Less is KEN: a Simple Non-Parametric Pruning Algorithm for
Transformers Compression

Anonymous ACL submission

Abstract

Neural network pruning has become increas-
ingly crucial due to the complexity of neural
network models and their widespread use in
different fields. However, most pruning algo-
rithms are architecture-specific or extremely
complex, focusing on elaborate algebraic or ge-
ometric calculations for parameter elimination.
Additionally, many algorithms are only useful
during training or testing phases and reset once
the model stops working. This article presents
KEN: a simple, unstructured, magnitude-based
pruning algorithm based on KDE (Kernel Den-
sity Estimator). KEN is designed to create
a concentrated transformer model that can be
easily injected into its pre-trained version for
downstream tasks. We tested KEN on five dif-
ferent transformer models and observed that
it performs the same as the original models
but with a minimum average weight reduction
of 25%. Moreover, we compared KEN with
other pruning algorithms and found that it out-
performs them, even with fewer parameters.
Finally, KEN allows the download of the com-
pact model, reducing memory storage and to
inject it into its pre-trained version at any time.

1 Introduction

Large Language Models (LLMs) have become the
best and simplest solution for achieving state-of-
the-art results in many natural language processing
(NLP) applications. However, the increasing use
of neural networks (NNs) and transformer mod-
els (Vaswani et al., 2017) has resulted in a rise
in computational cost due to the complexity of
arithmetic calculations, larger matrices, and the ad-
dition of more layers. Consequently, the weight
of these models and their structures become more
complex, leading to a high demand for computation
and memory.

One of the best approaches to address the over-
whelming size of LLMs is to reduce their resources
through pruning algorithms. These algorithms can

Layer 1 Layer 2 Layer 3 Layer 4

N

/ \

/ \

/ \

/ \
Layer 5 Layer 6 Layer 7 Layer 8
Layer 9 Layer 10 Layer 11 Layer 12

Figure 1: Comparison of the histogram (grey) and its
kernel density estimator constructed using the first row
of all pos_qg_proj matrices attention layers on De-
BERTa model set to k£ = 500

eliminate parameters or entire components in a NN,
making it lighter without compromising its origi-
nal performance. Pruning algorithms emerged in
parallel with the earliest use of NNs (Mozer and
Smolensky, 1989; Janowsky, 1989; LeCun et al.,
1989), but they have gained significant importance
in the last decade due to the widespread use of these
networks in various fields. There are many pruning
algorithms in literature (Blalock et al., 2020), each
with a unique approach or adapted old algorithms
for these new architectures (Benbaki et al., 2023).
However, the complexity of neural networks can
pose a challenge when creating pruning algorithms,
as these algorithms may require creating new com-
plex theories to make the models lightweight (Dong
et al., 2017; Malach et al., 2020). Additionally,
most pruning algorithms have several gaps in com-
pleteness, as analyzed by Blalock et al., 2020. One
important aspect not thoroughly analyzed in almost
all pruning algorithms is the storage of the reduced
final model. Some of these algorithms only reduce
the size of the model during its use, without actu-
ally storing it in a lighter form. Therefore, most



algorithms in literature focus only on the speed at
which they reduce and execute the model without
considering this crucial final stage. This is partic-
ularly important in resource-limited environments
that use neural networks, such as smart devices and
mobile phones (Yang et al., 2017; Sze et al., 2017).

In this article, we present KEN (Kernel den-
sity Estimator for Neural network compression): a
simple but efficient unstructured, magnitude-based
KDE pruning algorithm. Using KDE (Kernel den-
sity estimator), we can design an abstraction of the
analyzed parameters, using solely the compression
value we want to achieve and the fine-tuned model
we want to compress. This implies that KEN pro-
duces a concentrated model that can be injected
into its pre-trained version for downstream tasks.
Using KEN, we can define a new pruning approach
without trying to minimize the loss function or find
the best parameters by examining both pre-trained
and fine-tuned versions of a NN. Instead, we fo-
cus on generating a lightweight, fine-tuned model
that can be easily injected. We evaluated our al-
gorithm by performing it on various tasks on five
different transformer models based on a BERT-like
architecture (Devlin et al., 2018) and demonstrated
that KEN can reduce the size of the models by
an average of 25% on a zero-shot regime with-
out affecting the performance of the original NNs.
This reduction is also reflected in the weight of the
model itself, which decreases proportionally to the
compression achieved. Moreover, we compared
KEN with other pruning algorithms designed for
transformer models, demonstrating the effective-
ness of this algorithm. Using KEN, we explained
how a non-parametric method widely used in statis-
tics can be applied to create an efficient, intuitive,
and easy-to-use pruning algorithm. Our approach
achieved excellent results in terms of efficiency
and performance, becoming a good alternative for
other, more complex, pruning algorithms.

2 Background

This section provides an overview of model prun-
ing and its variants. It also introduces the Lottery
Ticket Winner Hypothesis: a key concept in our
research.

Model pruning Compression algorithms can be
summarized in three areas of research: weight prun-
ing (Han et al., 2015; Zhu and Gupta, 2017), quan-
tization (Gong et al., 2014; Zhu et al., 2016) and
knowledge distillation (Ba and Caruana, 2014; Kim

and Rush, 2016). These techniques aim to make
models lighter, but each of them takes a different
approach. Weight pruning removes model parame-
ters according to the chosen algorithm and strategy,
while quantization reduces the number of bits nec-
essary to represent each parameter. Knowledge
distillation, instead, tries to minimize the learned
large knowledge of a model into a smaller one with-
out affecting its validation.

Focusing on pruning algorithms, there are differ-
ent approaches depending on the strategy and algo-
rithm adopted. Pruning algorithms can be classified
as either structured or unstructured, based on the
approach applied, and magnitude-based or impact-
based, according to the algorithm used. Structured
pruning (Huang et al., 2018; Wang et al., 2019; Gor-
don et al., 2020) removes weights in groups, such
as entire neurons, filters or layers, while unstruc-
tured pruning (Han et al., 2015; Frankle and Carbin,
2018; Lagunas et al., 2021; Benbaki et al., 2023)
does not consider any relationship between param-
eters and selects weights to prune based on their
impact or magnitude. Magnitude-based algorithms
(Hanson and Pratt, 1988; Mozer and Smolensky,
1989; Gordon et al., 2020) analyze the absolute
value of each parameter to determine its impor-
tance. In contrast, impact-based algorithms (Le-
Cun et al., 1989; Hassibi and Stork, 1992; Singh
and Alistarh, 2020) work on the loss function and
its variation caused by removing a parameter.

The Lottery Ticket Winner Hypothesis
(LTWH: Frankle and Carbin, 2018) is a novel
idea related to pruning techniques that proposes
the existence of a subnetwork, known as the
winning ticket, within every neural network
that trained in isolation, can yield comparable
results to the original model. To identify the
winning ticket, a pruning phase is carried out
where selected parameters are zero-masked and
frozen based on a chosen criterion, such as the
smallest magnitude weights. The remaining
parameters are then restored to their initial values
and re-tuned. The search for the winning ticket
can be a one-shot approach or an iterative process
where the train-prune-restore steps are repeated
multiple times (n times).

3 Related Work

In this section, we discuss two pruning algorithms
that are relevant to our research and can be used
as comparison benckmarks for KEN. These al-



Output

Classifier

Transformer block

(2) Fine-tuned matrix

Embedding layer

Input sentence tokens

(1) Fine-tuned model

(3.b) Pre-trained matrix

output

Classifier

Transformer block

(3.0) sparse
fine-tuned matrix

(4) Injected matrix

Embedding layer

Input sentence tokens

(5) Pre-trained model

Figure 2: KEN work path: from a fine-tuned model (1), on each of its fine-tuned matrices W (2) its sparse version
W is calculated (3.a). Using a binary function, the selected values are injected into the pre-trained matrix WO (3.b)
and the resulting matrix W (4) is replaced in a pre-trained model (5)

gorithms, like KEN, are designed to prune trans-
former models through simple algebraic or geomet-
ric techniques. The authors of these papers empha-
size the ease of implementation of their respective
algorithms.

Factorized Low-rank Pruning (FLOP: Wang
etal., 2019) is a simple magnitude-based pruning
algorithm that works differently based on the trans-
former block analyzed: the attention or the em-
bedding block. FLOP parameterizes and factories
each matrix W in the attention mechanism into the
product of two smaller matrices PQ : P € RY*"
and Q € R™*? with r < {d,d'}. So W represents
the sum of r rank-1 components in P and (). The
final step is to apply a diagonal matrix of pruning
variables G = (z1, ..., 2, ) obtaining:

.
W:PGQ:sz X (pr X qr)
k=1
For the embedding layers, instead, FLOP uses an
adaptive pruning approach that applies different
embedding dimensions and projections to different
word clusters. This method prunes most of the
dimensions of rare words, which aligns with the

empirical choices made in prior work (Joulin et al.,
2017; Bastings et al., 2019).

Block Movement Pruning (Lagunas etal., 2021)
introduce an extension to the movement pruning

technique used in transformers (Sanh et al., 2020).
This approach reduces the size of each matrix in a
transformer model by dividing it into fixed-sized
blocks. Regularization is then applied, and the NN
is trained through distillation to match the perfor-
mance of a teacher model. Our focus is on two
pruning methods: Hybrid and HybridNT. The key
difference between these two approaches is that
HybridNT does not involve the use of a teacher
model during training (No Teacher).

4 KEN pruning algorithm

The aim of the KEN (Kernel density Estimator for
Neural network compression) pruning algorithm
is, based on the main idea of Lottery Ticket Win-
ner Hypothesis (Frankle and Carbin, 2018), to find
the optimized fine-tuned subnetwork of each trans-
former model and inject it into its pre-trained ver-
sion without affecting its original performance. In
addition, this optimized fine-tuned subnetwork can
be easily stored in isolation and integrated into the
pre-trained model whenever required.

KEN, using the KDE (Kernel Density Estima-
tor) definition, generalizes the point distribution
of each transformer matrix and returns its smooth
and lightweight version. Unlike other magnitude-
based algorithmic methods, which determine the
importance of a parameter by working on both pre-
trained and fine-tuned matrices (Ansell et al., 2021),



KEN exclusively focuses on the fine-tuned model.
This means that KEN does not extract points based
on their importance value. Instead, it aims to iden-
tify the subnetwork that generalizes the entire fine-
tuned model by taking a sample of all its parameters
based on their frequency in each matrix that makes
up the model.

To prevent the complete deconstruction of the
initial matrix composition, KEN applies KDE on
the individual rows of each analyzed matrix. The
compression value, denoted by k, determines the
number of points used in the KDE calculation. A
low value of k implies high compression, which re-
sults in a lighter model. Conversely, a high k value
leads to low compression, resulting in a model
that closely resembles the original version. Fig.1
displays the results of the KDE distribution of a
specific matrix in different layers, using the same
compression value k.

The KEN algorithm can be described using the
three phases defined below:

(Phase 1) Let W0 the pre-trained matrix of a fixed
layer [ such that:

WO = {w(l),h "'»wg,m} | WO e R

and let W' the same matrix after the fine-tuning on
the task ¢:

¢ ¢ ¢ ¢
W = {w171,...,wn7m} | W E RTZXTI’L
For each row 7! of the fine-tuned matrix W*:

rt = {w;l, ,wfm} Vi € [1,n]

the KDE of the row rf is calculated, with a band-
width

(S

h=106-6-n"

(Phase 2) Using the KDE likelihood, the k points
that best fit the Tf row distribution are taken, and
the sparse row 7;:

T, = {’Lbi,l, ...,’J]@m} Vi € [1,n]

is calculated using the following binary function:

2

- wt . if w!. e KDE likelihood
Fling) =,
0 otherwise
(1
Combining all the sparse rows, the sparse matrix
W:

W = {11, .., Wnm} | WeR>™

is generated with k - n no-zeros values. W is our
winning ticket containing the k - n values that will
be replaced within the pre-trained matrix W70,
(Phase 3) The final injected matrix W

W= {11, Wpm} | W ER™

is composed of all the parameters defined using the
following function:

-~ . -~ ~ _ t
Wi if Wi; #0 = W ; = wj ;
0

w; ; otherwise

flig) = {

A 2)
Thus, the injected matrix W consists of all the
pre-trained WO parameters, with the exception of
the k - n values in W. Once generated, the in-
jected matrix W will replace the W matrix in the
pre-trained model. Algorithm 1 explains Phase 1
and Phase 2, defining more formally all the steps
needed to generate a sparse matrix W. Addition-
ally, the graphical representation displayed in Fig.2
provides a clear and comprehensive visualization
of all the three phases described while Fig.3 shows
different W matrices obtained using different k&
values.

Algorithm 1: Generate a sparse matrix
using KEN
Data: W° = {w{ ..., w) .},
Wt = {wil, ...,wfhm}, k
Result: W
Win,m] < 0
fori=1rondo
best_points <« KDE(rl, k)
forj =110 len(r!) do
7 ]
if r![j] in best_points then
| 7ild] < rild]
else
| il 0
end

return W

5 Experiments

To validate our algorithm, several case studies were
performed. Starting from the main purpose of this
work, Sec.5.1 describes the experimental setup, the



(a) Fine-tuned matrix

(b) Sparsity: 39.37%

(c) Sparsity: 61.42% (d) Sparsity: 83.46%

Figure 3: From the fine-tuned matrix (a), some of its sparse matrices are shown after applying KEN with a different
compression value. Matrix (a) is the in_proj matrix at layer O of a DeBERTa model fine-tuned on AG_NEWS
dataset. The sparsity percentage refers to the entire model and not to individual matrices. Non-injected values are

blank.

models used and the compression value k tested.
Furthermore, we also conducted two qualitative
analyses to demonstrate the efficacy of KEN. The
first analysis sought to establish whether the sparse
matrices obtained after the KEN step are indeed the
optimal parameters to employ (Sec.5.2) while the
second analysis aimed to ascertain the feasibility of
saving and loading the compressed data (Sec. 5.3).

5.1 Experimental set-up

The goal of the experiments is to identify the top-
performing subnetwork, known as the winning
ticket, across various models and datasets tested
using the KEN algorithm. Training, validation, and
test sets were generated for each analyzed dataset
if not already provided. This division remained the
same for all experiments conducted and for each
compression value checked. All the datasets were
imported from Huggingface!. To ensure high per-
formance, we fine-tuned each dataset with a num-
ber of epochs that yielded a fine-tuned model with
the highest possible F1-weighted value. Despite
what the literature suggests, we used the F1 mea-
sure instead of classical accuracy as a comparison
metric - if not explicitly used by the comparison
benchmarks. This measure delivers more reliable
predictions, particularly on strongly unbalanced
datasets.

After the training phase, the sparse matrix W is
generated and injected into each matrix composing
the model. The compression value was gradually
increased, starting from a compression of 90% un-
til almost the entire original model was reached.
Through this increment, it was possible to find the
threshold value, whereby the compressed model
obtained results similar to the fine-tuned model

"https://huggingface.co/datasets

or when the compression value k leads to a catas-
trophic decline of performances.

For our research, we used five different BERT-
like transformer models. To produce a comprehen-
sive analysis, each model has a different architec-
ture, a different attention mechanism or was trained
with a different approach. Tab.1 compares the ar-
chitectures of the models examined, emphasizing
the number of layers and the number of parameters
of each.

Model # Layers # params
Bert (Devlin et al., 2018) 12 109 M
DistilBERT (Sanh et al., 2019) 6 66 M
DeBERTa (He et al., 2020) 12 138 M
Ernie (Sun et al., 2020) 12 109 M
Electra (Clark et al., 2020) 12 33 M

Table 1: Properties of the analyzed models

5.2 How to prove the importance of selected
parameters

When performing tests, it is essential to determine
whether the output matrices represent the best pos-
sible compression or if other matrices yield sim-
ilar results. To answer this question - in parallel
with the execution of KEN - new tests were carried
out. In these tests, the same number of compres-
sion values was used, but parameters were ran-
domly selected to be or not injected into the model.
Thus, more formally, for each matrix composing a
generic model, the sparse matrix W contains k - n
values randomly picked. The results of this analysis
are described in Sec. 6.1.

5.3 Model compression

Transformers and other neural network models
have large file sizes. A fine-tuned transformer can


https://huggingface.co/datasets

Model Sparsity (%) Size AG-NEWS EMO IMDB YELP_POLARITY glue-sst2
47.54 57M  91.6 (£0.7) 86.0 (£0.5) 84.9 (£0.8) 93.8 (£1.6) 92.8 (£0.5)
42.29 63M  92.6 (£0.7) 86.5(£0.7) 85.3 (£1.7) 94.0 (£1.7) 92.9 (£0.4)
Bert 37.05 69M 934 (+£0.1) 842 (+1.1) 86.8 (+0.1) 95.0 (£0.4) 93.7 (£0.5)
31.80 75M 937 (+£0.2) 87.4(+0.7) 87.3(£0.1) 95.0 (£+0.5) 93.7 (40.4)
26.55 8OM  93.6 (£0.1) 87.9(£0.3) 87.6(+0.1) 95.1 (40.4) 93.8 (£0.4)
4532 36M 904 (£0.2) 86.7 (£1.6) 78.9 (£2.3) 93.4 (£0.6) 89.0 (£1.3)
39.86 40M  91.9(£0.3) 882 (£1.1) 78.1(£1.4) 94.1 (£0.1) 89.2 (£0.7)
DistilBERT 34.39 44M 923 (£0.6) 88.1(+1.4) 83.2(£1.1) 94.6 (£0.1) 91.9 (£0.2)
28.92 47M  93.1(£0.2) 88.8 (£0.6) 84.4 (£0.5) 94.7 (£0.1) 91.9 (£0.1)
23.45 S5IM 933 (£0.2) 88.2(+0.3) 84.6 (+0.9) 94.9 (+0.1) 92.0 (£0.1)
44.88 76M  89.4 (£1.2) 83.0(£4.7) 76.8 (£7.3) 95.5 (£0.4) 94.0 (£0.1)
39.37 84M  91.4 (£0.6) 88.9 (£1.5) 82.5(£3.1) 96.0 (£0.2) 92.8 (40.4)
DeBERTa 33.86 92M 922 (£0.1) 87.9(£1.2) 82.5(£5.1) 95.9 (40.4) 94.6 (£0.2)
28.35 99M 927 (£0.1) 87.3(+1.0) 88.3(£l.1) 96.1 (0.2) 94.9 (£0.1)
22.84 107M  92.9 (0.1) 87.1(£1.2) 89.8 (+0.1) 96.2 (+0.1) 94.8 (£+0.1)
4754 57M 915 (£1.4) 88.3(£0.4) 87.6(+0.6) 95.7 (£0.1) 94.1 (£0.4)
42.29 63M  92.7 (£0.6) 89.1 (£1.1) 89.0 (£0.1) 95.6 (£0.2) 93.8 (£0.8)
Ernie 37.05 69M 933 (£0.4) 89.1 (+0.6) 89.4(£0.2) 95.8 (£0.1) 94.1 (£0.2)
31.80 75M  93.3(£0.3) 88.7(£1.2) 89.2(+0.2) 95.8 (+0.3) 93.8 (+£0.2)
26.55 8OM  93.8(+0.2) 88.1(£0.8) 89.6(+0.3) 95.9 (£0.2) 93.4 (£0.2)
73.56 8OM 84.1(+2.4) 84.3(L£0.4) 78.9(£0.5) 88.5 (£0.9) 79.9 (£0.7)
Electra 64.75 12M  89.7 (£0.3) 86.0 (£0.3) 82.0 (&0.5) 92.1 (£0.8) 85.0 (£0.2)
55.94 14M  91.3(£0.2) 85.6(£0.3) 84.3 (£0.1) 93.7 (£0.4) 90.1 (£0.1)

Table 2: Results obtained on various datasets with different sparsity values during the KEN pruning phase. Bold
results indicate an equal or better F1-weighted value compared to the original (unpruned) model. Other results are

shown in Apx.B.

weigh up to 500 MB. However, during the KEN
phase, sparse matrices are created and inserted into
its pre-trained version. This allows us to create a
sparse model consisting solely of all W matrices.
To measure the weight reduction achieved by KEN,
we can store the compressed model created in this
phase and compare it with its original, unpruned
version. To conduct a thorough analysis, it is cru-
cial to save and load the compressed model accu-
rately. We used the same technique to save both the
compressed and the original fine-tuned (unpruned)
model to ensure a fair comparison. However, KEN
requires a support file, such as a dictionary, to load
the compressed model values in the correct posi-
tion since it injects its weights into a pre-trained
model. Sec. 6.2 offers an exhaustive explanation
of all the results obtained during this analysis.

6 Results and Discussion

To test the effectiveness of KEN, we conducted sev-
eral experiments using various classification and
sentiment analysis datasets. For each dataset and
each compression value, we tested KEN multiple
times and calculated the mean and standard devi-
ation of the F1-weighted obtained. The complete
list of provided datasets can be found in Apx.A.

The results presented in Tab.2 show that KEN can
compress all the analyzed models without any im-
pact on their original unpruned performance. KEN
achieved a constant compression rate of approxi-
mately 25% on all analyzed datasets and 55% on
the Electra model. Interestingly, in many cases,
there was only a slight difference in performance
between models with high sparsity and their coun-
terparts with lower sparsity. This indicates the ex-
ceptional generalization capability of KEN even for
middle-high compression rates, achieving a good
trade-off between performance and compression.

After thoroughly evaluating KEN performance
on various datasets, we compared it with other prun-
ing algorithms designed for transformers, such as
FLOP, Hybrid and HybridNT described in Sec.3.
It is essential to note that Lagunas et al. (2021)
models (Hybrid and HybridNT) only prune the
attention layers and not the entire model. To facili-
tate a comprehensive and standardized comparison
of all algorithms, we recalibrated the size of their
models based on our holistic perspective, ignor-
ing any partial considerations. We presented the
results obtained in their publication, adding those
obtained by KEN and FLOP in Tab.4. Based on
the results obtained, KEN outperforms all other



Pruning

Model . Size AG-NEWS EMO IMDB YELP_POLARITY glue-sst2
algorithm
Bert KEN 57TM  91.6 (£0.7) 86.0 (0.5) 84.9 (+0.8) 93.8 (£1.6) 92.8 (£0.5)
Flop 66M 909 (£0.9) 83.3(£0.8) 80.5(%0.6) 90.2 (£0.6) 83.2(£0.2)
DisIBERT KEN 40M 919 (£0.3) 88.2(%1.1) 78.1(x1.4) 94.1 (£0.1) 89.2 (£0.7)
Flop 45M  90.7 (£0.9) 83.2(£1.2) 81.2(x0.9) 90.7 (£0.1) 82.4 (£1.2)
DeBERTa KEN 84M 91.4(+0.6) 88.9(£1.5) 82.5(£3.1) 96.0 (£0.2) 92.8 (£0.4)
Flop 88M 90.6 (£0.7) 83.1(£1.7) 81.1(£0.8) 91.4 (£0.1) 82.3 (£1.1)
Ernie KEN 5TM  91.5(£1.4) 88.3(£0.4) 87.6(£0.6) 95.7 (£0.1) 94.1 (£0.4)
Flop 67M 89.8(£0.4) 83.8(%2.3) 81.1(%0.8) 90.9 (£0.1) 83.2(£0.9)
Electra KEN 14M  91.3(£0.2) 85.6(£0.3) 84.3(%0.1) 93.7 (£0.4) 90.1 (£0.1)
Flop 28M 909 (£0.3) 83.1(£2.1) 81.2(%0.1) 90.5 (£0.1) 81.1 (£0.3)

Table 3: Comparation between KEN and FLOP pruning algorithms on different datasets. Mean and standard
deviation are calculated on equal runs for each dataset and algorithm analyzed. Size column indicates the number of
injected/compressed parameters used by each algorithm after the pruning phase.

compared models with a significant performance
gap, using fewer parameters in all cases.

Model Size glue-sst2
Accuracy
Bert-base 109M 93.37
Hybrid 94M 93.23
HybridNT 94M 92.20
KEN 80M 93.80
Hybrid 66M 91.97
HybridNT 66M 90.71
Sajjad et al. (2020) 66M 90.30
Gordon et al. (2020) 66M 90.80
Flop 66M 83.20
KEN 63M 92.90

Table 4: Pruning algorithm comparations on SST-2
datasets

In addition to these findings, we conducted a
thorough analysis of FLOP, which is the most com-
plete pruning algorithm studied and, like KEN, de-
composes original matrices to derive pruned ones.
We conducted additional tests on all examined mod-
els, using the datasets featured in Tab.2. We com-
pared the results obtained from FLOP to those of
KEN, using also in this case, fewer parameters than
FLOP. According to the results shown in Tab.3,
FLOP performs better than KEN in just one in-
stance. For all other models and datasets analyzed,
KEN consistently outperforms FLOP.

These results confirm our hypothesis that inte-
grating fine-tuned sub-networks into pre-trained
models is a viable alternative to other pruning tech-
niques.

6.1 Optimal parameters

In order to define the effectiveness of KEN, it is
essential to determine whether the parameters in-
troduced by KEN into a generic transformer model
constitute the optimal subnetwork or whether the
same results can be obtained by randomly selecting
the same number of parameters. To investigate this,
we conducted an experiment on AG-NEWS dataset.
We compared the performance differences between
extracting W matrices using KEN and W matrices
using k-n random values. The results, illustrated in
Fig.4, show that KEN consistently outperforms its
random counterpart with a lower error rate and per-
formance gap when using reasonable compression
values. It is important to note that in all cases and
for all models studied, there is a threshold value
beyond which the model performance inevitably
suffers a catastrophic decline.

The KEN algorithm can compress a model while
maintaining high performance and a minimal er-
ror rate. However, if the matrix sparsity exceeds
60%, the performance of the model declines catas-
trophically. Using random values, this threshold is
reached earlier, resulting in a larger performance
gap and higher error rate. Nevertheless, the up-
per bound obtained through this approach is al-
ways less than or equal to the mean value obtained
through KEN. Furthermore, when using KEN, the
error rate is always minimal within the threshold.
This indicates that the sub-network obtained using
this approach is not random. Instead, it always
selects the best possible sub-part of the original
network.



DistilBERT

DeBERTa

Electra

F1 macro

0 40 so 6 70 8 90 0 30 4 50 6 70 8 90

% Sparsity % Sparsity %

—=— Random sparse matrices

0 30 40 50 60 70 8 90

Sparsity % Sparsity % Sparsity

3 40 so 6 70 80 90 55 60 65 70 75 8 85 90

—— KEN

Figure 4: Performance variation on AG-NEWS dataset with different sparsity percentage value.

6.2 Compression values

One main purpose of KEN is to reduce the over-
all size of transformer models, including their file
sizes. To achieve this, KEN leverages sparse matri-
ces, which are created and injected into pre-trained
models without affecting their performance. This
significantly reduces the final file size by saving
only these sparse matrices and injecting them into
its pre-trained model. However, a support file (such
as a dictionary) is required to inject the values from
the compressed model into its pre-trained version.
The compressed model is saved using the same
techniques and format as the original model, en-
suring comparable results. For each model, two
compressed versions are obtained using the highest
and the lowest sparsity percentages shown in Tab.2.

As shown in Fig.5, both versions of the com-
pressed models result in substantial memory sav-
ings, with the size of the compressed models pro-
portional to the sparsity of their matrices. In par-
ticular, the compressed model obtained from a
low sparsity rate saves about 100 MB on models
with original weights up to 400 MB. The support
dictionary for parameter injection, held using the
Lempel-Ziv-Markov chain data compression algo-
rithm, does not affect the final weight of the model,
which is always significantly smaller than the orig-
inal. Furthermore, the time required to load the
injected parameters into the pre-training model is
linear with respect to the transformer architecture
and the compression performed.

7 Conclusions

Our paper presents KEN: a pruning algorithm that
exploits KDE to compress transformer models.
KEN works exclusively on the fine-tuned version

600 [~ B

400 |-

MegaBytes (MB)
Y
NN

200 |-

AL 4\ 2 \e 2
G"s\'\\?’egoeﬁ?jg gt

2 High sparsity supp. dict file size [ | High sparsity model file size
Brow sparsity supp. dict file size Niow sparsity model file size

Original file size

Figure 5: Comparison of the .pt file size between the
original and compressed transformer weights

of the model, returning its lightweight version. We
tested KEN on five different transformer models
and found that their performances are equal to or
better than their unpruned version, with a minimum
reduction weight of ~ 25%. We compared KEN
with other pruning algorithms and demonstrated
that it delivers better results even with fewer param-
eters. Additionally, it is possible to download the
compressed model and inject it into its pre-trained
version, resulting in significant memory savings.
One of the key strengths of KEN is its simplicity in
extracting a compact model and its ability to save
the compressed model. Through KEN, we have
demonstrated that a simple algorithm can produce
excellent results. Moreover, KEN introduces an
important step that has not been fully explored in
pruning algorithms until now: the ability to load
the optimized and compressed model at any time.



8 Limitations

One of the major weaknesses of KEN is its speed,
which depends heavily on the size of the matrix
being analyzed, particularly the number of rows.
KEN can provide excellent results with medium to
high k values, resulting in a more detailed distri-
bution and larger point extraction. However, this
leads to an increase in computation time, which
grows linearly with the size of the matrix, the num-
ber of model layers, and the selected k value. It
is important to note that this only affects the cre-
ation of matrices and not the saving and loading of
compressed models.

Moreover, KEN has another limitation, as it is
unable to analyze 3D matrices. Since most trans-
former architectures use 2D matrices, KEN cannot
generalize those matrices when analyzing models
that work on 3D matrices like XLNet (Yang et al.,
2019). Therefore, to fully apply KEN to all trans-
former models, an extension of the algorithm for
3D matrices is required.

References

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen,
and Ivan Vuli¢. 2021. Composable sparse fine-
tuning for cross-lingual transfer. arXiv preprint
arXiv:2110.07560.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? Advances in neural information
processing systems, 27.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetEval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644-1650, Online. Association for Computational
Linguistics.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. arXiv preprint arXiv:1905.08160.

Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein
Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul
Mazumder. 2023. Fast as chita: Neural network prun-
ing with combinatorial optimization. arXiv preprint
arXiv:2302.14623.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state
of neural network pruning? Proceedings of machine
learning and systems, 2:129—-146.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. SemEval-2019 task

3: EmoContext contextual emotion detection in text.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 39—48, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Arman Cohan, Waleed Ammar, Madeleine van Zuylen,
and Field Cady. 2019. Structural scaffolds for ci-
tation intent classification in scientific publications.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3586-3596,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech de-
tection and the problem of offensive language. In
Proceedings of the international AAAI conference on
web and social media, volume 11, pages 512-515.

Ona de Gibert, Naiara Perez, Aitor Garcia-Pablos, and
Montse Cuadros. 2018. Hate Speech Dataset from
a White Supremacy Forum. In Proceedings of the
2nd Workshop on Abusive Language Online (ALW2),
pages 11-20, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learn-
ing to prune deep neural networks via layer-wise op-
timal brain surgeon. Advances in neural information
processing systems, 30.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization. arXiv preprint
arXiv:1412.6115.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Antonio Gulli. 2005. Ag’s corpus of news articles.

Harsha Gurulingappa, Abdul Mateen Rajput, Angus
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and
Luca Toldo. 2012. Development of a benchmark
corpus to support the automatic extraction of drug-
related adverse effects from medical case reports.
Journal of Biomedical Informatics, 45(5):885 — 892.


https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008

Text Mining and Natural Language Processing in
Pharmacogenomics.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Stephen Hanson and Lorien Pratt. 1988. Comparing
biases for minimal network construction with back-
propagation. Advances in neural information pro-
cessing systems, 1.

Babak Hassibi and David Stork. 1992. Second order
derivatives for network pruning: Optimal brain sur-
geon. Advances in neural information processing
systems, 5.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and
Kilian Q Weinberger. 2018. Condensenet: An ef-
ficient densenet using learned group convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2752-2761.

Steven A Janowsky. 1989. Pruning versus clipping in
neural networks. Physical Review A, 39(12):6600.

Armand Joulin, Moustapha Cissé, David Grangier,
Hervé Jégou, et al. 2017. Efficient softmax approx-
imation for gpus. In International conference on
machine learning, pages 1302-1310. PMLR.

Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A.
Smith. 2020. The multilingual amazon reviews cor-
pus. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Francois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

10

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz,
and Ohad Shamir. 2020. Proving the lottery ticket
hypothesis: Pruning is all you need. In International
Conference on Machine Learning, pages 6682-6691.
PMLR.

Michael C Mozer and Paul Smolensky. 1989. Using
relevance to reduce network size automatically. Con-
nection Science, 1(1):3-16.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint c¢s/0506075.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s bert: Smaller
and faster transformer models. arXiv preprint
arXiv:2004.03844, 2(2).

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378-20389.

Emily Sheng and David Uthus. 2020. Investigating
societal biases in a poetry composition system. In
Proceedings of the Second Workshop on Gender
Bias in Natural Language Processing, pages 93—106,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher:
Efficient second-order approximation for neural net-
work compression. Advances in Neural Information
Processing Systems, 33:18098—18109.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A
continual pre-training framework for language under-
standing. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 8968—8975.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S
Emer. 2017. Efficient processing of deep neural net-
works: A tutorial and survey. Proceedings of the
IEEE, 105(12):2295-2329.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.


https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://aclanthology.org/P11-1015
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017.
Designing energy-efficient convolutional neural net-
works using energy-aware pruning. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 5687-5695.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. 2016. Trained ternary quantization. arXiv
preprint arXiv:1612.01064.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

11

A List of all analyzed datasets

Tab.5 displays all datasets used to test KEN. The
datasets are sorted according to their year of release.

Dataset Reference
trec Li and Roth, 2002
AG-NEWS Gulli, 2005
rotten tomatoes Pang and Lee, 2005
IMDB Maas et al., 2011

Gurulingappa et al., 2012
Socher et al., 2013
Zhang et al., 2015

Davidson et al., 2017
de Gibert et al., 2018
Chatterjee et al., 2019
Cohan et al., 2019
Keung et al., 2020
Sheng and Uthus, 2020
Barbieri et al., 2020
Barbieri et al., 2020
Barbieri et al., 2020
Barbieri et al., 2020
Barbieri et al., 2020

ade_corpus_v2
glue-sst2

YELP POLARITY
hate_speech_offensive
hate_speechl8

EMO

scicite
amazon_reviews_multi
poem sentiment
tweet_eval-emoji
tweet_eval-hate
tweet_eval-irony
tweet_eval-offensive
tweet_eval-feminist

Table 5: Dataset analyized



Dataset Bert DistilBert DeBERTa  Ernie Electra

trec 26.55%  23.45% 22.84%  26.55% 55.94%
rotten Tomatoes 26.55% 34.39% 44.88%  42.29% 55.94%
hate_speech_offensive 26.55% 34.39% 22.84%  26.55% 55.94%
hate_speechl8 26.55% 23.45% 33.86% 31.80% 64.75%
scicite 37.05%  28.92% 22.84%  31.80% 55.94%"
ade_corpus_v?2 52.78% 45.32% 44.88%  63.28% 73.56%
amazon_reviews_multi 31.80% 34.39% 22.84% 31.80% 55.94%"
poem_sentiment 58.03% 45.32% 22.84%  47.54% 73.56%
tweet_eval-emoji 63.28%  23.45% 4488%  79.02% 55.94%
tweet_eval-hate 26.55%  61.73% 44.88%  47.54% 55.94%
tweet_eval-irony 26.55%  23.45% 22.84%  26.55% 64.75%

tweet_eval-offensive 26.55%"  34.39% 28.35%  31.80% 55.94%
tweet_eval-femminist 26.55% 39.05% 22.84% 37.05% 64.75%

Table 6: Results obtained from the analysis of additional datasets not shown in Tab.2. The values shown in this table
correspond to the minimum compression achieved by KEN without affecting the model performance. The  symbol
indicates a compression level below the minimum value reported in Tab.2

B Additional results

In this Appendix, we offer supplementary findings
in addition to those shown in Tab.2. These results
were obtained using the datasets provided in Ap-
pendix A, which were not reported in Tab.2. The
results, shown in Tab.6, indicate the sparsity per-
centage reached by each model analyzed by com-
paring the F1-weighted obtained with that of its
unpruned version. We used the same approach as
described in Sec.6 and tested each model n times
with different & values. However, unlike the re-
sults displayed in Tab.2, the sparsity percentage
presented in Tab. 6 indicates the first compression
values that obtained equal or better results in one
Or more runs.

12



