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ABSTRACT

Online learning in arbitrary and possibly adversarial environments has been ex-
tensively studied in sequential decision-making, with a strong connection to equi-
librium computation in game theory. Most existing online learning algorithms are
based on numeric utility feedback from the environment, which may be unavail-
able in applications with humans in the loop and/or with privacy concerns. In this
paper, we study an online learning setting where only a ranking of a set of pro-
posed actions is provided to the learning agent at each timestep. We consider both
ranking models based on either the instantaneous utility at each timestep, or the
time-average utility until the current timestep, in both full-information and bandit
feedback settings. Focusing on the standard (external-)regret metric, we show that
sublinear regret cannot be achieved with the instantaneous utility ranking feedback
in general. Moreover, we show that when the ranking model is relatively determin-
istic (i.e., with a small temperature in the Plackett-Luce model), sublinear regret
cannot be achieved with the time-average utility ranking feedback, either. We then
propose new algorithms to achieve sublinear regret, under the additional assump-
tion that the utility vectors have a sublinear variation. Notably, we also show that
when time-average utility ranking is used, such an additional assumption can be
avoided in the full-information setting. As a consequence, we show that if all the
players follow our algorithms, an approximate coarse correlated equilibrium of a
normal-form game can be found through repeated play. Finally, we also validate
the effectiveness of our algorithms via numerical experiments.

1 INTRODUCTION

Online learning has been extensively studied as a model for sequential decision-making in arbitrary,
and possibly adversarial environments (Shalev-Shwartz et al., 2012; [Hazan et al., [2016). At each
round of decision-making, the agent commits to a strategy and takes an action, then receives some
feedback from the environment, oftentimes in a numeric form such as the utility vector (in the full-
information setting) or the realized utility value (in the bandit setting). Numerous algorithms have
been developed to achieve no-regret, i.e., ensuring that the (external) regret grows sublinearly in time
(Shalev-Shwartz et al.| 2012; |[Hazan et al.,|2016). Moreover, online learning is known to also have
an inherent connection to equilibrium computation in Game Theory—when all the players are no-
regret in repeatedly playing a normal-form game (NFG), the time-average strategy will approximate
the coarse correlated equilibrium (CCE) of the game (Cesa-Bianchi & Lugosi, [2006).

However, such numeric feedback of utility values may not always be available in real-world ap-
plications. For example, when the feedback is provided by an environment with humans in the
loop, it is much more convenient for them to compare/rank actions instead of numerically scoring
them. This has been acknowledged and exemplified by the recent successes of reinforcement learn-
ing from human feedback (RLHF) in fine-tuning language models (Ouyang et al.l2022). Moreover,
even if numeric utility values exist, sometimes they may not be accessible to the learning agent due
to privacy or security concerns. For example, consider an online platform (cf. Figure [I] (a)) that
recommends commodities to a stream of customers in an online fashion, where the customers at
different timesteps may have different preferences for the commodities. The platform aims to make
good recommendations over time, while the customers may not be able/willing to reveal their ac-
tual valuation of the commodities. Depending on the types of customers, i.e., either being one-shot
(arrive, rank, and leave forever), or being long-lived with memory, the utility used for ranking may
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Figure 1: Two real-world examples of Online Learning and Equilibrium Computation with Ranking
Feedback. In Figure (a), the online platform recommends choices of food to the customer at each
timestep and receives a ranking feedback to improve the recommendation quality. Figure (b) illus-
trates an online dating app where the app recommends matches, the users rank other candidates, and
the app uses the rankings to find matching equilibria among the users over time.

either be the instantaneous one at each timestep, or the time-average one over the historical utility
vectors. The platform needs to minimize the regret incurred by the recommendations with such
ranking feedback, and it remains elusive what fundamental limits and effective algorithms are in
such a setting.

Ranking feedback may become even relevant in game-theoretic settings, when multiple humans
continuously interact with each other, and the objective is to compute a certain equilibrium of the
game. For example, consider an online dating platform recommending candidates for matching (cf.
Figure[T](b)). Each user may only have a ranking of the recommended candidates in each round, and
the platform aims to find an equilibrium (a matching between users) so that all the users are satisfied.
Similar scenarios also appear in other matching platforms, e.g., ride-sharing platforms that match
drivers and passengers based on their preferences, such as the drivers’ preference for trip lengths
and the users’ preferences for the drivers’ driving manners (being prompt or cautious). Our focused
setting to address these scenarios may appear related, but fundamentally different from the classical
stable matching one (Gale & Shapleyl [1962), see Appendix [A]for a detailed comparison.

In this paper, we seek to systematically study online learning and equilibrium computation with
ranking feedback, where the loss vectors may be non-stochastically and even adversarially gener-
ated. This setting can be viewed as a generalization of the stochastic bandit with ranking feedback
studied recently in[Maran et al (2024) (see a detailed comparison in Appendix [A). We aim to un-
derstand when regret minimization in our setting is possible, and also develop new algorithms with
regret and equilibrium approximation guarantees. We summarize our contributions as follows.

Contributions. We consider two types of ranking feedback, categorized by how the rankings are
made: one based on the instantaneous utility at each timestep (InstUtil Rank])), and one based on
the time-average utility until the current timestep (AvgUtil Rank]). We show that: i) sublinear regret
cannot be achieved with InstUtil Rank| feedback, nor (up to logarithmic terms) with[AvgU#il Rank]
feedback when the ranking model is too deterministic (i.e., the temperature 7 > 0 of the ranking
model in is small); ii)) We propose new algorithms to achieve sublinear regret, under an addi-
tional assumption on the sublinear variation of the utility vectors; iii) Such an assumption can be
avoided with full-information feedback and a constant 7; iv) When all the players
follow our no-regret learning algorithms in repeatedly playing a normal-form game, an approxi-
mate CCE can be computed. Our results are summarized in Table [T} Experiments that validate the
effectiveness of our algorithms can be found in Appendix [C]

2 PRELIMINARIES

2.1 ONLINE LEARNING

We focus on online learning in a non-stochastic and potentially adversarial environment, where
an agent interacts with the environment for multiple timesteps, by taking an action and then re-
ceiving some feedback at each timestep. The agent’s action set is finite and denoted as A =
{al,a?,...,a} with | A] > 1. Ateach timestep ¢, the agent will commit to a strategy 7} € A4
and receive either a utility vector u(*) € [—1, 1] or a realized utility value u® (a(*)) for the action
a® taken from a® ~ 7 in the full-information and bandit setting, respectively. The agent aims
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Lower Bound Full-Information [ Bandit
InstUtil Rank| Q(T) forr < O (1)
AvgUtil Rank| | Q(T) for 7 < O (ﬁ) QT) forr < O (ﬁ)
Upper Bound . .
(r = O(1), Sublinear Regret) Full-Information Bandit
InstUtil Rank Assumption [4.2]
AvgUtil Rank v | Assumption{4.2[(q < )

Table 1: Summary of our contributions, including the negative results (top) and the positive results
(bottom). The bottom table shows the necessary assumptions to achieve sublinear regret in that
setting (v'means no assumption is required). 7 > 0 denotes the temperature of the ranking model in

(PD).

to minimize her (external) regret, which is the difference between her accumulated utility and the
highest accumulated utility in hindsight, by playing a fixed strategy across all timesteps. Formally,
for any integer T' > 0, the regret is defined as

T
R(T),external — Aneli)i Z <,u(t)7 T — ﬂ-(t)> . 2.1

t=1

Since our goal is to minimize the regret, which is not affected if the vector u(*) is offset by some
constant at each timestep ¢. Hence, without loss of generality, we assume u(®) (a'““‘) =0, i.e, the
last action always receives a zero utility for any u(*) and t € [T).

2.2  ONLINE LEARNING ALGORITHMS WITH NUMERIC FEEDBACK

Our results later will be modular, in the sense that any standard online learning algorithms with (full-
information) numeric feedback, including projected gradient descent (PGD), multiplicative-weight
update (MWU), and follow-the-regularized-leader (FTRL) in general (Hazan et al.| [2016), can be
used as a deterministic black-box oracle in our algorithms to be designed later. As a preliminary,

we formally introduce such deterministic oracles here: we use Alg: [J,°, (RA)t — A to denote
such an online learning algorithm, which is a mapping from a sequence of utility vectors to the
distribution over the action set .A. Therefore, given utility vectors (u(s))szl from timestep 1 to ,
the algorithm will generate 7(!*1) = Alg ((u(s))zzl) as the strategy at timestep ¢ + 1. Finally, we
can denote the (external-)regret under Alg as

T —
R(T)sexternal (Alg, (u(t))j_l) = }IelaA)E‘ Z <u(t), T —Alg <(U(s))t_1l> > s (2.2)

which can be made sublinear in T for any utility vectors (u(t))il.

3 ONLINE LEARNING WITH RANKING FEEDBACK

In online learning with ranking feedback, at each timestep ¢, the agent does not have direct access
to u(*), nor the realized utility (the utility of the realized action at timestep t). Instead, at timestep
t, she can propose a multiset (which may include repeated elements) of actions o(*), and receive
a permutation o) € ¥ (o(t)) from the environment, representing a ranking of those actions in

o, In the full-information setting, o) = A, i.e., the whole action set is proposed. In the bandit
setting, |0(t)| = K < |A|. Suppose the agent’s strategy at timestep t is 7(¥) € A, then we
assume that in this bandit setting, the actions in o(*) are proposed in an unbiased way, such that

u(t) a
E [Z“E"(}L()} = (u®, ("), which may be achieved if all the a € o*) are sampled i.i.d. from

7() (with replacement). Let o(*)(k) € A be the k" element of the permutation for any k € [K].
Then, for any k; < ky € [K], action o(*)(k;) is preferred over action o(*)(ky). For notational

. . . . 0 ;. . y ;. .
simplicity, we define a* < a’ if action a* appears ahead of @’ in a permutation o.
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For the ranking model, we consider the standard Plackett-Luce (PL) model (Lucel [1959; [Plackett,
1975), where at each timestep ¢, conditioned on the proposed action set o), the ranking oW s
sampled according to

K 1.(t) (5(t)
P(0]00) = T cp (0 (@0 k)) -
ki=1 Zk2=k] exp (%T(t) (a'(t) (kQ)))

where () € R4 is some utility vector based on which the ranking is determined, 7 > 0 is the
temperature parameter that determines how uncertain the ranking model is: when 7 — 0%, the
model is absolutely certain, and the action with a larger utility in 7®) will always be ranked in
front of the actions with a smaller utility in the permutation. The utility vector r(*) depends on the
problem setting, which we will introduce next.

We consider two types of ranking feedback throughout the paper, based on the choice of 7*) in
(PL): (i) ranking by the instantaneous utility (InstUtil Rank); (ii) ranking by the fime-average
utility (AvgUtil Rank). The two feedback types may be motivated by different applications (cf.
Section EI), and have been studied for dueling-bandits (Yue et al.| 2012} Saha & Gaillard} [2022)) and
multi-armed bandits with ranking feedback (Maran et al., [2024)), respectively. Both feedback types
can also be further separately defined for the full-information and bandit settings as below.

InstUtil Rank: Ranking with Instantaneous Utility.

The first type of ranking feedback we consider is based on the instantaneous utility function, i.e.,
r® = u® in @ Note that only the utilities at the proposed actions will be used for ranking.
This type is relevant when the feedback provider is oblivious or one-shot. For example, a stream
of customers arrive in an online fashion, each of whom arrives, ranks, and then leaves, see e.g.,
Mansour et al.[(2015). When the environment is stationary and stochastic, the classical dueling-

bandits model also used such a kind of instantaneous utilities for comparison/ranking (Yue et al.|
2012; Du et al., [2020).

Full-information setting. All the actions can be evaluated and ranked at each timestep ¢, even for
those she did not propose. Hence, her performance can be evaluated by <u(t), 7T(t)>. Note that

this does not mean the agent can access the full vector u(*), since this defeats the purpose of our
ranking-feedback setting. Hence, the standard (external-)regret R(7)-external defined in will
serve as the metric to evaluate the agent’s performance in this online learning process.

Bandit setting. Only the proposed actions at each timestep ¢ can be evaluated and ranked, with
the associated elements in the vector u(*). In particular, the proposed actions are evaluated by the
average utility of % D aco® u(®) (a), leading to the following performance metric of regret:

T
1
(T) ._ t) =\ _ = (t)
RY/) = Jnax <u 77r> I Z u (a) ] . @3.1)
t=1 aco(®

Note that such a definition is an external regret, which differs from the regret studied in (multi-
)dueling-bandits (Yue et al., 2012; |Du et al., 2020; [Saha et al., 2021} |[Saha & Gaillard, 2022), and
can be viewed as a generalization of the one considered in Maran et al.[(2024)) when K = 1.

AvgUtil Rank: Ranking with Time-average Utility.

The second type of ranking-feedback is based on the time-average utility, which differs for the full-
information and bandit settings, as detailed below. This type is relevant when the feedback provider
has memory and can use the history of utilities for ranking. For example, the customers are long-
lived in the platform, see e.g., |[Kiiciikgil et al.|(2022) and Baldwin| (2009)). Notably, under bandit
feedback, when 7 — 0% and the environment is stationary and stochastic, such a model aligns with
the one studied in the recent work of Maran et al.| (2024)).

Full-information setting. The time-average utility vector of ug,)g = % ZZ=1 u'®) will be used as
the () in (PL), and the same (external-)regret R(T)-external from (2. 1)) will be used as the metric.

Bandit setting. Only the proposed actions will be given to the environment to evaluate. For in-
stance, the platform (learning agent) may recommend K restaurants among all possibilities to the
user (environment) to try out, so that the user will only know her evaluations of those K restaurants.
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As a result, the average utility is now defined as the empirical mean of the utility vectors over time.
Formally, for each timestep ¢ > 0 and action a € A, we define

(t) (a) = S (@)Y e L(a=a)

empirical '_ ’
i Zi:l Ea’Eo(‘) 1 (CL = Cl/)

and u”) (a) = 0. This u' , will then be used as the r*) in for ranking. Note

u (3.2

empirical empirica’

that the discrepancy between the ranking models in the full-information and bandit settings in this
case (contrast to that with [InstUtil Rank]), is due to the fact that when one is allowed to leverage
the history, the utility at actions other than those proposed at timestep ¢ may be available and still
be useful later. In contrast, for only those proposed at timestep ¢ are relevant for
ranking, i.e., only those elements of u()(a) with a € o(*) are used. The regret metric will still be
the one in (3.1)). The background and formalism of equilibrium computation in the game-theoretic
setting (with ranking feedback) can be found in Appendix B}

4 HARDNESS RESULTS

In this section, we present hard instances to show that online learning in non-stochastic and poten-
tially adversarial environments can be hard in general, under both InstUI Rank]and [AvgUtil Rank]
even when there are only two actions.

Theorem [4.1] in the following shows that for any temperature 7 in (PL) not larger than a constant,
there exists a sequence of utility vectors such that the expected regret is linear under|InstUtil Rank|
for both full-information and bandit settings.

Theorem 4.1. Consider [InstUtil Rank For any T > 0, temperature 0 < 1 <
0.1, and online learning algorithm, there exists a sequence of utilities (u(t))thl such that
min {E [R(T)’e"temal] JE [R(T)]} > Q(T) in both full-information and bandit settings. The ex-

pectation is taken over the randomness of the algorithm and the ranking.

To prove Theorem 4.1 we need to construct two sequences of utility vectors, which yield the same
ranking under [InstUtil Rank|in expectation. However, being no-regret in one of them will result in
linear regret in the other. The detailed proof can be found in Appendix D}

The key challenge in achieving no-regret in the hard instance above is that the utility vectors

(u(t)) ., change arbitrarily fast, i.e., the accumulated variation grows linearly in time . Hence,
to obtain positive results, we may need to restrict how fast they change over time, as quantitatively
characterized by the following assumption.

Assumption 4.2 (Sublinear variation of utility vectors). The utility vectors (u(t)) 1, have a sublin-
ear variation over time, i.e., for some q < 1,

P — ET: Hu(t) — u(H)H < O(T9). 4.1)
t=2

Our result stated in Section [5| next will show that with Assumption 4.2] we can achieve sublinear
regret, and thus close the gap. Moreover, note that in a game where the opponents all run common
no-regret learning algorithms such as follow-the-regularized-leader (FTRL), Assumption§.2] will be
satisfied (cf. Lemmal[L:3).

Next, we show in Theorem [4.3|that when[AvgU#til Ranklis used, and 7 is small enough, the minimal
regret is still at least linear in 7" (up to logarithmic terms).

Theorem 4.3. Consider[AvgUtil Rank| with full-information feedback. For any T > 0, temperature
0<7<0O (ﬁ), and online learning algorithm, there exists T' > T and a sequence of utilities

(u(t))il such that E {R(T,)’e"temal} > Q (T") . The expectation is taken over the randomness of
the algorithm and the ranking.

To prove Theorem4.3| we need to construct log 7" sequences of utility vectors, with the same ranking
feedback when 7 is small. Then, we can show that at least one of them suffers an average regret

Q(1).
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Given Theorem it is impossible to achieve 6(7") with [AvgUtil Rank| when 7 is very small.

However, in Section@ we will close the gap by showing that when 7 is a constant (i.e., O(1)), we

can achieve sublinear regret with[AvgUtil Rank] even without Assumption .2}

Due to the different instantiations of r(*) in the full-information and the bandit settings under
we have a separate hardness result for the bandit setting, stronger than Theorem[4.3]
as it allows a larger 7 and avoids logarithmic terms. The result can be viewed as strengthening the
hardness for the adversarial bandit setting in|Maran et al.|(2024)), which corresponds to the case with
T—=0T.

Theorem 4.4. Consider|AvgUtil Rank|with bandit feedback. For any T > 0, temperature 0 < 7 <
@ ( )jTl such that
E [R(4T)} > Q(T) . The expectation is taken over the randomness of the algorithm and the ranking.

@ , and online learning algorithm, there exists a sequence of utilities (u(t) _

To prove Theorem .4 we need to construct two utility sequences such that sublinear regret in the
first utility sequence will lead to insufficient exploration for the second sequence. As a result, when
7 is small, those two sequences cannot be differentiated, and a linear regret must be incurred in one
of them. The details are postponed to Appendix [D|due to space constraints.

5 ONLINE LEARNING WITH FEEDBACK

We start by introducing a novel utility estimation oracle to be used in our later algorithms.

5.1 UTILITY ESTIMATION

A natural idea to learn under ranking feedback is to use the feedback to estimate the numeric utility
vectors. At each timestep ¢, we propose using the ranking feedback from the last m steps to predict

the utility vector u. When ¢ > m, we use the past m steps’ permutations {0(5)}:; t—my1 (O

estimate the utility «(*). Due to the non-convexity of the @, the key point to estimate utilities is to
decompose the ranking of K actions into pair-wise rankings. Then, we can utilize the properties of
the logistic function, such as monotonicity, to convert the estimation error on ranking probabilities
back to utilities. The full algorithm can be found in Algorithm [T} with the following guarantee.

Theorem 5.1. Consider and Algorithm [I} Suppose each action is proposed with
probability at least p > 0 at each timestep t € [T] and let uY) = Estimate ({U(S)}i:pmfﬂ)'
Then, for any § € (0,1) and t > m/, when m’p4 > 2log (%) with probability at least 1 — 0, the

estimate u'") satisfies,

. 2
T (67 + 1) log (2 ot . .
- nf/a) Y [ -

Hﬁu) —au®
o0 p

oo
s=t—m/+1

When taking 6, p, 7 as constants, the accumulated estimation error Zthl Hﬁ(t) —u® ||Oo will be
bounded by O (\/% +m/ P(T)), which implies that sublinear accumulated estimation error is

achieved when PT) is sublinear (Assumption . Moreover, Theorem implies that when
7 — 07T, the estimation error upper bound goes to +oo. This makes sense intuitively: when
7 — 0%, only the action with the highest utility is chosen (deterministically), so it becomes im-
possible to estimate the gap between the utilities of any two actions. At the opposite end, when
T — 400, the estimation error upper bound also goes to +oo, since the ranking is always sampled
uniformly regardless of the utility vectors.

The full proof of Theorem [5.1]is deferred to Appendix [E| Then, we show how to achieve sublinear
regret in both full-information and bandit settings with based on such an estimator.

5.2 SUBLINEAR REGRET WITH |InstUtil Rankl

This section shows that for any online learning algorithm that can achieve sublinear external regret
with numeric utility feedback, we can construct an online learning algorithm with (InstUtil Rank
feedback based on it, in a black-box way.
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With full-information feedback, the learning agent proposes the full action set .4 at each timestep.
In this case, we can obtain @(*), an estimate of u(*), by Algorithm and obtain guarantees using
Theorem [5.1] with p = 1 (since all actions are proposed at each timestep).

With bandit feedback, the utility of the online learning agent at timestep  is - Zszl u® (a® (k)),
i.e., the average utility of the proposed actions. To achieve sublinear R(T) (defined in (3.1)), each

proposed action will be sampled from 7(*) independently with replacement. In other words, an ac-
tion may be proposed multiple times at a single timestep. Therefore to ensure each action will be

proposed with a positive probability, we need to let ﬂ(f)( ) > | A‘ for some v > 0 and every action

a € A. To this end, we will let 7+ = (1 — 7)Alg (( S)) ) + 7%, i.e., a convex combi-

nation of the strategy generated by the no-regret learning algorithm Alg and a uniform probability
distribution over A. The diagram of the algorithm can be found in Figure 5] and the details are in
Algorithm 2]

Then, we have the following theorem.

Theorem 5.2. Consider with constant T > 0. By running Algorithm [2] for any
0 € (0,1), T > 0, and any full-information no-regret learning algorithm with numeric utility

feedback, Alg, by choosing the window size m and ~ properly, we have that with probability at least
1 — g, R(T)external gurigfiog

T 1 T 3
R(T),cxtcrnal SR(T),cxtcrnal (Alg, (ﬂ(t))t=1> + 0O ((P(T)) 3 T% <1Og ((5)) ) (Full-Info)
(T) (T),external ~(t) T (T) é 4 T .
RV <RY) Alg, (u )t:1 + 0 (P ) T'5 log 5 . (Bandit)

The proof is deferred to Appendices [E] and Theorem implies that when P(T), the variation of
utility vectors, is sublinear, the regret of Algorithm [2] will be sublinear.

6 ONLINE LEARNING WITH |AvgUtil Rank| FEEDBACK

6.1 UTILITY ESTIMATION

We also start by introducing a new utility estimation algorithm. Since o(*) is generated based on

uétv)g, we will estimate ug,)g instead. We will still apply Algorithm , which will generate ﬁg,)g, an

estimate of uz(fv)g, when the permutation is sampled under|AvgUtil Rank|feedback. Moreover, notice

that

(t—1)
t— 1)usy _ 1 2
[t — iz = e i< g ([ue] + ] ) <2
t t t
Therefore, Ziﬁ 1 Hufﬁ,‘gl) - Uz(;fg , the counterpart of Zs i1 ||u(5+1) —u® Hoo in

Theorem|5.1| can be bounded by ZS tmi4l 3 +1’ which is irrelevant of P(*) in Assumption |4.

6.2 FULL-INFORMATION SETTING

Unlike the case with feedback, where any (full-information) online learning algo-
rithm can be leveraged, the algorithm with feedback needs to be insensitive to the
changes in accumulated utility, such as FTRL. Because we want the strategies generated by the on-
line learner, given the estimated average utilities as input, to be close to those generated using the
ground-truth utilities. Then, the regret is sublinear since our strategies are close to the strategies that
yield a sublinear regret.
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Assumption 6.1. The (full-information) online learning algorithm Alg needs to satisfy the following
t
condition: for any T > 0, t € [T, sequences of utilities (u(s))i_l , (u’(s)) € (RA)t, we have
- s=1

t t
HAlg ((u(s)):_l> —Alg (( (s ) )H <L Zu(s) — Zu’(s)
- s=1 s=1

where L = © (T~°) for some constant ¢ € (0, 1).

)

It can be verified that follow-the-regularized-leader with any strongly convex regularizer satisfies
this assumption (cf. Lemma [C3). Then, similar to Section [5.2] any online learning algorithm
satisfying Assumption [6.1|can achieve a sublinear regret when equipped with the utility estimator in
Algorithm [T} The overall procedure is summarized in Algorithm [3|and Figure[6] with the following
guarantee.

Theorem 6.2. Consider[AvgUtll Rank|with constant T > 0 and full-information feedback. By run-
ning Algomhml 3} for any & € (0, 1) T > 0, and any full-information no-regret learning algorithm
with numeric utility feedback, Alg, that satisfies Assumption[6.1) by choosing m properly, we have
that with probability at least 1 — 0, R(T)-extemmal gatisfies

R(T),external SR(T),external <A1g, (u(t))T ) ) (LTZ, log (?)) .
t=1

Theorem [6.2] shows that with a small enough L = ©(7~°) satisfying ¢ > 2/3, R(T)-external cap be
made sublinear in 7". The proof and the formal version of Theorem|[6.2]are provided in Appendix

6.3 BANDIT SETTING

By appling Algorithm we can only obtain an estimate of ugr)lpirical instead of ugv)g. However,

almost all no-regret learning algorithms made decisions according to the accumulated utility, such
as mirror descent, FTRL, and regret matching (Zinkevich et al.| 2007 [Hazan et al., 2016). Let
n®(a) == 3" _, #, (a) for any a € A be the number of times action a has been proposed up to
timestep ¢, where #,) (a) is the number of occurrences of a in 0(*). A natural idea is to compute

n®(a )ui?lpmml(a) —n{t=D(a )ugnpl?”wl( ) to get an estimate of u(*) (a). Nonetheless, the variance

will be too large due to the multiplication of n(*) (a) o t.

To address this issue, we divide the timesteps {1,2,...,t} into [t/M]| blocks, with
each block containing M timesteps except for the last one. Then, for each block

{s M+1,s- M+2,...,(s+1)M} (for s < |&4] — 1 and a € A, we estimate

7 UL 1w (a) by computing
DD () (+1)-M) () _ M) gy (530 ()

empirical empirical

n(GHD) (q) — (M) (q)

. .. ~((s . . n((s+1)-M) .
In this way, the multiplier on u£;;130g>(a) is =y ) n((s)M)( 5 . The trade-off of M is that the

value above estimates the average utility of a when a is chosen, which may differ significantly from the true
average utility of a in that block. Because when M is large, the accumulated utility variation is larger. The full
algorithm is illustrated in Algorithm [3|and Figure 6}

Theorem 6.3. Consider with constant T > 0 and bandit feedback. By running AlgorilhmE] for
any § € (0,1), T > 0, and any full-information no-regret learning algorithm with numeric utility feedback,
Alg, that satisfies Assumptionl@ by choosing M, m, ~y properly, we have that with probability at least 1 — 6,
R satisfies

2 1
R(T) SR(T),external (Alg, (u(t))T ) T 6 <<log (1)) L%T? (P(T)> 6> ’
t=1 0

where O hides logarithmic dependence onT'.

By choosing L = © (T_C) with ¢ € (% + 4, 1), o ((log (%)) L3Tis (P(T)) ) is sublinear when
PM <0 (T'?) for some q < l. Theorem guarantees sublinear R™_ We need ¢ < 1 because typically

R(T)external (Alg7 ( (t)) ) <O (i + LT), see e.g., FTRL with any strongly convex regularizer (Hazan
et al., 2016).
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7 EQUILIBRIUM COMPUTATION WITH RANKING FEEDBACK

For a normal-form game (N7 (AN, {Z/{l}fvzl) we define the external regret of player ¢ € [N] as

T
Rt o max 3 (w7 - w0, (7.1)
7 eAA P}

where 7ri(t) € A4 is the strategy of player i at timestep ¢ and ugt)(ai) =
Za’exfil A, Ui(a') 1 (a; = a;) [T ﬂﬁf)(a;,) for any a; € A;. Then, it is known that the time-
average joint strategy Wgzg), where ng) (a) = % Zthl HiE[N] ﬂz(t) (a;) forany a € Xﬁvzl A;, is an

e-CCE} with € := max;¢|n {%RET)’eXtemal} .

Applying the algorithm in Section [3] (for feedback) or Section [6] (for
feedback), we achieve sublinear RET)’eXtemal for each player ¢ € [N]. Note that PT) in Assump-
tion[d.2]can be bounded by the summation of all players’ strategy variation (cf. Lemma[K:I)). Thus,
to ensure P(7) is sublinear in 7', Alg needs to additionally satisfy the following assumption.

Assumption 7.1 (Sublinear variation of strategies). The (full-information) online learning algorithm
Alg needs to satisfy the following condition: for any T > 0, t € [T — 1], and sequence of utility

vectors (u(s))i:l € ([-1, 1]A)t, we have HAlg ((u(s))Z:1) —Alg ((U(é))?rll)H < 1, where

n =0 (T~") for some constant w € (0,1).

Mirror descent (cf. [Wei et al.| (2021, Lemma 1) and [Liu et al.| (2023, Lemma C.5)) and FTRL with
any strongly convex regularizer (see Lemma for the proof), both satisfy this property. When

Assumption [7.1]is satisfied, one can achieve sublinear regret with under both full-

information and bandit feedback. The formal statement is as follows.

Theorem 7.2. Consider with constant T > 0 and Algorithm IZ| Forany ¢ € (0,1),
T > 0, and any full-information no-regret learning algorithm with numeric utility feedback, Alg,
that satisfies Assumption by choosing M, m,~ according to Theorem [3.2] we have that with
probability at least 1 — §, the algorithm finds an ¢-CCE, with

1
. 1
e< max {%RET)’eXtemal (Alg, (a£t>)t:1) } +0 <n§ (log (%)) 3) (Full Information)
1 (T),external ~(t) T 1 T .
< — R ) 5 — .
€< 11161% {TR’ <Alg, (ul )t:1 + O ( ns log 5 (Bandit)

With feedback, when all the players apply Algorithm [3]and both Assumption [6.1]and

Assumption|/.1|are satisfied for the oracle Alg being used, the external regret of each player will be
sublinear in T according to Theorem[6.2] Finally, we have the statement below.

Theorem 7.3. Considerwith constant T > 0 and Algorithm Forany 6 € (0,1),
T > 0, and any full-information no-regret learning algorithm with numeric utility feedback, Alg,
that satisfies Assumption [6.1} by choosing M, m,~ according to Theorem [6.2) we have that with
probability at least 1 — ¢, the algorithm finds an e-CCE under full-information, with

T
e < max lR§T>’e’“emal Alg, (U@) ro(rLrs log 2r . (Full Information)
ieN) | T ° Y t=1 1

When M, m,~y are chosen according to Theorem@and Assumption@ is also satisfied, the following holds
under bandit feedback,

€ < max lR(.T),external Alg, (u(t)>T n 6 log 1 2 (L
“aelN) | T Y =1 1)

Lastly, we would like to remark that although the online learning setting can be hard with a small 7
(cf. the hardness results in Theorem.3|and Theorem.4)), computing an equilibrium is still possible
even when 7 — 0. A detailed discussion can be found in Remark

wl=
3
ol
+
™~
[
~—
N
ol

) . (Bandit)



Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This research does not involve human participants, personally identifiable information, or sensitive
data. All experiments were conducted under hypothetical and simulated environments. No animals
or humans were harmed or involved in this study. The authors affirm that the work complies with
ethical standards of the research community.

Furthermore, we have carefully considered the potential societal impacts of our research. While
the proposed methods could be applied in various real-world settings, we acknowledge that any
misuse, such as in surveillance or decision-making without fairness considerations, may raise ethical
concerns. We strongly encourage the responsible use of our work and emphasize that it should not
be deployed in contexts that may cause harm or reinforce social biases.

9 REPRODUCIBILITY STATEMENT

The code is provided in Online-Learning-and-Equilibrium-Computation-with-Ranking-Feedback.
All assumptions are listed in Table [I| and the proofs are presented in the appendices, from Ap-

pendix [D]to Appendix

10 USE OF LARGE LANGUAGE MODELS

In this paper, we use large language models (LLMs) to improve writing, e.g., by correcting gram-
matical errors.
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A RELATED WORK

Dueling Bandits. Using comparison and/or ranking feedback for sequential decision-making has
mostly been studied under the framework of dueling bandits (Yue et al.l 2012; [Saha & Gaillard,
2022; Saha & Gopalan, [2019; Du et al.l 2020; |Saha et al., [2021; Dudik et al.l 2015)), where the
agent takes two (or multiple) actions at each timestep, and receives a ranking of them as feedback.
Different from our setting, the ranking feedback in these works was only based on the instantaneous
utility at that timestep, while our results can address both settings with instantaneous and time-
average utilities for ranking. More importantly, the regret notions studied in these works were
particularly designed for the dueling-bandit setting, and thus different from the classical external
regret we focus on here. Finally, dueling bandits mostly focused on environments that are szationary
and stochastic (Yue et al. 2012; [Saha & Gaillard, 2022; |Saha & Gopalan, |2019; Du et al., [2020),
while we focus on the non-stochastic setting where the environment is arbitrary and potentially
adversarial, as in online learning (Shalev-Shwartz et all 2012; Hazan et al., |2016). Due to the
last two differences, the implication of these dueling-bandit algorithms in the game-theoretic setting
is unclear, while our algorithms find an approximate CCE of the game, as a corollary of the no-
(external-)regret guarantee.

Reinforcement Learning from Human Feedback and Preference-Based RL. Inspired by the
successes in aligning large language models (LLMs) (Ouyang et al.| 2022), reinforcement learning
from human feedback has received increasing attention. RLHF is usually instantiated as preference-
based learning, where the humans rank the model outputs based on their preferences, and a reward
model is then estimated from the feedback, which will be further used for model fine-tuning. This
way, RLHF is oftentimes implemented in an offline fashion, where batch feedback data are used for
reward model estimation (Ziegler et al.,|2019;|Bai et al., 2022; |Ouyang et al.,[2022;|Zhu et al., [2023}
Park et al.}[2024)). Recently, online versions of RLHF have also been developed (Dwaracherla et al.,
20244 [Du et al., [2024; Xie et al., [2024; |Cen et al.| 2024} [Zhang et al.| [2024)), where the exploration
issue was addressed with online feedback. In fact, beyond fine-tuning LLMs, preference-based
RL has also been studied in the classical Markov decision process model with online feedback
(Novoseller et al.,|2020; Saha et al., 2023} |Xu et al.||2020). However, the utility/reward functions in
these works are again stationary, and the regret notions extend those in the dueling-bandits literature,
which are thus different from ours. Hence, these results do not apply to our adversarial online
learning and game-theoretic settings.

Learning of Stable Matchings. Some of our motivating scenarios for the game-theoretic setting
may also be modeled as the stable matching problem (Gale & Shapleyl, [1962), which has been
extensively studied when the agents have full knowledge of their preferences. Recently, growing
efforts have been devoted to learning in stable matching markets with unknown preferences, and
through interactions between the agents (Liu et al.| 202052021}, Basu et al., 2021} |Jagadeesan et al.,
2021} |[Etesami & Srikant, 2025|; [Shah et al., [2024bja). Notably, Etesami & Srikant| (2025); |Shah
et al.|(2024bja) also took a game-theoretic perspective, by developing learning dynamics for finding
matchings in a decentralized, uncoordinated fashion. However, one key difference is that the learn-
ing agents (e.g., the proposers or the platform) can still receive numeric feedback of the utilities each
round, based on the matching result, while in our model, they can only receive the ranking feedback.
Moreover, the learning dynamics in |[Etesami & Srikant| (2025)); |Shah et al.| (2024bja)) were specific
to the matching model, while ours aim to address general normal-form games.

Recent Work by Maran, Bacchiocchi, Stradi, Castiglioni, Gatti, and Restelli (2024). The work
closest to ours is the recent one by Maran et al.| (2024)), which studied multi-armed bandits with
ranking feedback, also under the standard (external-)regret metric. Different from the ranking model
in dueling bandits, the model of Maran et al.| (2024)) is based on time-average utilities, a setting also
considered in our paper. More importantly, in contrast to our paper, Maran et al.| (2024) focused
on the stochastic bandits setting where the utility functions are stationary, while our focus is on the
adversarial/online and game-theoretic settings, with both instantaneous and time-average utility-
based rankings. Furthermore, the ranking model in [Maran et al.| (2024) corresponds to the case of
7 — 0% in our framework. Finally and notably, [Maran et al.|(2024) also provided a hardness result
for the adversarial bandit setting (with 7 — 07 in our framework), while our hardness results (with
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different hard instances) are stronger in the sense that they allow a wider range of 7 for the bandit
setting, and also cover the full-information setting (cf. Table[T).

B ADDITIONAL NOTATION AND PRELIMINARIES

Notation. For any integer N > 0, we define [V] := {1, ..., N'} to denote the set of positive integers
no larger than N. We use bold notation x to denote a finite-dimensional vector, and z; to denote
the i*" element of the vector. For any discrete set S, let |S| denote its cardinality, A® = {a: €
RS: Y cs@s =1, z, > Oforalls € S} be the probability simplex over S, and 1 (S) be an
all-one vector with each index being elements in S. For any ordered discrete set S, we use RS to
denote the |S| dimensional real space, where the s** € S element of any & € RS is denoted as x4
or x(s). For any vector z € R™, let [|z||, be its L,,-norm and we use ||z|| to denote the Lo-norm by
default. For any convex compact set C C R™ and & € R", let Proj, (z¢) = argmin . || — o]l
For any event e, let 1 (e) be its indicator, which is equal to one when e holds and zero otherwise.
Additionally, for any discrete set S, let X (S) be the set containing all the permutations of the

elements in S. We will use sig(z) = 13(91;((;()1)

: R — R to denote the logistic function.

B.1 NORMAL-FORM GAMES

An N-player normal-form game can be characterized by a tuple (N , {Ai}g\il , {Ul}fil) , Where
A; = {al a? ...,aLA”} is the (finite) action set for player i € [N]; U;: Xf\; A = [-1,1] (X

1) )

denotes the Cartesian product of sets) is the utility function of player i, where U; (a1, ag, ..., an) is

the utility of player ¢ when player j € [N] takes action a;. We call a: = (a1, as, ..., an) the joint
actionandleta_;: = (a1, ...,a;_1,0i11,...,ay). Player i € [N] can choose a strategy m; € A%,
and we call Xij\; A4 5w = (my,7,...,TN) a strategy profile. When a strategy profile 7 is

implemented, each player ¢ € [N] has an expected utility of Zaex?&l A Ui(a) [T;en mila).
Lastly, we use the unbold notation 7 € AXiL1 A 1o denote the (possibly correlated) joint strategy of
all the players, where 7 (a) is the probability of choosing the joint action a € Xil\il A;.

In this paper, we focus on finding an e-approximate coarse correlated equilibrium (e-CCE) of the
NFG, which is a probability distribution over the joint action set. It is formally defined as follows:

Definition B.1 (¢-CCE). For any joint strategy m € A%t Ai it is an e-CCE if

U; mi(a; ;, —i) — <e. -CCE
irg[zﬁc} %ineli}f“i ; (a) | mi(a;) Z m(a;,a_;) —m(a) | <e (e )
aex | A; a;€A;

When € = 0, we refer to it as a(n exact) CCE.

B.2 EQUILIBRIUM COMPUTATION WITH RANKING FEEDBACK

There is a mediator (platform) in the game that computes strategies for the players, (e.g.,
Uber recommends the candidate drivers and users to each other), but with only access to the
ranking feedback from the players, e.g., humans. Specifically, when the strategy profile 7
is implemented by the players, player ¢’s utility of taking action a; € A; is uF(a;) =
Za/exz_\Ll A, Ui(a’) 1 (a; = a;) [];4;7j(a}). However, instead of observing the utility directly,
the mediator can only observe the ranking based on it. Therefore, at each timestep ¢, the mediator
K
will choose a strategy profile 7 and propose each player ¢ € [N] a multiset ogt) = {a(t)’k}

¢ k=1
consisting of K actions, and in different settings proceed differently as follows:

* Full-information setting. A/l the actions of each player i« € [N] can be evaluated and
ranked at each timestep ¢ based on some utility vector, which is uf(t) under [InstUtil Rank
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and u;?g = %Zizl u;"(s) under [AvgUtil Rank], where (") = (wit), . w](\t,)) is the

strategy profile at timestep .

* Bandit setting. For each player ¢ € [N], only the K actions in ogt) that are proposed at
timestep ¢ will be evaluated and ranked, with the associated elements in some utility vector.

Specifically, under [InstUtil Rank} ﬁ(t) defined below will be used: for each a; € A;

i (a;) = Z Y. Uia)(af=ai) 1 (a; =a);

a_i€ot) a’eX]L A,

under [AvgUtil Rank] the corresponding empirical average utility is as computed in (3.2)),
with the u(s) therein being replaced by the u(s) above. As in the online setting, we as-
2o c® ui(aiyai)]

[0

sume that the actions are proposed in an unbiased way, i.e., E

<Z/li(ai, ), (¢ )> for all a; € A;. In other words, u ( ) is an unbiased estimate of ul “

The process will be repeated until the mediator finds an (approximate) equilibrium of the game,
which is the average of the joint strategy over all timesteps.

C EXPERIMENTS

We evaluate our algorithms in two-player general-sum games with randomly generated utility, un-
der all the combinations of full-information and bandit settings, as well as the and
[AvgUtil Rank|feedback types. The CCE approximation e for games with different parameters is pro-
vided in the following figures, with a 95% confidence interval. All the experiments are conducted
on 37 cores of the Intel(R) Xeon(R) Platinum 8260 CPU @2.40 GH.

InstUtil Rank Game with Full-information Feedback (K=10) AvgUtil Rank Game with Full-information Feedback (K=10
05 0.200 -
0081 R 0175 ceem o1
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Figure 2: The exploitability for the full-information setting under both [InstUtil Rank|and [AvgUtil|
feedback. The performance is tested under different temperatures 7. Each parameter combi-
nation is tested 10 times with different random seeds.

The utility estimation of each game utilizes Algorithm [T} The (full-information) no-regret learning

oracle with numeric feedback, Alg, for [nstUtil Rank]is PGD (Hazan et al.| 2016) and for [AvgUtil|
[Rank|is FTRL with Ly-regularization (Hazan et al.| [2016).

To select better hyper-parameters for different game settings, we performed a grid-search for InstU-|
on exploration rate v and estimation window size m. For[AvgUtil Rank| we perform the

grid-search on exploration rate -, estimation window size m, and the block size M. The parameters
searched may differ depending on the full-information or bandit feedback settings. All the games
are run for 7' = 107 iterations. Each player in the game has 10 actions. The learning rate was set to

n= ﬁ in all experiments, except in the combination of |AvgUtil Rank|and bandit feedback, where
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Figure 3: The exploitability for the bandit feedback setting under [InstUtil Rank| feedback. The
performance is tested under different temperatures 7 and sampled action size K. Each parameter
combination is tested 10 times with different random seeds.

it was set to 7 = 1075, Each parameter combination is tested 10 times with different random seeds.
We pick the best m, M, and ~ for each figure.
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Figure 4: The exploitability for the bandit feedback setting under |AvgUtil Rank| feedback. The
performance is tested under different temperatures 7 and sampled action size K. Each parameter
combination is tested 10 times with different random seeds.

For all games, the exploitability decreases as ¢ increases, which shows time-average joint strategy
converges to CCE. The equilibrium of the bandit feedback setting for [AvgUtil Rank]|is reached

slower than [InstUtil Rank| which fits the regret bound in Theorem [5.2and Theorem 6.3

The code for the experiments is provided at the anonymous github link Online-Learning-and-|
Equilibrium-Computation-with-Ranking-Feedback/'|

D PROOF OF SECTION 4]

Note that E [R(T)] >E [R(T)’e"temal] by definition. Therefore, in the rest of this section, we will
focus on showing the lower bound of E [R(T)-external],

"https://anonymous.4open.science/r/Online-Learning-and-Equilibrium-Computation-with-Ranking-
Feedback-EA1D
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D.1 PROOF OF THEOREM [4.1]

Theorem 4.1. Consider [InstUtil Rank For any T > 0, temperature 0 < T <
0.1, and online learning algorithm, there exists a sequence of utilities (u(t))thl such that
min {E [R(T)’e"temal] JE [R(T)]} > Q(T) in both full-information and bandit settings. The ex-

pectation is taken over the randomness of the algorithm and the ranking.

Proof. Consider an online learning problem with A = {a, b}, so that the utility vector can be
represented as (u(a), u(b)). There are two instances with 7 = 0.1.

In the first instance, there are two types of utility vectors (—0.5,0) and (0.15,0). At each timestep,
the adversary will choose (—0.5, 0) with probability % and the other with probability 19—3.

In the second instance, there are two types of utility vectors (—0.02,0) and (0.1,0). Recall

sig(z): R - R == li’;’&)x) is the logistic function. At each timestep, the adversary will choose

(—0.02,0) with probability =E(=2C8+8880 5/ 0=s8) ~ (.58 and the other with probability
0.42.

The expected utility of action b in both instances is 0. The expected utility of action « in the first
instance is —0.05. The expected utility of action a in the second instance is 0.03.

Moreover, the probability of the online learning agent observing permutation (a, b) in the first in-
stance is

4 . 9 .
1—3513;(—5) + E&g(lﬁ),
which is equal to the probability of observing it in the second instance

4sig(—5)/13 4 9sig(1.5) /13 — sig(1) .
sig(—0.2) — sig(1) sig(=0-2) + (1

sig(—0.2) — sig(1)

T

10 WE have

Therefore, for any algorithm that generates (7(*))

T

E [ZT: <u<t>7 w<t>>] iE K”m’ 7r<t>>} @ 3 <E [uu)] E [ﬁa)D ,

(1) is because u(*) is independent of 7(*) given our process of generating both instances. Moreover,

E |:7T(t):| = Z P (o(l), . ,0(t71)> E [ﬂ'(t) | A ,cr(tfl)} .
oM ,..,ot=Dex(A)
The first term P (0(1), ey a(t_l)) is equal in the two instances according to the discussion above,

and the second term E [w(t) loM, ..., a(tfl)] is also equal since it only depends on the algorithm.
Therefore, £ [77(*')] is the same in both instances.

However, E [u®] = (—0.05,0) in the first instance but (0.03,0) in the second. Therefore, when-
ever achieving sublinear regret in the first instance, the algorithm will suffer a linear regret in the
second instance, and vice versa. O

D.2 PROOF OF THEOREM [4.3]

Theorem 4.3. Consider|AvgUtil Rank|with full-information feedback. For any T' > 0, temperature

0<7<0O (ﬁ) and online learning algorithm, there exists T' > T and a sequence of utilities

(u(lt))tT:1 such that E [R(T,)’e’“emal] > Q(T") . The expectation is taken over the randomness of
the algorithm and the ranking.

Proof. We use (u(a),u(b)) to denote the utility vector when the action set is A = {a,b}. In the
following, we will show a hard instance for 7 — 01, i.e., we always observe the action with higher

18
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utility ranks first in the permutation. Then, we will show that 7 < O(ﬁ) can be reduced to
T —=07F.

The utility vector at timestep 1 is u(") = (0.5,0). We will construct the rest of the utility vectors
next.

We call the following an action-a construction, since, except for the last timestep, the observation is
that action a is always better. Let ' € N be the smallest integer such that 2K > T then:

Sequence 0 =(0, 1), (0,0)
Sequence 1 =(1,0),(0,1), (0,1), (0,0)
Sequence 2 =(1,0), (1,0), (1,0), (0, 1), (0, 1),(0,1), (0,1), (0,0)

(D.1)
Sequence K — 1 =(1,0),...,(1,0),(0,1),...,(0,1),(0,0)
2K—1_1 2K 1
Sequence K = (1,0), ..., (1,0), (0,0).
2K _1

Lemma|[D.T]in the following shows that at least one of the sequences will incur a low average utility
for the algorithm.

Lemma D.1. Consider (D.1)). For any online learning algorithm, at least one of the K+1 sequences

satisfies that the expected average utility per timestep is less than 0.5 — m

By Lemma there exists a sequence with length 2* for some k& < K such that the average utility

per timestep achieved by the algorithm is less than 0.5 — ﬁﬂ) We will pick this sequence as the

next 2% utility vectors. If the current utility vector sequence is no less than 7', then the hard instance
is completed. Otherwise, we will establish the following action-b construction:

Sequence 0 =(1,0), (0,0)
Sequence 1 =(0, 1), (1,0), (1,0), (0, 0)
Sequence 2 =(0,1),(0,1),(0,1),(1,0),(1,0),(1,0),(1,0), (0,0)

Sequence K — 1 =(0,1),...,(0,1),(1,0),...,(1,0), (0,0)
oK—-1_1 2K -1
Sequence K = (0,1),...,(0,1), (0,0).
—_—

2K 1

Similarly, except for the last observation, action b is the best action in all the observations. Similar
to Lemma [D.1I] we can show that at least one of the sequences incurs average utility per timestep

less than 0.5 — Q(Kilﬂ) We will add that sequence to the end of our hard instance.

Let 77 > T be the length of the final instance. Therefore, the average regret will be m =
Q(-1=). Because from the construction, the best action should get at least 0.5 — % utility per

log T
timestep.

When 7 < O (#ﬂ)? from the construction above, the difference between the cumulative utility

of the actions is always 0.5. By definition of |[AvgUtil Rankl, 1—sig (O (%2)) < O (%). Therefore,
by union bound, with a non-negligible probability, all permutations will rank the action with a higher

utility at first, so that the problem reduces to the case with 7 — 0F. O
Lemma D.1. Consider (D.I). For any online learning algorithm, at least one of the K +1 sequences
satisfies that the expected average utility per timestep is less than 0.5 — m

Proof. Note that in this online learning setting, the strategy 7(*) is determined by u"), ... w(t=1),

Therefore, in all the sequences in the action-a construction, since action a is the best in all the
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observations, for any two sequences k1 < ko, the expectation of the strategies is the same for the
first 25141 utility vectors. For simplicity, we will use z(*) to denote the probability of choosing
action-a at timestep t.

1— .L(z) 1—z®
iz

The average utility at sequence 0 is T The average utility at sequence 1 is “— RS 1

We can see that the utility contributed by (! to all the sequences is

120 L L0 R RN S
Similarly, the contribution of 2(?), () is 1. The contribution of 2™, z(® ... 2(7 is +. Therefore,

the total contribution of z(1), ..., x(ZK_l) is % There are K + 1 sequences in total, so that at least

one of the sequences has average utility per timestep less than 2(K7K+1) = % - ﬁ O

D.3 PROOF OF THEOREM [4.4]

Theorem 4.4. Consider[AvgUtil Rank|with bandit feedback. For any T > 0, temperature 0<7<
1

o (logT ’

E [R(4T)} > Q(T) . The expectation is taken over the randomness of the algorithm and the ranking.

and online learmng algorithm, there exists a sequence of utilities (u(“)) such that

Proof. Consider the following two instances. Both of them satisfy A = {al, a2} and K = 1.

Instance 1 = (0.1,0),...,(0.1,0), (0,0.2),...,(0,0.2),(0,1),...,(0,1)
T T 2T
Instance 2 = (0.1,0),...,(0.1,0), (0,0.2),...,(0,0.2), (0.4,0.2), ..., (0.4,0.2).

T T 2T

We call the first 7" timesteps as the first phase, the next 7" timesteps as the second phase, and the last
2T timesteps as the third phase.

For any online learning algorithm to achieve sublinear expected regret, it must propose action a' for
at least 0.97 timesteps during the first phase with probability at least 1, since otherwise the expected
external regret in the first phase is linear. During the second phase, it must propose action a? for at
least $22=0:1T _ T tlmesteps due to the same reason with probability at least <. Then, at the end of

0.2
w3 2y_,,(2T) 1 0 57-0.2 _
the second phase, Wlth probability at least , te, 5iica1 (02) —Uersiear (@) > goprgar—0.1 = 5

Then, in the third phase of Instance 1, the algorithm needs to propose a? for at least

O'2T+2T_10'2T_0'1T = 1.9T timesteps with probability at least %. In other words, a' is proposed

by no more than 0.17" times. Then, in Instance 2, at the end of the third phase, W7 (a?) —

empirical

(4T) 1 0.57-0.2 _ 0.97-0.140.17-0.4 +
Ugmpirical (@) = G 111057 — — oortoar — = 0.03. Therefore, when 7 — 07, the observations

of Instance 1 and Instance 2 are the same with probability at least . Then, with probability at least
according to the discussion above, any learning algorithm will satlsfy one of the following,

8’

* Linear regret at timestep 7.
* Linear regret at timestep 27

* Linear regret at timestep 47" in either Instance 1 or Instance 2.

Moreover, for any ¢ > 27 in Instance 2, we have ugl)lpirical(az) — ugr)lpirical(al) > ugfnT;irical(aQ) -
uéﬁ}irical(al) > 0.03. Therefore, when 7 < O (1 =7 )» With high probability, the action with
higher empirical average utility will always be ranked first. O
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Algorithm 1 Utility Estimation with Action Permutations: Estimate ({a(s) }:;1)

1: Input: A set consisting of m’ permutations of actions : {a(s)}:n:l with |0(®)| = K for all
s € [m/], and temperature 7 > 0.

2: forj=1,2,...,]A] — 1do
33 fors=1,...,m do
4: Calculate n§ o), 552) defined as
nisl) = Z 1 (O’ (i) =a’, 0 (k) = a"and i < k) ,

i,k€[K]
nﬁsg = Z 1 (O'(S) (i) =d, 0" (k) = a*and i > k) )
i,k€[K]
5:  end for
6. LetT, = {s cl,m]:n (8) +n(s) > O}
7. Letsig~'(x): (0,1) — R log %= be the inverse function of sig(-). The utility of action
a’ is then estimated as

()
: i1 1 4,1
ﬂ(aj) _ PrOJ[—Ll] (TSlg (|7—]| 'ZseTj (ngs
0 75| = 0.

=
\)z/\
(NS
N———
N———
N———
=
Vv
[e]

end for
9: Return @ = (u(a'), a(a?),...,u (a=1),0)

e

E PROOF OF THEOREM

In this section, we proved the high probability bound for the utility estimation error, and with that,
we gave the regret upper bound of our algorithm under feedback. Next, we will
introduce the key lemma we used for utility estimation, Lemma [E.I| which shows that the ranking
of K actions can be decomposed into pair-wise rankings.

E.1 PAIR-WISE UTILITY ESTIMATION

Lemma E.T|below shows that when the number of proposed actions K > 2, for any two actions a #
u(t)(a)—u(”(b))

b € o), the proportion of pairs that action a appears before bin o(*), is equal to sig ( —
in expectation. In other words, the expected proportion is equal to the probability of the permutation
(a,b) occurring when only proposing a,b. Similar results were also proposed in [Hunter| (2004,

p396), and we extend it to multiset.

LemmaE.l. Let #s (a) =), .51 (a' = a) represent the number of elements in a multiset S that
are equal to a € A. For any utility vector u, temperature T > 0, a multiset of proposed actions S
with cardinality |S| = K, and any two actions a # b € S, we have
—u(b
EWECET)Y
T

™ (a Z Z o(k1) = a) -1 (o(ky) =) ’3
The expectation is taken over the distribution of o under the ranking model (PL).

k1=1ko=k1+1

The proof can be found in Appendix [E.2] With Lemma[E.T] the general cases where K > 2 actions
are proposed can be cast into the case with only two actions being proposed, by enumerating all

possible action pairs. Therefore, to estimate u(*) (a’) for some a’ € A, we will first construct an
u® (a?)—u® (alAl)

unbiased estimator of sig ( =

) using Lemma for all timesteps s € [t —m+1, t]
when both a7, a! € o(*). Since we have assumed without loss of generality that u(*) (all) = 0,

these values coincide with sig (%) . Then, by Hoeffding’s inequality and the monotonicity of
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the logistic function sig(+), with high probability, the mean of the logistic function estimators will be
s t
bounded between the minimum and maximum of {Sig (m> } . By Assumption

T s=t—m-+1
. - . . ) (g7 .
since the utility vectors are changing slowly, that mean can be shown close to sig (“f(a])) With

(1) (a7)

a good estimate of sig (" — ), we can then take an inverse of sig(-) to estimate u(*)(a’). This

estimation algorithm is summarized in Algorithm [I]and analyzed in Theorem 5.1 below.

In the following, we will prove Theorem which gives the estimation error bound of the utility
vector for each timestep.

Theorem 5.1. Consider InstUtil Rank| and Algorithm[I| Suppose each action is proposed with
probability at least p > 0 at each timestep t € [T] and let uY) = Estimate ({a(s)}i:tim,ﬂ).

Then, for any § € (0,1) and t > m/, when m'p* > 2log (%) with probability at least 1 — 0, the
estimate u'") satisfies,

s 2
x 1
S7' (e + 1) log (%) n tZ Hu(s+1) —u®

Hﬁm —u®
oo p m’

oo
s=t—m'+1

Proof. Due to the symmetry of timesteps, we will only prove Theorem|[5.1]for ¢ = m’ for notational
simplicity.
For any j € [|A| — 1], we assume that the probability for action a’ being chosen at each timestep is

at least p. Let the number of action pairs (aj, a‘“‘”) chosen in the m/ timestep be mq, by Hoeffding’s
Inequality, we have that with probability at least 1 — 4:

For these chosen pairs, the probability that a ranks before |A;| s
cxp(%uml,)(aj)) _ cxp(%u(m/)(aj))

exp(%u(m’)(af))+exp(%u(m’)(|.Ai|)) B exp(%u(m’)(af))+1' We define

Ui S N L (o(k) = a)- 1 (a(ka) = D)
- i A (s) ky=1 Laiko=Fk1+1
Sy - ;]l (a "t e ) TSN PEANTR (a\AI) .

Due to the monotonicity of the function sig,
~(m’ i s - . S 1
u( )(aﬂ) = TS1g 1 (Pro-][Sig(—i)vsig(i)] ( 77211 )) s

where @(™) (a?) is the estimation of u(™") (7). Then also by Hoeffding’s Inequality, we have that
with probability at least 1 — 4,

Sml 1 s ( i . ]A| (s)) . 1 (8) (4 71 2
o % sig (- < 2.
o 1(a,a"™ €' )sig ~u (a?) T log 5

s=1

Let u(™)* (a?) € R be the scalar satisfying

1 oy s (IR 1o
sig (Tu(m )’*(a3)> = Z 1 (aJ, al Al e O'(S)) - sig (Tu(s) (a3)> .
s=1

Since the logistic function is monotone and continuous, wlm) (a’) is unique and must exist. Then
since [sig(—1),sig($)] is a convex set, with probability at least 1 — 4,

. (1, . (1 e
PrO‘][Sig(_%LSig(%)] <Slg <7-U( )(aj))> — Pro-][sig(—%),sig(%)] (Slg <7-U( ) (a])))'

1 N, s 1 / , 1 2
(510 s (i) < 3]
T T 1
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Lemma in the following shows that am) (a’) is bounded between the minimum and maximum

of {u(S) (a?) }m:r Then, by further utilizing the assumption that the variation of the utility vectors

S

is small, we can bound the distance between our estimated utility vector and u(™).

Lemma E.2. Letzy,... @, € [-1,1] and sig,,, = = >, sig(;), we have

si
min z; < log (gwg> < max x;.
i€[n) 1-— Sigavg i€[n)

The proof is postponed to Appendix [E.2]
By Lemma we have that u(™)* e [-1,1],

. . | N . T iy, i
PI‘O‘][Sig(_%)7Sig(%)] <51g (TU( )s (ai))> = sig (Tu( )s (a])) )

For any u € [—1, 1], we have

B = () (-6 (-2)

A\
| —
<
o
|
S =
~~
7 N
—
I
&.
(0]
/‘\
~
~_

Recall that with probability at least 1 — 4,

_ (1 1 e, 1 2
Projisig(— 1) sig(1)] <51g <7_u( )(a3)>> — sig (Tu( ), (a3)>‘ < 2—mllog (5>

Since function sig is monotonic, by Taylor expansion and the fact that (™) (a),u(™)*(a7) €
[—1, 1], we get that with probability at least 1 — 9,

’ : ! : 2 ]. 2
‘ﬂ(m)(aj)fu(m)’*(aj)‘ ST(G% +1> 2—mllog <5)
By Lemma [E.2] we have
. . m/ ) m/
uP*(a?) € {min {u(s) (aj)} ,max {u(s)(aj)} } ,
s=1 s=1

which implies that

IR , 2 [ 1 2 . ,
) e <o (o 1)y ion (5) + ey e - 000

2 1 2 m’ —1 ) )
<7 (e% + 1) oy log <5) + Sz:; ‘u(sﬂ)(aj) — u(s)(a])‘ )
When m/ p4 > 2log (%) with probability at least 1 — 9,
m/
my > 7192-

So we have that with a probability at least 1 — 6,

/

m —1
3 e - )

s=1

’ . ’ . 2
@ (@) = ™) (@) < 7 (7 +1) 1 log (?) +
mp
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After estimating the utility of each action, we have

1 2 ’
, , T (e? + 1) 1 2 m —1
Ha(m) _um )H < [ log (/5) n Z Hu(s+1) —u®
00 p m p—

Remark E.3. Due to the monotonicity of the logistic function sig, the following two projections on
sig (%) are equivalent:

Proj[sig(fé),sig(%)] (sig (g)) ‘=min (max (sig (%) ,sig (—j_)) ,sig (j_)) ,

e (Projuu (:v)) sig <min (max (z, 1), 1)) .

O

oo

T

E.2 OMITTED PROOFS

LemmaE.l. Let #s (a) == ), .51 (a' = a) represent the number of elements in a multiset S that
are equal to a € A. For any utility vector u, temperature T > 0, a multiset of proposed actions S
with cardinality |S| = K, and any two actions a # b € S, we have
u(a) — u(b
- g (10,
T

A S et =0 160 -0 s
The expectation is taken over the distribution of o under the ranking model (PL).

#S( ki1=1ko=k1+1

Proof. We will abuse the notion < from permutations to subsets of actions. When proposing a set of
S
actions S, let @ < b denote the event that a is ahead of b in the permutation given by the environment.
In PL model, the probability that action a ranks before action b is that
{a,b} exp (Lu(a))
Prula < b):= T 1 .
exp (2u(a)) + exp (Zu (b))

By definition, let the multiset of the K proposed actions be S. Then, the probability of the K-wise
permutation is

K 1
exp (zu (o (k1))
Pru(o]S) =] =% ( - ) . (E.1)
k=1 ZkQ:kl €xp (;U (o (k2)))
Recall that £(S) denotes the set that contains all the permutations of the elements in S. Hence, we
have

K K
> oy n<o<k1>=a>~1<a<k2>=b>]s

k1=1ko=k1+1

= > Pru(c]S) Z Z o(k1) = a) -1 (o(ks) = b)

ceX(S) ki=1ky=k;+1
= > IPT,u(a|3)Z Z 1(o(ky) = a) -1 (c(ky) = b) (E2)
ceX(S): k1=1ko=k;+1
o(l)=a
K K
+ > Pa(@S)D) Y (o) =a) L(o(ks) =b) (E.3)
cEX(S): k1=1ko=Fk1+1
o(1)=b
K K
+ Y Pru(@]S) D Y A(o(k) =a) 1 (o(ky) =), (E.4)
UEZ( ) k1=1ko=k1+1
o(1)¢{a,b}
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We deal with (E2) first:
Y )Y Y Lotk =) 1ol =
c€X(S): k1=1ko=k1+1
o(l)=a

K K
=Y pw(as< b+ > Y. 1(o(k)=a)- 11(0(k2)=b)>

ceX(S): k1=2 ko=k1+1

o(l)=a
K K
—tsOPruo() =alS+ Y Pru(@S Y Y L(o(k) =a) - L(o(ks) =1)
af(legi)a: k1=2ko=k1+1
=#5(b)Pry (0(1) = alS)
K K
tPu(o)=al8) Y Pru@lS\{a) Y] Y T(o(k) =a) 1 (k) =b)
ceX(S\{a}) k1=2ko=k1+1
K-1 —
—45(0)Pry (0(1) = a| ) + Pry (0(1) = a| S)E [Z Z 1(o )]l(o(kz):b)|8\{a}].
k1=1ko=k1+1

Similarly, for (E-3)), we have

S B9 Y L(olk) =a)-1(o(k) = b)

ceX(S): k1=1ko=k1+1
o(1)=b

K-1 K-1

S N Lotk —a)- ma(kz):b)w\{b}].

ki1=1ko=k1+1

=P, (c(1)=b|S)E

Let Unique (S) be the set of non-repeated elements in S. Then, (E.4) can be written as,

K K
Y Peu(@S8) Y D U(o(kr) =a) 1(o(ks) =0)

cex(S): k1=1ka=k1+1
o(1)¢{a,b}

= > Pru(o()=c|S)E lz Z )Il(o(kz)=b)|8\{c}]-

c€Unique(S): k1=1ko=k;+1
cg{a,b}

Next, we will use induction to show that for any actions a # b € S, the following holds:

Z Z o(k1) = a) -1 (o(ke) = b) ‘5 = #s(a)#s(b)sig <“(“)T“(b)> (E.5)

k1=1ko=k1+1

Base case. When #s(a) = 0 or #5(b) = 0, (E.5) trivially holds. When |S| = 2 and #s(a) =
#s(b) =1,

K K
S Y Aolk) =a)- 1 (o(ke) = b) |s] P = (@,1)) | {a,b})
ki1=1ko=k1+1

SMECETL)

T

=# (0,0} (@) # (4,0} (D)sig (M) :
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Lemma E.4. For any utility vector u, temperature T > 0, and a multiset of actions S, the marginal
probability of any action a € A ranking at the first place of the permutation can be written as

Pra(0(1) =al|S) = #s (a) exp (Lu(a))

Lwesexp (zula))

The proof is presented later in this section.
Induction step. When (E.5| . ) holds for any S with \S | = K — 1. Then, we will show that it still
holds for any S with |S| = K. By Lemmal[E.4] (E.2) is equal to

#s(O)Prq (0(1) = a|S)

K K
+Pru(0()=alS) Y Pru(@|S\{a}) D} D L(o(k)=a) -L(o(ka) =)
cex(S\{a}) k1=2ko=k1+1
exp (lu (a))
=ts(a)#s(b) .
Pares exp (7u(d))

X l'U/ a ula) —u
+#s(a)— p (zul ))(a,)> <#S\{a}(a)'#5\{u}<b)Sig <()(b)>>

Pares exp (Fu T
exp (2u (a))
Paesexp (7u(d))

Similarly, (E.3)) is equal to
exp (Lu (b)) " u(a) — u(b)
Folb) e (o) (b ()~ s (M),
and is equal to
_ #s(a)exp (Lu(a)) + #s(b) exp (2u (b)) 2. g u(a) — u(b)
(1 Syesesn (Fu(@)) >#S” st ()

Lastly, by summing them up, we have

K K
E[Z > ]l(a(kl):a)~]l(o(k2):b)|81

k1=1ko=ki+1
tela exp (Lu(a)) () &P (2u(a)) +exp (2u (b)) _ g u(a) — u(b)
=tsla)ts(b) g0 2 — ol TR b (M)

+ #s(a) - #s(b)sig ( el (b))

exp(w) exp<' (a))
exp(u(a):u(b))Jrl = exp(“(“))JreXp( u(b))

exp (Lu(a))
Paes P (7u(a))

=#s(a)ts(b) + #s(a) (#s(a) — 1) - #s(b)sig (““

Note that sig (“(a);“(b)) = Therefore,

K K
> Y Lt =o)Ll =b) |

. (ula) —u(b)
= #s(a) #s(b)sig| ——— |,
k1=1ko=k,+1 g S & ( )

T

and we complete the induction. O

Proof. Let ¥ (S) be the set containing all permutations of S. By definition, for any action a € A,

X (o (k1))
Pru(o()=alS)= 3 Pru(c|8)= 3 exp ( .
ae(z§S): 06(255) kn1 Sl exp( u (o (k2)))
o(l)=a o(l)=a
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Since there are #s(a) action @ in S, by rearranging the terms, we have

exp (Lu (a)) i exp (u (0 (k1)
Pry(c(l)=alS) =#s(a
o =ald) =l @), 2., ML ST exp( w (o (k)

u(
exp (Lu(a))
Stsl@g T Sy PralelS\ ()
aes P oex(S\{a})
exp (1u ()
=ts(a)
Za res €XP ( (al))
Lemma E.2. Let xq,...,z, € [-1,1] and sig,,, = LS | sig(;), we have
si
min z; < log (gwg> < max x;.
i€[n) 1-— Sigavg i€[n)
Proof. The logistic function sig(x) is increasing monotonically with respect to x, since % =
7(%?8()?1)2 > 0. Then, without loss of generality, let 1 < 29 < --+ < x,. Thus, sig(x;) <
Sigave < Sig(Tn).
Since sig(x) is monotonic and continuous, there exists only one { € [z1, 2] such that sig({) =
Sig,vq- As the inverse function of sig(z) is log (liif’i(gy()y) ), we have
si
min z; < log <gavg> < max ;. O
i€[n] 1-— Si8avg i€[n]

F PROOF OF THEOREM [5.2] (FULL-INFORMATION)

In this section, we prove the regret upper bound under [InstUtil Rank|and full-information feedback.

Theorem F.1 (Formal version of Theorem [5.2] (Full-Information)). Consider Algorithm2]and full-
information feedback. Forany 6 € (0,1), T > 0, and any no-regret learning algorithm with numeric

2 1
utility feedback, Alg, with probability at least (1 — §), by choosing m = (%) 7 (log (%)) 5,

R(T),cxtcrnal satisﬁes

R(T)external _ fp(T) excternal (Alg, (ﬁ(t))j_l) 3 (e% N 1)2 (P(t)) - (log (2§w)>é
+2 (P(t))% (log (%ST)) 42 (pm)‘% <1og (25T>) FE1)

Proof. By Theorem[5.1] we have

’R(T),external _ R(T),external (Alg’ (ﬁ(t))T ) ’
t=1

T T
_ ®) = _ - >_ <~<t> ~ <t>>
max 3 (ut.7 mas 3 (07 =
t=1 t=1
T
< max <u(f) 7r(t)>
T meAA ;
T
ZHu a<t>H . max H%—MH.
P} oo TEAA 1
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When ¢ > m, the estimation error between a(®) and u(®) is given by Theorem When t < m, it
becomes trivial that the estimation error satisfies

[u —a®| <2

o0

For any given J, we require the utility estimation bound to hold with probability at least 1 — %, then
by union bound, with probability at least 1 — 4,

2T
R(T),external _ R(T),external Alg (ﬂ(t))T <97 (6% + 1)2 IOg (T) T +9m (P(T) + 1> )
’ t=1 - 2m1
2 1
By choosing m = (P%FT) ) 3 (log (%)) %, we conclude the proof. O

G PROOF OF THEOREM [5.2] (BANDIT)

In this section, we prove the regret upper bound under |InstUtil Rank|and bandit feedback.

Theorem G.1 (Formal version of Theorem (Bandit)). Consider Algorithm 2| and bandit feed-
back. Forany ¢ € (0,1), T > 0, and any no-regret learning algorithm with numeric utility feedback,

5 . 4
Alg, with probability at least (1 — §), by choosing v = (#) Tom = 52}{}‘4 (P%FT) ) ® log (%)

RT) satisfies

2
1
(T) (T),external ~(t) T 1 TK (67' +1> (T) g 4
R™ <R Alg, (@ +2,[2Tlog (5 ) + a 1| (P 73
t=1

4
64| A" 7 L)\ 5 s 2T\  64|A* [ T \* 2T
g (P) s (5 )+ T (5 ) s ()

Proof. Firstly, we define:

T K
1
R(T) — 3 < (t)7A>—*Z (t)( (®) )
mean = \\" 0T T 2T ()
= j=1
T
R — <~(t>¢_ <t>>_
s 2 (W07

Then,

R(T) < R(T) _ R(T).external | ‘R(T),external _ ﬁ(T)’ n ‘ﬁ(T) _ R(T).external (Alg, (a(t)>T 1)
t=
v

L] .

+ R(T),external (Alg, (ﬁ(t)>T ) .

t=1

&

Note that # can be bounded by bounding Hﬁ(t) —u® HOO as in Appendix @ & is sublinear by the
definition of Alg. Next, we will introduce lemmas that individually bound ¥, . The proofs are
postponed to Appendices and

Lemma G.2 (¥). Forany T > 0and 6 € (0,1), with probability at least 1 — §:

R(T) . R(T),external <2 /2T log (;) )
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Lemma G.3 (#). The difference between R(T) and R(T)-external (Alg, (ﬁ(t))thl) satisfies:
‘E(T) _ R(T),external <A1g, (ﬂ(t))T ) ‘ < 9T
t=1/)| "

With Lemma [G.2] and Lemma [G.3] under the conditions in Theorem [5.2] by letting Theorem [5.1]

hold with probability 1 — % at each timestep, with probability at least (1 — ¢), the regret satisfies

T
R(T) < R(T)external (Alg, (a“)) ) +24/2T log <(15>
t=1

2
1
Lo7 () fios (3
D m

T+2m<P””+1)+vT

In this case, each action a € A is chosen with probability at least p that satisfies

K
v v
p21—(1—> 21—eXp(—K)
Al Al

2 2
() ) =3 (<)
>1-(1-KL +- (kL) |=rL - (r21).
( a2 \M ) A2\
SinceKﬂWSI,wehave

2

1 v 1 ¥ K~

- K— > - K— = >
2 |A|—2( |A> P=314

i 4
By letting v = (P;,T))o ,m = % (%)5 log (%),wehave

R(T) < R(T)external (Alg, (mn)il) Lo <T§ (P(T))% log <§>) '

.. 2log(2L) . . .
The condition m > o is also satisfied since

K44 2T
4> =21 =. O
P =TgAE T 2%\ s

G.1 BOUNDING ¥

We will show that ‘R(T) — R(T)’e"tem‘"“’ is sublinear by using a standard concentration bound.
Lemma G.2 (¥). Forany T > 0and 6 € (0, 1), with probability at least 1 — 0:

R(T) _ R(T),cxtcrnal <2 loT IOg (2) )

g0 — % S u(a) - <u<t>,7r<f>>.

aco®)

Proof. Let

By our algorithm design, each element of 0(*) is sampled i.i.d. from 7(*) and the update rule of 7(*)

is deterministic, {d(t) | { o) }i:l] = 0, so that {d(t)} is a martingale difference sequence.

Due to the bounds of |+ 3, .« P (a)] < 1, [(u®,7®)| < 1, we have

’dm’ _ % 3 u(t)(a)—<u(t),7r(t)> < % S u(a) +‘<u(t)77r(t)>’ <.

a€o®) acolt)
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Furthermore, we have

T T T
S a0 =30 1 IRROIEDS <<'u,(t) 7r<t>>)
t=1 t=1 aco® t=1
_ﬁneli)f‘\ - (<'u,(t)7§r\> - <'u,( ) (t)>) _ %Heli)i il <u(t) 7T> — fl(—iu(t) (o’(]))

:R(T),cxtcrnal _ R(T)
Next, we will introduce Azuma-Hoeffding inequality to finish the concentration bound.

Theorem G.4 (Azuma-Hoeffding inequality). For any martingale difference sequence Y1, ...,Y,
such thatVj € [n],a; <Y; < by, the following holds for any w > 0.

n 2w2
ZYJ Zw|<exp|——=— 3 |-
> =1 (bj — aj)

j=1 j=1

Then by Theorem|G.4] with probability at least 1 — §
(T) (T'),external 1
RV <RV +24/2T log 5)

G.2 BOUNDING ¢

# can be bounded by O (yT') by definition of 7(*) in Algorithm
Lemma G.3 (#). The difference between R(T) and R(T)-external (Alg, (ﬁ(t))il) satisfies:

- T
R(T) _ R(T),external <A1g, (ﬁ(t)) ) ‘ < Z’YT

Proof. Let #(tt1) = Alg (( S)) 1). Then,

E(T) _ R(T),external (Alga ( t))t=1)‘

Il
)

I ] mg
L&
S

:A
V)
)
ﬁﬁ
~=
|
?&5
k&
(]~
/T~
:/-\

<3 [w] - (=) +H )<2ﬂ“~
1
H PROOF OF THEOREM
Theorem H.1 (Formal version of Theorem [6.2). Consider [A with full-information

feedback and Algorithm l For any 6 € (0,1), T > 0, and any no-regret learning algorithm wnh
numeric utility feedback Alg that satisfies Assumption with probability at least (1 — 6), b
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choosing m = 2= |A‘ T3 log (TT) R(T)external qqpisfiog

T 4 2T
R(T),external SR(T),external Alg, (u(t)> +ITK (6% + 1) L T 4+ 420 |A‘ -2 1
t=1 K4 K

(H.1)
|A]°

o7 AP (2T
+4K8 310g<6)(logT+1)+4K41g<6)L T.

Proof. Let 7*t1) = Alg ((u(s))zzl), i.e., the strategy generated by Alg when the ground-truth
utility vectors are given. Then,
T
1> l

R(T),external _ R(T)7external (Alg, (u(t))

. H;r(t) _®

By Assumption[6.1]and Theorem 5.1} for any ¢ > m, with probability at least 1 — & we have

- 1 2 log(g) it 2
Hﬁ<t>_ﬁ<t>HthHug@g_u;@gH <DL [ 7 (eF +1) =52 )

2m

Then,

‘R(T),external _ R(T),external (Alg, ('u,(t)>T >
t=1

log (%) 7o 2L A Tt t !
2m + ||Z Z s+1

t=m s=t—m-+1

2
<2m + L|A|r (e% + 1)

m(2t+m —1)

1 2 IOg(TT) 2
<om+ L|A|7 (ef +1) T +L|A|Z p

log (%

2 1
<2m + L|Alr (e% +1) )T2+Lm2|A|Zf +2Lm|AIT
2m P t

1 2 Jlog (%) 2
<L|Alr (ef +1) — BT 4 2m o+ L[ Al (log T+ 1) + 2| Ajm LT

By choosing m = 2‘ | T3 log (TT) we have

T
R(T),external SR(T),external <Alg, (u(t)) ) +0 (LTg IOg <2§1)> )
t=1

2lo g(%) K
Moreover, now m > i , Wwhere p = TAT" O
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Timestep ¢ (Full-Information)

(a(S))(t_l)

s=1

| <s)}t ‘
| {J s=max{t—m-+1,1 = () (t+1) !
Tt mt L Estimate(-) ¢ Oracle Alg(-) SN

S N "
: ( ( ))szl l(A) :
1 TTAr |
{0 i) 0 0o X 41
| S=max —m y . — |
; : Estimate(-) v Oracle Alg(-) i @ T

Figure 5: The diagram of Algorithm |2 with [InstUtil Rank| under full-information feedback (top)
and bandit feedback (bottom). ¥ represents the addition of (1 — ) times the output the Alg and ~y
times a uniform distribution over .A.

I ALGORITHMS AND DIAGRAMS

In this section, we present the algorithms’ diagrams and pseudo-code of learning with|InstUtil Rank
and [AvgUtil Rank|individually.

1.1 THE ALGORITHM AND DIAGRAM FOR [InstUtil Rank

We present the diagram and the algorithm pseudo-code of learning with [InstUtil Rank} Figure [3]
and Algorithm 2]

1.2 THE ALGORITHM AND DIAGRAM FOR |AvgUtil Rank

We present the diagram and the algorithm pseudo-code of learning with Figure [6]
and Algorithm 3]

J  PROOF OF THEOREM

Theorem J.1 (Formal version of Theorem|[6.3). Consider[AvgUtil Rank| with bandit feedback and
Algorithm For any 6 € (0,1), T > 0, and any no-regret learning algorithm with numeric

utility feedback Alg that satisfies Assumption with probability at least (1 — §), by choosing
_1 5 1

M = 4T% (PM) "% |4 log (4T), m = 2734l log (£), and y = LATH (P)°, RD)

satisfies

T
R(T) < R(T)external (Alg, (u(t)) 1) + LIAITW T 4 29\/JAT + 2, [2T log (2) AR
t=
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Algorithm 2 Online Learning with [InstUtil Rank|Feedback

1: Input: Action space A, any full-information no-regret learning algorithm Alg with numeric
utility feedback, selected action number K, estimation window size m, and exploration rate ~y.

2: Initialize 7(!) as uniform distribution ﬁ over A
3: for timestept =1,2,...,7 do
4:  if Full-information setting then
5: K = | A| in this case. Select all |.4] actions.
6: else if Bandit setting then
7: Sample K actions independently with replacement from 7(*).
8: endif
9:  Receive a ranking feedback o® = (o (1), 0" (2),...,0® (K)) from the environment.
0. al) = Estimate({g(s) }izmax{t_m%l}) by calling Algorithm
11:  if Full-information setting then
(e
12: 7+ Alg ((u(s))szl).
13:  else if Bandit setting then
. t+1 ~(5))? 1(A)
4 a1 y)Alg (@) _) + 25
15:  endif
16: end for
Timestep ¢ (Full-Information)
{E S—— o, k), (t+1)
; Loty Estimate(-) - @ 5 Oracle Alg(-) -~ .,
Timestep ¢ (Bandit)
NN -1 )
: al® ) \
| (UGmplrlcal =1 1(A) :
I v | ‘ !
| ¢ 2 ) \
L g (). - (1)
: AR, Estimate(-) > ® 5| Oracle Alg(") a7 @ i }

Figure 6: The diagram of Algorithm [3| with under full-information feedback (top)
and bandit feedback (bottom). @) represents copying the estimated utility vector for ¢ times. @

represents the addition of (1 — ) times the output the Alg and ~ times a uniform distribution over

A.

where
|A| log AT
o, Mg (5)
vy
Al (e +1)° ()
T27 (e’ ) log (8- m
W) =405 (log T + 1) | = 9 16KCs—T
s (logT +1) M 5 m + 537

+ M (logT + 1) P + 2MAlog T +2).
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Algorithm 3 Online Learning with [AvgUtil Rank|Feedback

1: Input: Action space A, any full-information no-regret algorithm Alg under numeric feedback,
selected action number K, estimation window size m, exploration rate -y, and block size M.

2: Initialize 7(!) as uniform distribution ﬁ over A

3: for timestept =1,2,...,7 do

4:  if Full-information setting then

5: K = | A| in this case. Select all |.4] actions.

6: else if Bandit setting then

7: Sample K actions independently with replacement from 7(*).

8: endif

9:  Receive a ranking feedback c® = (o) (1), 0" (2),...,0® (|A])) from the environment.
10:  if Full-information setting then

11: al), = Estimate({a(s) }Z:max{t_m+171}) by calling Algorithm

t
12: at+D  Alg <(ﬂgtv)g> 5—1)’ i.e., the strategy generated by Alg by setting all utility

vectors from timestep 1 to ¢ as ﬁgﬁ,)g.

13:  else if Bandit setting then
14: al = Estimate({a(s)}

empirica

i:max{tfm«kl,l}) by calling Algorithmﬂ
15: Let n(a) == 22:1 #,») (a) for any a € A as the number of times action a has been

proposed up to timestep ¢. Then, the estimated average utility is

~(t)

~(s-M) (s-M) ~((s=1)M) ((s—1)M)
1 Lt/MJ ucmpirica (a)n (a)iucnlpirica (a)n (a)
00 (a) = { T7ATT 2s=1 I (@)l D (g) t2 M
0 t< M
D
. (t+1) _ ~(t) )t 1(A)
16: ™ +— (1 —=7)Alg ((uavg_est s AT
17:  endif
18: end for
Proof. In the first part of the proof, we will bound ’ ﬁiglpirical — ugtn)jpirical . According to Theo-

rem and union bound, since each action is proposed with probability at least ﬁ, with probability

atleast 1 — g, for any ¢t > m, we have

~ () (®)

‘ uempirical - uempirical o =

Let #,() (a) be the number of action a € A being proposed in o(*). Then, for any ¢ € [T — 1] and
a € A, we have

2
7|A| (e%+1) log (6T -1
< 0g(5)+ Z Hu(s+1) u'®
m

y empirical ~ “empirical oo

s=t—m-+1

t t
(H‘l')_ l(a’) () o 1( )‘ _ u((err)lpirical(a) Es:l #o09) (a) +u(t+1)(a’)#o(t+1) (a) ) N l(a)
empirica. empirica 2221 o (a) F# e (a) empirica.
< ugix)lpirical(a)#o(t+1) (a’) U(t+1) (a)#o(tJrl) (a)
T e oo (@) F o (@) || Xsy #ow (@) + Foin (a)
ut(air)lpirical (a‘) U(tJrl) (a)

SK t t
> s=1 Foto (@) + #5010 (a) > sm1 Foto (@) + #5010 ()

Next, we will show that since each action will be proposed with probability at least ﬁ, with high

probability, there is a lowerbound for 22:1 #,(» (a) for any timestep t.
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Lemma J.2. Consider the case when actions are proposed with probability at least p > 0 at each
timestep. Then, for any § > 0, any action a € A, and T > 0, with probability at least 1 — 0, the

os( A7)
following holds for any t > f:
log (\A|T) /
3t' e [T, suchthat t — ——2 <t <t and a € o). J.2)

p

(lA\T

W and action a € A, the probability of li does not hold is at most

1 o (g (M) 2

Therefore, by union bound, with probability 1 — 4, (J.2) holds for any ¢ € [T] and any action
ac A O

Proof. Foranyt >

3|A|T
For notauonal simplicity, let C = % According to Lemma with probability at least
1-£ for any timestep ¢ > Cs, we have

Z# i >L
O<) Cs 7205.

Therefore, for any ¢ € [T — 1] and a € A, we have

(t+1) (t) Cs
uempirical(a) - uempirical( )‘ 4Kt + 1
It holds for ¢t < C5 — 1 because 4K t?i-&l > 4K > 2 and all ut111t1es are bounded in [—1, 1]. Finally,
by Theorem .and union bound, with probability at least 1 — %, we have
A (et 1) [rog (o
() ® og (%) 1
u = . < 4K C .
H empirical empirical o = v m + 5S:;n+1 s+1

Let n(Y)(a) == 22:1 #,(» (a) for any a € A as the number of times action a is proposed up to
timestep t. For any a € A and t > M, we define

M s-M s—1)M
u(t) ((L) — 1 U&J ﬂ(empu?lcal( ) (CL) ignplrlcal) (a)n( (a)
avg—est ’ t/MJ (s-M) (a) n((s—=1)M (a)
t/M| ~(s-M) (s ~((9 1)M) s—
ﬂ(t) (a) __ 1 Lij empirical( ) M) ((L) emplrlcal (a)n M) ( )
avg—est '_ Lt/MJ —~ n(s: M)(a) n((s— 1)M)(a)
Fort < M, we define ugw)g wst(@) = ug,)g ost(@) = 0 for any action a € A. In the rest of the proof,
we will bound Hu avg—est — Si,)g_est and ‘u avg—est ug,)g ’ individually.

(t) (®)

avg—est — Uavg—est

J.1 ‘ u UPPER BOUND

For any a € A, we have

[t/M] (s°M) (a)

W mpiien (@) — Umpica(4)]

0] N0 1
’U,avgfest (a) 'Uzavgfest ((1 < Lt/MJ ; n(SM) (a) o n((sfl)]y[) (a) empirical empirical
p LM ((s=1)M) ()

TT/M] 2w (a) — a1 ()

~((s—1)M) (a) — u((sfl)M)(a)‘ .

empirical empirical
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According to Lemma nM(a) — nlG=UM(q) > U when M > Cs. Therefore, when
M > Cs, since n(*"M)(a) < s- M, we have

~(t) ) 2Cs bl
uavg—eSt (a) — Uavg—est (a)) S Lt/MJ Z S (
5:1

~(s-M s-M ~((s—1)M s—1)M
ugmpizical(a’) - uimpigical(a)‘ + ugﬂpiri)cal) (CL) - uig‘ﬂpiri)cal) (a)’) :

For any a € A,

M| (sM o s—1)M o
1 L%:J u((;npir)ical(a)n( A[)(a) - ugrslpiri)cal) (a)n(( I)N[)( ) _ u(t) (a)
s M _ s—1)M ave
Lt/MJ pot n( )(a) n( ) )(a,)
t/M M . )M s—
< 1 Lij uéf‘ﬂpizical(a)n( M) (a) - ugflpiri)cal) (a)n(( I)M)( ) (]\l[t/MJ)( )
— s-M _ s—1)M d’Vg
Lt/MJ p n( )(a) n(( ) )(a,)
L)
t M|t/ M
+ |ully(@) = uQE A D )|
&
Note that & can be bounded by
(M|t/M]) t s
~ | (M Lt/ o™ @) + Snragaagn ") anienayy g
= 7 avg
M 1 : . 2M
<= [l ()| + Y W@
s=M|t/M|+1
For &, we have
M s-M s- s—1)M — s-
‘ = 1 g ((empizical(a)n( M)(a’> B gnpiri)cal)(a)n((s 1)M)(a) — i EIEI U(S/)(a)
R (=M (a) — n{(==UM)(a) S'=(s—1)M+1
M s-M s- s—1)M s— s-
< 1 Lt/ZJ ut(empir)ical(a)n( M)(a) - ((egnpiri)cal) (a)n(( HM) (a’) . i ij u(s/)(a)
=Ti/M] 2 n(s:M) (q) — n((s=1DM)(q) M = (s )M 41
w5 M) anG M (g ((s=1)M) ((s=1)M)
When n(s']w)(a) — n((sfl)M)(a) > 0, both empirical )n(s,M)((a)) nL(Tsp‘r{§;}1)(( )) @ and
, s-M
% Zz,M(S DM+1 ul® )( ) are in the convex hull of {u(s )(a)}s':(sq)Mﬂ' Therefore,
s-M s- s—1)M s— s-
uz(ampigical(a)n( M) (a) - ugnpiri)cal) (a)n(( DM) (a) _ i zj\:l U(S/)(a)
n(SM) (a) — n((s_l)JV[) (a,) M
s'=(s—1)M+1

’u(S’)(a) _ u(S”)(a)‘

~ max
(s—1)M+1<s’,8"<s-M
s-M—1

< ¥ ‘u“’“)(a)—u(s/)(a)’.

=(s—1)M+1
Therefore, for any ¢ > M and a € A, we have

[e/M] sM-1

Sl S/ 2M
ug?g_est(a)—qug( ‘ Lt/M Z Z ‘ ( +1)(a)—u( )(a) 4+ 2=
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By combining all the pieces together, we have

T —ext (@) = ulDy @)

avg—est avg
2Cs ™ (s-M) (s-M) ((s=1)M) ((s=1)M)
~(s- S- ~((s— S—
< Lt/MJ Z 8 ( uempirical(a) - empirical(a’)‘ + Uempirical (a) ~ Uempirical (a’)D
s=1

[t/M]  sM-1

e W L ORI

s=1 s'=(s—1)M+1

Then,

M=

g —ext (@) = ully(@)]

avg—est avg
t=1
T M-—1
~(t t
- Z u(av)g—est( ) avg ’ + Z Ew)g eit - ue(mfz)g<a)‘
t=M
(e (s:M) (s=1)M) () s M
<2Cs Z s ( ’ﬁefnpirical(a) - uefnpirical(a)‘ + ’ﬁerrslpirical (CL) - uenﬁpirical (a)D ?
s=1 s'=1
| T/M] s M—1 ) ) [T/M] M
+ ) 3 ‘u(s+1)(a)—u(s)(a)‘ X = +Z—+2M
s=1 s'=(s—1)M+1 s'=1
& (s-M) (s-M) ((s—1)M) ((s—1)M)
<2C§M Z ( ~efnp1r1cal(a) - uefnpirical(a’)’ + aerﬁpirical (a) - uerrslpirical (a’)‘) (log(l_T/MJ) +1
LT/MJ sM—1
+MY 3 ’u“ ) (a) — ul® )(a)‘ (log (|T/M]) + 1) + 2M (log T + 1) + 2M.
s'=(s—1)M+1
When s =1, s ~£$plil)cj\$)(a) - gflpélcal ’ = 0 by definition. When s > 1, since M > 2m, we
have
5 5 5 4s 4
< < < = —.
(s—=1)M-m+2~ (s=1)M/2+2~ (s—1)M/2 —s-M M
Hence,

2
7| A| (e% + 1) log (6T (s—1)M—1
~((s=1)M s—1)M g s
s ut(agnpiri)cal) (CL) - uz(agnpiri)cal) (a)’ <s ( 2 ) + 4KC§ Z s +1
v s'=(s—1)M—m+1
1 2

T Al (e? + 1) log (£F) m
<— 02 +16KC5—.
i 5 m + 16 CéM
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Therefore,

>

a0 (@) —u® (a)‘

avg—est avg
t=1
Al (e +1)

7 A (e 1) fog () m
<4CsM - |T/M| (logT +1) | — 0/ L 16KC5—
<ACM - |T/M | (log T +1) | 47 - S22+ 16K Gy

+ M (logT + 1) PD) 4 2M (log T + 1)
2
1
72 7 Al (6; + 1) log (&F) m
<4Cs (logT +1) | =— 0 16 KCs—T
<4C5 (log +)M 5 p- —1—605M

+ M (logT + 1) P +2M (log T + 2).
Lastly, similar to the proof in Appendix let 71D = Alg ((u(s))zﬂ). Then, we have

‘R(T),external _ R(T),external (Alg7 (u(t)>T 1)
t=

< ) 7 ﬁ_(t)>

> [l =]

M'ﬂ

~
Il

1

HE/%’%

T
Al ~(1) t 1A  _u
g Alg (( avg—est)81> +'Y |A| ™
. T
< VA e (0 ) ) - A -
t=1 B t=
T ) .
VIS e (3 ) ) =7 + 200/
t=1
Further, by Assumption 6.1} we have
T t
\% |"4‘Z Alg (( di)g est)s:1> _ﬁ(t) <L\/ ‘A Zt’ ~§Lf;7g est un(a‘tv)g
t=1
<L|A|TZ ‘ Uavg—est — ’u’z(;:/)g

By combining all the pieces together, we have

R(T),external SR(T),external <A1g, (u(t))T >
t=1

m(log(%))2 2 (T)
TN Y LT? + LMPOT 4+ 24T

)

where O hides all the log T terms.

_1 1
Let M = 4T% (P™M) "% | A|* log (6é|T) = 2T3|Al*log (), and v = L3 T1s (PT))°, we

have

2 1
R(T),cxtcrnal SR(T),cxtornal (Alg, (u(t))T ) 1O ((log (1)) L%T% (P(T)> 6) .
t=1 4]

38



Under review as a conference paper at ICLR 2026

oc( &
It is easy to verify that M > max {Cs,2m} and m > 2! g(5) |A[*.

Lastly, by Lemma | with probability at least 1 — <, we have

R < R(T),external +9 /2T log (2) )

By a union bound argument, we complete the proof. O

K PROOF OF SECTION/7]

Lemma K.1. Forany T > 0 and sequence of strategy profiles (71'(1), @ ., ﬂ(T)), the variation
of utility vectors of any player i € [N] satisfies that

> [ ] = VAT A [ )

t=2 j=1

, (K.1)
where A = max; |A;|.

Proof. For any timestep t, player ¢ € [N], and joint action a_; € X#iA», let ng(a,i) =
t
HJ#Z j()(a’])

Then, for any timestep ¢, player ¢ € [N], and action a; € A;, we have

ul () —uf' ™ (a)

= Z Ui(a') 1 (a; = a;) ( (t)( . 9&2 1)(‘1/72'))
a’€XLy A

= <(Uz'(ai7a’,i)) A, 0 (_t;1)>‘

< ‘(ui(ai’ali))aliexm A ) _ wﬁ[”H

71'(3 - WE;

™
1

IN

i
Further, for any a,b,a’,b’ € [0,1], we have |ab — a'b'| = |ab— ab' + ab — a'V'| < a|b—¥b| +
la —a'|b < |a—d| + |b—1V|. Therefore, by recursively using it, for any a_; € Xz A;j, we
have

(t)(

= Hwét)(aj) _ Hﬂ§t_1)(aj) < Z ’W](t)(aj) - ﬂ](t—l)(aj)’ .

J#i J#i J#

a_i) —m; (a-i)

Finally,

K.1 PROOF OF THEOREM[Z.2l AND THEOREM [7.3]

N
ul? ol V) < VI = < VIRITTIANE [0 ==V - o
i=1 i

Before proving Theorem[7.2]and Theorem [7.3] we will show that when Assumption[7.1]is satisfied,
the strategy variation is bounded.

Lemma K.2. Suppose Assumption [71|is satisfied. For both full-information and bandit settings,
Algorithm 2] satisfies the following,

T-1
3 Hﬁm _ 7T<t+1>H <O@T).
=1
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Suppose Assumption [61)is also satisfied, then the following holds for Algorithm 3] in the bandit
setting,

S

—1
Hw(t) — pt+1) H <OMT+LT).

t=1

Proof. For Algorithm [2]and the full-information setting, the proof simply follows from the fact that
a® € [~1,1]* and Assumption[7.1}

For Algorithm[2]and the bandit setting, we have

e ()2) (@) <

Thus, we can conclude the proof.

Hﬂ<t+1> ()

For Algorithm [3|and the bandit setting, for any ¢ # 0 (mod M), we have ugf,)g ost = ﬁg,;l_)est.
Therefore, by Assumption [7.1] we have

-1 t—1
HAIg < gvg )ebt> S:1> - Alg << a,vg est )H
t—1 t
HAlg < z(;i/gl)est) S_1> Alg (( ;tvgl)est )H < n-

a® (t) F(t—M) (t—M)
= _ Uempirical (W7 (@) ~Ugppivicar (47 (a)
Foranyt =0 (mod M), let u = n® (a)—n(t=M)(q)

t/M - 1)~;tvg1)est +tu _ ~(t-1)
t/M avg—est

H (t-1) _ (1)

, then we have

Ham 0D

avg—est avg—est

M (|| ~@-1
<7 (’ uz(li/gf)est

2M
+llull) < ==V

Therefore,

A

e (o)) () )|
o () ) e () - o)

(277 + Lt (2M \/W)

=n+42LM+/|A|,

where (7) uses Assumptlon Then, the accumulated variation of 7(*) over time is bounded by

T-1
3 Hﬂ<t+1> ()
t=1

since there are at most - timesteps of ¢ € [T satisfyingt = 0 (mod M). O

gO(nT+LM]\j;[> <OWT +LT),

With Lemma , we can prove that RgT)’eXtemal is sublinear for any player ¢ € [N] by Theo-
rem[5.2] Theorem|[6.2] and Theorem|[6.3] Then, by the folklore result that no-external-regret learning
leads to approximate CCE (Hart & Mas-Colell, 2000; Blum & Mansour, |2007), Theorem and
Theorem [7.3]are proved. O

Remark K.3. With the hardness in Theorem 3] under [2 feedback, both of our no-

regret result for the online setting and the equilibrium computanon result for the game setting hold
for a constant T > 0 (that cannot be arbitrarily small). However, we note that the equilibrium
computation result may still be possible when T — 07T in the game setting: with such a deterministic
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ranking model, the best-response action against the history play of the opponents is now available,
precisely leading to the celebrated algorithm of fictitious-play (FP) (Robinson||1951;|Brown} |1951).
FP is known to converge to an equilibrium in certain games (Robinson||1951; \Monderer & Shapley|
1996} Sela, 1999} \Berger, |2005)) (with (slow) convergence rates (Robinson||1951};|Daskalakis & Pan|
2014} \Abernethy et al.l 2021)), despite that it fails to be no-regret in the online setting (Fudenberg
& Levinel [1995]19965).

L PROPERTIES OF FOLLOW-THE-REGULARIZED-LEADER (FTRL)

Firstly, we will define strongly convex function and its conjugate function.

Definition L.1. For any integer n, a differentiable function ¥(x): R™ — R is called cq-strongly
convex (co > 0) when

(@) 2 v(@) + (Vi) z —2) + 3 o — |

2 (L.1)

holds for any x, ' € R™. Its conjugate function is defined as

Y (y): R" = R:= sup (z,y) —¥(x).
xcR"

Specifically, if (L.1J) holds for ¢y = 0, then we call ¢ a convex function.

Next, we will introduce the well-known no-regret learning algorithm of follow-the-regularized-
leader (Hazan et al.l [2016; [Shalev-Shwartz et al.,[2012).

Definition L.2 (Follow-the-Regularized-Leader (FTRL)). For any T' > 0 and at any timestep t €
{0} U [T — 1], given the utility vectors (u(s))zzl, the strategy at timestep t + 1, 71 is defined
as

TEAA

t
) = argmax <)‘ Z <u(s), 7T> - Zﬂ(ﬂ)) ; (FTRL)
s=1

Sor some constant A > 0. Typically, ) is taken to be © (T ") for some constant v > 0.

Now, we can introduce the smoothness of (FTRL).
Lemma L.3. For any c-strongly convex and differentiable function 1): A* — R, (FTRL) satisfies
Assumption and Assumption with L = % andn = 2\/|Al.

co

Proof. By first-order optimality, at any timestep ¢ € {0} U [T' — 1] for any two sequences of utility

t
vectors (u(s))tf1 and (u’ (s)) , let the corresponding strategy generated by (FTRL) be m(*+1)
5= s=1

respectively, we have

t
</\Zu(s) Ve <ﬂ_(t+1)> ,w’(t“) _ 7T(t+1)> <0
s=1
t
)\ZU'(S) — vy (a0 2D w'(t+1)> <0.
(3w ()

By summing them up and rearranging the terms, we have

t t
<)\Zu/(s) B )\Zu(s)7ﬂ/(t+1) _ 7T(t+1)> > <V¢ (ﬂ/(t+1)) — Vi (W(t+1)) 771_/(t+1) . W(t+1)>.
s=1 s=1

Since 1) is c¢-strongly convex, we have

" (ﬂ_(t-&-l)) > 4 (w'(t+1)) + <V¢ (ﬂ_/(t-s-l)) ) 71_/(t-s-1)> i %0 Hﬂ_(t+1) _ 7T/(75+1)H2

" (ﬂ_/(tJrl)) > o (W(t+1)> T <V7Jf (ﬂ_(t+1)) ,w’(”l) _ 7r(t+1)> T %0 Hﬂ(t-&-l) _ W/(HI)HQ.
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By summing them up and rearranging the terms, we have

(V0 (+4D) = i (D), D e 5 g

Therefore,

t+1) W/(tJrl)H2'

4

t t
co Hw(t“) _ H2 < <)\ Z AP Z w®, g/ w(t+1)>
s=1 s=1

¢ ¢
)\Zu’(s) — )\Zu(s) . ‘
s=1 s=1

where (7) is by Holder’s Inequality. Then,

(@)
<

/D 7r(t+1)H :

t

t
AT W AT u®
s=1

s=1

<cp Hﬁ(t“) . W'(HI)H 7

so that 1| satisfies Assumption with L = % Furthermore, note that the results above also
hold for sequences of utility vectors of different lengths (not necessarily equal to length ¢ simulta-
neously). As a result, we have

Hﬂ<t+1> ()

< i Hu(t)
Co

A
S - |A|7

Co
forany ¢t € {0} U [T — 1], which implies that ) = %\/ |A| in Assumption|7.1{for 1) O
M CONCLUSION AND LIMITATIONS

In this paper, we studied online learning and equilibrium computation with ranking feedback, which
is particularly relevant to application scenarios with humans in the loop. Focusing on the classi-
cal (external-)regret metric, we designed novel hardness instances to show that achieving sublinear
regret can be hard in general, in a few different ranking models and feedback settings. We then de-
veloped new algorithms to achieve sublinear regret under an additional assumption on the sublinear
variation of the utility, leading to an equilibrium computation result in the repeated game setting.
We believe our work paves the way for promising avenues of future research. For example, it would
be interesting to close the gap between the lower-bound and the positive result for [AvgUtil Rank]|
under bandit feedback, i.e., either show the hardness when 7 is a constant or achieve sublinear regret
for constant 7 without Assumption .2l Moreover, applying our algorithms to real-world datasets
with ranking feedback, such as ride-sharing and match-dating, would also be of great interest.
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