
Less is KEN: a Simple Non-Parametric Pruning Algorithm for
Transformers Compression

Anonymous ACL submission

Abstract

Neural network pruning has become increas-001
ingly crucial due to the complexity of neural002
network models and their widespread use in003
different fields. However, most pruning algo-004
rithms are architecture-specific or extremely005
complex, focusing on elaborate algebraic or ge-006
ometric calculations for parameter elimination.007
Additionally, many algorithms are only useful008
during training or testing phases and reset once009
the model stops working. This article presents010
KEN: a simple, unstructured, magnitude-based011
pruning algorithm based on KDE (Kernel Den-012
sity Estimator). KEN is designed to create013
a concentrated transformer model that can be014
easily injected into its pre-trained version for015
downstream tasks. We tested KEN on five dif-016
ferent transformer models and observed that017
it performs the same as the original models018
but with a minimum average weight reduction019
of 25%. Moreover, we compared KEN with020
other pruning algorithms and found that it out-021
performs them, even with fewer parameters.022
Finally, KEN allows the download of the com-023
pact model, reducing memory storage and to024
inject it into its pre-trained version at any time.025

1 Introduction026

Large Language Models (LLMs) have become the027

best and simplest solution for achieving state-of-028

the-art results in many natural language processing029

(NLP) applications. However, the increasing use030

of neural networks (NNs) and transformer mod-031

els (Vaswani et al., 2017) has resulted in a rise032

in computational cost due to the complexity of033

arithmetic calculations, larger matrices, and the ad-034

dition of more layers. Consequently, the weight035

of these models and their structures become more036

complex, leading to a high demand for computation037

and memory.038

One of the best approaches to address the over-039

whelming size of LLMs is to reduce their resources040

through pruning algorithms. These algorithms can041

Figure 1: Comparison of the histogram (grey) and its
kernel density estimator constructed using the first row
of all pos_q_proj matrices attention layers on De-
BERTa model set to k = 500

eliminate parameters or entire components in a NN, 042

making it lighter without compromising its origi- 043

nal performance. Pruning algorithms emerged in 044

parallel with the earliest use of NNs (Mozer and 045

Smolensky, 1989; Janowsky, 1989; LeCun et al., 046

1989), but they have gained significant importance 047

in the last decade due to the widespread use of these 048

networks in various fields. There are many pruning 049

algorithms in literature (Blalock et al., 2020), each 050

with a unique approach or adapted old algorithms 051

for these new architectures (Benbaki et al., 2023). 052

However, the complexity of neural networks can 053

pose a challenge when creating pruning algorithms, 054

as these algorithms may require creating new com- 055

plex theories to make the models lightweight (Dong 056

et al., 2017; Malach et al., 2020). Additionally, 057

most pruning algorithms have several gaps in com- 058

pleteness, as analyzed by Blalock et al., 2020. One 059

important aspect not thoroughly analyzed in almost 060

all pruning algorithms is the storage of the reduced 061

final model. Some of these algorithms only reduce 062

the size of the model during its use, without actu- 063

ally storing it in a lighter form. Therefore, most 064

1



algorithms in literature focus only on the speed at065

which they reduce and execute the model without066

considering this crucial final stage. This is partic-067

ularly important in resource-limited environments068

that use neural networks, such as smart devices and069

mobile phones (Yang et al., 2017; Sze et al., 2017).070

In this article, we present KEN (Kernel den-071

sity Estimator for Neural network compression): a072

simple but efficient unstructured, magnitude-based073

KDE pruning algorithm. Using KDE (Kernel den-074

sity estimator), we can design an abstraction of the075

analyzed parameters, using solely the compression076

value we want to achieve and the fine-tuned model077

we want to compress. This implies that KEN pro-078

duces a concentrated model that can be injected079

into its pre-trained version for downstream tasks.080

Using KEN, we can define a new pruning approach081

without trying to minimize the loss function or find082

the best parameters by examining both pre-trained083

and fine-tuned versions of a NN. Instead, we fo-084

cus on generating a lightweight, fine-tuned model085

that can be easily injected. We evaluated our al-086

gorithm by performing it on various tasks on five087

different transformer models based on a BERT-like088

architecture (Devlin et al., 2018) and demonstrated089

that KEN can reduce the size of the models by090

an average of 25% on a zero-shot regime with-091

out affecting the performance of the original NNs.092

This reduction is also reflected in the weight of the093

model itself, which decreases proportionally to the094

compression achieved. Moreover, we compared095

KEN with other pruning algorithms designed for096

transformer models, demonstrating the effective-097

ness of this algorithm. Using KEN, we explained098

how a non-parametric method widely used in statis-099

tics can be applied to create an efficient, intuitive,100

and easy-to-use pruning algorithm. Our approach101

achieved excellent results in terms of efficiency102

and performance, becoming a good alternative for103

other, more complex, pruning algorithms.104

2 Background105

This section provides an overview of model prun-106

ing and its variants. It also introduces the Lottery107

Ticket Winner Hypothesis: a key concept in our108

research.109

Model pruning Compression algorithms can be110

summarized in three areas of research: weight prun-111

ing (Han et al., 2015; Zhu and Gupta, 2017), quan-112

tization (Gong et al., 2014; Zhu et al., 2016) and113

knowledge distillation (Ba and Caruana, 2014; Kim114

and Rush, 2016). These techniques aim to make 115

models lighter, but each of them takes a different 116

approach. Weight pruning removes model parame- 117

ters according to the chosen algorithm and strategy, 118

while quantization reduces the number of bits nec- 119

essary to represent each parameter. Knowledge 120

distillation, instead, tries to minimize the learned 121

large knowledge of a model into a smaller one with- 122

out affecting its validation. 123

Focusing on pruning algorithms, there are differ- 124

ent approaches depending on the strategy and algo- 125

rithm adopted. Pruning algorithms can be classified 126

as either structured or unstructured, based on the 127

approach applied, and magnitude-based or impact- 128

based, according to the algorithm used. Structured 129

pruning (Huang et al., 2018; Wang et al., 2019; Gor- 130

don et al., 2020) removes weights in groups, such 131

as entire neurons, filters or layers, while unstruc- 132

tured pruning (Han et al., 2015; Frankle and Carbin, 133

2018; Lagunas et al., 2021; Benbaki et al., 2023) 134

does not consider any relationship between param- 135

eters and selects weights to prune based on their 136

impact or magnitude. Magnitude-based algorithms 137

(Hanson and Pratt, 1988; Mozer and Smolensky, 138

1989; Gordon et al., 2020) analyze the absolute 139

value of each parameter to determine its impor- 140

tance. In contrast, impact-based algorithms (Le- 141

Cun et al., 1989; Hassibi and Stork, 1992; Singh 142

and Alistarh, 2020) work on the loss function and 143

its variation caused by removing a parameter. 144

The Lottery Ticket Winner Hypothesis 145

(LTWH: Frankle and Carbin, 2018) is a novel 146

idea related to pruning techniques that proposes 147

the existence of a subnetwork, known as the 148

winning ticket, within every neural network 149

that trained in isolation, can yield comparable 150

results to the original model. To identify the 151

winning ticket, a pruning phase is carried out 152

where selected parameters are zero-masked and 153

frozen based on a chosen criterion, such as the 154

smallest magnitude weights. The remaining 155

parameters are then restored to their initial values 156

and re-tuned. The search for the winning ticket 157

can be a one-shot approach or an iterative process 158

where the train-prune-restore steps are repeated 159

multiple times (n times). 160

3 Related Work 161

In this section, we discuss two pruning algorithms 162

that are relevant to our research and can be used 163

as comparison benckmarks for KEN. These al- 164

2



Figure 2: KEN work path: from a fine-tuned model (1), on each of its fine-tuned matrices W t (2) its sparse version
W̃ is calculated (3.a). Using a binary function, the selected values are injected into the pre-trained matrix W 0 (3.b)
and the resulting matrix Ŵ (4) is replaced in a pre-trained model (5)

gorithms, like KEN, are designed to prune trans-165

former models through simple algebraic or geomet-166

ric techniques. The authors of these papers empha-167

size the ease of implementation of their respective168

algorithms.169

Factorized Low-rank Pruning (FLOP: Wang170

et al., 2019) is a simple magnitude-based pruning171

algorithm that works differently based on the trans-172

former block analyzed: the attention or the em-173

bedding block. FLOP parameterizes and factories174

each matrix W in the attention mechanism into the175

product of two smaller matrices PQ : P ∈ Rd′×r176

and Q ∈ Rr×d with r ≤ {d, d′}. So W represents177

the sum of r rank-1 components in P and Q. The178

final step is to apply a diagonal matrix of pruning179

variables G = (z1, ..., zr) obtaining:180

W = PGQ =

r∑
k=1

zk × (pk × qk)181

For the embedding layers, instead, FLOP uses an182

adaptive pruning approach that applies different183

embedding dimensions and projections to different184

word clusters. This method prunes most of the185

dimensions of rare words, which aligns with the186

empirical choices made in prior work (Joulin et al.,187

2017; Bastings et al., 2019).188

Block Movement Pruning (Lagunas et al., 2021)189

introduce an extension to the movement pruning190

technique used in transformers (Sanh et al., 2020). 191

This approach reduces the size of each matrix in a 192

transformer model by dividing it into fixed-sized 193

blocks. Regularization is then applied, and the NN 194

is trained through distillation to match the perfor- 195

mance of a teacher model. Our focus is on two 196

pruning methods: Hybrid and HybridNT. The key 197

difference between these two approaches is that 198

HybridNT does not involve the use of a teacher 199

model during training (No Teacher). 200

4 KEN pruning algorithm 201

The aim of the KEN (Kernel density Estimator for 202

Neural network compression) pruning algorithm 203

is, based on the main idea of Lottery Ticket Win- 204

ner Hypothesis (Frankle and Carbin, 2018), to find 205

the optimized fine-tuned subnetwork of each trans- 206

former model and inject it into its pre-trained ver- 207

sion without affecting its original performance. In 208

addition, this optimized fine-tuned subnetwork can 209

be easily stored in isolation and integrated into the 210

pre-trained model whenever required. 211

KEN, using the KDE (Kernel Density Estima- 212

tor) definition, generalizes the point distribution 213

of each transformer matrix and returns its smooth 214

and lightweight version. Unlike other magnitude- 215

based algorithmic methods, which determine the 216

importance of a parameter by working on both pre- 217

trained and fine-tuned matrices (Ansell et al., 2021), 218

3



KEN exclusively focuses on the fine-tuned model.219

This means that KEN does not extract points based220

on their importance value. Instead, it aims to iden-221

tify the subnetwork that generalizes the entire fine-222

tuned model by taking a sample of all its parameters223

based on their frequency in each matrix that makes224

up the model.225

To prevent the complete deconstruction of the226

initial matrix composition, KEN applies KDE on227

the individual rows of each analyzed matrix. The228

compression value, denoted by k, determines the229

number of points used in the KDE calculation. A230

low value of k implies high compression, which re-231

sults in a lighter model. Conversely, a high k value232

leads to low compression, resulting in a model233

that closely resembles the original version. Fig.1234

displays the results of the KDE distribution of a235

specific matrix in different layers, using the same236

compression value k.237

The KEN algorithm can be described using the238

three phases defined below:239

(Phase 1) Let W 0 the pre-trained matrix of a fixed240

layer l such that:241

W 0 = {w0
1,1, ..., w

0
n,m} | W 0 ∈ Rn×m242

and let W t the same matrix after the fine-tuning on243

the task t:244

W t = {wt
1,1, ..., w

t
n,m} | W t ∈ Rn×m245

For each row rti of the fine-tuned matrix W t:246

rti = {wt
i,1, ..., w

t
i,m} ∀i ∈ [1, n]247

the KDE of the row rti is calculated, with a band-248

width249

h = 1.06 · σ̂ · n− 1
5250

(Phase 2) Using the KDE likelihood, the k points251

that best fit the rti row distribution are taken, and252

the sparse row r̃i:253

r̃i = {w̃i,1, ..., w̃i,m} ∀i ∈ [1, n]254

is calculated using the following binary function:255

f(w̃i,j) =

{
wt
i,j if wt

i,j ∈ KDE likelihood
0 otherwise

(1)256

Combining all the sparse rows, the sparse matrix257

W̃ :258

W̃ = {w̃1,1, ..., w̃n,m} | W̃ ∈ Rn×m259

is generated with k · n no-zeros values. W̃ is our 260

winning ticket containing the k · n values that will 261

be replaced within the pre-trained matrix W 0. 262

(Phase 3) The final injected matrix Ŵ : 263

Ŵ = {ŵ1,1, ..., ŵn,m} | Ŵ ∈ Rn×m 264

is composed of all the parameters defined using the 265

following function: 266

f(ŵi,j) =

{
w̃i,j if w̃i,j ̸= 0 =⇒ w̃i,j = wt

i,j

w0
i,j otherwise

(2) 267

Thus, the injected matrix Ŵ consists of all the 268

pre-trained W 0 parameters, with the exception of 269

the k · n values in W̃ . Once generated, the in- 270

jected matrix Ŵ will replace the W 0 matrix in the 271

pre-trained model. Algorithm 1 explains Phase 1 272

and Phase 2, defining more formally all the steps 273

needed to generate a sparse matrix W̃ . Addition- 274

ally, the graphical representation displayed in Fig.2 275

provides a clear and comprehensive visualization 276

of all the three phases described while Fig.3 shows 277

different W̃ matrices obtained using different k 278

values. 279

Algorithm 1: Generate a sparse matrix
using KEN
Data: W 0 = {w0

1,1, ..., w
0
n,m},

W t = {wt
1,1, ..., w

t
n,m}, k

Result: W̃
W̃ [n,m]← 0
for i = 1 to n do

best_points← KDE(rti , k)
for j = 1 to len(rti) do

r̃ti ← []
if rti [j] in best_points then

r̃ti [j]← rti [j]
else

r̃ti [j]← 0
end

end
W̃ [i]← r̃ti

end
return W̃

5 Experiments 280

To validate our algorithm, several case studies were 281

performed. Starting from the main purpose of this 282

work, Sec.5.1 describes the experimental setup, the 283

4



(a) Fine-tuned matrix (b) Sparsity: 39.37% (c) Sparsity: 61.42% (d) Sparsity: 83.46%

Figure 3: From the fine-tuned matrix (a), some of its sparse matrices are shown after applying KEN with a different
compression value. Matrix (a) is the in_proj matrix at layer 0 of a DeBERTa model fine-tuned on AG_NEWS
dataset. The sparsity percentage refers to the entire model and not to individual matrices. Non-injected values are
blank.

models used and the compression value k tested.284

Furthermore, we also conducted two qualitative285

analyses to demonstrate the efficacy of KEN. The286

first analysis sought to establish whether the sparse287

matrices obtained after the KEN step are indeed the288

optimal parameters to employ (Sec.5.2) while the289

second analysis aimed to ascertain the feasibility of290

saving and loading the compressed data (Sec. 5.3).291

5.1 Experimental set-up292

The goal of the experiments is to identify the top-293

performing subnetwork, known as the winning294

ticket, across various models and datasets tested295

using the KEN algorithm. Training, validation, and296

test sets were generated for each analyzed dataset297

if not already provided. This division remained the298

same for all experiments conducted and for each299

compression value checked. All the datasets were300

imported from Huggingface1. To ensure high per-301

formance, we fine-tuned each dataset with a num-302

ber of epochs that yielded a fine-tuned model with303

the highest possible F1-weighted value. Despite304

what the literature suggests, we used the F1 mea-305

sure instead of classical accuracy as a comparison306

metric - if not explicitly used by the comparison307

benchmarks. This measure delivers more reliable308

predictions, particularly on strongly unbalanced309

datasets.310

After the training phase, the sparse matrix Ŵ is311

generated and injected into each matrix composing312

the model. The compression value was gradually313

increased, starting from a compression of 90% un-314

til almost the entire original model was reached.315

Through this increment, it was possible to find the316

threshold value, whereby the compressed model317

obtained results similar to the fine-tuned model318

1https://huggingface.co/datasets

or when the compression value k leads to a catas- 319

trophic decline of performances. 320

For our research, we used five different BERT- 321

like transformer models. To produce a comprehen- 322

sive analysis, each model has a different architec- 323

ture, a different attention mechanism or was trained 324

with a different approach. Tab.1 compares the ar- 325

chitectures of the models examined, emphasizing 326

the number of layers and the number of parameters 327

of each. 328

Model # Layers # params
Bert (Devlin et al., 2018) 12 109 M
DistilBERT (Sanh et al., 2019) 6 66 M
DeBERTa (He et al., 2020) 12 138 M
Ernie (Sun et al., 2020) 12 109 M
Electra (Clark et al., 2020) 12 33 M

Table 1: Properties of the analyzed models

5.2 How to prove the importance of selected 329

parameters 330

When performing tests, it is essential to determine 331

whether the output matrices represent the best pos- 332

sible compression or if other matrices yield sim- 333

ilar results. To answer this question - in parallel 334

with the execution of KEN - new tests were carried 335

out. In these tests, the same number of compres- 336

sion values was used, but parameters were ran- 337

domly selected to be or not injected into the model. 338

Thus, more formally, for each matrix composing a 339

generic model, the sparse matrix W̃ contains k · n 340

values randomly picked. The results of this analysis 341

are described in Sec. 6.1. 342

5.3 Model compression 343

Transformers and other neural network models 344

have large file sizes. A fine-tuned transformer can 345

5

https://huggingface.co/datasets


Model Sparsity (%) Size AG-NEWS EMO IMDB YELP_POLARITY glue-sst2

Bert

47.54 57M 91.6 (±0.7) 86.0 (±0.5) 84.9 (±0.8) 93.8 (±1.6) 92.8 (±0.5)
42.29 63M 92.6 (±0.7) 86.5 (±0.7) 85.3 (±1.7) 94.0 (±1.7) 92.9 (±0.4)
37.05 69M 93.4 (±0.1) 84.2 (±1.1) 86.8 (±0.1) 95.0 (±0.4) 93.7 (±0.5)
31.80 75M 93.7 (±0.2) 87.4 (±0.7) 87.3 (±0.1) 95.0 (±0.5) 93.7 (±0.4)
26.55 80M 93.6 (±0.1) 87.9 (±0.3) 87.6 (±0.1) 95.1 (±0.4) 93.8 (±0.4)

DistilBERT

45.32 36M 90.4 (±0.2) 86.7 (±1.6) 78.9 (±2.3) 93.4 (±0.6) 89.0 (±1.3)
39.86 40M 91.9 (±0.3) 88.2 (±1.1) 78.1 (±1.4) 94.1 (±0.1) 89.2 (±0.7)
34.39 44M 92.3 (±0.6) 88.1 (±1.4) 83.2 (±1.1) 94.6 (±0.1) 91.9 (±0.2)
28.92 47M 93.1 (±0.2) 88.8 (±0.6) 84.4 (±0.5) 94.7 (±0.1) 91.9 (±0.1)
23.45 51M 93.3 (±0.2) 88.2 (±0.3) 84.6 (±0.9) 94.9 (±0.1) 92.0 (±0.1)

DeBERTa

44.88 76M 89.4 (±1.2) 83.0 (±4.7) 76.8 (±7.3) 95.5 (±0.4) 94.0 (±0.1)
39.37 84M 91.4 (±0.6) 88.9 (±1.5) 82.5 (±3.1) 96.0 (±0.2) 92.8 (±0.4)
33.86 92M 92.2 (±0.1) 87.9 (±1.2) 82.5 (±5.1) 95.9 (±0.4) 94.6 (±0.2)
28.35 99M 92.7 (±0.1) 87.3 (±1.0) 88.3 (±1.1) 96.1 (±0.2) 94.9 (±0.1)
22.84 107M 92.9 (±0.1) 87.1 (±1.2) 89.8 (±0.1) 96.2 (±0.1) 94.8 (±0.1)

Ernie

47.54 57M 91.5 (±1.4) 88.3 (±0.4) 87.6 (±0.6) 95.7 (±0.1) 94.1 (±0.4)
42.29 63M 92.7 (±0.6) 89.1 (±1.1) 89.0 (±0.1) 95.6 (±0.2) 93.8 (±0.8)
37.05 69M 93.3 (±0.4) 89.1 (±0.6) 89.4 (±0.2) 95.8 (±0.1) 94.1 (±0.2)
31.80 75M 93.3 (±0.3) 88.7 (±1.2) 89.2 (±0.2) 95.8 (±0.3) 93.8 (±0.2)
26.55 80M 93.8 (±0.2) 88.1 (±0.8) 89.6 (±0.3) 95.9 (±0.2) 93.4 (±0.2)

Electra
73.56 8.9M 84.1 (±2.4) 84.3 (±0.4) 78.9 (±0.5) 88.5 (±0.9) 79.9 (±0.7)
64.75 12M 89.7 (±0.3) 86.0 (±0.3) 82.0 (±0.5) 92.1 (±0.8) 85.0 (±0.2)
55.94 14M 91.3 (±0.2) 85.6 (±0.3) 84.3 (±0.1) 93.7 (±0.4) 90.1 (±0.1)

Table 2: Results obtained on various datasets with different sparsity values during the KEN pruning phase. Bold
results indicate an equal or better F1-weighted value compared to the original (unpruned) model. Other results are
shown in Apx.B.

weigh up to 500 MB. However, during the KEN346

phase, sparse matrices are created and inserted into347

its pre-trained version. This allows us to create a348

sparse model consisting solely of all W̃ matrices.349

To measure the weight reduction achieved by KEN,350

we can store the compressed model created in this351

phase and compare it with its original, unpruned352

version. To conduct a thorough analysis, it is cru-353

cial to save and load the compressed model accu-354

rately. We used the same technique to save both the355

compressed and the original fine-tuned (unpruned)356

model to ensure a fair comparison. However, KEN357

requires a support file, such as a dictionary, to load358

the compressed model values in the correct posi-359

tion since it injects its weights into a pre-trained360

model. Sec. 6.2 offers an exhaustive explanation361

of all the results obtained during this analysis.362

6 Results and Discussion363

To test the effectiveness of KEN, we conducted sev-364

eral experiments using various classification and365

sentiment analysis datasets. For each dataset and366

each compression value, we tested KEN multiple367

times and calculated the mean and standard devi-368

ation of the F1-weighted obtained. The complete369

list of provided datasets can be found in Apx.A.370

The results presented in Tab.2 show that KEN can 371

compress all the analyzed models without any im- 372

pact on their original unpruned performance. KEN 373

achieved a constant compression rate of approxi- 374

mately 25% on all analyzed datasets and 55% on 375

the Electra model. Interestingly, in many cases, 376

there was only a slight difference in performance 377

between models with high sparsity and their coun- 378

terparts with lower sparsity. This indicates the ex- 379

ceptional generalization capability of KEN even for 380

middle-high compression rates, achieving a good 381

trade-off between performance and compression. 382

After thoroughly evaluating KEN performance 383

on various datasets, we compared it with other prun- 384

ing algorithms designed for transformers, such as 385

FLOP, Hybrid and HybridNT described in Sec.3. 386

It is essential to note that Lagunas et al. (2021) 387

models (Hybrid and HybridNT) only prune the 388

attention layers and not the entire model. To facili- 389

tate a comprehensive and standardized comparison 390

of all algorithms, we recalibrated the size of their 391

models based on our holistic perspective, ignor- 392

ing any partial considerations. We presented the 393

results obtained in their publication, adding those 394

obtained by KEN and FLOP in Tab.4. Based on 395

the results obtained, KEN outperforms all other 396

6



Model
Pruning

algorithm
Size AG-NEWS EMO IMDB YELP_POLARITY glue-sst2

Bert
KEN 57M 91.6 (±0.7) 86.0 (±0.5) 84.9 (±0.8) 93.8 (±1.6) 92.8 (±0.5)
Flop 66M 90.9 (±0.9) 83.3 (±0.8) 80.5 (±0.6) 90.2 (±0.6) 83.2 (±0.2)

DistilBERT
KEN 40M 91.9 (±0.3) 88.2 (±1.1) 78.1 (±1.4) 94.1 (±0.1) 89.2 (±0.7)
Flop 45M 90.7 (±0.9) 83.2 (±1.2) 81.2 (±0.9) 90.7 (±0.1) 82.4 (±1.2)

DeBERTa
KEN 84M 91.4 (±0.6) 88.9 (±1.5) 82.5 (±3.1) 96.0 (±0.2) 92.8 (±0.4)
Flop 88M 90.6 (±0.7) 83.1 (±1.7) 81.1 (±0.8) 91.4 (±0.1) 82.3 (±1.1)

Ernie
KEN 57M 91.5 (±1.4) 88.3 (±0.4) 87.6 (±0.6) 95.7 (±0.1) 94.1 (±0.4)
Flop 67M 89.8 (±0.4 ) 83.8 (±2.3) 81.1 (±0.8) 90.9 (±0.1) 83.2 (±0.9)

Electra
KEN 14M 91.3 (±0.2) 85.6 (±0.3) 84.3 (±0.1) 93.7 (±0.4) 90.1 (±0.1)
Flop 28M 90.9 (±0.3) 83.1 (±2.1) 81.2 (±0.1) 90.5 (±0.1) 81.1 (±0.3)

Table 3: Comparation between KEN and FLOP pruning algorithms on different datasets. Mean and standard
deviation are calculated on equal runs for each dataset and algorithm analyzed. Size column indicates the number of
injected/compressed parameters used by each algorithm after the pruning phase.

compared models with a significant performance397

gap, using fewer parameters in all cases.

Model Size
glue-sst2

Accuracy
Bert-base 109M 93.37
Hybrid 94M 93.23
HybridNT 94M 92.20
KEN 80M 93.80
Hybrid 66M 91.97
HybridNT 66M 90.71
Sajjad et al. (2020) 66M 90.30
Gordon et al. (2020) 66M 90.80
Flop 66M 83.20
KEN 63M 92.90

Table 4: Pruning algorithm comparations on SST-2
datasets

398

In addition to these findings, we conducted a399

thorough analysis of FLOP, which is the most com-400

plete pruning algorithm studied and, like KEN, de-401

composes original matrices to derive pruned ones.402

We conducted additional tests on all examined mod-403

els, using the datasets featured in Tab.2. We com-404

pared the results obtained from FLOP to those of405

KEN, using also in this case, fewer parameters than406

FLOP. According to the results shown in Tab.3,407

FLOP performs better than KEN in just one in-408

stance. For all other models and datasets analyzed,409

KEN consistently outperforms FLOP.410

These results confirm our hypothesis that inte-411

grating fine-tuned sub-networks into pre-trained412

models is a viable alternative to other pruning tech-413

niques.414

6.1 Optimal parameters 415

In order to define the effectiveness of KEN, it is 416

essential to determine whether the parameters in- 417

troduced by KEN into a generic transformer model 418

constitute the optimal subnetwork or whether the 419

same results can be obtained by randomly selecting 420

the same number of parameters. To investigate this, 421

we conducted an experiment on AG-NEWS dataset. 422

We compared the performance differences between 423

extracting W̃ matrices using KEN and W̃ matrices 424

using k ·n random values. The results, illustrated in 425

Fig.4, show that KEN consistently outperforms its 426

random counterpart with a lower error rate and per- 427

formance gap when using reasonable compression 428

values. It is important to note that in all cases and 429

for all models studied, there is a threshold value 430

beyond which the model performance inevitably 431

suffers a catastrophic decline. 432

The KEN algorithm can compress a model while 433

maintaining high performance and a minimal er- 434

ror rate. However, if the matrix sparsity exceeds 435

60%, the performance of the model declines catas- 436

trophically. Using random values, this threshold is 437

reached earlier, resulting in a larger performance 438

gap and higher error rate. Nevertheless, the up- 439

per bound obtained through this approach is al- 440

ways less than or equal to the mean value obtained 441

through KEN. Furthermore, when using KEN, the 442

error rate is always minimal within the threshold. 443

This indicates that the sub-network obtained using 444

this approach is not random. Instead, it always 445

selects the best possible sub-part of the original 446

network. 447

7



Figure 4: Performance variation on AG-NEWS dataset with different sparsity percentage value.

6.2 Compression values448

One main purpose of KEN is to reduce the over-449

all size of transformer models, including their file450

sizes. To achieve this, KEN leverages sparse matri-451

ces, which are created and injected into pre-trained452

models without affecting their performance. This453

significantly reduces the final file size by saving454

only these sparse matrices and injecting them into455

its pre-trained model. However, a support file (such456

as a dictionary) is required to inject the values from457

the compressed model into its pre-trained version.458

The compressed model is saved using the same459

techniques and format as the original model, en-460

suring comparable results. For each model, two461

compressed versions are obtained using the highest462

and the lowest sparsity percentages shown in Tab.2.463

As shown in Fig.5, both versions of the com-464

pressed models result in substantial memory sav-465

ings, with the size of the compressed models pro-466

portional to the sparsity of their matrices. In par-467

ticular, the compressed model obtained from a468

low sparsity rate saves about 100 MB on models469

with original weights up to 400 MB. The support470

dictionary for parameter injection, held using the471

Lempel-Ziv-Markov chain data compression algo-472

rithm, does not affect the final weight of the model,473

which is always significantly smaller than the orig-474

inal. Furthermore, the time required to load the475

injected parameters into the pre-training model is476

linear with respect to the transformer architecture477

and the compression performed.478

7 Conclusions479

Our paper presents KEN: a pruning algorithm that480

exploits KDE to compress transformer models.481

KEN works exclusively on the fine-tuned version482

Bert

DistilB
ERT

DeBERTa
Ernie

Electra
0

200

400

600

M
eg

aB
yt

es
(M

B
)

High sparsity supp. dict file size High sparsity model file size
Low sparsity supp. dict file size Low sparsity model file size
Original file size

Figure 5: Comparison of the .pt file size between the
original and compressed transformer weights

of the model, returning its lightweight version. We 483

tested KEN on five different transformer models 484

and found that their performances are equal to or 485

better than their unpruned version, with a minimum 486

reduction weight of ≈ 25%. We compared KEN 487

with other pruning algorithms and demonstrated 488

that it delivers better results even with fewer param- 489

eters. Additionally, it is possible to download the 490

compressed model and inject it into its pre-trained 491

version, resulting in significant memory savings. 492

One of the key strengths of KEN is its simplicity in 493

extracting a compact model and its ability to save 494

the compressed model. Through KEN, we have 495

demonstrated that a simple algorithm can produce 496

excellent results. Moreover, KEN introduces an 497

important step that has not been fully explored in 498

pruning algorithms until now: the ability to load 499

the optimized and compressed model at any time. 500

8



8 Limitations501

One of the major weaknesses of KEN is its speed,502

which depends heavily on the size of the matrix503

being analyzed, particularly the number of rows.504

KEN can provide excellent results with medium to505

high k values, resulting in a more detailed distri-506

bution and larger point extraction. However, this507

leads to an increase in computation time, which508

grows linearly with the size of the matrix, the num-509

ber of model layers, and the selected k value. It510

is important to note that this only affects the cre-511

ation of matrices and not the saving and loading of512

compressed models.513

Moreover, KEN has another limitation, as it is514

unable to analyze 3D matrices. Since most trans-515

former architectures use 2D matrices, KEN cannot516

generalize those matrices when analyzing models517

that work on 3D matrices like XLNet (Yang et al.,518

2019). Therefore, to fully apply KEN to all trans-519

former models, an extension of the algorithm for520

3D matrices is required.521

References522

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen,523
and Ivan Vulić. 2021. Composable sparse fine-524
tuning for cross-lingual transfer. arXiv preprint525
arXiv:2110.07560.526

Jimmy Ba and Rich Caruana. 2014. Do deep nets really527
need to be deep? Advances in neural information528
processing systems, 27.529

Francesco Barbieri, Jose Camacho-Collados, Luis Es-530
pinosa Anke, and Leonardo Neves. 2020. TweetEval:531
Unified benchmark and comparative evaluation for532
tweet classification. In Findings of the Association533
for Computational Linguistics: EMNLP 2020, pages534
1644–1650, Online. Association for Computational535
Linguistics.536

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.537
Interpretable neural predictions with differentiable538
binary variables. arXiv preprint arXiv:1905.08160.539

Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein540
Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul541
Mazumder. 2023. Fast as chita: Neural network prun-542
ing with combinatorial optimization. arXiv preprint543
arXiv:2302.14623.544

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan545
Frankle, and John Guttag. 2020. What is the state546
of neural network pruning? Proceedings of machine547
learning and systems, 2:129–146.548

Ankush Chatterjee, Kedhar Nath Narahari, Meghana549
Joshi, and Puneet Agrawal. 2019. SemEval-2019 task550

3: EmoContext contextual emotion detection in text. 551
In Proceedings of the 13th International Workshop 552
on Semantic Evaluation, pages 39–48, Minneapo- 553
lis, Minnesota, USA. Association for Computational 554
Linguistics. 555

Kevin Clark, Minh-Thang Luong, Quoc V Le, and 556
Christopher D Manning. 2020. Electra: Pre-training 557
text encoders as discriminators rather than generators. 558
arXiv preprint arXiv:2003.10555. 559

Arman Cohan, Waleed Ammar, Madeleine van Zuylen, 560
and Field Cady. 2019. Structural scaffolds for ci- 561
tation intent classification in scientific publications. 562
In Proceedings of the 2019 Conference of the North 563
American Chapter of the Association for Computa- 564
tional Linguistics: Human Language Technologies, 565
Volume 1 (Long and Short Papers), pages 3586–3596, 566
Minneapolis, Minnesota. Association for Computa- 567
tional Linguistics. 568

Thomas Davidson, Dana Warmsley, Michael Macy, and 569
Ingmar Weber. 2017. Automated hate speech de- 570
tection and the problem of offensive language. In 571
Proceedings of the international AAAI conference on 572
web and social media, volume 11, pages 512–515. 573

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and 574
Montse Cuadros. 2018. Hate Speech Dataset from 575
a White Supremacy Forum. In Proceedings of the 576
2nd Workshop on Abusive Language Online (ALW2), 577
pages 11–20, Brussels, Belgium. Association for 578
Computational Linguistics. 579

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 580
Kristina Toutanova. 2018. Bert: Pre-training of deep 581
bidirectional transformers for language understand- 582
ing. arXiv preprint arXiv:1810.04805. 583

Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learn- 584
ing to prune deep neural networks via layer-wise op- 585
timal brain surgeon. Advances in neural information 586
processing systems, 30. 587

Jonathan Frankle and Michael Carbin. 2018. The lottery 588
ticket hypothesis: Finding sparse, trainable neural 589
networks. arXiv preprint arXiv:1803.03635. 590

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir 591
Bourdev. 2014. Compressing deep convolutional 592
networks using vector quantization. arXiv preprint 593
arXiv:1412.6115. 594

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews. 595
2020. Compressing bert: Studying the effects of 596
weight pruning on transfer learning. arXiv preprint 597
arXiv:2002.08307. 598

Antonio Gulli. 2005. Ag’s corpus of news articles. 599

Harsha Gurulingappa, Abdul Mateen Rajput, Angus 600
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and 601
Luca Toldo. 2012. Development of a benchmark 602
corpus to support the automatic extraction of drug- 603
related adverse effects from medical case reports. 604
Journal of Biomedical Informatics, 45(5):885 – 892. 605

9

https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008


Text Mining and Natural Language Processing in606
Pharmacogenomics.607

Song Han, Jeff Pool, John Tran, and William Dally.608
2015. Learning both weights and connections for609
efficient neural network. Advances in neural infor-610
mation processing systems, 28.611

Stephen Hanson and Lorien Pratt. 1988. Comparing612
biases for minimal network construction with back-613
propagation. Advances in neural information pro-614
cessing systems, 1.615

Babak Hassibi and David Stork. 1992. Second order616
derivatives for network pruning: Optimal brain sur-617
geon. Advances in neural information processing618
systems, 5.619

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and620
Weizhu Chen. 2020. Deberta: Decoding-enhanced621
bert with disentangled attention. arXiv preprint622
arXiv:2006.03654.623

Gao Huang, Shichen Liu, Laurens Van der Maaten, and624
Kilian Q Weinberger. 2018. Condensenet: An ef-625
ficient densenet using learned group convolutions.626
In Proceedings of the IEEE conference on computer627
vision and pattern recognition, pages 2752–2761.628

Steven A Janowsky. 1989. Pruning versus clipping in629
neural networks. Physical Review A, 39(12):6600.630

Armand Joulin, Moustapha Cissé, David Grangier,631
Hervé Jégou, et al. 2017. Efficient softmax approx-632
imation for gpus. In International conference on633
machine learning, pages 1302–1310. PMLR.634

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.635
Smith. 2020. The multilingual amazon reviews cor-636
pus. In Proceedings of the 2020 Conference on Em-637
pirical Methods in Natural Language Processing.638

Yoon Kim and Alexander M Rush. 2016. Sequence-639
level knowledge distillation. arXiv preprint640
arXiv:1606.07947.641

François Lagunas, Ella Charlaix, Victor Sanh, and642
Alexander M Rush. 2021. Block pruning for faster643
transformers. arXiv preprint arXiv:2109.04838.644

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-645
mal brain damage. Advances in neural information646
processing systems, 2.647

Xin Li and Dan Roth. 2002. Learning question clas-648
sifiers. In COLING 2002: The 19th International649
Conference on Computational Linguistics.650

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,651
Dan Huang, Andrew Y. Ng, and Christopher Potts.652
2011. Learning word vectors for sentiment analysis.653
In Proceedings of the 49th Annual Meeting of the654
Association for Computational Linguistics: Human655
Language Technologies, pages 142–150, Portland,656
Oregon, USA. Association for Computational Lin-657
guistics.658

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, 659
and Ohad Shamir. 2020. Proving the lottery ticket 660
hypothesis: Pruning is all you need. In International 661
Conference on Machine Learning, pages 6682–6691. 662
PMLR. 663

Michael C Mozer and Paul Smolensky. 1989. Using 664
relevance to reduce network size automatically. Con- 665
nection Science, 1(1):3–16. 666

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting 667
class relationships for sentiment categorization with 668
respect to rating scales. arXiv preprint cs/0506075. 669

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and 670
Preslav Nakov. 2020. Poor man’s bert: Smaller 671
and faster transformer models. arXiv preprint 672
arXiv:2004.03844, 2(2). 673

Victor Sanh, Lysandre Debut, Julien Chaumond, and 674
Thomas Wolf. 2019. Distilbert, a distilled version 675
of bert: smaller, faster, cheaper and lighter. arXiv 676
preprint arXiv:1910.01108. 677

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. 678
Movement pruning: Adaptive sparsity by fine-tuning. 679
Advances in Neural Information Processing Systems, 680
33:20378–20389. 681

Emily Sheng and David Uthus. 2020. Investigating 682
societal biases in a poetry composition system. In 683
Proceedings of the Second Workshop on Gender 684
Bias in Natural Language Processing, pages 93–106, 685
Barcelona, Spain (Online). Association for Computa- 686
tional Linguistics. 687

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher: 688
Efficient second-order approximation for neural net- 689
work compression. Advances in Neural Information 690
Processing Systems, 33:18098–18109. 691

Richard Socher, Alex Perelygin, Jean Wu, Jason 692
Chuang, Christopher D. Manning, Andrew Ng, and 693
Christopher Potts. 2013. Recursive deep models for 694
semantic compositionality over a sentiment treebank. 695
In Proceedings of the 2013 Conference on Empiri- 696
cal Methods in Natural Language Processing, pages 697
1631–1642, Seattle, Washington, USA. Association 698
for Computational Linguistics. 699

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao 700
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A 701
continual pre-training framework for language under- 702
standing. In Proceedings of the AAAI conference on 703
artificial intelligence, volume 34, pages 8968–8975. 704

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S 705
Emer. 2017. Efficient processing of deep neural net- 706
works: A tutorial and survey. Proceedings of the 707
IEEE, 105(12):2295–2329. 708

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 709
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 710
Kaiser, and Illia Polosukhin. 2017. Attention is all 711
you need. Advances in neural information processing 712
systems, 30. 713

10

https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://aclanthology.org/P11-1015
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170


Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.714
Structured pruning of large language models. arXiv715
preprint arXiv:1910.04732.716

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017.717
Designing energy-efficient convolutional neural net-718
works using energy-aware pruning. In Proceedings719
of the IEEE conference on computer vision and pat-720
tern recognition, pages 5687–5695.721

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-722
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.723
Xlnet: Generalized autoregressive pretraining for lan-724
guage understanding. Advances in neural informa-725
tion processing systems, 32.726

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.727
Character-level convolutional networks for text classi-728
fication. Advances in neural information processing729
systems, 28.730

Chenzhuo Zhu, Song Han, Huizi Mao, and William J731
Dally. 2016. Trained ternary quantization. arXiv732
preprint arXiv:1612.01064.733

Michael Zhu and Suyog Gupta. 2017. To prune, or not734
to prune: exploring the efficacy of pruning for model735
compression. arXiv preprint arXiv:1710.01878.736

A List of all analyzed datasets 737

Tab.5 displays all datasets used to test KEN. The 738

datasets are sorted according to their year of release. 739

Dataset Reference
trec Li and Roth, 2002
AG-NEWS Gulli, 2005
rotten tomatoes Pang and Lee, 2005
IMDB Maas et al., 2011
ade_corpus_v2 Gurulingappa et al., 2012
glue-sst2 Socher et al., 2013
YELP POLARITY Zhang et al., 2015
hate_speech_offensive Davidson et al., 2017
hate_speech18 de Gibert et al., 2018
EMO Chatterjee et al., 2019
scicite Cohan et al., 2019
amazon_reviews_multi Keung et al., 2020
poem sentiment Sheng and Uthus, 2020
tweet_eval-emoji Barbieri et al., 2020
tweet_eval-hate Barbieri et al., 2020
tweet_eval-irony Barbieri et al., 2020
tweet_eval-offensive Barbieri et al., 2020
tweet_eval-feminist Barbieri et al., 2020

Table 5: Dataset analyized

740

11



Dataset Bert DistilBert DeBERTa Ernie Electra
trec 26.55% 23.45% 22.84% 26.55% 55.94%
rotten Tomatoes 26.55% 34.39% 44.88% 42.29% 55.94%
hate_speech_offensive 26.55% 34.39% 22.84% 26.55% 55.94%
hate_speech18 26.55% 23.45% 33.86% 31.80% 64.75%
scicite 37.05% 28.92% 22.84% 31.80% 55.94%†

ade_corpus_v2 52.78% 45.32% 44.88% 63.28% 73.56%
amazon_reviews_multi 31.80% 34.39% 22.84% 31.80% 55.94%†

poem_sentiment 58.03% 45.32% 22.84% 47.54% 73.56%
tweet_eval-emoji 63.28% 23.45% 44.88% 79.02% 55.94%
tweet_eval-hate 26.55% 61.73% 44.88% 47.54% 55.94%
tweet_eval-irony 26.55% 23.45% 22.84% 26.55% 64.75%
tweet_eval-offensive 26.55%† 34.39% 28.35% 31.80% 55.94%
tweet_eval-femminist 26.55% 39.05% 22.84% 37.05% 64.75%

Table 6: Results obtained from the analysis of additional datasets not shown in Tab.2. The values shown in this table
correspond to the minimum compression achieved by KEN without affecting the model performance. The † symbol
indicates a compression level below the minimum value reported in Tab.2

B Additional results741

In this Appendix, we offer supplementary findings742

in addition to those shown in Tab.2. These results743

were obtained using the datasets provided in Ap-744

pendix A, which were not reported in Tab.2. The745

results, shown in Tab.6, indicate the sparsity per-746

centage reached by each model analyzed by com-747

paring the F1-weighted obtained with that of its748

unpruned version. We used the same approach as749

described in Sec.6 and tested each model n times750

with different k values. However, unlike the re-751

sults displayed in Tab.2, the sparsity percentage752

presented in Tab. 6 indicates the first compression753

values that obtained equal or better results in one754

or more runs.755

12


