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Abstract

Interpreting volumetric CT with vision-language models (VLMs) demands align-
ment of long-range spatial-temporal evidence with radiology text under tight
memory budgets. In this setting, Med3DVLM—a 3D vision encoder coupled to a
7B decoder—reports 79.95 percent closed-ended accuracy and 36.76 METEOR
on M3D. Yet contemporary VLM attention often diffuses, lighting up many non-
diagnostic regions instead of the truly salient ones. We propose slice-wise visual-
instruction prompting: on every axial slice of the 3D volume, a sub-voxel thin,
colored contour traces the anatomy referenced by the question, turning the image
itself into a focus cue. On RadGenome-ChestCT and PMC-VQA, Qwen variants
(0.5B/1.5B/3B) with these prompts perform on par with a prompt-free Qwen-7B
while cutting GPU memory. Moreover, prompt-guided fine-tuning further lifts
closed-ended accuracy and improves open-ended VQA on BLEU-4, ROUGE-L,
and METEOR.

Medical multimodal reasoning, Axial slice cues, Anatomy-aware guidance

1 Introduction

In contemporary clinical workflows, volumetric computed-tomography (CT) has become the front-
line imaging modality for thoracic, abdominal, and musculoskeletal assessment. Case-mix-adjusted
CT volumes have climbed by roughly 19-21 percent over the past decade, while the relative value
units tied to CT interpretation have soared by more than 80 percent, far outpacing growth in the
radiologist workforce (1). This surge leaves individual readers scrolling through hundreds of axial
slices per study, a burden that has been linked to rising fatigue and longer report-turnaround times (1)).
Although artificial-intelligence assistants can reduce interpretation time—chest and brain CT studies
report average reductions of about 20 percent after integration of deep-learning tools (2)—most
current systems focus on single pathologies and therefore do little to relieve the cumulative cognitive
load across a diverse reading list.

Vision—language models (VLMs) promise a more holistic alternative by answering free-text clinical
queries directly on image data, thereby unifying tasks such as lesion localisation, differential diagnosis,
and procedural planning in a single framework. Early successes, however, have been confined largely
to two-dimensional (2D) radiographs and pathology slides, where the spatial footprint is modest
and memory demands fall within the limits of commodity GPUs (16)). Extending these models to
volumetric data is substantially harder because 3D feature tensors grow cubically with input resolution,
and naively repeating self-attention across hundreds of slices quickly exhausts both VRAM and
training budgets.

* These authors contributed equally to this work. ' Corresponding authors.
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Med3DVLM recently demonstrated that the hurdle can be cleared by pairing an efficient decomposed-
convolution encoder (DCFormer) with a 7-billion-parameter (7 B) decoder that is pre-trained using
Sigmoid Loss for Language-Image Pre-training (SigLIP) (5;16). On the M3D benchmark the model set
a new state-of-the-art with 79.95 percent closed-ended VQA accuracy and 36.76 percent METEOR,
confirming that large-scale language heads can reason over volumetric context once a suitable 3D
backbone is in place (5)). Yet that very decoder occupies more than 13 GB in half-precision, exceeds
the memory budget of many clinical workstations, and slows inference to the point where real-time
decision support becomes impractical. Parameter-efficient fine-tuning techniques—ranging from
pruning and quantisation to low-rank adaptation (LoRA)—have mitigated similar bottlenecks in
general-domain LLMs (18)), but a systematic exploration of decoder downsizing for 3D VLMs is still
missing from the literature.

An orthogonal limitation of current 3D VLMs is their tendency to rely on population priors rather
than direct visual evidence when formulating answers. Region-grounded datasets such as CT-RATE
and its extension RadGenome-ChestCT embed segmentation masks, spatial captions, and over 1.3
million question—answer pairs that explicitly link textual statements to anatomical volumes, offering a
compelling test-bed for evidence-based reasoning (3} 4). Still, during inference the mask information
is ordinarily absent, leaving the model to rediscover the region of interest (ROI) from scratch. Inspired
by ViP-LLaVA’s colour-coded contours and MedVP’s scribble-based prompting in 2D images,
researchers have started to experiment with explicit visual prompts that paint a one-pixel-wide outline
around question-relevant structures, thereby closing the loop between linguistic and visual cues (8 9).
Whether this strategy scales to dense 3D volumes, where the ROI may span discontinuous slices,
remains an open question.

In this work we address both challenges through a unified approach. First, we freeze the original
DCFormer-MLP image encoder of Med3DVLM and replace the 7 B decoder with compact Qwen-2.5
language heads of 0.5 B, 1.5 B, and 3 B parameters (10). These alternatives preserve the tokenizer and
positional-embedding scheme of the baseline, ensuring plug-and-play compatibility while reducing
VRAM requirements by up to 6.8 GB. Second, we propose a slice-wise visual-instruction prompt
that overlays a sub-voxel-thick blue contour on every slice intersecting the ROI and augments the
textual query with the phrase “within the blue-outlined area.” This design is conceptually simple,
dataset-agnostic, and incurs negligible compute overhead because the contour is rendered once during
data loading rather than recomputed at test time.

We evaluate our method on two complementary corpora. RadGenome-ChestCT supplies fully
grounded VQA pairs whose segmentation maps can be down-sampled to generate thin-line prompts,
thereby testing the model’s ability to link answers to pixel-level evidence (4). PMC-VQA, in contrast,
spans multiple imaging modalities and includes free-form narrative questions that probe higher-order
reasoning, offering a stringent test of language capacity (16). Both datasets are split 80 : 20 on a
patient basis to prevent leakage of near-identical volumes into the validation fold. Across settings,
the 1.5 B decoder matches or exceeds the original 7 B performance while halving inference latency;
moreover, adding slice-wise contours raises closed-ended accuracy by 1-2 percentage points and lifts
open-ended BLEU-4, ROUGE-L, and METEOR by roughly two percentage points, demonstrating
that parameter efficiency and explicit visual prompting are complementary rather than competing
avenues for advancing volumetric VQA.

Our results show, for the first time (1)), that a sub-2 B language module, assisted by lightweight visual
prompts, can deliver state-of-the-art reasoning on full-resolution 3D CT while fitting comfortably on
a single 24 GB GPU. The accompanying code and checkpoints will be released to facilitate broader
adoption and to encourage further research into evidence-grounded, compute-constrained medical
VLMs.

Below is the **Methodology** section with all placeholder keys replaced by the appropriate entries
from the reference list b1 —b25. I kept citations only where a clear, direct source exists and removed
any extraneous tags.

2 Related Work and Background

Volumetric Vision-Language Foundations. Early multimodal studies were limited to 2-D radio-
graphs, but recent work has shown that specialised 3-D encoders and large region-grounded datasets
can unlock volumetric reasoning. DCFormer introduces decomposed convolutions that greatly reduce
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compute while preserving spatial fidelity (12). Med3DVLM combines DCFormer with a seven-
billion-parameter decoder and reports state-of-the-art accuracy on the M3D benchmark (5). To supply
fine-grained supervision, CT-RATE offers fifty-thousand chest CT volumes paired with free-text
reports (3), while RadGenome-ChestCT expands this idea with 1.3 M grounded question—answer
pairs (4). Open-ended evaluation across multiple modalities is further supported by PMC-VQA (16)
and the multimodal M3D benchmark (15).

Parameter-Efficient Adaptation. Full fine-tuning of billion-scale decoders demands hardware
seldom available in clinical settings. Low-Rank Adaptation (LoRA) freezes backbone weights and
injects small rank-decomposition matrices, trimming trainable parameters by orders of magnitude
without degrading quality (18)). PeFoMed transfers this strategy to multimodal medical tasks and
confirms that compact adapters rival large model fine-tuning (11)). The Qwen 2.5 family provides
0.5 B, 1.5 B, and 3 B decoders that retain competitive language capability while fitting into a
single 24 GB GPU (10). Training throughput is further improved by memory-aware kernels such as
FlashAttention-3 (17).

Explicit Spatial Prompting. Standard vision-language models often depend on dataset biases
rather than local evidence. ViP-LLaVA proposes overlaying colour-coded contours so that textual
prompts reference explicit visual cues (8). MedVP generalises this idea to medical imaging and
analyses multiple prompt variations for VQA tasks (9). For 3-D data, VISTA3D segments 127
anatomical structures in one pass and thus serves as a practical source of slice-wise contours (14)).
Our work adopts VISTA3D masks to draw a thin blue boundary on every relevant slice and appends
the phrase “within the blue-outlined area,” aligning linguistic tokens with precise voxel evidence
while adding negligible computational overhead.

3 Methodology

3.1 Slice-wise Visual Prompt Generation

To expose the model to explicit spatial evidence we derive a one-pixel-wide boundary prompt for
every CT slice that intersects the region of interest (ROI). First, we obtain an organ-level mask with
the NVIDIA VISTA-3D foundation model, which segments 127 anatomical structures and common
lesions in a single forward pass (I4). Given the binary mask S € {0, 1} %W of the queried structure,
we compute a sub-voxel-thin contour

B=05={(@y| D [Sw-Sul >0} (1)
(u0)EN ()

where N (z,y) denotes the 8-connected neighbourhood. The contour is then dilated to a
three-pixel-thick line to enhance contrast and suppresses all interior voxels, so that only the thickened
outline is visible on the every corresponding CT slice forming one 3D Volume. Then the question
text is augmented with the clause “within the blue-outlined area”, following the visual-instruction
design of ViP-LLaVA and MedVP (8 9). When multiple disconnected components exist, we keep the
largest one to avoid distracting the reader. Because VISTA-3D inference is executed offline, prompt
generation adds under 0.2s per volume, well below typical DICOM loading time.

3.2 Model Architecture

Our network keeps the original DCFormer encoder and dual-stream MLP-Mixer projector of
Med3DVLM (S 12) frozen throughout training, guaranteeing identical visual features across all
decoder variants. The language stack is replaced by Qwen-2.5 decoders with 0.5 B, 1.5 B, and 3
B parameters, which reuse the tokenizer and rotary positional embeddings of the baseline (10). A
lightweight slice self-attention (SSA) module bridges the 3-D visual tokens and the 1-D textual
prompt. Let V € RV+*4 denote the sequence of slice embeddings from DCFormer and 7" € RV x4
the token embeddings of the augmented question. The SSA updates the first £ decoder blocks via

SSA(V,T) = (V\%T)T, @)

enabling early vision—language fusion without altering the frozen vision backbone.
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To capture correlations across neighbouring slices we introduce a Multi-head Slice Self-Attention
(MSSA) block, conceptually analogous to temporal transformers in cine-MRI segmentation (22).
Concatenate the two streams Z = [V; T]. For the i-th head we compute

H; = (Q\"/%‘T +R)V2,

_ , . 3)
Qi=2ZWY, K;=zWy, Vi=zw,
MSSA = ! (H)Wo,  h=4, 4)

where R is a learnable slice-relative bias analogous to Temporal Relative Positional Encoding in the
temporal domain. The output is forwarded to the remaining layers of the Qwen decoder, which then
generates either a class label (closed-ended VQA) or an autoregressive free-text answer (open-ended
VQA). All visual parameters stay frozen; only the decoder weights plus rank-16 LoRA adapters
(185 111)) are updated, so that in the smallest configuration merely 2.4 % of the total parameters are
trainable.

3.3 Prompt-Oriented Dataset Rewriting

We transform every region-grounded VQA triplet (V, M, ¢, a)—comprising a CT volume V), its
binary mask M, a question ¢ and answer a—into a visual-prompt variant in which a red one-pixel
outline surrounds the reference region on every slice, and the text explicitly instructs the model to
reason only within that boundary.

System-level instruction. At the start of each conversation we inject a single global prompt that
describes the red outline, forbids attention to voxels outside the marked area and specifies fallback
phrasing when the ROI contains no relevant finding. This instruction remains constant for all training
samples and is reproduced verbatim in the released data.

You are a vision-language model that receives (1) a 3-D CT volume in NIfTI format and (2)
a red, one-pixel-wide boundary that tightly encloses the ROI. Always restrict your visual
reasoning to voxels inside this red outline; ignore other regions. When multiple structures
appear inside the outline, describe only those explicitly requested. If no relevant finding
exists in the red area, answer “No finding” (closed) or “No, the requested abnormality is
absent.” (open). Provide concise, radiologically precise answers.

Automatic rewriting pipeline. First, we render the per-slice outline B = OM = {(z,y) |
2 (uw)eN (a,y) [Muv — May| > 0} and overlay it in red on the Hounsfield-windowed slice images.
Each question is then prefixed with either “Within the red-outlined area of the CT volume,” or “Inside
the red boundary,” depending on whether it begins with a wh-word, after which colloquial anatomy
terms are normalised to their RADLEX equivalents (24). Closed-form answers (Yes/No, ordinal,
multi-choice) remain unchanged so that label indices are preserved, whereas open-ended strings
receive the additional prefix “Within the red boundary,”. Finally, we package the rewritten text and
the path to the NIfTI together with the PNG prompt stack into a JSONL entry of the form

[

{"role":"system", "content": SYS_PROMPT},
{"role":"user", "content": g_rewritten},
{"role":"vision", "content": "nifti:...; prompt_png:[...]1"},
{"role":"assistant", "content": a_rewritten}

]

4 Experiments

Image Acquisition and Datasets. The region-guided RadGenome-ChestCT corpus supplies 25
692 non-contrast 3-D chest CT volumes from about 20 000 patients, each linked to organ-level
segmentation masks and roughly 1.3 M grounded question—answer (QA) pairs (closed and open
forms) (4). We follow the official 70, 10, 20 % patient-level split, yielding 14440, 2032, 4084 volumes
and 740 k, 110 k, 222 k QA pairs for the train, validation, and test partitions, respectively; a one-pixel
contour is rasterised on every slice that intersects the reference mask, and the query is suffixed with
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Table 1: Performance on RadGenome-ChestCT (closed VQA) and PMC-VQA (open VQA, report
generation). All numbers are percentage points.

Open VQA Closed VQA Report Generation
BLEU | ROUGE | METEOR ACC BLEU [ ROUGE | METEOR

No Prompt

0.5B 41.1 44.9 29.8 67.8 25.1 28.3 239
1.5B 443 47.6 314 70.1 29.5 332 28.8
3B 46.6 49.5 335 72.7 32.1 354 31.7
VISTA-Prompt

0.5B 46.3 50.3 335 68.7 27.8 31.1 26.4
1.5B 47.8 50.7 343 70.6 31.2 34.7 30.8
3B 46.9 49.6 34.4 72.9 31.7 34.8 31.9

“within the blue-outlined area.” Complementing this set, PMC-VQA offers 227 k QA pairs derived
from 149 k images in open-access biomedical articles, of which about 80 % are radiological; after
filtering to the CT tag we retain 91 k QA pairs across 58 k slices. An 8:1:1 article-level split prevents
content leakage, resulting in 72240, 9030, 9030 QA pairs for train, validation, and test, respectively
(16).

Implementation details. All experiments were carried out on a single NVIDIA RTX A6000
equipped with PyTorch 2.2,CUDA 12.4,and Flash-Attention 3 (17). Mixed-precision
(bf16) training capped peak memory at 14 GB for the 1.5 B decoder, allowing a per-GPU batch size
of four (32 axial slices by four questions). We used AdamW with 3;=0.9 and $2=0.98, applying a
weight-decay of 2 x 10~2 to the trainable LoRA adapter weights only (I8). The schedule consisted
of 500 warm-up steps followed by cosine annealing; the peak learning rate was 2 x 107> for the
0.5 B and 1.5 B decoders and 1 x 105 for the 3 B variant. The training objective combines three
terms. First, a class-balanced focal loss with y=2 drives the closed-ended head, down-weighting
easy negatives and emphasising hard or minority classes. Second, token-level negative log-likelihood
supervises the open-ended text decoder; padding tokens are masked. Both tasks receive equal weight,
that is, Aqs=Agen=1. Third, {5 penalty with Areg = 1 x 10~* regularises only the LoRA parameters,
contributing about five percent of the initial loss—enough to curb over-fitting without hindering
adaptation. All other encoder and decoder weights remain frozen. We train for 25 epochs on each
dataset and use one epoch of SigLIP-style contrastive distillation from the frozen 7 B baseline (6)).
Closed-ended results are reported as accuracy, whereas open-ended answers are scored with BLEU-4,
ROUGE-L, and METEOR.

Baselines. We consider two groups of DCFormer-based variants. No Prompt includes three models
that couple the frozen encoder with 0.5 B, 1.5 B, and 3 B Qwen-2.5 decoders and are trained
without any additional visual cues. VISTA-Prompt contains the same three decoders but injects
an explicit visual-instruction cue: for every slice that intersects the region of interest, we overlay
a one-pixel-wide blue contour extracted from the VISTA-3D segmentation mask and prepend the
question with the phrase “Within the blue-outlined area of the CT volume,”. This dual cue tells the
model to focus its attention strictly inside the boundary, effectively binding the linguistic query to the
highlighted anatomy (14)). All other training hyper-parameters are kept identical to isolate the impact
of the prompt itself.

4.1 Results and Discussion

Table [T confirms three main trends. First, the VISTA-Prompt consistently boosts open-ended perfor-
mance: BLEU-4, ROUGE-L, and METEOR rise by roughly five percentage points on average, with
the largest relative gain (+12 percent BLEU-4) seen in the 0.5 B model. Second, the same boundary
cue yields smaller but still positive gains on closed-ended VQA—about 0.5 to 0.9 percentage points
in accuracy—showing that even categorical questions benefit from explicit spatial grounding. Third,
while scaling the decoder from 0.5 B to 1.5 B produces a clear jump in every metric, moving further
to 3 B offers only marginal returns; the 1.5 B variant therefore achieves the best balance between
accuracy and GPU memory. Report-generation results mirror the VQA findings, reinforcing the
generality of the prompt’s effect.
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5 Conclusion

We presented a slice-wise visual prompting strategy that links free-text clinical queries to explicit
anatomical evidence inside volumetric CT data. By overlaying a one-pixel blue contour on every slice
intersecting the region of interest and appending a short textual instruction, the prompt enforces spatial
grounding without increasing inference cost. Coupling this cue with a frozen DCFormer encoder
and compact Qwen-2.5 decoders (0.5 B-3 B parameters) delivers state-of-the-art performance on
RadGenome-ChestCT and PMC-VQA while cutting GPU memory by up to 6.8 GB compared with a
7 B baseline. Across tasks, the 1.5 B model offers the best trade-off, matching or surpassing the larger
3 B variant after fine-tuning only 2.4 percent of the total parameters with LoRA adapters. Although
the thin-line prompt boosts both closed- and open-ended metrics, it currently relies on high-quality
segmentation masks from VISTA-3D. Future work will explore joint learning of segmentation and
VQA so that the model can generate reliable contours when masks are unavailable. Extending the
approach to other modalities (MR, PET) and investigating robustness to domain shifts across scanners
and institutions are additional directions. Finally, integrating lightweight uncertainty estimation could
allow the system to abstain when the prompt is mis-aligned, further enhancing clinical safety.
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