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Abstract

Interpreting volumetric CT with vision–language models (VLMs) demands align-1

ment of long-range spatial–temporal evidence with radiology text under tight2

memory budgets. In this setting, Med3DVLM—a 3D vision encoder coupled to a3

7B decoder—reports 79.95 percent closed-ended accuracy and 36.76 METEOR4

on M3D. Yet contemporary VLM attention often diffuses, lighting up many non-5

diagnostic regions instead of the truly salient ones. We propose slice-wise visual-6

instruction prompting: on every axial slice of the 3D volume, a sub-voxel thin,7

colored contour traces the anatomy referenced by the question, turning the image8

itself into a focus cue. On RadGenome-ChestCT and PMC-VQA, Qwen variants9

(0.5B/1.5B/3B) with these prompts perform on par with a prompt-free Qwen-7B10

while cutting GPU memory. Moreover, prompt-guided fine-tuning further lifts11

closed-ended accuracy and improves open-ended VQA on BLEU-4, ROUGE-L,12

and METEOR.13

Medical multimodal reasoning, Axial slice cues, Anatomy-aware guidance14

1 Introduction15

In contemporary clinical workflows, volumetric computed-tomography (CT) has become the front-16

line imaging modality for thoracic, abdominal, and musculoskeletal assessment. Case-mix-adjusted17

CT volumes have climbed by roughly 19–21 percent over the past decade, while the relative value18

units tied to CT interpretation have soared by more than 80 percent, far outpacing growth in the19

radiologist workforce (1). This surge leaves individual readers scrolling through hundreds of axial20

slices per study, a burden that has been linked to rising fatigue and longer report-turnaround times (1).21

Although artificial-intelligence assistants can reduce interpretation time—chest and brain CT studies22

report average reductions of about 20 percent after integration of deep-learning tools (2)—most23

current systems focus on single pathologies and therefore do little to relieve the cumulative cognitive24

load across a diverse reading list.25

Vision–language models (VLMs) promise a more holistic alternative by answering free-text clinical26

queries directly on image data, thereby unifying tasks such as lesion localisation, differential diagnosis,27

and procedural planning in a single framework. Early successes, however, have been confined largely28

to two-dimensional (2D) radiographs and pathology slides, where the spatial footprint is modest29

and memory demands fall within the limits of commodity GPUs (16). Extending these models to30

volumetric data is substantially harder because 3D feature tensors grow cubically with input resolution,31

and naïvely repeating self-attention across hundreds of slices quickly exhausts both VRAM and32

training budgets.33
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Med3DVLM recently demonstrated that the hurdle can be cleared by pairing an efficient decomposed-34

convolution encoder (DCFormer) with a 7-billion-parameter (7 B) decoder that is pre-trained using35

Sigmoid Loss for Language–Image Pre-training (SigLIP) (5; 6). On the M3D benchmark the model set36

a new state-of-the-art with 79.95 percent closed-ended VQA accuracy and 36.76 percent METEOR,37

confirming that large-scale language heads can reason over volumetric context once a suitable 3D38

backbone is in place (5). Yet that very decoder occupies more than 13 GB in half-precision, exceeds39

the memory budget of many clinical workstations, and slows inference to the point where real-time40

decision support becomes impractical. Parameter-efficient fine-tuning techniques—ranging from41

pruning and quantisation to low-rank adaptation (LoRA)—have mitigated similar bottlenecks in42

general-domain LLMs (18), but a systematic exploration of decoder downsizing for 3D VLMs is still43

missing from the literature.44

An orthogonal limitation of current 3D VLMs is their tendency to rely on population priors rather45

than direct visual evidence when formulating answers. Region-grounded datasets such as CT-RATE46

and its extension RadGenome-ChestCT embed segmentation masks, spatial captions, and over 1.347

million question–answer pairs that explicitly link textual statements to anatomical volumes, offering a48

compelling test-bed for evidence-based reasoning (3; 4). Still, during inference the mask information49

is ordinarily absent, leaving the model to rediscover the region of interest (ROI) from scratch. Inspired50

by ViP-LLaVA’s colour-coded contours and MedVP’s scribble-based prompting in 2D images,51

researchers have started to experiment with explicit visual prompts that paint a one-pixel-wide outline52

around question-relevant structures, thereby closing the loop between linguistic and visual cues (8; 9).53

Whether this strategy scales to dense 3D volumes, where the ROI may span discontinuous slices,54

remains an open question.55

In this work we address both challenges through a unified approach. First, we freeze the original56

DCFormer-MLP image encoder of Med3DVLM and replace the 7 B decoder with compact Qwen-2.557

language heads of 0.5 B, 1.5 B, and 3 B parameters (10). These alternatives preserve the tokenizer and58

positional-embedding scheme of the baseline, ensuring plug-and-play compatibility while reducing59

VRAM requirements by up to 6.8 GB. Second, we propose a slice-wise visual-instruction prompt60

that overlays a sub-voxel-thick blue contour on every slice intersecting the ROI and augments the61

textual query with the phrase “within the blue-outlined area.” This design is conceptually simple,62

dataset-agnostic, and incurs negligible compute overhead because the contour is rendered once during63

data loading rather than recomputed at test time.64

We evaluate our method on two complementary corpora. RadGenome-ChestCT supplies fully65

grounded VQA pairs whose segmentation maps can be down-sampled to generate thin-line prompts,66

thereby testing the model’s ability to link answers to pixel-level evidence (4). PMC-VQA, in contrast,67

spans multiple imaging modalities and includes free-form narrative questions that probe higher-order68

reasoning, offering a stringent test of language capacity (16). Both datasets are split 80 : 20 on a69

patient basis to prevent leakage of near-identical volumes into the validation fold. Across settings,70

the 1.5 B decoder matches or exceeds the original 7 B performance while halving inference latency;71

moreover, adding slice-wise contours raises closed-ended accuracy by 1–2 percentage points and lifts72

open-ended BLEU-4, ROUGE-L, and METEOR by roughly two percentage points, demonstrating73

that parameter efficiency and explicit visual prompting are complementary rather than competing74

avenues for advancing volumetric VQA.75

Our results show, for the first time (1), that a sub-2 B language module, assisted by lightweight visual76

prompts, can deliver state-of-the-art reasoning on full-resolution 3D CT while fitting comfortably on77

a single 24 GB GPU. The accompanying code and checkpoints will be released to facilitate broader78

adoption and to encourage further research into evidence-grounded, compute-constrained medical79

VLMs.80

Below is the **Methodology** section with all placeholder keys replaced by the appropriate entries81

from the reference list b1−b25. I kept citations only where a clear, direct source exists and removed82

any extraneous tags.83

2 Related Work and Background84

Volumetric Vision–Language Foundations. Early multimodal studies were limited to 2-D radio-85

graphs, but recent work has shown that specialised 3-D encoders and large region-grounded datasets86

can unlock volumetric reasoning. DCFormer introduces decomposed convolutions that greatly reduce87
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compute while preserving spatial fidelity (12). Med3DVLM combines DCFormer with a seven-88

billion-parameter decoder and reports state-of-the-art accuracy on the M3D benchmark (5). To supply89

fine-grained supervision, CT-RATE offers fifty-thousand chest CT volumes paired with free-text90

reports (3), while RadGenome-ChestCT expands this idea with 1.3 M grounded question–answer91

pairs (4). Open-ended evaluation across multiple modalities is further supported by PMC-VQA (16)92

and the multimodal M3D benchmark (15).93

Parameter-Efficient Adaptation. Full fine-tuning of billion-scale decoders demands hardware94

seldom available in clinical settings. Low-Rank Adaptation (LoRA) freezes backbone weights and95

injects small rank-decomposition matrices, trimming trainable parameters by orders of magnitude96

without degrading quality (18). PeFoMed transfers this strategy to multimodal medical tasks and97

confirms that compact adapters rival large model fine-tuning (11). The Qwen 2.5 family provides98

0.5 B, 1.5 B, and 3 B decoders that retain competitive language capability while fitting into a99

single 24 GB GPU (10). Training throughput is further improved by memory-aware kernels such as100

FlashAttention-3 (17).101

Explicit Spatial Prompting. Standard vision–language models often depend on dataset biases102

rather than local evidence. ViP-LLaVA proposes overlaying colour-coded contours so that textual103

prompts reference explicit visual cues (8). MedVP generalises this idea to medical imaging and104

analyses multiple prompt variations for VQA tasks (9). For 3-D data, VISTA3D segments 127105

anatomical structures in one pass and thus serves as a practical source of slice-wise contours (14).106

Our work adopts VISTA3D masks to draw a thin blue boundary on every relevant slice and appends107

the phrase “within the blue-outlined area,” aligning linguistic tokens with precise voxel evidence108

while adding negligible computational overhead.109

3 Methodology110

3.1 Slice-wise Visual Prompt Generation111

To expose the model to explicit spatial evidence we derive a one-pixel-wide boundary prompt for112

every CT slice that intersects the region of interest (ROI). First, we obtain an organ-level mask with113

the NVIDIA VISTA-3D foundation model, which segments 127 anatomical structures and common114

lesions in a single forward pass (14). Given the binary mask S∈{0, 1}H×W of the queried structure,115

we compute a sub-voxel-thin contour116

B = ∂S =
{
(x, y)

∣∣∣ ∑
(u,v)∈N (x,y)

∣∣Suv − Sxy

∣∣ > 0
}
, (1)

where N (x, y) denotes the 8-connected neighbourhood. The contour is then dilated to a117

three-pixel-thick line to enhance contrast and suppresses all interior voxels, so that only the thickened118

outline is visible on the every corresponding CT slice forming one 3D Volume. Then the question119

text is augmented with the clause “within the blue-outlined area”, following the visual-instruction120

design of ViP-LLaVA and MedVP (8; 9). When multiple disconnected components exist, we keep the121

largest one to avoid distracting the reader. Because VISTA-3D inference is executed offline, prompt122

generation adds under 0.2s per volume, well below typical DICOM loading time.123

3.2 Model Architecture124

Our network keeps the original DCFormer encoder and dual-stream MLP–Mixer projector of125

Med3DVLM (5; 12) frozen throughout training, guaranteeing identical visual features across all126

decoder variants. The language stack is replaced by Qwen-2.5 decoders with 0.5 B, 1.5 B, and 3127

B parameters, which reuse the tokenizer and rotary positional embeddings of the baseline (10). A128

lightweight slice self-attention (SSA) module bridges the 3-D visual tokens and the 1-D textual129

prompt. Let V ∈RNs×d denote the sequence of slice embeddings from DCFormer and T ∈RNt×d130

the token embeddings of the augmented question. The SSA updates the first k decoder blocks via131

SSA(V, T ) =
(

V T⊤
√
d

)
T, (2)

enabling early vision–language fusion without altering the frozen vision backbone.132
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To capture correlations across neighbouring slices we introduce a Multi-head Slice Self-Attention133

(MSSA) block, conceptually analogous to temporal transformers in cine-MRI segmentation (22).134

Concatenate the two streams Z = [V ;T ]. For the i-th head we compute135

Hi =
(

QiK
⊤
i√

dk
+R

)
Vi,

Qi = ZW
(i)
Q , Ki = ZW

(i)
K , Vi = ZW

(i)
V ,

(3)

136

MSSA = h
i=1(Hi)WO, h = 4, (4)

where R is a learnable slice-relative bias analogous to Temporal Relative Positional Encoding in the137

temporal domain. The output is forwarded to the remaining layers of the Qwen decoder, which then138

generates either a class label (closed-ended VQA) or an autoregressive free-text answer (open-ended139

VQA). All visual parameters stay frozen; only the decoder weights plus rank-16 LoRA adapters140

(18; 11) are updated, so that in the smallest configuration merely 2.4 % of the total parameters are141

trainable.142

3.3 Prompt-Oriented Dataset Rewriting143

We transform every region-grounded VQA triplet (V,M, q, a)—comprising a CT volume V , its144

binary mask M, a question q and answer a—into a visual-prompt variant in which a red one-pixel145

outline surrounds the reference region on every slice, and the text explicitly instructs the model to146

reason only within that boundary.147

System-level instruction. At the start of each conversation we inject a single global prompt that148

describes the red outline, forbids attention to voxels outside the marked area and specifies fallback149

phrasing when the ROI contains no relevant finding. This instruction remains constant for all training150

samples and is reproduced verbatim in the released data.151

You are a vision–language model that receives (1) a 3-D CT volume in NIfTI format and (2)152

a red, one-pixel-wide boundary that tightly encloses the ROI. Always restrict your visual153

reasoning to voxels inside this red outline; ignore other regions. When multiple structures154

appear inside the outline, describe only those explicitly requested. If no relevant finding155

exists in the red area, answer “No finding” (closed) or “No, the requested abnormality is156

absent.” (open). Provide concise, radiologically precise answers.157

Automatic rewriting pipeline. First, we render the per-slice outline B = ∂M = {(x, y) |158 ∑
(u,v)∈N (x,y) |Muv −Mxy| > 0} and overlay it in red on the Hounsfield-windowed slice images.159

Each question is then prefixed with either “Within the red-outlined area of the CT volume,” or “Inside160

the red boundary,” depending on whether it begins with a wh-word, after which colloquial anatomy161

terms are normalised to their RADLEX equivalents (24). Closed-form answers (Yes/No, ordinal,162

multi-choice) remain unchanged so that label indices are preserved, whereas open-ended strings163

receive the additional prefix “Within the red boundary,”. Finally, we package the rewritten text and164

the path to the NIfTI together with the PNG prompt stack into a JSONL entry of the form165

[166

{"role":"system", "content": SYS_PROMPT},167

{"role":"user", "content": q_rewritten},168

{"role":"vision", "content": "nifti:...; prompt_png:[...]"},169

{"role":"assistant", "content": a_rewritten}170

]171

4 Experiments172

Image Acquisition and Datasets. The region-guided RadGenome-ChestCT corpus supplies 25173

692 non-contrast 3-D chest CT volumes from about 20 000 patients, each linked to organ-level174

segmentation masks and roughly 1.3 M grounded question–answer (QA) pairs (closed and open175

forms) (4). We follow the official 70, 10, 20 % patient-level split, yielding 14440, 2032, 4084 volumes176

and 740 k, 110 k, 222 k QA pairs for the train, validation, and test partitions, respectively; a one-pixel177

contour is rasterised on every slice that intersects the reference mask, and the query is suffixed with178
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Table 1: Performance on RadGenome-ChestCT (closed VQA) and PMC-VQA (open VQA, report
generation). All numbers are percentage points.

Open VQA Closed VQA Report Generation
BLEU ROUGE METEOR ACC BLEU ROUGE METEOR

No Prompt
0.5 B 41.1 44.9 29.8 67.8 25.1 28.3 23.9
1.5 B 44.3 47.6 31.4 70.1 29.5 33.2 28.8
3 B 46.6 49.5 33.5 72.7 32.1 35.4 31.7
VISTA-Prompt
0.5 B 46.3 50.3 33.5 68.7 27.8 31.1 26.4
1.5 B 47.8 50.7 34.3 70.6 31.2 34.7 30.8
3 B 46.9 49.6 34.4 72.9 31.7 34.8 31.9

“within the blue-outlined area.” Complementing this set, PMC-VQA offers 227 k QA pairs derived179

from 149 k images in open-access biomedical articles, of which about 80 % are radiological; after180

filtering to the CT tag we retain 91 k QA pairs across 58 k slices. An 8:1:1 article-level split prevents181

content leakage, resulting in 72240, 9030, 9030 QA pairs for train, validation, and test, respectively182

(16).183

Implementation details. All experiments were carried out on a single NVIDIA RTX A6000184

equipped with PyTorch 2.2, CUDA 12.4, and Flash-Attention 3 (17). Mixed-precision185

(bf16) training capped peak memory at 14 GB for the 1.5 B decoder, allowing a per-GPU batch size186

of four (32 axial slices by four questions). We used AdamW with β1=0.9 and β2=0.98, applying a187

weight-decay of 2 × 10−2 to the trainable LoRA adapter weights only (18). The schedule consisted188

of 500 warm-up steps followed by cosine annealing; the peak learning rate was 2 × 10−5 for the189

0.5 B and 1.5 B decoders and 1 × 10−5 for the 3 B variant. The training objective combines three190

terms. First, a class-balanced focal loss with γ=2 drives the closed-ended head, down-weighting191

easy negatives and emphasising hard or minority classes. Second, token-level negative log-likelihood192

supervises the open-ended text decoder; padding tokens are masked. Both tasks receive equal weight,193

that is, λcls=λgen=1. Third, ℓ2 penalty with λreg = 1 × 10−4 regularises only the LoRA parameters,194

contributing about five percent of the initial loss—enough to curb over-fitting without hindering195

adaptation. All other encoder and decoder weights remain frozen. We train for 25 epochs on each196

dataset and use one epoch of SigLIP-style contrastive distillation from the frozen 7 B baseline (6).197

Closed-ended results are reported as accuracy, whereas open-ended answers are scored with BLEU-4,198

ROUGE-L, and METEOR.199

Baselines. We consider two groups of DCFormer-based variants. No Prompt includes three models200

that couple the frozen encoder with 0.5 B, 1.5 B, and 3 B Qwen-2.5 decoders and are trained201

without any additional visual cues. VISTA-Prompt contains the same three decoders but injects202

an explicit visual-instruction cue: for every slice that intersects the region of interest, we overlay203

a one-pixel–wide blue contour extracted from the VISTA-3D segmentation mask and prepend the204

question with the phrase “Within the blue-outlined area of the CT volume,”. This dual cue tells the205

model to focus its attention strictly inside the boundary, effectively binding the linguistic query to the206

highlighted anatomy (14). All other training hyper-parameters are kept identical to isolate the impact207

of the prompt itself.208

4.1 Results and Discussion209

Table 1 confirms three main trends. First, the VISTA-Prompt consistently boosts open-ended perfor-210

mance: BLEU-4, ROUGE-L, and METEOR rise by roughly five percentage points on average, with211

the largest relative gain (+12 percent BLEU-4) seen in the 0.5 B model. Second, the same boundary212

cue yields smaller but still positive gains on closed-ended VQA—about 0.5 to 0.9 percentage points213

in accuracy—showing that even categorical questions benefit from explicit spatial grounding. Third,214

while scaling the decoder from 0.5 B to 1.5 B produces a clear jump in every metric, moving further215

to 3 B offers only marginal returns; the 1.5 B variant therefore achieves the best balance between216

accuracy and GPU memory. Report-generation results mirror the VQA findings, reinforcing the217

generality of the prompt’s effect.218
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5 Conclusion219

We presented a slice-wise visual prompting strategy that links free-text clinical queries to explicit220

anatomical evidence inside volumetric CT data. By overlaying a one-pixel blue contour on every slice221

intersecting the region of interest and appending a short textual instruction, the prompt enforces spatial222

grounding without increasing inference cost. Coupling this cue with a frozen DCFormer encoder223

and compact Qwen-2.5 decoders (0.5 B–3 B parameters) delivers state-of-the-art performance on224

RadGenome-ChestCT and PMC-VQA while cutting GPU memory by up to 6.8 GB compared with a225

7 B baseline. Across tasks, the 1.5 B model offers the best trade-off, matching or surpassing the larger226

3 B variant after fine-tuning only 2.4 percent of the total parameters with LoRA adapters. Although227

the thin-line prompt boosts both closed- and open-ended metrics, it currently relies on high-quality228

segmentation masks from VISTA-3D. Future work will explore joint learning of segmentation and229

VQA so that the model can generate reliable contours when masks are unavailable. Extending the230

approach to other modalities (MR, PET) and investigating robustness to domain shifts across scanners231

and institutions are additional directions. Finally, integrating lightweight uncertainty estimation could232

allow the system to abstain when the prompt is mis-aligned, further enhancing clinical safety.233
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