improve the generate replay capability of the auxiliary model while
reducing additional training costs.

Local Data Distribution Reconstruction Scheme: In machine learning, the statistical heterogene-
ity of data is mostly reflected in categories(Collins et al. (2021)). Thus, the local data distribution
Pi = (Xi,Yi) on client Ci can be regarded as the result of weighted mixing of the feature distri-
bution Xi,c=y (c refers to category) corresponding to data labeled y ∼ Yi based on the likelihood
of the occurrence of that type of data. Using Y t′

i to represent the vector composed of the number
of real data of each class in task T t′

i for client Ci, When the distribution replayed by the auxiliary
model is close to the real feature distribution, client Ci can mix the data generated by At−1

i based
on the vector Y t−1

Ci
=

∑t−1
t′=1 Y

t′

i composed of the number of each type of real data that appeared in
the previous t− 1 tasks with the real data of task T t

i to achieve the effect of approximating the data
distribution {(XAt−1

i
,Yt−1

Ci
)&Pt

i } to the local data distribution Pt
Ci

= &t
t′=1Pt′

i . However, when
t is large, this simple and crude generation replay method may lead to problems such as a large
amount of training data and a small proportion of real data which bring more feature distribution
error will ultimately affect the local training effect of the task model Ct

i .

To address the challenge above, we propose a Local Data Distribution Reconstruction Scheme based
on label quantity scaling: In task T t

i , client Ci calculates the vector Y t
Ci

=
∑t

t′=1 Y
t′

i composed
of the number of each type of data that has appeared in total t known tasks, then proportionally
shrink Y t

Ci
to a quantity where only one type of real data exists which is equal to the number of

that type of data in Y t
i . Using Y t,′

Ci
to represent the scaled down result of Y t

Ci
, the vector Y t

i,A

composed of the number of supplements for each type of data is the difference between Y t,′

Ci
and

Y t
i (i.e. Y t

i,A = Y t,′

Ci
−Y t

i ). However, when the client faces situations where the distribution changes
significantly due to encountering new categories of data in a new task, the local label scaling scheme
above will be difficult to reduce the amount of generated data then introduces significant distribution
error to the local training of task model. Considering that the goal of generating replays is to alleviate
the catastrophic forgetting of the task model during local training rather than further improving the
task model’s performance, we limit the number of generated data for each type to no more than the
quantity of the most abundant type of real data in Y t

i . The flowchart of our local data distribution
reconstruction scheme is shown in Figure 2.

count

𝑌𝑌𝑖𝑖𝑡𝑡
label

count

𝑌𝑌𝒞𝒞𝑖𝑖
𝑡𝑡−1

count

𝑌𝑌𝒞𝒞𝑖𝑖
𝑡𝑡

label label

count

𝑌𝑌𝒞𝒞𝑖𝑖
𝑡𝑡,′ = 𝑌𝑌𝑖𝑖,𝐴𝐴𝑡𝑡 + 𝑌𝑌𝑖𝑖𝑡𝑡

label

𝑌𝑌𝑖𝑖,𝐴𝐴𝑡𝑡
label

scaling
maximum

Figure 2: Flowchart of our local data distribution reconstruction scheme.
Auxiliary Model Architecture: As mentioned above, using a single auxiliary model will lead to
insufficient model fitting ability(Bubeck & Sellke (2021)) and the need to alleviate the catastrophic
forgetting effect of the auxiliary model itself. Given that there is currently no generative model
that simultaneously possesses the characteristics of small model size, short training time and good
generalization performance (Cao et al. (2023)), we consider that using a single auxiliary model to
record the features of all types of data during local training on the client side is inefficient. Therefore,
we propose decoupling the auxiliary model with respect to labels by establishing an auxiliary sub
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model for each type of data encountered on the client. Specifically, in task T t
i , the auxiliary model

At
i on client Ci is a set of auxiliary sub model At

i,c corresponding to each category c ∈ Yt
Ci

, denoted
as At

i =
{
At

i,c

}
c∈Yt

Ci

. Due to the small auxiliary sub model At
i,c only needs to record the feature

Xi,y=c of a single category c, At
i,c hardly needs to consider alleviating catastrophic forgetting with

generating replay when training with the real data of category c, and it can perform transfer learning
on the previously trained auxiliary sub model of category c on client Ci or other client Cj , j ̸= i to
effectively reduce the demand for computing resources and accelerating local training.

4.2 PFEDGRP

Based on the local data distribution reconstruction scheme and the label decoupled auxiliary
model architecture mentioned above, we propose our pFL framework: pFedGRP, and take the
t ∈ {1, . . . , T} FL round as an example to illustrate its process.

Local Training: Client Ci ∈ C performs local training on task T t
i in the t-th FL round, and has three

models before training: The auxiliary model At−1,∗
i obtained by client Ci through local training in

the previous FL round, the personalized global task model Ct−1
g,i and the global task model Ct−1

g
aggregated by the server in the previous FL round. In FL round t, client Ci first calculates the
vector Y t

i,A composed of the required number of generated data for each category based on the local
data distribution reconstruction method above, then uses the auxiliary model At−1,∗

i to generate a
replay dataset Dt−1

Ai
based on Y t

i,A, later mix it with the real data Dt
i ∼ Pt

i of task T t
i to form the

training datasetDt−1
Ai
∪Dt

i for the local task model. Considering that Ct−1
g,i obtained by personalized

aggregating is often difficult to contain a large amount of global information, we use the Ct−1
g to

initialize the local task model Ct
i for local training while inheriting more global information, and

align the outputs of Ct
i and Ct−1

g,i on the previously encountered categories of data to reduce feature
drift and forgetting of previous tasks while preventing Ct

i from distinguishing different categories
of data based on differences between replay data and real data. Specifically, Ct

i needs to minimize
the difference between the output of Ct−1

g,i and its output on the data of the previous category c ∈
Yt−1
Ci

.We define the alignment loss Lalign based on mean square error (MSE) as follows:

Lalign

(
Ct

i , C
t−1
g,i , (x, y)

)
= 1y∈Yt−1

Ci

MSE
(
Ct

i (x), C
t−1
g,i (x)

)
(5)

Where C(x) represents the output result of the model C on data x, MSE(·, ·) represents the mean
square error between two inputs, and 1∗ represents the indicative function with condition *. Finally,
the local optimization objective is expressed as the following optimization objective F5:

F5 = min
θCt

i

 ∑
(x,y)∈

{
Dt−1

Ai
∪Dt

i

}
[
L(θCt

i
, (x, y)) + λalign · Lalign

(
Ct

i , C
t−1
g,i , (x, y)

)] (6)

Where λalign controls the weight of alignment loss. Solving the optimization problem F5 can obtain
the parameters θCt,∗

i
of the local optimal task model Ct,∗

i . Then, the client Ci extracts the real data
of each category c ∈ Yt

i fromDt
i to train the corresponding auxiliary sub models while the auxiliary

sub models of other categories directly use the previously trained results. Defining the real dataset
corresponding to the category c ∈ Yt

i isDt
i,y=c, the model parameter of the auxiliary sub model At

i,c
is θAt

i,c
, and the training loss function is LA, then the update process of the auxiliary sub models is

expressed as the following optimization objective F6:

F6 =

 min
θ
A

t−1,∗
i,c

 ∑
(x,y)∈Dt

i,y=c

[
LA(θAt−1,∗

i,c
, x)

] ,∀c ∈ Yt
Ci

 (7)

Solving the optimization problem F6 can obtain the parameter set {θAt,∗
i,c
}c∈Yt

i
of the optimal aux-

iliary sub model set {At,∗
i,c}c∈Yt

i
. For other known categories c′ /∈ Yt

i , we directly use At−1,∗
i,c′

obtained from the previous FL round as the optimal auxiliary sub model At,∗
i,c′ . For the case where

encountering data of a new category c′′, due to client Ci uninitialized the auxiliary sub model pa-
rameter θAt−1,∗

i,c′′
, it will try to request the parameter cache θAt−1,∗

j,c′′
stored in the server uploaded by

7
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other client Cj for transfer learning. If other clients have also not encountered data corresponding to
category c′′, a longer initialization training is performed on client Ci to obtain θAt−1,∗

i,c′′
.

Personalized Aggregation: On the server side, the server receives the local task model parameters
{θCt,∗

1
, . . . , θCt,∗

n
}, local auxiliary sub model parameters

{
{θAt,∗

1,c
}c∈Yt

1
, . . . , {θAt,∗

n,c
}c∈Yt

n

}
, and lo-

cal label distribution {Yt
C1
, . . . ,Yt

Cn
} uploaded by all n clients in in the t-th FL round, and then

solves the optimal personalized aggregation weight for each client Ci ∈ C. Without loss of gen-
erality, for client Ci, the server first updates the auxiliary model cache corresponding to client Ci
with auxiliary submodel parameters {θAt,∗

i,c
}c∈Yt

i
to synchronize At,∗

i to the server, then samples the

dataset Dt
Ai

from the replay distribution (XAt,∗
i
,Yt

Ci
), finally minimizes the task driven loss L(·, ·)

of the aggregated model in Dt
Ai

, expressing as the following optimization objective F7:

F7 = min
W t

i

∑
(x,y)∈Dt

Ai

L

 n∑
j=1

wt
i,jθCt,∗

j
, (x, y)

 , s.t.wt
i,j ≥ 0,∀j;

n∑
j=1

wt
i,j = 1 (8)

Solving the optimization problem F7 can obtain the optimal personalized aggregation weight
W t,∗

i , then server aggregates the personalized global task model Ct
g,i for client Ci (i.e. θCt

g,i
=∑N

j=1 W
t,∗
i,j θCt,∗

j
): Finally, the server uses local optimal models to average aggregate a global

task model Ct
g as the initialization model of the next round of local training for each client (i.e.

θCt
g
= 1

n

∑n
i=1 θCt,∗

i
). The algorithm details and flowchart of pFedGRP can be found in Appendix

C.1, and more discussion on Appendix F.

5 EXPERIMENT

5.1 EXPERIMENTAL PREPARATION

Datasets: We construct the FL setting of Flowing Data Heterogeneity under Restricted Storage
based on existing datasets: For all datasets, we set the total number of clients to 10. For the MNIST,
FashionMNIST and Cifar10 dataset with 10 categories, each client randomly divides these 10 cat-
egories into 5 tasks that each task consists of data from two categories and each category contains
200 real data. For the Cifar100 dataset with 100 categories and the EMNIST-ByClass dataset with
62 categories, each client randomly divides the categories into disjoint tasks by grouping them into
two categories (i.e. 50 tasks for the CiFar100 dataset and 31 tasks for the EMNIST-ByClass dataset),
with each category contains 200 real data. In our experiment, two adjacent tasks on the client switch
after the server sends the aggregated model. Each training data in the dataset only appears in one FL
round on each client, but the corresponding test data will be used in the testing of subsequent tasks.
We provide detailed information on the dataset and training settings in Appendix A. For pFedGRP,
We selected two classic generative replay models as auxiliary sub models based on the complexity
of the dataset: the WGAN-GP(Cohen et al. (2017)) model with a network structure which is similar
to DCGAN(Radford et al. (2016)) is chosen for MNIST series dataset, and the DDPM(Ho et al.
(2020)) model sampled with DPM solver(Lu et al. (2022)) is chosen for Cifar series dataset.

Baselines and Metrics: We compare our pFedGRP with various FL, pFL and FCL baseline meth-
ods. For FL methods, we choose two classic methods: FedAVG(McMahan et al. (2017)), Fed-
Prox(Li et al. (2020b)) and a FL concept drift method FedDrift(Jothimurugesan et al. (2023)); For
pFL methods, we choose a classic FedEM(Marfoq et al. (2021)) and a newer pFedGraph(Ye et al.
(2023)); For FCL methods, we choose four methods based on generate replay and model distilla-
tion: FedCIL(Qi et al. (2023)), TARGET(Zhang et al. (2023)), MFCL(Babakniya et al. (2023)),
AF-FCL(Wuerkaixi et al. (2024)). We provide details of these methods in Appendix B. For evalua-
tion metrics, we define Instant Average Accuracy (IAA) to measure the performance of each method
in the current FL round, and calculate the Average Accuracy (AA) and Average Forgetting Measure
(AFM) based on IAA to evaluate the overall effectiveness of the methods above. In short, the higher
the average accuracy, the better the performance of the method. When the average accuracy of the
two methods is close, the lower the average forgetting metric, the stronger the robustness of the
method. We provide details of the metrics in Appendix C.2.
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5.2 BASELINE EXPERIMENTS

We designed experiments based on the previous FL settings to compare pFedGRP with baseline FL
methods in three scenarios. The first two scenarios are conducted on the MNIST, FashionMNIST,
and CiFar10 datasets, the last scenario is conducted on the EMNIST-ByClass and Cifar100 datasets.
Due to the FL setting of Flowing Data Heterogeneity under Restricted Storage where the client is
unable to access the real data encountered in the previous task, each client can build up to 150 tasks
on the MNIST and FashionMNIST datasets and up to 125 tasks on the Cifar10 dataset.

FL with Tasks Gradually Changing: In this setting, each client randomly selects two tasks from its
five tasks (such as T1, T2) to form a task loop, that is, as the FL rounds increase, the client executes
T1, T2, T1, T2,. . . . . ., and client randomly selects another task (such as T3) to replace one task in the
task loop after executing 30 tasks (Cifar10 is 24 tasks). If task T1 is replaced, the task loop consists
of T2 and T3. This setting corresponds to the common situation where the data distribution changes
slowly in real-time. Our experimental results are reflected in Table 1 below:

Table 1: Baseline Experiment Results on FL with Tasks Gradually Changing 
 

FL methods 
MNIST FashionMNIST Cifar10 

AA AFM AA AFM AA AFM 
FedAVG 51.235 11.265 51.390 5.786 23.788 5.539 
FedProx 57.702 8.900 56.618 4.969 23.472 4.391 
FedDrift 22.071 8.641 21.008 6.999 18.268 6.893 
FedEM 51.530 4.919 50.539 3.767 26.356 3.718 

pFedGraph 54.597 10.026 54.49 4.164 22.638 4.090 
FedCIL 76.692 0.522 74.167 0.573 31.222 0.839 

TARGET 77.928 1.110 72.078 0.801 29.978 0.797 
MFCL 76.167 0.306 70.852 0.387 29.135 0.280 

AF-FCL 77.033 0.514 73.109 0.510 29.938 0.369 
pFedGRP(our) 87.455 0.472 83.871 1.051 45.555 1.741 

 
The reason why pFedGRP’s overall performance can significantly lead other FL methods is that it
can maintain the performance of the task model based on personalized aggregation before the FL
model converges. After the FL model converges, its performance is similar to other FCL methods,
and this performance is closely related to the replay effect of the auxiliary model. the IAA variation
chart and corresponding experimental analysis are shown in Appendix E.1.

FL with Tasks Circulating: In this setting, each client grouped its five tasks into a task cycle, that is,
as the FL rounds increased, the client executed T1, T2, T3, T4, T5, T1,. . . . . . This setting corresponds
to the situation where the data distribution changes extremely drastic which can better demonstrate
the robustness of various FL methods. Our experimental results are reflected in Table 2 below:

Table 2: Baseline Experiment Results on FL with Tasks Circulating 
 

FL methods 
MNIST FashionMNIST Cifar10 

AA AFM AA AFM AA AFM 
FedAVG 67.780 7.961 54.681 4.333 21.061 3.129 
FedProx 72.115 5.658 57.530 3.568 19.181 2.550 
FedDrift 16.528 2.476 15.877 1.898 14.257 0.748 
FedEM 70.729 5.990 56.390 3.596 19.083 3.180 

pFedGraph 70.126 6.077 56.984 5.099 18.521 3.104 
FedCIL 79.660 1.063 72.181 0.731 24.454 0.850 

TARGET 77.255 0.975 70.355 1.676 18.644 0.423 
MFCL 78.025 0.320 70.111 0.572 19.695 0.328 

AF-FCL 78.740 0.902 70.890 0.667 21.984 0.561 
pFedGRP(our) 89.437 1.277 81.845 0.845 40.595 0.790 

 The reason why the comprehensive performance of pFedGRP can significantly lead other FL meth-
ods is similar to the previous experiment, and the IAA variation chart and corresponding experimen-
tal analysis are shown in Appendix E.2.
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FL under High Data Heterogeneity: We compared the performance of the above method under
high data heterogeneity settings on the Cifar100 dataset and the EMNIST ByClass dataset. In this
scenario, each client needs to complete a task loop consisting of all disjointed categories in the
settings (Cifar100 includes 50 tasks and EMNIST-ByClass includes 31 tasks). At this point, all FL
methods cannot converge, which better reflects the robustness of these methods. Our experimental
results are shown in Table 3 below:

Table 3: Baseline Experiment Results on FL under High Data Heterogeneity 
 

FL methods 
EMNIST-ByClass Cifar100 

AA AFM AA AFM 
FedAVG 5.962 1.382 2.597 0.578 
FedProx 6.233 1.418 2.573 0.563 
FedDrift 3.204 0.603 2.065 0.399 
FedEM 5.419 1.038 2.601 0.526 

pFedGraph 7.364 2.718 3.331 1.330 
FedCIL 5.754 0.971 1.867 0.327 

TARGET 4.394 0.783 1.876 0.313 
MFCL 4.917 0.658 1.530 0.213 

AF-FCL 5.243 0.572 1.660 0.337 
pFedGRP(our) 15.483 3.246 18.061 1.801 

 
It can be seen that pFedGRP has stronger robustness in the case of not convergence, and the IAA
variation chart and corresponding experimental analysis are shown in Appendix E.3.

More Experiments: We also conducted ablation experiments on pFedGRP framework and ex-
plored the performance changes of various FL methods under the setting of FL with Tasks Gradu-
ally Changing as the correlation between tasks gradually increased to verify the robustness of FL
methods. Specific experimental details and results can be found in Appendix D.

6 CONCLUSION

In this paper, we attempt to solve the challenges of applying the pFL methods to the FL situation of
Flow Data Heterogeneity under Restricted Storage. Based on the idea of low error generated replay,
we propose a local data distribution reconstruction scheme that effectively reduces the number of
generated data and a related class decoupled data generator architecture to achieve the goal of re-
ducing data distribution replay errors and controlling replay data distribution. Then we propose our
pFL framework: pFedGRP which composed of a personalized aggregation scheme based on replay
distribution and a local knowledge transfer scheme improving the generalization of the task model.
The effectiveness of pFedGRP has been validated in experiments with multiple datasets and settings.
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A DATASETS

We use existing datasets to build the local dataset on the FL setting of Flowing Data Heterogeneity
under Restricted Storage for each client. In our setting, the time interval between the server sends
the global task model to the client is one FL round. The client executes one task in each FL round,
and the data categories of tasks in the same FL round may be different between clients. The data cat-
egories of adjacent FL round tasks within the client are nonoverlapping in the baseline experiments.
Each training data in the dataset only appears in one FL round on each client, but the corresponding
test data will be used in the testing phase of the subsequent tasks. Therefore, we split each type
of data on the training dataset into nonoverlapping parts, and proportionally split testing dataset as
the test data for those corresponding parts. Each client includes the testing data corresponding to
the new task’s training data parts in its local test set when executing the new task. The schematic
diagram of the partitioning of local training data and testing data are shown in Figure 3:
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Figure 3: Schematic diagram of the partitioning of local training data and testing data.

The specific information of each dataset we used for the experiment is as follows:

MNIST. The MNIST dataset(LeCun et al. (1998)) is a 10 categories numerical classification dataset
with 60000 training samples and 10000 test samples, and each sample is a single channel grayscale
image with a size of 28x28 containing a number from 0 to 9. In our baseline experimental setup, the
total number of clients is 10, each client contains 5 tasks, each task consists of 2 random and non
repeating types of data with 200 data in each type.

FashionMNIST. The FashionMNIST dataset(Xiao et al. (2017)) is a clothing classification dataset
consisting of 10 categories, each category with 6000 training samples and 1000 testing samples,
and all samples are single channel grayscale images with a size of 28x28. Compared to the MNIST
dataset, FashionMNIST dataset includes projections of objects from different perspectives which
making it more challenging in terms of image quality and diversity. Our experimental setup on the
FashionMNIST dataset is the same as that on the MNIST dataset.

EMNIST-ByClass. The EMNIST-ByClass dataset(Cohen et al. (2017)) is a dataset consisting of 62
imbalanced categories of handwritten characters and numbers with 814255 grayscale images of size
28x28. Compared with the MNIST dataset, EMNIST-ByClass dataset contains more categories, and
its English character part includes uppercase and lowercase characters which increases the difficulty
of classification. We strictly adhere to the definition of federated class incremental learning on this
dataset: The total number of clients is 10, each client contains 31 tasks consisting of randomly non
repeating two types of data with 200 training data and 100 testing data for each type.

CIFAR10. The CIFAR10 dataset(Krizhevsky & Hinton (2009)) is a real image classification dataset
consisting of 10 categories of 32x32 color RGB images, each category containing 5000 training
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images and 1000 test images. Compared with the MNIST series dataset, CIFAR-10 contains objects
in the real world which have not only have a lot of noise but also different proportions and features,
making data classification more difficult. Our experimental setup on the CIFAR10 dataset is the
same as that on the MNIST dataset.

CIFAR100. The CIFAR100 dataset(Krizhevsky & Hinton (2009)) is a real image classification
dataset consisting of 20 super categories, each super category has 5 categories and contains of 32x32
color RGB images. Each category contains 500 training images and 100 test images. Compared with
the CIFAR10 dataset, the CIFAR100 dataset has a larger number of categories, and the images of
each category within the same super category are more similar which increases the difficulty of
classification. We strictly adhere to the definition of federated class incremental learning on this
dataset: The total number of clients is 10, each client contains 50 tasks consisting of randomly non
repeating two types of data with 200 training data and 100 testing data for each type.

B BASELINES DETAILS

We compare our personalized federated learning framework pFedGRP with following two FL meth-
ods, two pFL methods and four FCL methods. The FL methods and pFL methods do not have the
ability to remember information related to historical tasks while the FCL methods can solve catas-
trophic forgetting and statistical heterogeneity problems. We additionally incorporated FL and pFL
methods combined with our generative replay framework in the ablation experiment to validate the
effectiveness of the personalized aggregation scheme of pFedGRP.

FedAVG: FedAVG(McMahan et al. (2017)) is a representative federated learning method, in which
the server aggregates the task model parameters uploaded by each client based on the size of the
client’s local training set to obtain a global task model.

FedProx: FedProx(Li et al. (2020b)) is a classic federated learning method improved based on
FedAVG, which adds a proximal term to the local training loss of each client to avoid the local task
model deviating too much from the global task model. The aggregation strategy of the server on
FedProx is consistent with FedAVG.

FedDrift: FedDrift(Jothimurugesan et al. (2023)) is a clustering federated learning method designed
for distributed concept drift which divides the global data distribution into multiple domains. At the
beginning of each FL round, clients calculate the local loss of each domain’s global task model and
compare the minimum loss with the last FL round’s minimum loss to select an existing domain or
create a new domain, then the server calculates the inter domain drifts based on the local loss and
merges the domains with smaller drift by aggregating the corresponding models. Afterwards, clients
perform local training on the task model of theirs corresponding domain and send local task model
to server to aggregates global task model for each domain.

FedEM: FedEM(Marfoq et al. (2021)) is a classic personalized federated learning method that pro-
poses the local data distribution is a weighted mixture of several underlying data distributions, and
several task sub models are trained on each client to fit these underlying distributions. Then, the
client performs EM steps on the local dataset based on several global task sub models aggregated by
the server through FedAVG’s strategy to calculate the personalized weights of each sub model.

pFedGraph: pFedGraph(Ye et al. (2023)) is a relatively new personalized federated learning
method whose server uses the cosine difference degree between the local task model parameters
to solve the inter client collaboration graph that can balance the relationship between individual
utility and collaboration benefit to provide personalized aggregation of global task models for each
client. During local training, the cosine similarity between the local task model and the personalized
global task model from the previous round is constrained to prevent model bias.

FedCIL: FedCIL(Qi et al. (2023)) is a relatively new federated class incremental learning method
which integrates the task model and auxiliary model into one ACGAN model. In the client local
training phase, it adds a step of model distillation and label alignment on the data generated from
the global ACGAN model and the previous local ACGAN model to alleviate catastrophic forgetting
of the local ACGAN model. In the server aggregation phase, the local ACGAN models are first
averaged aggregated to obtain the global ACGAN model, and then distill the global ACGAN model
based on the generated data of each local ACGAN model.
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TARGET: TARGET(Zhang et al. (2023)) is a relatively new federated class incremental learning
method based on global feature replay. On the server side, it trains a global generator based on the
BN layer features of the aggregated global task model and an untrained task model. On the client
side, it alleviates the catastrophic forgetting of the task model based on the data replayed by the
global generator.

MFCL: MFCL(Babakniya et al. (2023)) is a relatively new federated class incremental learning
method based on global sample free replay and distillation. It proposed a scheme to training a
global generator capable of generating high-quality data based on an aggregated global task model
on the server side, and transfers the knowledge of the global task model to the local task model
through distillation based on the generated data of the global generator during local training.

AF-FCL: AF-FCL(Wuerkaixi et al. (2024)) is a relatively new federated class incremental learning
method based on local sample free replay which designs a local distillation mechanism based on
partial feature forgetting. On the client side, it trains local task model and local auxiliary model
alternately based on the real data and the data generated by global auxiliary model to achieve the
goal of extracting data features for local task model while obtaining better replay effects for local
auxiliary model. On the server side, average aggregation is used to aggregate global task model and
global auxiliary model to obtain global information.

FedAVG-replay: The FedAVG algorithm that additionally uses the generate replay scheme of our
pFedGRP during local training.

pFedGraph-replay: The pFedGraph algorithm that additionally uses the generate replay scheme
and knowledge transfer scheme of our pFedGRP during local training.

C IMPLEMENTATION DETAILS

C.1 ALGORITHM AND FLOWCHART OF PFEDGRP

The flowchart of pFedGRP’s local training on client Ci ∈ C on the t-th FL round is in Figure 4:
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Figure 4: Local training flowchart of each client Ci under our pFedGRP framework.

The flowchart of pFedGRP’s global aggregation on the server on the t-th FL round is in Figure 5:

The algorithm for pFedGRP is in Algorithm:
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Server For Every Client 𝒞𝒞𝑖𝑖 In 𝓒𝓒

𝒴𝒴𝒞𝒞1
𝑡𝑡

Send Get

Client 𝟏𝟏
𝓒𝓒

𝐴𝐴1,𝑐𝑐1,𝑘𝑘
𝑡𝑡,∗𝐴𝐴1,𝑐𝑐1,1

𝑡𝑡,∗𝐴𝐴1
𝑡𝑡,∗ … … 𝐴𝐴1,𝑐𝑐′

𝑡𝑡,∗

𝐴𝐴𝑖𝑖,𝑐𝑐𝑛𝑛
𝑡𝑡−1,∗

𝐴𝐴𝑖𝑖,𝑐𝑐1
𝑡𝑡−1,∗

𝐴𝐴𝑖𝑖
𝑡𝑡−1,∗ cache

…
…𝐴𝐴𝑖𝑖,𝑐𝑐′

𝑡𝑡−1,∗

𝐴𝐴𝑖𝑖,𝑐𝑐𝑛𝑛
𝑡𝑡,∗

𝐴𝐴𝑖𝑖,𝑐𝑐1
𝑡𝑡,∗

𝐴𝐴𝑖𝑖
𝑡𝑡,∗ cache

…
…𝐴𝐴𝑖𝑖,𝑐𝑐′

𝑡𝑡,∗

𝜃𝜃𝐶𝐶1𝑡𝑡,∗ 𝜃𝜃𝐴𝐴1,𝑐𝑐
𝑡𝑡,∗

𝑐𝑐∈𝒴𝒴1𝑡𝑡
𝒴𝒴𝒞𝒞1
𝑡𝑡

𝜃𝜃𝐴𝐴𝑖𝑖,𝑐𝑐𝑡𝑡,∗

𝑐𝑐∈𝒴𝒴𝑖𝑖
𝑡𝑡

Update

…

Generate Replay

𝒟𝒟𝐴𝐴𝑖𝑖
𝑡𝑡

𝒴𝒴𝒞𝒞𝑖𝑖
𝑡𝑡𝒚𝒚~ ,

𝑤𝑤′
𝑖𝑖,1
𝑡𝑡 , … ,𝑤𝑤′

𝑖𝑖,𝑛𝑛
𝑡𝑡

𝐶𝐶1
𝑡𝑡,∗

�
𝑗𝑗=1

𝑛𝑛

𝑤𝑤′
𝑖𝑖,𝑗𝑗
𝑡𝑡 � 𝜃𝜃𝐶𝐶𝑗𝑗𝑡𝑡,∗ Outputs

ℒ �,�

…𝜃𝜃𝐶𝐶1𝑡𝑡,∗ 𝜃𝜃𝐶𝐶𝑛𝑛𝑡𝑡,∗ Optimize Aggregate Weight

Aggregating

𝑤𝑤′
𝑖𝑖,1
𝑡𝑡,∗ , … ,𝑤𝑤′

𝑖𝑖,𝑛𝑛
𝑡𝑡,∗

𝐶𝐶𝑔𝑔,𝑖𝑖
𝑡𝑡

Aggregating

Send to 𝒞𝒞𝑖𝑖

𝜃𝜃𝐶𝐶𝑔𝑔,1
𝑡𝑡 Send Get𝜃𝜃𝐶𝐶𝑛𝑛𝑡𝑡,∗ 𝜃𝜃𝐴𝐴𝑛𝑛,𝑐𝑐

𝑡𝑡,∗
𝑐𝑐∈𝒴𝒴𝑛𝑛𝑡𝑡

𝒴𝒴𝒞𝒞𝑛𝑛
𝑡𝑡 𝜃𝜃𝐶𝐶𝑔𝑔,𝑛𝑛

𝑡𝑡

𝒴𝒴𝒞𝒞𝑛𝑛
𝑡𝑡

Client 𝒏𝒏

𝐴𝐴𝑛𝑛,𝑐𝑐𝑛𝑛,𝑘𝑘
𝑡𝑡,∗𝐴𝐴𝑛𝑛,𝑐𝑐𝑛𝑛,1

𝑡𝑡,∗𝐴𝐴𝑛𝑛
𝑡𝑡,∗ … …𝐴𝐴𝑛𝑛,𝑐𝑐′

𝑡𝑡,∗𝐶𝐶𝑛𝑛
𝑡𝑡,∗

…
Data Flow Model Flow Weights Optimizing Global Aggregating Flowchart in round 𝒕𝒕

𝐶𝐶𝑔𝑔𝑡𝑡

Average 
Aggregating

𝜃𝜃𝐶𝐶𝑔𝑔𝑡𝑡 𝜃𝜃𝐶𝐶𝑔𝑔𝑡𝑡

Figure 5: Personalized aggregation flowchart of server under our pFedGRP framework.

Algorithm: pFedGRP 
 

Input: Client set 𝓒𝓒 with n clients; total round 𝑇𝑇; Task model param 𝜃𝜃𝐶𝐶 , Auxiliary sub 
model param 𝜃𝜃𝐴𝐴 with randomly initialization;  

 Output: Model list �𝜃𝜃𝐶𝐶𝑔𝑔,𝑖𝑖
𝑡𝑡 �

𝑖𝑖=1

𝑛𝑛
 of personalized global models corresponding to each client 

in each round 𝑡𝑡 ∈ {1, … ,𝑇𝑇} 

1  Server initializes 𝜃𝜃𝐶𝐶𝑔𝑔,𝑖𝑖
0 ,𝜃𝜃𝐶𝐶𝑔𝑔0 for each client 𝒞𝒞𝑖𝑖 ∈ 𝒞𝒞 with 𝜃𝜃𝐶𝐶 . 

2  For each round 𝑡𝑡 = 1, … ,𝑇𝑇 do： 
3  // Client local training 
4  For each client 𝒞𝒞𝑖𝑖 ∈ 𝓒𝓒 in parallel do: 
5  Server send 𝜃𝜃𝐶𝐶𝑔𝑔,𝑖𝑖

𝑡𝑡−1 ,𝜃𝜃𝐶𝐶𝑔𝑔𝑡𝑡−1 to 𝒞𝒞𝑖𝑖, 𝒞𝒞𝑖𝑖 initializes 𝜃𝜃𝐶𝐶𝑖𝑖𝑡𝑡 with 𝜃𝜃𝐶𝐶𝑔𝑔𝑡𝑡−1 
6  For each category 𝑐𝑐 ∈ 𝒴𝒴𝑖𝑖𝑡𝑡 do: 
7  If 𝑐𝑐 previously appeared on other client 𝒞𝒞𝑗𝑗 first appears on 𝒞𝒞𝑖𝑖 do: 
8     Server send 𝜃𝜃𝐴𝐴𝑗𝑗,𝑐𝑐

𝑡𝑡−1,∗ from 𝐴𝐴𝑗𝑗
𝑡𝑡,∗ cache to 𝒞𝒞𝑖𝑖 to initialize 𝜃𝜃𝐴𝐴𝑖𝑖,𝑐𝑐𝑡𝑡−1,∗ 

9  End if 
10  𝒞𝒞𝑖𝑖 computes 𝒴𝒴𝒞𝒞𝑖𝑖

𝑡𝑡  based on {𝑌𝑌𝑖𝑖1, … ,𝑌𝑌𝑖𝑖𝑡𝑡} 
11  𝒞𝒞𝑖𝑖 computes 𝑌𝑌𝑖𝑖,𝐴𝐴𝑡𝑡  then constructs 𝒟𝒟𝐴𝐴𝑖𝑖

𝑡𝑡−1 based on feature replay distribution 𝒳𝒳𝐴𝐴𝑖𝑖𝑡𝑡−1,∗ 

12  𝒞𝒞𝑖𝑖 obtains 𝜃𝜃𝐶𝐶𝑖𝑖𝑡𝑡,∗ by optimizing 𝐹𝐹5 on  �𝒟𝒟𝐴𝐴𝑖𝑖
𝑡𝑡−1 ∪ 𝒟𝒟𝑖𝑖

𝑡𝑡� 

13  𝒞𝒞𝑖𝑖 obtains �𝜃𝜃𝐴𝐴𝑖𝑖,𝑐𝑐𝑡𝑡,∗�
𝑐𝑐∈𝒴𝒴𝑖𝑖

𝑡𝑡
 by optimizing 𝐹𝐹6 on  𝒟𝒟𝑖𝑖

𝑡𝑡 

14  𝒞𝒞𝑖𝑖 send 𝜃𝜃𝐶𝐶𝑖𝑖𝑡𝑡,∗ , �𝜃𝜃𝐴𝐴𝑖𝑖,𝑐𝑐𝑡𝑡,∗�
𝑐𝑐∈𝒴𝒴𝑖𝑖

𝑡𝑡
,𝒴𝒴𝒞𝒞𝑖𝑖

𝑡𝑡  to server 

15  End For 
16  // Server aggregating 
17  For each client 𝒞𝒞𝑖𝑖 ∈ 𝓒𝓒 do: 

18    Server updates 𝐴𝐴𝑖𝑖
𝑡𝑡,∗ cache with �𝜃𝜃𝐴𝐴𝑖𝑖,𝑐𝑐𝑡𝑡,∗�

𝑐𝑐∈𝒴𝒴𝑖𝑖
𝑡𝑡
 

19    Server constructs 𝒟𝒟𝐴𝐴𝑖𝑖
𝑡𝑡  based on replay distribution �𝒳𝒳𝐴𝐴𝑖𝑖𝑡𝑡,∗ ,𝒴𝒴𝒞𝒞𝑖𝑖

𝑡𝑡 � 

20    Server optimizes 𝐹𝐹7 on 𝒟𝒟𝐴𝐴𝑖𝑖
𝑡𝑡  then obtains 𝑾𝑾′

𝑖𝑖
𝑡𝑡,∗ 

21    Server aggregates personalized global model param 𝜃𝜃𝐶𝐶𝑔𝑔,𝑖𝑖
𝑡𝑡 ← ∑ �𝑤𝑤′

𝑖𝑖,𝑗𝑗
𝑡𝑡,∗ ∙ 𝜃𝜃𝐶𝐶𝑗𝑗𝑡𝑡,∗�𝑛𝑛

𝑗𝑗=1  

22  End For 
23  Server aggregates global model param 𝜃𝜃𝐶𝐶𝑔𝑔𝑡𝑡 ←

1
𝑛𝑛
∑ 𝜃𝜃𝐶𝐶𝑖𝑖𝑡𝑡,∗
𝑛𝑛
𝑖𝑖=1  

24  End For 
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C.2 EVALUATION METRICS

We evaluate the performance of each method based on Instant Average Accuracy (IAA), Average
Accuracy (AA) and Average Forgetting Measure (AFM). Assuming the client set is C and the total
number of FL rounds is T , the definitions of the above metrics are as follows:

Instant Average Accuracy. After global aggregation in each FL round t, we evaluate the perfor-
mance of the global task models on all test data corresponding to previous t tasks on each client
Ci ∈ C(i.e. accuracy, denoted as ati), then calculate the IAA value of the t-th FL round based on the
weighted average of the total number of training data encountered by each client Ci (denoted as nt

i):

IAAt =
1∑

Ci∈C nt
i

∑
Ci∈C

nt
i · ati (9)

IAA can indicate the comprehensive performance of the global task model obtained in a certain FL
round t on all previous tasks.

Average Accuracy. This metric indicates the average performance of each method over the entire
FL process based on the mean of the IAA values of all T FL rounds:

AA =
1

T

T∑
t=1

IAAt (10)

AA can reduce the evaluation error caused by changes in task difficulty to better evaluate the perfor-
mance stability of different FL methods throughout the entire FL process.

Average Forgetting Measure. In continuous learning, the forgetting measure can be expressed
as the degree to which the accuracy of the current task decreases compared to the previous task.
We define the average forgetting measure as the average of the forgetting measure of the entire FL
process:

AFM =
1

T − 1

T∑
t=2

max(0, IAAt−1 − IAAt) (11)

AFM can evaluate the degree of knowledge backward transfer, and the smaller the value, the better
the memory stability of the FL method.

C.3 DETAILED DESCRIPTION OF EXPERIMENTAL SETUP

For the task model, we choose ResNet20(He et al. (2016)) as the task model for all FL methods
except FedCIL. The local training rounds were uniformly set to 20, the optimizer was uniformly
selected as SGD, the learning rate was set to 0.01, the momentum was set to 0.9, and the weight
decay was set to 0.01. The ACGAN model of the FedCIL method adopts its default settings for each
dataset with a local training round of 400.

For the auxiliary model, our method pFedGRP performs 1000 rounds of initialization training and
100 rounds of transfer learning on the MNIST series dataset corresponding to each category of
WGAN-GP model on local training, and performs 6000 rounds of initialization training and 600
rounds of transfer learning on the Cifar series dataset corresponding to each category of DDPM
model on local training. The training for auxiliary models of other FCL methods adopts the default
settings corresponding to each dataset.

For the fine-tuning rounds during global aggregation, our method pFedGRP performs 20 rounds
of personalized aggregation weight optimization for each client, the FedCIL method performs 100
rounds of model distillation on the global ACGAN model, and other FL methods do not have a
fine-tuning stage for global aggregation.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION EXPERIMENTS

Our method mainly consists of two modules: 1. Feature generation replay based on local data distri-
bution reconstruction scheme and a category decoupling generator architecture corresponding to the
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scheme. 2. Local training based on global task model and output alignment, and the personalized
aggregation based on replay distribution. We conducted ablation experiments on each point in two
settings constructed based on the MNIST dataset and FMNIST dataset in the baseline experiment.

For the first point, we referred to the generation replay schemes of other FCL methods which gener-
ate an equal amount of random data as the real data at each epoch of local training, so the categories
of the data obtained by this type of generation replay scheme are random and uncontrollable. Since
we set each task having two categories in the baseline experiment, we replaced the auxiliary model
with a single WGAN-GP model that doubles the number of parameters (implemented by doubling
the number of channels in the model), and the number of rounds for initialization training and trans-
fer training are also set to 1000 and 100, respectively. The category of the generated data during local
training is determined by the personalized global task model obtained in the previous FL round, and
the category of the generated data during personalized aggregation is determined by the local opti-
mal task model obtained in the current FL round. We denote this method as pFedGRP-AS1. Under
this method, the client usually needs to generate more data during the local training process, and its
local auxiliary model needs to replay the data based on the previous round’s local auxiliary model
during training to alleviate catastrophic forgetting. When encountering new categories of data, the
client is usually unable to directly use other client’s auxiliary models as pretrain model for transfer
learning. The above means that it will greatly reduce the training efficiency of the auxiliary model
and achieve poor generation replay ability in the same training epochs as pFedGRP.

For the second point, due to the fact that our training scheme consists of two parts: local training
based on global task model and output alignment, and personalized aggregation based on replay dis-
tribution, we tested the performance separately when removing a certain part. For the first part, we
remove the output alignment of the local training and separately initialize the local task model with
the global task model obtained in the previous round and the personalized global task model to verify
the effectiveness of our local training. These two methods are respectively referred to pFedGRP-
ASG and pFedGRP-ASP. For the second part, we combine the global aggregation schemes of Fe-
dAVG and pFedGraph with our local training process to validate the effectiveness of our person-
alized aggregation method. These two methods are respectively referred to FedAVG-replay and
pFedGraph-replay.

The experimental results of the five ablation methods mentioned above and our pFedGRP method
are shown in Table 4 and Table 5. The IAA variation chart and corresponding experimental analysis
are shown in Appendix E.4:

Table 4: Ablation Experiment Results on FL with Tasks Gradually Changing 
 

FL methods 
MNIST FashionMNIST 

AA AFM AA AFM 
pFedGRP-AS1 82.594 1.072 70.542 1.528 
pFedGRP-ASG 68.445 5.285 81.192 1.589 
pFedGRP-ASP 78.925 5.089 80.570 2.078 
FedAVG-replay 83.326 1.569 78.135 1.264 

pFedGraph-replay 83.153 1.427 80.472 0.622 
pFedGRP(our) 87.455 0.472 83.871 1.051 

 

Table 5: Ablation Experiment Results on FL with Tasks Circulating 
 

FL methods 
MNIST FashionMNIST 

AA AFM AA AFM 
pFedGRP-AS1 86.847 0.592 77.899 0.767 
pFedGRP-ASG 81.928 3.202 79.545 1.062 
pFedGRP-ASP 86.194 1.656 78.909 0.836 
FedAVG-replay 87.021 2.488 80.158 0.685 

pFedGraph-replay 89.211 1.419 80.296 0.809 
pFedGRP(our) 89.437 1.277 81.845 0.845 
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D.2 BASELINE EXPERIMENTS ON FL WITH DIFFERENT CORRELATIONS BETWEEN TASKS

We further investigated the robustness of our pFedGRP method and various baseline methods on
the setting of the first baseline experiment(i.e. FL with Tasks Gradually Changing) on the MNIST,
FashionMNIST, and Cifar10 datasets under different task correlations. Due to the fact that the
number of duplicate categories between adjacent tasks of the same client in the setting above is 0,
we increased this value to 2, 4 and 6 (i.e. each task has 4, 6 and 8 categories respectively) while
the number of real data for each category remains at 200. Due to the limited amount of data in the
real dataset, as the heterogeneity of data between and within clients decreases, the total number of
rounds in FL and the total number of tasks for each client decreases to 70, 50 and 30, respectively
(for Cifar10 is 60, 40 and 30). The results of pFedGRP and other baseline methods in the various
experimental settings mentioned above are presented in Tables 6, Tables 7 and Tables 8:

Table 6: Baseline Experiment Results on MNIST and FL with Tasks Gradually Changing 
 

FL methods 
The number of duplicate categories between adjacent tasks for the same client 

0 2 4 6 
AA AFM AA AFM AA AFM AA AFM 

FedAVG 51.235 11.265 88.023 1.147 90.605 0.507 91.431 0.063 
FedProx 57.702 8.900 88.987 0.757 91.688 0.355 91.759 0.057 
FedDrirt 22.071 8.641 24.429 6.872 56.304 2.475 87.615 1.265 
FedEM 51.530 4.919 87.166 1.070 90.810 0.562 91.741 0.032 

pFedGraph 54.597 10.026 85.458 1.441 89.844 0.520 88.411 0.128 
FedCIL 76.692 0.522 89.975 0.244 92.147 0.163 92.341 0.154 

TARGET 77.928 1.110 86.875 0.332 89.535 0.182 89.506 0.192 
MFCL 76.167 0.306 87.325 0.191 89.639 0.068 89.119 0.131 

AF-FCL 77.033 0.514 88.103 0.214 91.439 0.109 93.396 0.148 
pFedGRP 87.455 0.472 90.168 0.285 92.778 0.169 94.570 0.172 

 Table 7: Baseline Experiment Results on FashionMNIST and FL with Tasks Gradually Changing 
 

FL methods 
The number of duplicate categories between adjacent tasks for the same client 

0 2 4 6 
AA AFM AA AFM AA AFM AA AFM 

FedAVG 51.390 5.786 75.608 3.100 83.704 0.572 84.614 0.076 
FedProx 56.618 4.969 78.278 2.400 85.375 0.382 85.184 0.062 
FedDrift 21.008 6.999 29.385 5.968 47.938 3.265 82.203 1.036 
FedEM 50.539 3.767 75.601 2.766 84.221 0.423 85.360 0.189 

pFedGraph 54.49 4.164 74.183 3.702 81.984 0.614 81.434 0.286 
FedCIL 74.167 0.573 83.245 0.341 87.354 0.241 84.587 0.103 

TARGET 72.078 0.801 81.472 0.425 86.439 0.326 83.935 0.112 
MFCL 70.852 0.387 82.410 0.120 86.612 0.119 84.476 0.052 

AF-FCL 73.109 0.510 83.146 0.312 87.792 0.287 85.413 0.089 
pFedGRP 83.871 1.051 86.472 0.740 88.685 0.518 86.925 0.653 

 Table 8: Baseline Experiment Results on Cifar10 and FL with Tasks Gradually Changing 
 

FL methods 
The number of duplicate categories between adjacent tasks for the same client 

0 2 4 6 
AA AFM AA AFM AA AFM AA AFM 

FedAVG 23.788 5.539 50.969 3.538 58.045 1.376 63.298 0.655 
FedProx 23.472 4.391 52.600 2.767 59.433 1.002 64.197 0.346 
FedDrift 18.268 6.893 22.607 4.330 39.247 2.196 52.154 0.568 
FedEM 26.356 3.718 52.266 2.940 57.630 1.451 64.958 0.448 

pFedGraph 22.638 4.090 50.153 3.743 56.698 1.511 62.368 0.549 
FedCIL 31.222 0.839 39.572 2.032 44.585 0.627 44.573 0.424 

TARGET 29.978 0.797 42.351 1.324 45.372 0.394 48.421 0.323 
MFCL 29.135 0.280 45.918 0.125 46.212 0.196 46.498 0.214 

AF-FCL 29.938 0.369 44.926 0.892 47.235 0.423 49.631 0.354 
pFedGRP 45.555 1.741 55.388 1.614 55.460 0.820 55.758 0.469 
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It can be seen from the tables above that the performance improvement of the three FL methods,
two pFL methods and our pFedGRP framework is significant on the MNIST and FashionMNIST
datasets with the decrease of data heterogeneity. However, due to the need to train auxiliary model
for the FCL methods, the number of rounds required for convergence may not necessarily decrease
which makes the performance improvement of the four FCL methods not significant. On dataset
with complex data distribution such as Cifar10, the data distribution replayed by the auxiliary model
often deviates significantly from the real data distribution, resulting in almost no performance im-
provement for the four FCL methods when data heterogeneity is low. Our pFedGRP method which
obtains personalized global model based on replay data distributions with large deviations also per-
forms worse than the FL method and pFL method, but its performance still leads the FCL methods
due to the effective reduction of the errors of replayed data distribution introduced during local
training.
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E IAA VARIATION CHARTS FOR EXPERIMENTS

E.1 IAA VARIATION CHARTS FOR TASKS GRADUALLY CHANGING
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Under the FL setting of Tasks Gradually Changing, the gray vertical lines in the figure correspond
to the FL rounds where the task set of each client’s task loop changes. Firstly, overall, the pFedGRP
method achieve good performance in the early stage and middle stage of FL training due to its
ability to effectively estimate the data distribution of each client to aggregate personalized models
for clients, and its performance in the later stage of training is not significantly different from other
FCL methods, far superior to FL methods and pFL methods that do not have the ability to generate
replay. Secondly, the pFedGRP method and the FCL methods in the baseline perform better on
the MNIST dataset than the FashionMNIST dataset, and far better than the Cifar10 dataset which
indicates that the performance of these methods is directly proportional to the quality of the data
distribution replayed by the auxiliary model. Finally, due to the fact that the FCL methods in the
baseline require training auxiliary model based on task model, the convergence time of these FCL
methods is usually proportional to the data complexity of the dataset, resulting in poor performance
in the early and middle stages of training. However, as a result, they often achieve stronger anti
forgetting ability than pFedGRP after convergence.
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E.2 IAA VARIATION CHARTS FOR TASKS CIRCULATING
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Under the FL setting of Tasks Circulation, the gray vertical line in the figure corresponds to the FL
round at the beginning of each task cycle on each client (i.e. five rounds), which means that the
distribution of data encountered by the client in every five rounds is similar to the data distribution
of the entire FL process. The conclusion drawn from the experimental results under this setting is
similar to that of the previous experiment.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.3 IAA VARIATION CHARTS FOR FL UNDER HIGH DATA HETEROGENEITY
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Under the FL setting of High Data Heterogeneity, each client encounter two categories of data that
it has never encountered before in a new FL round until all categories in the dataset are traversed.
This means that the FL setting in this experiment is similar to the one shot FL scenario which makes
it impossible for all FL methods to converge, further testing the robustness of these FL methods.
It can be seen that the pFedGRP method performs much better than other baseline methods when
continuously encountering new categories.
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E.4 IAA VARIATION CHARTS FOR ABLATION STUDY
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Firstly, it can be seen from the figure that the pFedGRP-AS1 method which use the generate replay
scheme of other FCL methods achieved the worst results, indicating that the pFedGRP framework
can achieve better results with less training consumption. Secondly, without using the local knowl-
edge transfer scheme of the pFedGRP framework, the pFedGRP-ASG method which uses the global
task model for local training performs worse than pFedGRP throughout the entire FL process, and
the pFedGRP-ASP method which uses the personalized global task model for local training per-
forms well in the early stages of FL training with fewer local data categories but worse than pFed-
GRP in the later stages of FL training with more local data categories, reflecting the effectiveness of
the local knowledge transfer scheme of the pFedGRP framework. Without using the personalized
aggregation scheme of the pFedGRP framework, FedAVG-replay and pFedGraph-replay perform
worse than pFedGRP in the early stage of FL training but perform similarly to pFedGRP in the later
stage of FL training after model convergence.
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F DISCUSSIONS

F.1 ROBUSTNESS TO CHANGEABLE HETEROGENEITY LEVELS

The pFedGRP framework we proposed has strong robustness in the federated learning process,
manifested in the following three aspects:

(1) Solving the optimal personalized aggregation weight based on low error replay distribution on
the server can reduce the weight of task models for clients with large data distribution differences
and improve the weight of task models for other clients with small data distribution differences.
This enables the personalized global task model to enhance its generalization ability while ensuring
model performance, and has natural robustness against model poisoning attacks.

(2) When the data distribution of the client undergoes significant changes in two adjacent FL rounds,
the changes in its data distribution can be intuitively reflected in the distribution replayed by the
auxiliary model, thereby causing the changing of the personalized aggregation weight to adapt to
the changes in local data distribution.

(3) Even if some clients disconnect during the FL training process, due to the server-side storing
the task models uploaded by the clients in the previous round of aggregation, the remaining clients
can still perform personalized aggregation normally. Furthermore, if clients are allowed to use the
latest historical task model caches of other clients on the server for personalized aggregation, our
framework can be easily transformed into a asynchronous form.

F.2 REDUCTION ON EXTRA TRAINING COST

The pFedGRP framework we proposed can reduce additional training burden while ensuring model
performance, specifically manifested in the following three aspects:

(1) The auxiliary model on each client is essentially a collection of smaller sub models that record
features of specific categories. These sub models only perform a small amount of transfer learning
on the real data of the corresponding category in each round of local training to fit the features of the
latest real data of that category. If there is no real data of that category, no training will be conducted,
effectively reducing the additional training load.

(2) Due to the fact that it takes a long time for the client to train the auxiliary sub model of the
category from scratch on the real data corresponding to the new category that other clients have
already encountered, we send the auxiliary sub model cached on the server for this category to the
client and conduct a small amount of transfer learning to effectively accelerating the local training
speed of the client.

(3) The local data distribution reconstruction scheme we proposed can reduce the total number of
local training data for the local task model on the client side while increasing the proportion of
real data in local training data, which can speed up local training while reducing the error of the
data distribution replayed by the local auxiliary model. Specifically, in common situations where
similar categories of data are encountered repeatedly, it is possible to achieve the effect of making
the reconstructed local data distribution approximate the local true data distribution. If the label
distribution between tasks is very close, there is almost no need to generate data through auxiliary
models to replay the data distribution.

F.3 POTENTIAL OF HANDLING DIFFERENT TASKS

The pFedGRP framework we proposed does not make assumptions about the target of the task and
does not limit the type of the task model and the auxiliary sub model. This means that our framework
can choose different models according to different task requirements, thus having the potential to
handle different tasks. However, some existing FL, pFL and FCL methods are specifically designed
for specific types of tasks.
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