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Abstract

Coordinating multiple embodied agents in dynamic environments remains a core
challenge in artificial intelligence, requiring both perception-driven reasoning
and scalable cooperation strategies. While recent works have leveraged large
language models (LLMs) for multi-agent planning, a few have begun to explore
vision-language models (VLMs) for visual reasoning. However, these VLM-based
approaches remain limited in their support for diverse embodiment types. In this
work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for
embodied multi-agent cooperation, featuring three structured levels: agent activa-
tion, task planning, and trajectory perception. VIKI-Bench includes diverse robot
embodiments, multi-view visual observations, and structured supervision signals to
evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-
Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained
vision-language model (VLM) using Chain-of-Thought annotated demonstrations,
followed by reinforcement learning under multi-level reward signals. Our extensive
experiments show that VIKI-R significantly outperforms baselines method across
all task levels. Furthermore, we show that reinforcement learning enables the
emergence of compositional cooperation patterns among heterogeneous agents. To-
gether, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing
multi-agent, visual-driven cooperation in embodied Al systems.

1 Introduction

In the science-fiction film I, Robot [40], the super-computer VIKI orchestrates thousands of NS-5
robots, illustrating the extraordinary coordination capabilities of heterogeneous robotic agents. This
fictional depiction highlights a fundamental challenge in artificial intelligence: enabling multiple
embodied agents to collaborate in dynamic, real-world environments. As illustrated in Fig. [T}
addressing this challenge is critical for advancing multi-agent systems capable of achieving effective,
large-scale coordination: (1) Real-world tasks often necessitate specialized embodiments—for
instance, reaching high cabinets may call for a robot with extended reach, while delicate tasks
demand manipulators with fine-grained control. (2) Cooperative behaviors substantially enhance task
efficiency through parallelization and mutual assistance.

Recent advances have demonstrated the potential of large language models (LLMs) in enabling
multi-agent planning [5 [7,143]. While these LLM-based approaches have made significant progress
in high-level coordination, only a few works have explored the use of vision-language models (VLMs)
for perception-driven reasoning [22} 38| [44]. However, existing VLM-based methods remain limited
by the lack of embodiment diversity. As a result, the ability to reason about visual observations in
heterogeneous multi-agent settings remains an underexplored challenge.
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Figure 1: Embodied multi-agent cooperation involves two key aspects: (1) cross-embodiment
collaboration, where different embodiments are required for different tasks (e.g., washing requires a
humanoid, while only wheeled robots can fetch from high cabinets); and (2) efficient coordination,
where agents work in parallel (e.g., multiple arms passing apples while a humanoid washes them) to
improve overall efficiency. To support such fine-grained teamwork, we propose VIKI-Bench, which

structures the process into three levels of visual reasoning: Level 1 — agent activation, Level 2 — task
planning, and Level 3 — trajectory perception, aiming to realize an embodied multi-agent system.

V]

Grasp Handover

e Limited range of activities

To address these gaps, we introduce VIKI-Bench, a comprehensive benchmark for evaluating
collaborative capabilities in embodied multi-agent systems. As illustrated in Fig.[I] VIKI-Bench is
designed around three levels of task: Agent Activation, Task Planning, and Trajectory Perception.
Each task provides multi-view visual input and incorporates a diverse set of heterogeneous robots.
Moreover, VIKI-Bench provides a multi-dimensional evaluation framework that assesses execution
feasibility, task completion and planning efficiency. To the best of our knowledge, VIKI-Bench is the
first comprehensive benchmark specifically designed to evaluate the reasoning capabilities of VLMs
in hierarchical embodied multi-agent cooperation.

To advance reasoning capabilities in the multi-agent system, we introduce VIKI-R, a VLM-based
framework that fosters reasoning abilities in multi-agent cooperation. Inspired by [11} 23} 34], our
approach first grounds a pretrained VLM in task understanding through Chain-of-Thought annotations,
then optimizes it via Reinforcement Learning, leveraging hierachical supervision in VIKI-Bench.
Extensive experimental results demonstrate that VIKI-R significantly outperforms baseline methods
across all three task levels, highlighting the effectiveness of the proposed approach.

In summary, the main contributions of this paper are as follows:

o We introduce VIKI-Bench, the first hierarchical benchmark for embodied multi-agent cooperation,
which consists of three structured task levels: agent activation, high-level task planning, and low-level
trajectory perception. The benchmark features heterogeneous robot types, multi-view visual inputs,
and structured supervision signals to enable comprehensive evaluation.

© We propose VIKI-R, a two-stage learning framework that enhances visual reasoning capabilities
in embodied multi-agent systems by using hierarchical reward signals to learn structured reasoning
across diverse tasks, enabling generalizable cooperation in complex environments.

< Extensive experimental results demonstrates the effectiveness of VIKI-R in VIKI-Bench. Our
analysis highlights the importance of hierarchical supervision and reveals how reinforcement learning
facilitates the emergence of compositional collaboration patterns in embodied environments.

2 Related Work

Embodied Multi-Agent Cooperation Real-world embodied tasks often require cooperation among
multiple agents. Existing studies 30, have explored this problem in various appli-
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Table 1: Comparison to similar embodied benchmarks. We compare VIKI-Bench to embodied Al
benchmarks, focusing on natural language and multi-agent collaboration tasks. [Keys: Views: EGO
(Ego-centric view), GL (Global view). H.E.: Coordination among Heterogeneous Embodiments. ]

Environment Language Visual Views H.E. Tasks Num
Overcooked [6] 2D v - 4
RoCo [25] 3D v - 6
WAH [229] 3D v - 1,211
Co-ELA [43] 3D v - 44
FurnMove [[16] 3D v v EGO 30
PARTNR [7] 3D v - v 100,000
RoboCasa [26] 3D v v EGO v 100
VIKI-Bench (Ours) 3D v v EGO,GL Vv 23,737

cation domains. Research focuses on multi-agent task allocation [20, 27, 137]] and joint decision-
making [36,43]]. A significant body of recent work [5,[13}[18} 26,131,461 49| leverages large language
models (LLMs) to handle high-level reasoning and planning. However, these approaches lack vi-
sual grounding, limiting their ability to reason about spatial constraints and perceptual affordances.
While a few recent efforts [38), 144, |47]] incorporate vision-language models (VLMs) to obtain a more
grounded understanding of the environment, research on heterogeneous multi-agent cooperation
remains sparse—particularly in settings requiring fine-grained visual reasoning and embodied per-
ception. In contrast, our work incorporates both agent heterogeneity and visual reasoning to support
complex, perception-driven collaboration.

Visual Reasoning Visual reasoning requires vision-language models (VLMs) to interpret and reason
over visual observations to perform complex tasks. It has been applied in areas such as geometric
problem-solving [10}133}45]], robotic [14}[17]] and scientific research [24]. Previous work has explored
enhancing visual reasoning in VLMs through multi-stage supervision. For example, LLaVA-CoT [41]
applies multi-stage supervised fine-tuning (SFT) with chain-of-thought [39] prompting. With the
introduction of a rule-based reinforcement learning (RL) method, DeepSeek-R1 [11]] demonstrates
significant improvements in reasoning performance. Recent works [21, 23} 134] incorporate RL to
further enhance visual reasoning capabilities. Our work shows that R1-style methods perform better
in multi-agent embodied visual reasoning tasks.

Embodied multi-agent benchmarks Recent research [} 16, 43| [7, 26]] has developed several
embodied multi-agent benchmarks to evaluate collaborative behaviors. In 2D environments, LLM-
Co [IL] and Overcooked [6] study coordination in game play, but the simplified 2D settings limit
their abilities in physical interaction. For 3D environments, a thread of work has focused on
language-guided cooperative planning for embodied tasks. For instance, WAH [29] examines social
intelligence in household scenarios. PARTNR [7] evaluates visual planning and reasoning under
LLM-based evaluation. Other benchmarks target multi-agent manipulation. RocoBench [25]] conducts
object interaction tasks within a tabletop environment. FurnMove [16] requires collaboration on
synchronized furniture arrangement. Building upon these advances, our work introduces a three-
level hierarchical visual reasoning benchmark that bridges both planning and manipulation domains,
coupled with a structured checker that incorporates spatial-temporal constraints into the generation
pipeline to minimize infeasible plans.

3 VIKI-Bench

3.1 Overview

We introduce VIKI-Bench, a hierarchical benchmark for studying visual reasoning in embodied
multi-agent collaboration, as illustrated in Fig.[2] VIKI-Bench covers three levels of tasks: (1) Agent
Activation, which selects appropriate agents to activate by considering the task description and the
scene image; (2) Task Planning, which requires generating an ordered sequence of action primitives of
multiple agents; and (3) Trajectory Perception, which involves predicting the motion trajectories of all
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Figure 2: Overview of VIKI-Bench. VIKI-Bench is a hierarchical benchmark for evaluation
on multi-agent embodied cooperation, featuring visual reasoning tasks in three levels: (1) Agent
Activation, where robots are selected based on the scene image and the task context; (2) Task Planning,
where a structured multi-agent action plan is generated, verified, and refined; and (3) Trajectory
Perception, where the fine-grained motion trajectory of each agent is tracked from egocentric views.
The benchmark involves diverse robot types and complex 3D environments, with multiple metrics for
quantitative evaluation.

agents. Each task includes a language instruction, with global visual observations provided for the first
two levels, and egocentric views used for the trajectory perception level. Spanning thousands of tasks
across heterogeneous robot morphologies and diverse household-to-industrial layouts, VIKI-Bench
offers a concise yet comprehensive benchmark for scalable multi-agent cooperation.

3.2 Data Generation
3.2.1 Agent Activation

We formulate the agent activation task as a visual reasoning problem, where the task allocator selects
a set of appropriate robots among all agents to complete the task. Each sample is formatted as an
instruction-question pair, consisting of an image observation O and a task instruction . The expected
answer is a set of selected agents R = {r;},j € [1, M] chosen from the visible agent pool Ayisibie
based on embodiment reasoning and task affordance.

To generate ground truth labels, we construct task-specific templates that specify which agent types
are required or not required for solving the task, given the task goal and environmental context. These
templates are grounded in embodiment rules and capability-based constraints (e.g., mobile agents for
navigation, dual-arm agents for bimanual manipulation).

To encourage interpretable reasoning, we adopt a chain-of-thought format in which the model is
expected to: (1) analyze the task requirements, (2) visually identify the robots present, (3) assess each
robot’s suitability, and (4) conclude the final selection. For data generation, we employ GPT-40 [28]]
as the task allocator g,., prompting it with the task template and the corresponding image context.
The activation result is then obtained as R = g,({,0). A verification module Cy is used to
automatically check whether the generated labels conform to embodiment-grounded task constraints,
followed by human inspection to correct failure cases and ensure overall label quality.

3.2.2 Task Planning

We construct task planning data as question-answer pairs according to the environment and specific
instructions. To describe high-level operations of agents in the environment, we design basic primitive
set P (e.g., move, grasp, etc.) as the atomic operations of all agents. The planning answer is designed
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as a sequence of action descriptions A = {a1, as,...ay }, where N is the length of the sequence.
Each action description is formed as a; = (r;, t;, p;, d;), where 4, t;, p;, d; denotes the agent, the
timestep, the primitive and the destination of action a;, respectively.

To generate effective planning in versatile environments, we use GPT-40 as the plan generator gpian
and introduce an iterative refinement process. Given an instruction /, the corresponding observation
O, and the primitive set P, the generator first decomposes the instruction into a set of goals G, and
generates a possible planning result Ay, as Ay = gpian (I, O, P). Then, an Action Checker C' verifies
the feasibility of each action based on the rules of primitives, followed by a World Simulator S
recording the position and status of interactive entities in the environment. Subsequently, a Plan
Refiner R checks the completion of the goals. For any failure in planning, the refiner provides
detailed feedback as an additional instruction, which is concatenated with the original instruction for
the generator to revise the planning result until success. This procedure is formulated as follows.

Algorithm 1 Iterative Refinement Process

Require: Plan Generator g4y, Instruction Iy, Goals G, Observation O, Primitives P
Ensure: Successful Planning A
1: Success + False
2: I IO
3: while —Success do
4: A nglan(]}OaP)
5 Act_success < C(act),Vact € A > Action feasibility check
6: Status < S(A)
7: Goal_success < is_success ful(Status, goal),Vgoal € G > Goal check
8.
9
10:

Success <+ Act_success N Goal_success
: I «+ I+ R(Act_success, Goal_success) > Update feedback instruction
end while

3.2.3 Trajectory Perception

We formulate trajectory perception in multi-agent environments as a spatial keypoint prediction
problem, where the model predicts motion trajectories from egocentric observations based on the
task instruction. Unlike prior work [[7 [17] that focuses solely on the observing agent, our setting
requires predicting both the trajectory of the ego agent and those of other visible agents to facilitate
collaboration, which are referred as the ego-trajectory and partner-trajectories, respectively. Given
an egocentric RGB image I and an action description a; = (r;,¢;, p;, d;) indicating the ongoing
execution, the model predicts a set of 2D trajectories £ = {1} }, k € [1, M], where M is the number
of agents in the scene, and L, = {(z;,y;)} ngl denotes a temporally ordered spatial motion for agent
7} in coordinate sequences.

To construct these samples, we sample diverse egocentric observations from simulated multi-agent
scenes with the corresponding task descriptions. Based on the egocentric observations and detailed
instructions for each visible agent, the trajectory of each agent is manually annotated by formulating
feasible a motion path in the form of coordinate sequences. All data undergoes human verification to
ensure temporal consistency and spatial alignment with the instruction and environment.

3.3 Data Statistics

The VIKI benchmark comprises over 20,000 multi-agent task samples across 100 diverse scenes
derived from the RoboCasa [26] based on ManiSkill3 [35]], each with fine-grained object configura-
tions and varied spatial layouts. The dataset involves 6 types of heterogeneous embodied agents (e.g.,
humanoids, wheeled arms, quadrupeds) interacting with over 1,000 unique asset combinations. Each
scene provides both global and egocentric camera views to support perception and planning. More
details are provided in Supplementary Section C.
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Figure 3: Framework of VIKI-R. We adopted supervised fine-tuning (SFT) and reinforcement fine-
tuning on the VIKI dataset, incorporating format and accuracy rewards to optimize the policy model.

4 VIKI-R

4.1 Overview

We introduce VIKI-R, a two-stage fine-tuning framework that endows vision—language models with
robust visual reasoning abilities, as shown in Fig.[3] In the first stage, SFT-based Warmup, the model
undergoes supervised fine-tuning on high-quality Chain-of-Thought (CoT) annotations, optimizing
the likelihood of both intermediate reasoning steps and final answers. This stage instructs the model
to acquire domain-specific reasoning patterns. In the second stage, Reinforcement Fine-Tuning, the
policy is refined using the Grouped Relative Proximal Optimization (GRPO) algorithm [32]. For each
visual—question pair, grouped candidate answers are sampled and evaluated using a composite reward
function based on answer format and correctness. Standardized advantages are then computed to
guide policy updates under a KL-divergence constraint, ensuring stable and consistent improvement.

4.2 Training Objectives

SFT-based Warmup In the first phase, we employ Supervised Fine-Tuning (SFT) with data
annotated with Chain-of-Thought (CoT) reasoning process. Each training instance is denoted as
(z,q,7, a), where x represents the visual input, ¢ the associated task,  the intermediate reasoning
steps, and a the final answer. The SFT objective maximizes the joint likelihood of the reasoning and
answer tokens conditioned on the input:

T

LSFT = 7E(z,q,r,a)~'D Z IOg o (yt | x,q, y<t)7 (1)
t=1
where D is the CoT-annotated dataset, y = [r, a] is the concatenated sequence of reasoning and
answer tokens, and 7y denotes the model’s token distribution.

Reinforcement Fine-Tuning Starting from 7¢,r, we sample a group of G candidate outputs {a;}
per input s = (z, q). Let r; be the reward of a; and 7, o, its sample mean and standard deviation. We
form relative advantages

A, =0T @)

o

and update the policy by maximizing

G
—E, [ZAZ- log 7(as | s)} — AKL(7 || moot), 3)
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where 7y denotes the learned policy, mcor is the initial policy obtained via Chain-of-Thought prompt-
ing and ) is a regularization coefficient controlling the KL penalty.

4.3 Reward Design

To guide the model towards both structured output and task accuracy, we formulate the overall reward
into a format reward and a task-specific accuracy reward, as:

R= )\1 X Rformat + /\2 X RaCCa (4)

where Rformat €nforces the output format and R,.. corresponds to the three subtask rewards, as
defined below. A1 and A, refer to the weights of both rewards, respectively.

Format Reward To encourage explicit reasoning, we assign a binary format reward: the model
receives 1 point if it correctly encloses the intermediate reasoning steps within <think>...</think>
and the final answer within <answer>...</answer>, and 0 otherwise. By enforcing these tags, we
prompt the model to articulate its chain-of-thought before delivering the answer, thereby improving
interpretability and guiding systematic reasoning.

Agent Activation Reward We define the agent activation reward as an exact-match indicator
between the predicted agent set S},;eq and the ground-truth set Sg:
RLl _ {1, if Sprcd = Sgta

acc

&)

0, otherwise.

Task Planning Reward While multiple feasible plans may exist, we define the reward to favor
efficient solutions. Specifically, a predicted plan A only receives the reward if it is feasible and its
length does not exceed that of the ground-truth plan Ng. Let N (A) denote the length of the predicted
action sequence A, the task planning reward is defined as:

RE2 — {(1)7 if A is feasible and N (A) < Ny, ©)

otherwise.

Details on how plan feasibility is checked are provided in Supplementary Section C.

Trajectory Perception Reward Let P(®) = {p*)1T_ and G® = {417 denote the predicted
and ground-truth trajectories for agent k, respectively. To evaluate trajectory prediction quality for
each agent k, we compute three normalized standard geometric distance metrics between the predicted
trajectory and the ground-truth trajectory: Root Mean Square Error (RMSE, denoted as drMsE),
Hausdorff Distance (HD, denoted as cZHD)[ISJ and Discrete Fréchet Distance (DFD, denoted as
dDFD)[9] Since smaller distances indicate better alignment between predicted and ground-truth
trajectories, we transform the distance d into a reward-like score using the transformation r = 1 — d.
The final trajectory perception reward is defined as:

K
1 k k
RE = 57 > (riise + rit + rn) ™
k=1

5 Experiments

5.1 Experimental Setup

Training Paradigms and Baselines To assess the impact of different training strategies on perfor-
mance and generalization, we compare the following methods: (1)Ans-SFT: a supervised fine-tuning
(SFT) approach focusing solely on answer generation. (2)VIKI-R-Zero: a reinforcement learning
(RL) variant that applies GRPO directly, without any prior CoT activation. (3)VIKI-R: our two-phase
scheme—first SFT on a small CoT-annotated subset, followed by GRPO-based RL. All variants use
Qwen2.5-VL-Instruct [4] as the base model in both 3B and 7B sizes to study the effect of model scale.
For a comprehensive comparison, we include open-source models[4,|19]and leading closed-source
systems GPT-4o [28]], gemini-2.5-flash-preview [8]) and claude-3.7-sonnet[3]] as baselines. Detailed
hyperparameters and additional setup information are provided in Supplementary Section C.
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Table 2: Performance comparison across the three hierarchical task levels of VIKI-Bench. Best scores
are highlighted in bold, and the second-best scores are underlined.

Method | VIKLLL | VIKI-L2 \ VIKI-L3
| ACCipt | ACCipt  ACCoopt ACCavet| RMSE|  HD | DFD|  AVG |

Closed-Source Models

GPT-40 18.40 22.56 10.02 17.50 100.80 115.34 131.05 115.73
Claude-3.7-Sonnet 12.40 19.44 0.57 11.82 283.31 323.53 346.88 31791
Gemini-2.5-Flash-preview 31.40 20.00 10.51 16.17 453.89 519.14 540.80 504.61
Open-Source Models
Qwen?2.5-VL-72B-Instruct 11.31 8.40 1.20 5.49 81.31 94.62 113.15 96.36
Qwen2.5-VL-32B-Instruct 9.50 3.60 0.00 2.15 88.48 99.80 119.78 102.69
Llama-3.2-11B-Vision 0.40 0.50 0.00 0.30 192.69 223.57 231.85 216.04
Qwen2.5VL-3B-Instruct
Zero-Shot 1.95 0.22 0.00 0.13 96.22 114.93 130.98 114.04
+Ans SFT 35.29 81.06 30.71 60.74 74.70 90.28 102.26 89.08
+VIKI-R-Zero 20.40 0.00 0.00 0.00 80.36 95.36 120.27 98.66
+VIKI-R 74.10 93.61 32.11 68.78 75.69 90.25 103.65 89.86
Qwen2.5VL-7B-Instruct
Zero-Shot 4.26 0.44 0.00 0.26 81.93 103.82 112.91 99.55
+Ans SFT 72.20 96.89 25.62 68.13 65.32 81.20 90.89 79.14
+VIKI-R-Zero 93.59 0.17 0.00 0.10 67.42 85.30 95.32 82.68
+VIKI-R 93.00 9522 33.25 69.25 64.87 79.23 89.36 77.82

Evaluation Metrics We adopted task-specific metrics to evaluate performance across the three
stages of the VIKI-Bench. For agent activation (VIKI-L1), we report classification accuracy based
on whether the selected agents match the ground truth. For task planning (VIKI-L2), we evaluate
accuracy based on whether the predicted plan is both feasible and no longer than the ground-truth
plan, reflecting correctness and execution efficiency. For trajectory perception (VIKI-L3), we evaluate
the predicted trajectories using RMSE, Hausdorff Distance (HD) [[15] and Discrete Fréchet Distance
(DFD) [9]], which measure spatial and temporal alignment with ground-truth motion paths.

5.2 Overall Performance Analysis

Tab. 2 highlights three main observations. First, when comparing open-source and closed-source
models under zero-shot evaluation (without any VIKI-Bench training), closed-source models hold
a clear advantage. Among closed-source systems, Gemini-2.5-Flash-preview achieves the highest
agent activation accuracy, while GPT-40 excels at trajectory perception. In contrast, both Gemini and
Claude exhibit almost no trajectory-prediction capability. Second, the model scale critically affects
open-source VLM performance. The 72B-parameter Qwen2.5-VL matches or even surpasses some
closed-source baselines on perception metrics, but reducing the model to 32B parameters incurs
substantial drops in both planning accuracy and trajectory quality. This underscores the importance of
model capacity for handling complex multi-agent visual reasoning. Third, our two-stage fine-tuning
framework VIKI-R outperforms purely supervised Ans-SFT and VIKI-R-zero. While Ans-SFT
yields strong in-domain improvements, it fails to generalize to out-of-domain scenarios. These results
confirm that integrating reinforcement learning substantially enhances visual reasoning capabilities
in hierarchical multi-agent cooperation.

5.3 Feedback-Driven Iterative Refinement

We compare two planning strategies: standard sampling (up to k attempts without guidance) and
feedback-driven sampling (injecting feedback between attempts). Tab. [3|demonstrates the impact
of feedback-driven sampling. By injecting feedback between failed attempts, GPT-40 achieves
improvements of 1.9% at pass@3 and 3.6% at pass@6. Claude-3-7-Sonnet sees gains of 1.5%
and 2.3% and Gemini-2.5-Flash records increases of 1.8% and 3.0%. On average, feedback-driven
sampling boosts pass@3 by 1.7% and pass@6 by 3.0%, highlighting that iterative feedback effectively
steers the model away from repeated mistakes and yields more reliable plans.

5.4 Ablation Study

Tab. ] demonstrates the impact of step penalty. By incorporating a constraint-based penalty, VIKI-R
achieves improvements by 39.7% and 88.0% in the accuracy of out-of-domain and in-domain tasks,
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Table 3: Task planning success rates (%) under two sampling strategies. pass@k denotes the
probability of obtaining at least one valid plan within & independent attempts, while pass@k_fb is
measured when feedback is appended after each failed attempt.

Model pass@l pass@3_fb pass@3 pass@6_fb pass@6
GPT-40 18.4 20.6 18.7 223 18.7
Claude-3.7-Sonnet 12.4 13.9 12.4 14.8 12.5
Gemini-2.5-Flash-preview 314 334 31.6 34.7 31.7

respectively. These results underscore the effectiveness of the step penalty in generalization and
execution accuracy. Besides, the steps of action length is reduced by an average of 1.92 steps,
highlighting the critical role of penalizing unnecessary steps to enforce concise planning. Overall,
the step penalty promotes more transferable and efficient planning strategies.

Table 4: Effect of the step penalty on 1,000 challenging reasoning tasks sampled from both the
out-of-domain (OOD-H) and in-domain (ID-H) splits. A Steps measures the average difference
between the action length of predicted plan and the ground-truth plan.

Variant ACCoopr1T ACCrpyu T AStepS 1
VIKI-R (with step penalty) 46.8 96.0 0.05
VIKI-R (without step penalty) 7.1 8.0 1.97

5.5 Insights from Training

Throughout our experiments, we identified several key behav- 500
iors that illustrate both the strengths and limitations of GRPO
in our hierarchical multi-agent setting.

Dependence on Base Policy Quality The effectiveness of
GRPO depends critically on the competence of the pretrained
policy. In VIKI-L2 planning, the zero-shot model produces
almost no valid plans, and VIKI-R-Zero yields negligible im- 160

Response Length / Mean
=
&

provement. By contrast, in the VIKI-L1 activation and VIKI- P i
L3 perception tasks where the base policy already generates i 100 200 300 100
some correct responses—GRPO delivers clear performance Training Step

gains. These observations indicate that reinforcement-based Ei 4 R 1 h of
fine-tuning requires an initial set of correct rollouts to guide Lgure esponse ‘ength o
the Qwen2.5-VL-3B/7B-Instruct

effective policy updates. model at training time.

Evolution of Response Length We tracked the average token length of model outputs during
VIKI-R training in Fig.[d In the early stages, output length decreases as the model prioritizes format
compliance to secure the format reward. Once format accuracy saturates, the policy shifts focus
toward maximizing task correctness, and output length gradually increases to include the necessary
reasoning details.

6 Conclusion

This paper presents VIKI-Bench, a hierarchical benchmark for evaluating vision-language models
in embodied multi-agent collaboration. We further introduce VIKI-R, a two-stage framework
that combines supervised pretraining and reinforcement learning to solve multi-agent tasks across
activation, planning, and perception levels. While our study focuses on simulated environments,
extending this framework to real-world settings and dynamic agents remains promising future work.
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Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:
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534 * All assumptions should be clearly stated or referenced in the statement of any theorems.
535 * The proofs can either appear in the main paper or the supplemental material, but if
536 they appear in the supplemental material, the authors are encouraged to provide a short
537 proof sketch to provide intuition.

538 * Inversely, any informal proof provided in the core of the paper should be complemented
539 by formal proofs provided in appendix or supplemental material.

540 * Theorems and Lemmas that the proof relies upon should be properly referenced.

541 4. Experimental result reproducibility

542 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
543 perimental results of the paper to the extent that it affects the main claims and/or conclusions
544 of the paper (regardless of whether the code and data are provided or not)?

545 Answer: [Yes]

546 Justification: The paper fully discloses all necessary information required to reproduce the
547 main experimental results relevant to its core claims and conclusions.

548 Guidelines:

549 * The answer NA means that the paper does not include experiments.

550 * If the paper includes experiments, a No answer to this question will not be perceived
551 well by the reviewers: Making the paper reproducible is important, regardless of
552 whether the code and data are provided or not.

553 * If the contribution is a dataset and/or model, the authors should describe the steps taken
554 to make their results reproducible or verifiable.

555 * Depending on the contribution, reproducibility can be accomplished in various ways.
556 For example, if the contribution is a novel architecture, describing the architecture fully
557 might suffice, or if the contribution is a specific model and empirical evaluation, it may
558 be necessary to either make it possible for others to replicate the model with the same
559 dataset, or provide access to the model. In general. releasing code and data is often
560 one good way to accomplish this, but reproducibility can also be provided via detailed
561 instructions for how to replicate the results, access to a hosted model (e.g., in the case
562 of a large language model), releasing of a model checkpoint, or other means that are
563 appropriate to the research performed.

564 * While NeurIPS does not require releasing code, the conference does require all submis-
565 sions to provide some reasonable avenue for reproducibility, which may depend on the
566 nature of the contribution. For example

567 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
568 to reproduce that algorithm.

569 (b) If the contribution is primarily a new model architecture, the paper should describe
570 the architecture clearly and fully.

571 (c) If the contribution is a new model (e.g., a large language model), then there should
572 either be a way to access this model for reproducing the results or a way to reproduce
573 the model (e.g., with an open-source dataset or instructions for how to construct
574 the dataset).

575 (d) We recognize that reproducibility may be tricky in some cases, in which case
576 authors are welcome to describe the particular way they provide for reproducibility.
577 In the case of closed-source models, it may be that access to the model is limited in
578 some way (e.g., to registered users), but it should be possible for other researchers
579 to have some path to reproducing or verifying the results.

580 5. Open access to data and code

15



581
582
583

584

585
586

588

589
590

591
592
593
594

595
596
597

598
599

600
601
602

603
604

605
606
607

608
609
610

611

612
613

614

615

616
617

618
619
620

621
622

623

624

625

626
627
628
629
630
631
632

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Supplementary Material Section
D.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide the statistical information of the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify all the sufficient information on the computer resources in Supple-
mentary Material Section D.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the broader impacts in Supplementary Material Section B.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper isn’t relevant with any data or models that have a high risk for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We explicitly mentioned and properly respected the license and terms of assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We introduce new assets with well documentations.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper is not relevant with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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785 * We recognize that the procedures for this may vary significantly between institutions

786 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
787 guidelines for their institution.

788 * For initial submissions, do not include any information that would break anonymity (if
789 applicable), such as the institution conducting the review.

790 16. Declaration of LLM usage

791 Question: Does the paper describe the usage of LLMs if it is an important, original, or
792 non-standard component of the core methods in this research? Note that if the LLM is used
793 only for writing, editing, or formatting purposes and does not impact the core methodology,
794 scientific rigorousness, or originality of the research, declaration is not required.

795 Answer: [NA]

796 Justification: The core method development in this research does not involve LLMs as any
797 important, original, or non-standard components.

798 Guidelines:

799 * The answer NA means that the core method development in this research does not
800 involve LLMs as any important, original, or non-standard components.

801 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
802 for what should or should not be described.
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