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Abstract

Coordinating multiple embodied agents in dynamic environments remains a core1

challenge in artificial intelligence, requiring both perception-driven reasoning2

and scalable cooperation strategies. While recent works have leveraged large3

language models (LLMs) for multi-agent planning, a few have begun to explore4

vision-language models (VLMs) for visual reasoning. However, these VLM-based5

approaches remain limited in their support for diverse embodiment types. In this6

work, we introduce VIKI-Bench , the first hierarchical benchmark tailored for7

embodied multi-agent cooperation, featuring three structured levels: agent activa-8

tion, task planning, and trajectory perception. VIKI-Bench includes diverse robot9

embodiments, multi-view visual observations, and structured supervision signals to10

evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-11

Bench , we propose VIKI-R , a two-stage framework that fine-tunes a pretrained12

vision-language model (VLM) using Chain-of-Thought annotated demonstrations,13

followed by reinforcement learning under multi-level reward signals. Our extensive14

experiments show that VIKI-R significantly outperforms baselines method across15

all task levels. Furthermore, we show that reinforcement learning enables the16

emergence of compositional cooperation patterns among heterogeneous agents. To-17

gether, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing18

multi-agent, visual-driven cooperation in embodied AI systems.19

1 Introduction20

In the science-fiction film I, Robot [40], the super-computer VIKI orchestrates thousands of NS-521

robots, illustrating the extraordinary coordination capabilities of heterogeneous robotic agents. This22

fictional depiction highlights a fundamental challenge in artificial intelligence: enabling multiple23

embodied agents to collaborate in dynamic, real-world environments. As illustrated in Fig. 1,24

addressing this challenge is critical for advancing multi-agent systems capable of achieving effective,25

large-scale coordination: (1) Real-world tasks often necessitate specialized embodiments—for26

instance, reaching high cabinets may call for a robot with extended reach, while delicate tasks27

demand manipulators with fine-grained control. (2) Cooperative behaviors substantially enhance task28

efficiency through parallelization and mutual assistance.29

Recent advances have demonstrated the potential of large language models (LLMs) in enabling30

multi-agent planning [5, 7, 43]. While these LLM-based approaches have made significant progress31

in high-level coordination, only a few works have explored the use of vision-language models (VLMs)32

for perception-driven reasoning [22, 38, 44]. However, existing VLM-based methods remain limited33

by the lack of embodiment diversity. As a result, the ability to reason about visual observations in34

heterogeneous multi-agent settings remains an underexplored challenge.35
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Mom : Hey bots, could you wash the apple and tomato on the table for me?

Dad :   And fetch my favorite mug from the cabinet above the microwave, okay?
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<think>In the scene, we 
have two armed robots for 
i t e m  t r a n s p o r t a t i o n ,  a 
wheeled one for reaching 
h i g h e r  p l a c e s ,  a n d  a 
h u m a n o i d .  T h e  t a s k 
involves...the wheeled can 
reach the high cabinet, 
a n d  t h e  h u m a n o i d  c a n 
operate the tap...efficient 
task completion.</think>
<answer>One humanoid, 
one wheeled, two arms 
s h o u l d  b e  a c t i v a t e d . 
</answer>

<think>To fetch the mug in 
t h e  h i g h  c a b i n e t ,  t h e 
wheeled robot must follow 
a logical sequence: First, it 
should move to the cabinet. 
Next, ... to complete the 
t a s k .  T h i s  s t r u c t u r e d 
sequence ensures precise 
task execution.</think>
< a n s w e r > T h e  a c t i o n 
s e q u e n c e  s h o u l d  b e  a s 
follows: <move, cabinet>, 
<open, cabinet>, <reach, 
m u g > ,   < g r a s p ,  m u g > , 
<move, table></answer>

<think> To accomplish the 
task,  two arms and one 
humanoid coordinate to 
transport the apple. The 
first arm locates and grasps 
t h e  a p p l e ,  t h e n  m o v e s 
a l o n g  a  c o l l i s i o n - f r e e 
path ... It then places the 
apple into the sink. The 
humanoid activates the tap, 
e n s u r i n g  t h e  t a s k 
completion. </think>
< a n s w e r > [ F e a s i b l e 
t r a j e c t o r i e s  f o r  e a c h 
agent]</answer>
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Figure 1: Embodied multi-agent cooperation involves two key aspects: (1) cross-embodiment
collaboration, where different embodiments are required for different tasks (e.g., washing requires a
humanoid, while only wheeled robots can fetch from high cabinets); and (2) efficient coordination,
where agents work in parallel (e.g., multiple arms passing apples while a humanoid washes them) to
improve overall efficiency. To support such fine-grained teamwork, we propose VIKI-Bench , which
structures the process into three levels of visual reasoning: Level 1 – agent activation, Level 2 – task
planning, and Level 3 – trajectory perception, aiming to realize an embodied multi-agent system.

To address these gaps, we introduce VIKI-Bench , a comprehensive benchmark for evaluating36

collaborative capabilities in embodied multi-agent systems. As illustrated in Fig. 1, VIKI-Bench is37

designed around three levels of task: Agent Activation, Task Planning, and Trajectory Perception.38

Each task provides multi-view visual input and incorporates a diverse set of heterogeneous robots.39

Moreover, VIKI-Bench provides a multi-dimensional evaluation framework that assesses execution40

feasibility, task completion and planning efficiency. To the best of our knowledge, VIKI-Bench is the41

first comprehensive benchmark specifically designed to evaluate the reasoning capabilities of VLMs42

in hierarchical embodied multi-agent cooperation.43

To advance reasoning capabilities in the multi-agent system, we introduce VIKI-R , a VLM-based44

framework that fosters reasoning abilities in multi-agent cooperation. Inspired by [11, 23, 34], our45

approach first grounds a pretrained VLM in task understanding through Chain-of-Thought annotations,46

then optimizes it via Reinforcement Learning, leveraging hierachical supervision in VIKI-Bench .47

Extensive experimental results demonstrate that VIKI-R significantly outperforms baseline methods48

across all three task levels, highlighting the effectiveness of the proposed approach.49

In summary, the main contributions of this paper are as follows:50

⋄We introduce VIKI-Bench , the first hierarchical benchmark for embodied multi-agent cooperation,51

which consists of three structured task levels: agent activation, high-level task planning, and low-level52

trajectory perception. The benchmark features heterogeneous robot types, multi-view visual inputs,53

and structured supervision signals to enable comprehensive evaluation.54

⋄We propose VIKI-R , a two-stage learning framework that enhances visual reasoning capabilities55

in embodied multi-agent systems by using hierarchical reward signals to learn structured reasoning56

across diverse tasks, enabling generalizable cooperation in complex environments.57

⋄ Extensive experimental results demonstrates the effectiveness of VIKI-R in VIKI-Bench . Our58

analysis highlights the importance of hierarchical supervision and reveals how reinforcement learning59

facilitates the emergence of compositional collaboration patterns in embodied environments.60

2 Related Work61

Embodied Multi-Agent Cooperation Real-world embodied tasks often require cooperation among62

multiple agents. Existing studies [2, 12, 30, 42, 48] have explored this problem in various appli-63
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Table 1: Comparison to similar embodied benchmarks. We compare VIKI-Bench to embodied AI
benchmarks, focusing on natural language and multi-agent collaboration tasks. [Keys: Views: EGO
(Ego-centric view), GL (Global view). H.E.: Coordination among Heterogeneous Embodiments. ]

Environment Language Visual Views H.E. Tasks Num

Overcooked [6] 2D ✓ - 4
RoCo [25] 3D ✓ - 6
WAH [29] 3D ✓ - 1,211
Co-ELA [43] 3D ✓ - 44
FurnMove [16] 3D ✓ ✓ EGO 30
PARTNR [7] 3D ✓ - ✓ 100,000
RoboCasa [26] 3D ✓ ✓ EGO ✓ 100

VIKI-Bench (Ours) 3D ✓ ✓ EGO, GL ✓ 23,737

cation domains. Research focuses on multi-agent task allocation [20, 27, 37] and joint decision-64

making [36, 43]. A significant body of recent work [5, 13, 18, 26, 31, 46, 49] leverages large language65

models (LLMs) to handle high-level reasoning and planning. However, these approaches lack vi-66

sual grounding, limiting their ability to reason about spatial constraints and perceptual affordances.67

While a few recent efforts [38, 44, 47] incorporate vision-language models (VLMs) to obtain a more68

grounded understanding of the environment, research on heterogeneous multi-agent cooperation69

remains sparse—particularly in settings requiring fine-grained visual reasoning and embodied per-70

ception. In contrast, our work incorporates both agent heterogeneity and visual reasoning to support71

complex, perception-driven collaboration.72

Visual Reasoning Visual reasoning requires vision-language models (VLMs) to interpret and reason73

over visual observations to perform complex tasks. It has been applied in areas such as geometric74

problem-solving [10, 33, 45], robotic [14, 17] and scientific research [24]. Previous work has explored75

enhancing visual reasoning in VLMs through multi-stage supervision. For example, LLaVA-CoT [41]76

applies multi-stage supervised fine-tuning (SFT) with chain-of-thought [39] prompting. With the77

introduction of a rule-based reinforcement learning (RL) method, DeepSeek-R1 [11] demonstrates78

significant improvements in reasoning performance. Recent works [21, 23, 34] incorporate RL to79

further enhance visual reasoning capabilities. Our work shows that R1-style methods perform better80

in multi-agent embodied visual reasoning tasks.81

Embodied multi-agent benchmarks Recent research [1, 6, 43, 7, 26] has developed several82

embodied multi-agent benchmarks to evaluate collaborative behaviors. In 2D environments, LLM-83

Co [1] and Overcooked [6] study coordination in game play, but the simplified 2D settings limit84

their abilities in physical interaction. For 3D environments, a thread of work has focused on85

language-guided cooperative planning for embodied tasks. For instance, WAH [29] examines social86

intelligence in household scenarios. PARTNR [7] evaluates visual planning and reasoning under87

LLM-based evaluation. Other benchmarks target multi-agent manipulation. RocoBench [25] conducts88

object interaction tasks within a tabletop environment. FurnMove [16] requires collaboration on89

synchronized furniture arrangement. Building upon these advances, our work introduces a three-90

level hierarchical visual reasoning benchmark that bridges both planning and manipulation domains,91

coupled with a structured checker that incorporates spatial-temporal constraints into the generation92

pipeline to minimize infeasible plans.93

3 VIKI-Bench94

3.1 Overview95

We introduce VIKI-Bench , a hierarchical benchmark for studying visual reasoning in embodied96

multi-agent collaboration, as illustrated in Fig. 2. VIKI-Bench covers three levels of tasks: (1) Agent97

Activation, which selects appropriate agents to activate by considering the task description and the98

scene image; (2) Task Planning, which requires generating an ordered sequence of action primitives of99

multiple agents; and (3) Trajectory Perception, which involves predicting the motion trajectories of all100
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Task List: 
1. Take a look around the refrigerator and carefully check its surroundings for any misplaced items.
2. Clean the tomato at the sink, then deliver it into the bowl for preparation.
3. Collect the knife and fork at the work area, and place them neatly into the plate to finish cleaning.

Plan Generator

Level 2: Task Planning

Quadruped Dog
Highly mobile.

Good for Task 1

Level 3: Trajectory Perception

Trajectory Tracker

Stompy Fetch 

Simulation Env Heterogeneous Robots

Task Allocator

Level 1: Agent Activation

Task TemplatesDiverse 3D Assets Prior Knowledge

Stompy Humanoid
Dual-arm.

Ideal for Tasks 2 & 3

Fixed Arm
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Fetch (Wheeled Arm)
Mobile manipulator. 
Useful for Task 2 & 3 
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Action Checker
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             ...              
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Plan Refiner
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→ Assigned Task 2 
① <Move, tomato> 
② <Reach, tomato> 
             ...              
⑥ <Interact, sink>
             ...     
⑨ <Place, bowl>

→ Assigned Task 1 
① <Move, fridge>
② <Interact, fridge>

Ego-View (Stompy) Ego-View (Fetch)

Data Collection

Global-View

Fetch: <Interact, sink>Stompy: <Reach, fork>

Metrics

AccuracyStep

DFD HD RMSE

Figure 2: Overview of VIKI-Bench . VIKI-Bench is a hierarchical benchmark for evaluation
on multi-agent embodied cooperation, featuring visual reasoning tasks in three levels: (1) Agent
Activation, where robots are selected based on the scene image and the task context; (2) Task Planning,
where a structured multi-agent action plan is generated, verified, and refined; and (3) Trajectory
Perception, where the fine-grained motion trajectory of each agent is tracked from egocentric views.
The benchmark involves diverse robot types and complex 3D environments, with multiple metrics for
quantitative evaluation.

agents. Each task includes a language instruction, with global visual observations provided for the first101

two levels, and egocentric views used for the trajectory perception level. Spanning thousands of tasks102

across heterogeneous robot morphologies and diverse household-to-industrial layouts, VIKI-Bench103

offers a concise yet comprehensive benchmark for scalable multi-agent cooperation.104

3.2 Data Generation105

3.2.1 Agent Activation106

We formulate the agent activation task as a visual reasoning problem, where the task allocator selects107

a set of appropriate robots among all agents to complete the task. Each sample is formatted as an108

instruction-question pair, consisting of an image observation O and a task instruction I . The expected109

answer is a set of selected agents R = {rj}, j ∈ [1,M ] chosen from the visible agent pool Avisible110

based on embodiment reasoning and task affordance.111

To generate ground truth labels, we construct task-specific templates that specify which agent types112

are required or not required for solving the task, given the task goal and environmental context. These113

templates are grounded in embodiment rules and capability-based constraints (e.g., mobile agents for114

navigation, dual-arm agents for bimanual manipulation).115

To encourage interpretable reasoning, we adopt a chain-of-thought format in which the model is116

expected to: (1) analyze the task requirements, (2) visually identify the robots present, (3) assess each117

robot’s suitability, and (4) conclude the final selection. For data generation, we employ GPT-4o [28]118

as the task allocator gact, prompting it with the task template and the corresponding image context.119

The activation result is then obtained as R = gact(I,O). A verification module Cact is used to120

automatically check whether the generated labels conform to embodiment-grounded task constraints,121

followed by human inspection to correct failure cases and ensure overall label quality.122

3.2.2 Task Planning123

We construct task planning data as question-answer pairs according to the environment and specific124

instructions. To describe high-level operations of agents in the environment, we design basic primitive125

set P (e.g., move, grasp, etc.) as the atomic operations of all agents. The planning answer is designed126
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as a sequence of action descriptions A = {a1, a2, ...aN}, where N is the length of the sequence.127

Each action description is formed as ai = (ri, ti, pi, di), where ri, ti, pi, di denotes the agent, the128

timestep, the primitive and the destination of action ai, respectively.129

To generate effective planning in versatile environments, we use GPT-4o as the plan generator gplan130

and introduce an iterative refinement process. Given an instruction I , the corresponding observation131

O, and the primitive set P , the generator first decomposes the instruction into a set of goals G, and132

generates a possible planning result A0, as A0 = gplan(I,O, P ). Then, an Action Checker C verifies133

the feasibility of each action based on the rules of primitives, followed by a World Simulator S134

recording the position and status of interactive entities in the environment. Subsequently, a Plan135

Refiner R checks the completion of the goals. For any failure in planning, the refiner provides136

detailed feedback as an additional instruction, which is concatenated with the original instruction for137

the generator to revise the planning result until success. This procedure is formulated as follows.

Algorithm 1 Iterative Refinement Process
Require: Plan Generator gplan, Instruction I0, Goals G, Observation O, Primitives P
Ensure: Successful Planning A

1: Success← False
2: I ← I0
3: while ¬Success do
4: A← gplan(I,O, P )
5: Act_success← C(act),∀act ∈ A ▷ Action feasibility check
6: Status← S(A)
7: Goal_success← is_successful(Status, goal),∀goal ∈ G ▷ Goal check
8: Success← Act_success ∧Goal_success
9: I ← I +R(Act_success,Goal_success) ▷ Update feedback instruction

10: end while

138

3.2.3 Trajectory Perception139

We formulate trajectory perception in multi-agent environments as a spatial keypoint prediction140

problem, where the model predicts motion trajectories from egocentric observations based on the141

task instruction. Unlike prior work [7, 17] that focuses solely on the observing agent, our setting142

requires predicting both the trajectory of the ego agent and those of other visible agents to facilitate143

collaboration, which are referred as the ego-trajectory and partner-trajectories, respectively. Given144

an egocentric RGB image I and an action description ai = (ri, ti, pi, di) indicating the ongoing145

execution, the model predicts a set of 2D trajectories L = {Tk}, k ∈ [1,M ], where M is the number146

of agents in the scene, and Lk = {(xj , yj)}Lj=1 denotes a temporally ordered spatial motion for agent147

rk in coordinate sequences.148

To construct these samples, we sample diverse egocentric observations from simulated multi-agent149

scenes with the corresponding task descriptions. Based on the egocentric observations and detailed150

instructions for each visible agent, the trajectory of each agent is manually annotated by formulating151

feasible a motion path in the form of coordinate sequences. All data undergoes human verification to152

ensure temporal consistency and spatial alignment with the instruction and environment.153

3.3 Data Statistics154

The VIKI benchmark comprises over 20,000 multi-agent task samples across 100 diverse scenes155

derived from the RoboCasa [26] based on ManiSkill3 [35], each with fine-grained object configura-156

tions and varied spatial layouts. The dataset involves 6 types of heterogeneous embodied agents (e.g.,157

humanoids, wheeled arms, quadrupeds) interacting with over 1,000 unique asset combinations. Each158

scene provides both global and egocentric camera views to support perception and planning. More159

details are provided in Supplementary Section C.160
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Figure 3: Framework of VIKI-R . We adopted supervised fine-tuning (SFT) and reinforcement fine-
tuning on the VIKI dataset, incorporating format and accuracy rewards to optimize the policy model.

4 VIKI-R161

4.1 Overview162

We introduce VIKI-R , a two-stage fine-tuning framework that endows vision–language models with163

robust visual reasoning abilities, as shown in Fig. 3. In the first stage, SFT-based Warmup, the model164

undergoes supervised fine-tuning on high-quality Chain-of-Thought (CoT) annotations, optimizing165

the likelihood of both intermediate reasoning steps and final answers. This stage instructs the model166

to acquire domain-specific reasoning patterns. In the second stage, Reinforcement Fine-Tuning, the167

policy is refined using the Grouped Relative Proximal Optimization (GRPO) algorithm [32]. For each168

visual–question pair, grouped candidate answers are sampled and evaluated using a composite reward169

function based on answer format and correctness. Standardized advantages are then computed to170

guide policy updates under a KL-divergence constraint, ensuring stable and consistent improvement.171

4.2 Training Objectives172

SFT-based Warmup In the first phase, we employ Supervised Fine-Tuning (SFT) with data173

annotated with Chain-of-Thought (CoT) reasoning process. Each training instance is denoted as174

(x, q, r, a), where x represents the visual input, q the associated task, r the intermediate reasoning175

steps, and a the final answer. The SFT objective maximizes the joint likelihood of the reasoning and176

answer tokens conditioned on the input:177

LSFT = −E(x,q,r,a)∼D

T∑
t=1

log πθ

(
yt | x, q, y<t

)
, (1)

where D is the CoT-annotated dataset, y = [r, a] is the concatenated sequence of reasoning and178

answer tokens, and πθ denotes the model’s token distribution.179

Reinforcement Fine-Tuning Starting from πCoT, we sample a group of G candidate outputs {ai}180

per input s = (x, q). Let ri be the reward of ai and r̄, σr its sample mean and standard deviation. We181

form relative advantages182

Ai =
ri − r̄

σr
(2)

and update the policy by maximizing183

J(θ) = Es

[ G∑
i=1

Ai log πθ(ai | s)
]
− λKL

(
πθ

∥∥ πCoT

)
, (3)
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where πθ denotes the learned policy, πCoT is the initial policy obtained via Chain-of-Thought prompt-184

ing and λ is a regularization coefficient controlling the KL penalty.185

4.3 Reward Design186

To guide the model towards both structured output and task accuracy, we formulate the overall reward187

into a format reward and a task-specific accuracy reward, as:188

R = λ1 ×Rformat + λ2 ×Racc, (4)

where Rformat enforces the output format and Racc corresponds to the three subtask rewards, as189

defined below. λ1 and λ2 refer to the weights of both rewards, respectively.190

Format Reward To encourage explicit reasoning, we assign a binary format reward: the model191

receives 1 point if it correctly encloses the intermediate reasoning steps within <think>. . .</think>192

and the final answer within <answer>. . .</answer>, and 0 otherwise. By enforcing these tags, we193

prompt the model to articulate its chain-of-thought before delivering the answer, thereby improving194

interpretability and guiding systematic reasoning.195

Agent Activation Reward We define the agent activation reward as an exact-match indicator196

between the predicted agent set Spred and the ground-truth set Sgt:197

RL1
acc =

{
1, if Spred ≡ Sgt,

0, otherwise.
(5)

Task Planning Reward While multiple feasible plans may exist, we define the reward to favor198

efficient solutions. Specifically, a predicted plan A only receives the reward if it is feasible and its199

length does not exceed that of the ground-truth plan Ngt. Let N(A) denote the length of the predicted200

action sequence A, the task planning reward is defined as:201

RL2
acc =

{
1, if A is feasible and N(A) ≤ Ngt,

0, otherwise.
(6)

Details on how plan feasibility is checked are provided in Supplementary Section C.202

Trajectory Perception Reward Let P (k) = {p(k)t }Tt=1 and G(k) = {g(k)t }Tt=1 denote the predicted203

and ground-truth trajectories for agent k, respectively. To evaluate trajectory prediction quality for204

each agent k, we compute three normalized standard geometric distance metrics between the predicted205

trajectory and the ground-truth trajectory: Root Mean Square Error (RMSE, denoted as d̂RMSE),206

Hausdorff Distance (HD, denoted as d̂HD)[15], and Discrete Fréchet Distance (DFD, denoted as207

d̂DFD)[9]. Since smaller distances indicate better alignment between predicted and ground-truth208

trajectories, we transform the distance d̂ into a reward-like score using the transformation r = 1− d̂.209

The final trajectory perception reward is defined as:210

RL3
acc =

1

3K

K∑
k=1

(
r
(k)
RMSE + r

(k)
HD + r

(k)
DFD

)
, (7)

5 Experiments211

5.1 Experimental Setup212

Training Paradigms and Baselines To assess the impact of different training strategies on perfor-213

mance and generalization, we compare the following methods: (1)Ans-SFT: a supervised fine-tuning214

(SFT) approach focusing solely on answer generation. (2)VIKI-R-Zero: a reinforcement learning215

(RL) variant that applies GRPO directly, without any prior CoT activation. (3)VIKI-R: our two-phase216

scheme—first SFT on a small CoT-annotated subset, followed by GRPO-based RL. All variants use217

Qwen2.5-VL-Instruct [4] as the base model in both 3B and 7B sizes to study the effect of model scale.218

For a comprehensive comparison, we include open-source models[4, 19]and leading closed-source219

systems GPT-4o [28], gemini-2.5-flash-preview [8]) and claude-3.7-sonnet[3] as baselines. Detailed220

hyperparameters and additional setup information are provided in Supplementary Section C.221
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Table 2: Performance comparison across the three hierarchical task levels of VIKI-Bench. Best scores
are highlighted in bold, and the second-best scores are underlined.

Method VIKI-L1 VIKI-L2 VIKI-L3

ACCID ↑ ACCID ↑ ACCOOD ↑ ACCAVG ↑ RMSE ↓ HD ↓ DFD ↓ AVG ↓

Closed-Source Models
GPT-4o 18.40 22.56 10.02 17.50 100.80 115.34 131.05 115.73
Claude-3.7-Sonnet 12.40 19.44 0.57 11.82 283.31 323.53 346.88 317.91
Gemini-2.5-Flash-preview 31.40 20.00 10.51 16.17 453.89 519.14 540.80 504.61

Open-Source Models
Qwen2.5-VL-72B-Instruct 11.31 8.40 1.20 5.49 81.31 94.62 113.15 96.36
Qwen2.5-VL-32B-Instruct 9.50 3.60 0.00 2.15 88.48 99.80 119.78 102.69
Llama-3.2-11B-Vision 0.40 0.50 0.00 0.30 192.69 223.57 231.85 216.04

Qwen2.5VL-3B-Instruct
Zero-Shot 1.95 0.22 0.00 0.13 96.22 114.93 130.98 114.04
+Ans SFT 35.29 81.06 30.71 60.74 74.70 90.28 102.26 89.08
+VIKI-R-Zero 20.40 0.00 0.00 0.00 80.36 95.36 120.27 98.66
+VIKI-R 74.10 93.61 32.11 68.78 75.69 90.25 103.65 89.86

Qwen2.5VL-7B-Instruct
Zero-Shot 4.26 0.44 0.00 0.26 81.93 103.82 112.91 99.55
+Ans SFT 72.20 96.89 25.62 68.13 65.32 81.20 90.89 79.14
+VIKI-R-Zero 93.59 0.17 0.00 0.10 67.42 85.30 95.32 82.68
+VIKI-R 93.00 95.22 33.25 69.25 64.87 79.23 89.36 77.82

Evaluation Metrics We adopted task-specific metrics to evaluate performance across the three222

stages of the VIKI-Bench . For agent activation (VIKI-L1), we report classification accuracy based223

on whether the selected agents match the ground truth. For task planning (VIKI-L2), we evaluate224

accuracy based on whether the predicted plan is both feasible and no longer than the ground-truth225

plan, reflecting correctness and execution efficiency. For trajectory perception (VIKI-L3), we evaluate226

the predicted trajectories using RMSE, Hausdorff Distance (HD) [15] and Discrete Fréchet Distance227

(DFD) [9], which measure spatial and temporal alignment with ground-truth motion paths.228

5.2 Overall Performance Analysis229

Tab. 2 highlights three main observations. First, when comparing open-source and closed-source230

models under zero-shot evaluation (without any VIKI-Bench training), closed-source models hold231

a clear advantage. Among closed-source systems, Gemini-2.5-Flash-preview achieves the highest232

agent activation accuracy, while GPT-4o excels at trajectory perception. In contrast, both Gemini and233

Claude exhibit almost no trajectory-prediction capability. Second, the model scale critically affects234

open-source VLM performance. The 72B-parameter Qwen2.5-VL matches or even surpasses some235

closed-source baselines on perception metrics, but reducing the model to 32B parameters incurs236

substantial drops in both planning accuracy and trajectory quality. This underscores the importance of237

model capacity for handling complex multi-agent visual reasoning. Third, our two-stage fine-tuning238

framework VIKI-R outperforms purely supervised Ans-SFT and VIKI-R-zero. While Ans-SFT239

yields strong in-domain improvements, it fails to generalize to out-of-domain scenarios. These results240

confirm that integrating reinforcement learning substantially enhances visual reasoning capabilities241

in hierarchical multi-agent cooperation.242

5.3 Feedback-Driven Iterative Refinement243

We compare two planning strategies: standard sampling (up to k attempts without guidance) and244

feedback-driven sampling (injecting feedback between attempts). Tab. 3 demonstrates the impact245

of feedback-driven sampling. By injecting feedback between failed attempts, GPT-4o achieves246

improvements of 1.9% at pass@3 and 3.6% at pass@6. Claude-3-7-Sonnet sees gains of 1.5%247

and 2.3% and Gemini-2.5-Flash records increases of 1.8% and 3.0%. On average, feedback-driven248

sampling boosts pass@3 by 1.7% and pass@6 by 3.0%, highlighting that iterative feedback effectively249

steers the model away from repeated mistakes and yields more reliable plans.250

5.4 Ablation Study251

Tab. 4 demonstrates the impact of step penalty. By incorporating a constraint-based penalty, VIKI-R252

achieves improvements by 39.7% and 88.0% in the accuracy of out-of-domain and in-domain tasks,253
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Table 3: Task planning success rates (%) under two sampling strategies. pass@k denotes the
probability of obtaining at least one valid plan within k independent attempts, while pass@k_fb is
measured when feedback is appended after each failed attempt.

Model pass@1 pass@3_fb pass@3 pass@6_fb pass@6

GPT-4o 18.4 20.6 18.7 22.3 18.7
Claude-3.7-Sonnet 12.4 13.9 12.4 14.8 12.5
Gemini-2.5-Flash-preview 31.4 33.4 31.6 34.7 31.7

respectively. These results underscore the effectiveness of the step penalty in generalization and254

execution accuracy. Besides, the steps of action length is reduced by an average of 1.92 steps,255

highlighting the critical role of penalizing unnecessary steps to enforce concise planning. Overall,256

the step penalty promotes more transferable and efficient planning strategies.257

Table 4: Effect of the step penalty on 1,000 challenging reasoning tasks sampled from both the
out-of-domain (OOD-H) and in-domain (ID-H) splits. ∆ Steps measures the average difference
between the action length of predicted plan and the ground-truth plan.

Variant ACCOOD-H ↑ ACCID-H ↑ ∆Steps ↓
VIKI-R (with step penalty) 46.8 96.0 0.05
VIKI-R (without step penalty) 7.1 8.0 1.97

5.5 Insights from Training258
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Figure 4: Response length of
the Qwen2.5-VL-3B/7B-Instruct
model at training time.

Throughout our experiments, we identified several key behav-259

iors that illustrate both the strengths and limitations of GRPO260

in our hierarchical multi-agent setting.261

Dependence on Base Policy Quality The effectiveness of262

GRPO depends critically on the competence of the pretrained263

policy. In VIKI-L2 planning, the zero-shot model produces264

almost no valid plans, and VIKI-R-Zero yields negligible im-265

provement. By contrast, in the VIKI-L1 activation and VIKI-266

L3 perception tasks where the base policy already generates267

some correct responses—GRPO delivers clear performance268

gains. These observations indicate that reinforcement-based269

fine-tuning requires an initial set of correct rollouts to guide270

effective policy updates.271

Evolution of Response Length We tracked the average token length of model outputs during272

VIKI-R training in Fig. 4. In the early stages, output length decreases as the model prioritizes format273

compliance to secure the format reward. Once format accuracy saturates, the policy shifts focus274

toward maximizing task correctness, and output length gradually increases to include the necessary275

reasoning details.276

6 Conclusion277

This paper presents VIKI-Bench , a hierarchical benchmark for evaluating vision-language models278

in embodied multi-agent collaboration. We further introduce VIKI-R , a two-stage framework279

that combines supervised pretraining and reinforcement learning to solve multi-agent tasks across280

activation, planning, and perception levels. While our study focuses on simulated environments,281

extending this framework to real-world settings and dynamic agents remains promising future work.282
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only tested on a few datasets or with a few runs. In general, empirical results often507

depend on implicit assumptions, which should be articulated.508

• The authors should reflect on the factors that influence the performance of the approach.509

For example, a facial recognition algorithm may perform poorly when image resolution510

is low or images are taken in low lighting. Or a speech-to-text system might not be511

used reliably to provide closed captions for online lectures because it fails to handle512

technical jargon.513

• The authors should discuss the computational efficiency of the proposed algorithms514

and how they scale with dataset size.515

• If applicable, the authors should discuss possible limitations of their approach to516

address problems of privacy and fairness.517

• While the authors might fear that complete honesty about limitations might be used by518

reviewers as grounds for rejection, a worse outcome might be that reviewers discover519

limitations that aren’t acknowledged in the paper. The authors should use their best520

judgment and recognize that individual actions in favor of transparency play an impor-521

tant role in developing norms that preserve the integrity of the community. Reviewers522

will be specifically instructed to not penalize honesty concerning limitations.523

3. Theory assumptions and proofs524

Question: For each theoretical result, does the paper provide the full set of assumptions and525

a complete (and correct) proof?526

Answer: [Yes]527
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Justification: We provide the full set of assumptions and complete, correct proofs for each528

theoretical result.529

Guidelines:530

• The answer NA means that the paper does not include theoretical results.531

• All the theorems, formulas, and proofs in the paper should be numbered and cross-532

referenced.533

• All assumptions should be clearly stated or referenced in the statement of any theorems.534

• The proofs can either appear in the main paper or the supplemental material, but if535

they appear in the supplemental material, the authors are encouraged to provide a short536

proof sketch to provide intuition.537

• Inversely, any informal proof provided in the core of the paper should be complemented538

by formal proofs provided in appendix or supplemental material.539

• Theorems and Lemmas that the proof relies upon should be properly referenced.540

4. Experimental result reproducibility541

Question: Does the paper fully disclose all the information needed to reproduce the main ex-542

perimental results of the paper to the extent that it affects the main claims and/or conclusions543

of the paper (regardless of whether the code and data are provided or not)?544

Answer: [Yes]545

Justification: The paper fully discloses all necessary information required to reproduce the546

main experimental results relevant to its core claims and conclusions.547

Guidelines:548

• The answer NA means that the paper does not include experiments.549

• If the paper includes experiments, a No answer to this question will not be perceived550

well by the reviewers: Making the paper reproducible is important, regardless of551

whether the code and data are provided or not.552

• If the contribution is a dataset and/or model, the authors should describe the steps taken553

to make their results reproducible or verifiable.554

• Depending on the contribution, reproducibility can be accomplished in various ways.555

For example, if the contribution is a novel architecture, describing the architecture fully556

might suffice, or if the contribution is a specific model and empirical evaluation, it may557

be necessary to either make it possible for others to replicate the model with the same558

dataset, or provide access to the model. In general. releasing code and data is often559

one good way to accomplish this, but reproducibility can also be provided via detailed560

instructions for how to replicate the results, access to a hosted model (e.g., in the case561

of a large language model), releasing of a model checkpoint, or other means that are562

appropriate to the research performed.563

• While NeurIPS does not require releasing code, the conference does require all submis-564

sions to provide some reasonable avenue for reproducibility, which may depend on the565

nature of the contribution. For example566

(a) If the contribution is primarily a new algorithm, the paper should make it clear how567

to reproduce that algorithm.568

(b) If the contribution is primarily a new model architecture, the paper should describe569

the architecture clearly and fully.570

(c) If the contribution is a new model (e.g., a large language model), then there should571

either be a way to access this model for reproducing the results or a way to reproduce572

the model (e.g., with an open-source dataset or instructions for how to construct573

the dataset).574

(d) We recognize that reproducibility may be tricky in some cases, in which case575

authors are welcome to describe the particular way they provide for reproducibility.576

In the case of closed-source models, it may be that access to the model is limited in577

some way (e.g., to registered users), but it should be possible for other researchers578

to have some path to reproducing or verifying the results.579

5. Open access to data and code580
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Question: Does the paper provide open access to the data and code, with sufficient instruc-581

tions to faithfully reproduce the main experimental results, as described in supplemental582

material?583

Answer: [Yes]584

Justification: We provide open access to the data and code, with sufficient instructions to585

faithfully reproduce the main experimental results.586

Guidelines:587

• The answer NA means that paper does not include experiments requiring code.588

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/589

public/guides/CodeSubmissionPolicy) for more details.590

• While we encourage the release of code and data, we understand that this might not be591

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not592

including code, unless this is central to the contribution (e.g., for a new open-source593

benchmark).594

• The instructions should contain the exact command and environment needed to run to595

reproduce the results. See the NeurIPS code and data submission guidelines (https:596

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.597

• The authors should provide instructions on data access and preparation, including how598

to access the raw data, preprocessed data, intermediate data, and generated data, etc.599

• The authors should provide scripts to reproduce all experimental results for the new600

proposed method and baselines. If only a subset of experiments are reproducible, they601

should state which ones are omitted from the script and why.602

• At submission time, to preserve anonymity, the authors should release anonymized603

versions (if applicable).604

• Providing as much information as possible in supplemental material (appended to the605

paper) is recommended, but including URLs to data and code is permitted.606

6. Experimental setting/details607

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-608

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the609

results?610

Answer: [Yes]611

Justification: We specify all the training and test details in Supplementary Material Section612

D.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The experimental setting should be presented in the core of the paper to a level of detail616

that is necessary to appreciate the results and make sense of them.617

• The full details can be provided either with the code, in appendix, or as supplemental618

material.619

7. Experiment statistical significance620

Question: Does the paper report error bars suitably and correctly defined or other appropriate621

information about the statistical significance of the experiments?622

Answer: [Yes]623

Justification: We provide the statistical information of the experiments.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The authors should answer "Yes" if the results are accompanied by error bars, confi-627

dence intervals, or statistical significance tests, at least for the experiments that support628

the main claims of the paper.629

• The factors of variability that the error bars are capturing should be clearly stated (for630

example, train/test split, initialization, random drawing of some parameter, or overall631

run with given experimental conditions).632
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• The method for calculating the error bars should be explained (closed form formula,633

call to a library function, bootstrap, etc.)634

• The assumptions made should be given (e.g., Normally distributed errors).635

• It should be clear whether the error bar is the standard deviation or the standard error636

of the mean.637

• It is OK to report 1-sigma error bars, but one should state it. The authors should638

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis639

of Normality of errors is not verified.640

• For asymmetric distributions, the authors should be careful not to show in tables or641

figures symmetric error bars that would yield results that are out of range (e.g. negative642

error rates).643

• If error bars are reported in tables or plots, The authors should explain in the text how644

they were calculated and reference the corresponding figures or tables in the text.645

8. Experiments compute resources646

Question: For each experiment, does the paper provide sufficient information on the com-647

puter resources (type of compute workers, memory, time of execution) needed to reproduce648

the experiments?649

Answer: [Yes]650

Justification: We specify all the sufficient information on the computer resources in Supple-651

mentary Material Section D.652

Guidelines:653

• The answer NA means that the paper does not include experiments.654

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,655

or cloud provider, including relevant memory and storage.656

• The paper should provide the amount of compute required for each of the individual657

experimental runs as well as estimate the total compute.658

• The paper should disclose whether the full research project required more compute659

than the experiments reported in the paper (e.g., preliminary or failed experiments that660

didn’t make it into the paper).661

9. Code of ethics662

Question: Does the research conducted in the paper conform, in every respect, with the663

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?664

Answer: [Yes]665

Justification: The research conducted in the paper conforms, in every respect, with the666

NeurIPS Code of Ethics.667

Guidelines:668

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.669

• If the authors answer No, they should explain the special circumstances that require a670

deviation from the Code of Ethics.671

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-672

eration due to laws or regulations in their jurisdiction).673

10. Broader impacts674

Question: Does the paper discuss both potential positive societal impacts and negative675

societal impacts of the work performed?676

Answer: [Yes]677

Justification: We provide the broader impacts in Supplementary Material Section B.678

Guidelines:679

• The answer NA means that there is no societal impact of the work performed.680

• If the authors answer NA or No, they should explain why their work has no societal681

impact or why the paper does not address societal impact.682
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• Examples of negative societal impacts include potential malicious or unintended uses683

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations684

(e.g., deployment of technologies that could make decisions that unfairly impact specific685

groups), privacy considerations, and security considerations.686

• The conference expects that many papers will be foundational research and not tied687

to particular applications, let alone deployments. However, if there is a direct path to688

any negative applications, the authors should point it out. For example, it is legitimate689

to point out that an improvement in the quality of generative models could be used to690

generate deepfakes for disinformation. On the other hand, it is not needed to point out691

that a generic algorithm for optimizing neural networks could enable people to train692

models that generate Deepfakes faster.693

• The authors should consider possible harms that could arise when the technology is694

being used as intended and functioning correctly, harms that could arise when the695

technology is being used as intended but gives incorrect results, and harms following696

from (intentional or unintentional) misuse of the technology.697

• If there are negative societal impacts, the authors could also discuss possible mitigation698

strategies (e.g., gated release of models, providing defenses in addition to attacks,699

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from700

feedback over time, improving the efficiency and accessibility of ML).701

11. Safeguards702

Question: Does the paper describe safeguards that have been put in place for responsible703

release of data or models that have a high risk for misuse (e.g., pretrained language models,704

image generators, or scraped datasets)?705

Answer: [NA]706

Justification: The paper isn’t relevant with any data or models that have a high risk for707

misuse.708

Guidelines:709

• The answer NA means that the paper poses no such risks.710

• Released models that have a high risk for misuse or dual-use should be released with711

necessary safeguards to allow for controlled use of the model, for example by requiring712

that users adhere to usage guidelines or restrictions to access the model or implementing713

safety filters.714

• Datasets that have been scraped from the Internet could pose safety risks. The authors715

should describe how they avoided releasing unsafe images.716

• We recognize that providing effective safeguards is challenging, and many papers do717

not require this, but we encourage authors to take this into account and make a best718

faith effort.719

12. Licenses for existing assets720

Question: Are the creators or original owners of assets (e.g., code, data, models), used in721

the paper, properly credited and are the license and terms of use explicitly mentioned and722

properly respected?723

Answer: [Yes]724

Justification: We explicitly mentioned and properly respected the license and terms of assets.725

Guidelines:726

• The answer NA means that the paper does not use existing assets.727

• The authors should cite the original paper that produced the code package or dataset.728

• The authors should state which version of the asset is used and, if possible, include a729

URL.730

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.731

• For scraped data from a particular source (e.g., website), the copyright and terms of732

service of that source should be provided.733
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• If assets are released, the license, copyright information, and terms of use in the734

package should be provided. For popular datasets, paperswithcode.com/datasets735

has curated licenses for some datasets. Their licensing guide can help determine the736

license of a dataset.737

• For existing datasets that are re-packaged, both the original license and the license of738

the derived asset (if it has changed) should be provided.739

• If this information is not available online, the authors are encouraged to reach out to740

the asset’s creators.741

13. New assets742

Question: Are new assets introduced in the paper well documented and is the documentation743

provided alongside the assets?744

Answer: [Yes]745

Justification: We introduce new assets with well documentations.746

Guidelines:747

• The answer NA means that the paper does not release new assets.748

• Researchers should communicate the details of the dataset/code/model as part of their749

submissions via structured templates. This includes details about training, license,750

limitations, etc.751

• The paper should discuss whether and how consent was obtained from people whose752

asset is used.753

• At submission time, remember to anonymize your assets (if applicable). You can either754

create an anonymized URL or include an anonymized zip file.755

14. Crowdsourcing and research with human subjects756

Question: For crowdsourcing experiments and research with human subjects, does the paper757

include the full text of instructions given to participants and screenshots, if applicable, as758

well as details about compensation (if any)?759

Answer: [NA]760

Justification: The paper is not relevant with human subjects.761

Guidelines:762

• The answer NA means that the paper does not involve crowdsourcing nor research with763

human subjects.764

• Including this information in the supplemental material is fine, but if the main contribu-765

tion of the paper involves human subjects, then as much detail as possible should be766

included in the main paper.767

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,768

or other labor should be paid at least the minimum wage in the country of the data769

collector.770

15. Institutional review board (IRB) approvals or equivalent for research with human771

subjects772

Question: Does the paper describe potential risks incurred by study participants, whether773

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)774

approvals (or an equivalent approval/review based on the requirements of your country or775

institution) were obtained?776

Answer: [NA]777

Justification: The paper does not involve crowdsourcing nor research with human subjects.778

Guidelines:779

• The answer NA means that the paper does not involve crowdsourcing nor research with780

human subjects.781

• Depending on the country in which research is conducted, IRB approval (or equivalent)782

may be required for any human subjects research. If you obtained IRB approval, you783

should clearly state this in the paper.784
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• We recognize that the procedures for this may vary significantly between institutions785

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the786

guidelines for their institution.787

• For initial submissions, do not include any information that would break anonymity (if788

applicable), such as the institution conducting the review.789

16. Declaration of LLM usage790

Question: Does the paper describe the usage of LLMs if it is an important, original, or791

non-standard component of the core methods in this research? Note that if the LLM is used792

only for writing, editing, or formatting purposes and does not impact the core methodology,793

scientific rigorousness, or originality of the research, declaration is not required.794

Answer: [NA]795

Justification: The core method development in this research does not involve LLMs as any796

important, original, or non-standard components.797

Guidelines:798

• The answer NA means that the core method development in this research does not799

involve LLMs as any important, original, or non-standard components.800

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)801

for what should or should not be described.802
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