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ABSTRACT

Accurate prediction of the need for invasive mechanical ventilation (IMV) in in-
tensive care units (ICUs) patients is crucial for timely interventions and resource
allocation. However, variability in patient populations, clinical practices, and elec-
tronic health record (EHR) systems across institutions introduces domain shifts
that degrade the generalization performance of predictive models during deploy-
ment. Test-Time Training (TTT) has emerged as a promising approach to mitigate
such shifts by adapting models dynamically during inference without requiring
labeled target-domain data. In this work, we introduce Adaptive Test-Time Train-
ing (AdaTTT), an enhanced TTT framework tailored for EHR-based IMV pre-
diction in ICU settings. We begin by deriving information-theoretic bounds on
the test-time prediction error and demonstrate that it is constrained by the un-
certainty between the main and auxiliary tasks. To enhance their alignment, we
introduce a self-supervised learning framework with pretext tasks: reconstruction
and masked feature modeling optimized through a dynamic masking strategy that
emphasizes features critical to the main task. Additionally, to improve robustness
against domain shifts, we incorporate prototype learning and employ Partial Opti-
mal Transport (POT) for flexible, partial feature alignment while maintaining clin-
ically meaningful patient representations. Experiments across multi-center ICU
cohorts demonstrate competitive classification performance on different test-time
adaptation benchmarks.

1 INTRODUCTION

Invasive mechanical ventilation (IMV) is a critical intervention utilized in intensive care units (ICUs)
for patients with severe respiratory failure and acute respiratory distress syndrome (ARDS) (Grot-
berg et al., 2023). However, its use is complicated by the risk of ventilator-induced lung injury and
complications resulting from prolonged IMV. Timely and accurate identification of patients at high
risk for mechanical ventilation is crucial for optimizing clinical decision-making. Early recognition
of these patients enables proactive medical interventions and facilitates efficient resource allocation
within hospital system (Fan et al., 2018).

In recent years, the development of machine learning (ML) models has shown great promise in pre-
dicting the need for IMV, which leverages electronic health record (EHR) data to identify complex
patterns that human clinicians might overlook (Shashikumar et al., 2021b). These models can incor-
porate diverse features, including vital signs and laboratory results to enhance prediction accuracy
and provide critical decision support in ICU settings. However, the effective deployment of such
models in real-world clinical settings remains a challenge. A key issue is the variability in data
distributions across hospitals due to differences in patient populations, clinical practices, and EHR
systems. These shifts, often referred to as domain shifts, can substantially degrade the performance
of predictive models that were trained on data from a single or limited number of sources. For in-
stance, a respiratory failure prediction model (Lam et al., 2024) trained on ICU cohort from UC San
Diego Health showed an approximately 12% drop in the area under the curve (AUC) when evaluated
on an external ICU cohort.
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Addressing this challenge requires adaptive methodologies that can account for site-specific hetero-
geneity. Existing approaches include pre-training models on large multi-center datasets (Shashiku-
mar et al., 2021b), and transfer learning to fine-tune models on site-specific data (Lam et al., 2024)
to align feature representations across domains. While these methods have shown promise, many
require access to labeled data from the target domain during training or involve computationally ex-
pensive retraining processes, which are not always feasible in real-time clinical settings. Test-time
training (TTT) offers a novel and efficient solution to this problem by enabling models to adapt
dynamically at the time of prediction, without requiring pre-access to target domain labels or costly
re-training. TTT leverages an auxiliary task, trained alongside the main task, to update the model’s
parameters or representations using the test input itself.

Predictive systems based on EHR data, such as Composer (Shashikumar et al., 2021a), have
shown significant real-world impact to improve clinical outcomes through real-time decision sup-
port (Boussina et al., 2024). In a before-and-after quasi-experimental design study at two emergency
departments (EDs), the Composer model for sepsis prediction significantly increased bundle com-
pliance and reduced in-hospital mortality. However, limited prior work has explored TTT in the
context of EHR data, particularly in real-world clinical scenarios. By enabling dynamic adaptation
at prediction time, TTT addresses variability across institutions and patient populations, ensuring
robust performance in critical tasks, such as predicting IMV need in multi-center cohorts. Unlike
pretraining/offline alignment approaches (e.g., MaskTab (Chen et al.), PhyMask (Kara et al., 2024),
and SPOT (Gurumoorthy et al., 2021)), which require source data and extended training, our setting
is source-free and demands on-the-fly adaptation at deployment.

In this study, we introduce Adaptive Test-Time Training (AdaTTT) for predicting IMV need 24
hours in advance in ICU patients across multi-center cohorts. AdaTTT is designed to address domain
shifts in EHR data through adaptive self-supervised learning and robust feature alignment. Our key
contributions are as follows:

• We derive information-theoretic bounds on the test-time prediction error to show that the
error is constrained by the uncertainty between the main and auxiliary tasks, which guide
the design of auxiliary tasks for better adaptation.

• We introduce two SSL tasks: Reconstruction and Masked Feature Modeling along with
a dynamic masking strategy that prioritizes the most informative features during test-time
training. The masking probabilities adapt based on feature relevance to the primary task,
ensuring that the SSL task remains aligned with the IMV prediction objective.

• To prevent overfitting to individual test samples, we integrate prototype learning with Par-
tial Optimal Transport (POT) to allow partial matching between source domain features
and test-time distributions, which promotes robust generalization while avoiding excessive
adaptation to test-domain noise.

• We conduct extensive experiments on multi-site ICU cohorts, where our method achieves
competitive classification performance across various test-time adaptation benchmarks.

2 RELATED WORK

2.1 PREDICTIVE MODELS FOR INVASIVE MECHANICAL VENTILATION

Early IMV-risk tools such as ROX and regression scores are interpretable but struggle with nonlinear,
time-varying physiology (Roca et al., 2019). Leveraging EHR-scale data, VentNet predicts IMV 24h
ahead with a feedforward model (Shashikumar et al., 2021b); encoder–decoder designs like DBNet
integrate structured signals and demographics (Zhang et al., 2021); and multimodal hybrids that fuse
CXR with EHR further boost discrimination (Tandon et al., 2023). However, cross-site performance
often degrades due to population, workflow, and EHR heterogeneity; recovery via target-domain
fine-tuning is common but label-intensive and operationally impractical for continuous deployment.

2.2 TEST-TIME ADAPTATION

TTA adapts models on unlabeled test inputs without revisiting source data (Liang et al., 2024).
Batch normalization(BN)-centric methods include prediction-time BN statistics updates (Nado et al.,
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2020) and TENT’s entropy minimization for BN parameters (Wang et al., 2020), while source-free
SHOT freezes the classifier and adapts the encoder with pseudo-labels (Liang et al., 2020). Test-
time training (TTT) attaches auxiliary SSL branches for online encoder updates (Sun et al., 2020);
extensions like TTT++ (contrastive) and ClusT3 (clustering) improve alignment but may inherit
instability or assume domain consistency (Liu et al., 2021; Hakim et al., 2023).

Three relevant directions are: (i) T3A, an optimization-free method forming class prototypes from
streaming test data to reweight logits that is efficient but classifier-level only, assuming stable
class structure (Iwasawa & Matsuo, 2021); (ii) SAR, which filters unreliable samples and ap-
plies sharpness-aware entropy minimization for stable BN updates that is effective with small
batches yet BN-dependent (Niu et al., 2023); (iii) CoTTA, maintaining a moving teacher with
augmentation- and weight-averaged pseudo-labels plus periodic restoration, is useful for long hori-
zons but hyperparameter-sensitive with potential error accumulation (Wang et al., 2022).

In EHR-driven IMV prediction, these approaches face practical challenges: tiny per-encounter
batches undermine BN estimates; pseudo-labeling struggles with class imbalance and temporal non-
stationarity; clustering assumptions break under irregular sampling and missingness; classifier-only
adaptation cannot address representation shift, making direct application from vision to ICU EHRs
difficult.

3 METHODOLOGY

3.1 PRELIMINARY: TEST-TIME TRAINING

Let x ∈ X denote an input instance from the covariate space, ym ∈ Ym denote the corresponding
label for the main task (e.g., classification), and ys ∈ Ys denote the auxiliary label derived for a
self-supervised task. The training set is represented as {(xi, ym,i)}ns

i=1. At test time, both covariate
distribution p(X ′) and label distribution p(Y ′

m) p(Y ′
s ) may change, which leads to domain shifts.

Test-Time Training (Sun et al., 2020) addresses these shifts by leveraging the same SSL task during
both the training and testing phases to align features between the training domain and individual
test instances. The framework consists of a shared feature encoder fe(·; θe), a primary classification
head hc(·; θc) and an SSL head hs(·; θs).
During training, TTT jointly optimizes both the main classification loss Lmain and the auxiliary SSL
loss Lssl as

θ∗e , θ
∗
c , θ

∗
s = arg min

θe,θc,θs

∑ns

i=1 Lmain(xi, yi; θe, θc) + Lssl(xi; θe, θs). (1)

At inference time, rather than relying on static model parameters, TTT dynamically adapts the en-
coder for each test instance x′ by optimizing the SSL objective with

θe(x
′) = argmin

θe
Lssl(x

′; θ∗s , θe). (2)

The adapted encoder is then used to obtain the final prediction with

ŷ = hc(fe(x
′; θe(x

′)); θ∗c ). (3)

3.2 THEORETICAL INSIGHTS

Prior work (Liu et al., 2021) derives accuracy bounds under assumptions of distributional alignment
and task consistency. We provide an independent perspective based on information theory that ex-
amines how the auxiliary task informs the main task through shared representations. Let Z and
Z ′ represent the feature representations from the feature encoder for the training and test domains,
respectively. We define πm is the main task classifier predicting Ym, and πs is the SSL classifier pre-
dicting Ys. The probability P (πm(Z ′) = Y ′

m) quantifies the likelihood that the main task classifier
πm correctly predicts the main task label Y ′

m at test time.

In test-time training, we assume the Markov chain Y ′
s → Z ′ → Y ′

m holds, which captures the
dependency structure where the auxiliary task labels Y ′

s influence the main task labels Y ′
m only
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through the shared representation Z ′. Under this assumption, we establish the relationship between
the mutual information of the auxiliary and main tasks (please refer to Appendix A.1 for derivation
details).

In test-time training, where only the shared representation layers are updated using Y ′
s , the following

inequality holds:
I(Z ′;Y ′

m) ≥ I(Y ′
s ;Y

′
m). (4)

Building on this, we derive information-theoretic bounds on the main task prediction error with
binary case in the ideal scenario (please refer to Appendix A.2 for derivation details and multi-class
case). Let η(z′) = P{Y ′

m = 1 | Z ′ = z′} > 0.5 as positive, the minimum classification error
is p(e) =

∫
Z′ min{η(z′), 1 − η(z′)}dp(z′) and Herr(η) = −η · log η − (1 − η) · log(1 − η), the

prediction error is bounded by

H−1
err (H(Y ′

m | Y ′
s )) ≤ p(e) ≤ 1

2
H(Y ′

m | Y ′
s ). (5)

The lower and upper bounds on the prediction error of the main task highlights the relationship
between the main task and the SSL task in performance after adaptation. The upper bound shows
that error is limited by the conditional uncertainty H(Y ′

m | Y ′
s ) while the lower bound demon-

strates that lower H(Y ′
m | Y ′

s ) improves worst-case guarantees. Additionally, under domain shift
w(ys) =

P (Y ′
s=ys)

P (Ys=ys)
, H(Y ′

m | Y ′
s ) =

∑
ys

w(ys)P (Ys = ys)H(Y ′
m | Y ′

s = ys), Theorem 1 shows
overfitting to the test-domain auxiliary task distribution P (Y ′

s ) can lead to overweighting regions
with high uncertainty H(Y ′

m | Y ′
s ). Enforcing P (Y ′

s ) = P (Ys) without accounting for test-specific
shifts can further harm model generalization. These findings emphasize the necessity of designing
a framework that ensures strong alignment between the main and auxiliary tasks while remaining
robust to domain shifts for effective test-time adaptation.

3.3 ADAPTIVE TEST-TIME TRAINING

The effectiveness of test-time training depends on SSL alignment with the main task and handling
distribution shifts. To address this, we propose Adaptive Test-Time Training (AdaTTT) to enhance
TTT with dynamic self-supervised learning and prototype-guided adaptation, which aims to improve
generalization under clinical domain shifts in EHR data.

3.3.1 DYNAMIC SELF-SUPERVISED LEARNING

Fixed SSL transformations (e.g., random feature masking) may introduce spurious patterns unre-
lated to the main task. In EHR data, some features are more predictive, and treating all equally
reduces adaptation effectiveness. To mitigate this, we introduce two pretext tasks: Reconstruction
and Masked Feature Modeling along with a dynamic feature masking strategy that prioritizes infor-
mative features.

SSL Loss. Given an input vector x and the the corrupted input x̃, the reconstruction loss and masked
feature modeling loss are defined as

Lrecon =
1

d

d∑
j=1

(
xj − x̂j

)2
, (6)

where d is the total number of features, and x̂j represents the reconstructed value of feature xj

predicted by the model.

Lmfm =
1

|M |
∑
j∈M

(
xj − x̂j

)2
, (7)

where M is the set of indices of masked features (mj = 1), and |M | denotes the number of masked
features.

The overall self-supervised learning loss combines the reconstruction loss and the masked feature
modeling loss with

Lssl = λrecon · Lrecon + Lmfm, (8)
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Dynamic Feature Masking. Instead of fixed random masking, we introduce an adaptive masking
strategy that assigns higher masking probabilities to more informative features. Given an input
vector x, the corrupted input x̃ is generated as follows:

x̃j = mj · f(x, j) + (1−mj) · xj , (9)

where m ∈ [0, 1]d is the mask vector with elements mj . f(x, j) ∼ P (xj) is a replacement for
feature xj where P (xj) is the empirical distribution of training or testing data.

Masking probabilities are dynamically updated based on global feature relevance scores derived
from the main task:

Ij =
1

ns

ns∑
n=1

∣∣∣∣∣∂Y (n)
m

∂x
(n)
j

· x(n)
j

∣∣∣∣∣ , (10)

pm,j =
Ij −mink Ik

maxk Ik −mink Ik
. (11)

The masking phrases in the training section are described as follows: In the training phase, we
employ a two-stage masking strategy. During the warmup phase (Epochs 1–N), dynamic masking
is applied using a fixed prior mask probability to encourage broad feature exploration (the prior is
derived from a pretrained respiratory failure prediction model). In the subsequent adaptive masking
phase (Epochs N+1–End) feature relevance scores are updated at each epoch based on the model’s
main task predictions from the previous epoch. These relevance scores are then used to refine the
masking probabilities to enable the model to focus on more informative features over time.

During test-time training, the model continues refining masking probabilities at each gradient step
to ensure SSL tasks remain aligned with the primary task. Prioritizing the most informative fea-
tures challenges the model to reconstruct or predict essential aspects of the data and then improve
generalization under domain shifts.

3.3.2 PROTOTYPE-GUIDED ADAPTATION

To improve adaptation and prevent overfitting, we integrate prototype learning and Partial Optimal
Transport (POT) to guide feature alignment.

Training Stage. We introduce a prototype learning loss that encourages the shared layer features
z to align with their corresponding prototypes P. These prototypes are designed to effectively
represent the distribution of the feature space z and ensure that the feature embeddings are compact
and structured around these representative points.

The prototype learning loss is defined as

Lproto(zi;P) = ∥zi − pA(zi)∥
2
2, (12)

where P = {p1, p2, ..., pk} is the set of k prototypes. pA(zi) is the prototype assigned to the feature
zi based on the cluster assignment A(zi).

To prevent all features are assigned to a single prototype, a regularization term is added to balance
the cluster assignments:

Lreg(P) =

k∑
j=1

(
1

ns

ns∑
i=1

I(A(zi) = j)− 1

k

)2

, (13)

where I(A(zi) = j) is an indicator function that equals 1 if zi is assigned to prototype pj .

The final loss function incorporating prototypes is given as

L =
∑ns

i=1

[
Lmain(xi, yi) + Lssl(xi) + λprotoLproto(zi)

]
+ λregLreg(P), (14)

where Lmain is the respiratory failure prediction loss. Lssl is the self-supervised loss (see Section
3.3.1). Lreg is the regularization loss for balanced assignment. λproto and λreg are hyperparameters
controlling the importance of the prototype and regularization terms.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Test-Time Training Stage. Traditional Optimal Transport (OT) assumes a full alignment between
source and target distributions, which may be too rigid in the presence of domain shifts. We refine
the alignment between the training prototypes P and the test-time feature representations z′ by
incorporating POT. Instead of constraining the transport plan to only partially align prototypes with
the test instance (Chapel et al., 2020), we augment the set of z′ by adding k−1 perturbed duplicates
to transform the transport problem into a standard optimal transport setting while enabling partial
matches between z′ and the prototypes P.

z′ = {z′, z′1, . . . , z′k−1}, (15)
where each duplicate z′j is sampled as

z′j,d ∼ z′d +N (0, σ2
d), (16)

σ2
d =

1

k

k∑
j=1

(pj,d − µd)
2
, (17)

where pj,d is the value of the d-th dimension of the j-th prototype pj , µd is the mean of the d-th
dimension across all prototypes.

The loss function employed during test-time training is defined as

Ltest = Lssl + λot ·
∑
i,j

γijCij , (18)

where λot is a hyperparameter balancing the importance of the OT cost in the overall loss. γij
defines the mass transported from z′i to the j-th prototype. Cij = ∥z′i −pj∥22 represents the squared
Euclidean distance between z′i and the prototype pj .

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We conduct a retrospective study using de-identified EHR data of all adult patients (≥
18 years) admitted to the ICU at Site A1 between January 1, 2016, and December 31, 2023. This
dataset served as the development and validation cohort. To evaluate the mechanisms of test-time
training, we utilize additional datasets, including ICU admissions at Site A between January 1, 2024,
and June 30, 2024, Site B between January 1, 2023, and August 31, 2024, as well as the publicly
available MIMIC-IV dataset. Institutional Review Board approval was obtained for the use of these
datasets. Appendix B.1 provides full details on cohort selection and data processing. Our devel-
opment cohort consists of 24,943 encounters, with 1,308 positive cases (IMV prevalence: 5.2%).
The testing cohorts include Site A (1,835 encounters, 104 positive cases, IMV prevalence: 5.7%)
and Site B (2,564 encounters, 141 positive cases, IMV prevalence: 5.5%). The original MIMIC-IV
dataset contains 35,534 encounters with an IMV prevalence of 15.4%. For computational efficiency,
we randomly downsampled MIMIC-IV to 2,069 encounters (244 positive cases with an IMV preva-
lence of 11.8%).

Implementation Details. Our network architecture follows Vent.io (Lam et al., 2024) (Ap-
pendix B.2). We use Bayesian optimization for source-domain pretraining to tune general network
hyperparameters (learning rate, weight regularization, number of hidden layers). The prototype set
size is k = 4. For dynamic masking, we adopt a two-phase schedule: a warm-up phase with a
fixed prior mask probability of 0.5, followed by an adaptive phase where masking probabilities are
updated from feature relevance. During deployment, test-time training (TTT) performs five gradient
steps per input (we refer to each step as an “iteration”), and we follow the standard reset protocol
(Sun et al., 2020) by restoring encoder weights to the pretrained state after each instance. For par-
tial optimal transport, we use Sinkhorn with entropic regularization ε = 0.1, a maximum of 1000
Sinkhorn iterations, and a mini-batch size equal to the prototype count (K = k). All baselines are
re-implemented with the same encoder, data pipeline, and hyperparameter search budget to ensure a
fair comparison.

1For anonymization purposes, the name of the healthcare institution has been replaced with Site ×.
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Table 1: AUC (%) across testing sites (↑ higher is better).

Dataset

TE
ST

Co
TT

A

T3
A

SA
R

TE
N

T

TT
T

TT
T+

+

Cl
us

T3

N
C-

TT
T

Pr
iT

TT
(O

ur
s)

Dy
nT

TT
(O

ur
s)

Ad
aT

TT
(O

ur
s)

Site A 84.01 83.12±0.02 82.50±0.04 84.30±0.04 82.19±0.11 82.55±0.09 82.50±0.06 82.36±0.08 82.32±0.06 84.61±0.03 84.54±0.10 85.02±0.05

Site B 83.75 83.81±0.04 83.10±0.05 83.20±0.10 83.06±0.08 82.81±0.05 82.85±0.10 81.99±0.12 83.62±0.10 83.98±0.06 83.84±0.12 84.10±0.05

MIMIC-IV 75.28 76.60±0.05 76.10±0.03 75.72±0.04 74.34±0.05 76.45±0.07 76.24±0.08 74.41±0.11 75.27±0.08 76.84±0.03 76.79±0.05 77.17±0.08

Table 2: Brier score across testing sites (↓ lower is better).

Dataset

TE
ST

Co
TT

A

T3
A

SA
R

TE
N

T

TT
T

TT
T+

+

Cl
us

T3

N
C-

TT
T

Pr
iT

TT
(O

ur
s)

Dy
nT

TT
(O

ur
s)

Ad
aT

TT
(O

ur
s)

Site A 0.089 0.092±0.01 0.093±0.01 0.089±0.02 0.090±0.04 0.093±0.03 0.094±0.01 0.090±0.03 0.090±0.01 0.089±0.02 0.089±0.01 0.086±0.02

Site B 0.089 0.091±0.01 0.091±0.02 0.091±0.02 0.091±0.03 0.094±0.02 0.095±0.04 0.092±0.04 0.091±0.03 0.090±0.03 0.089±0.02 0.085±0.02

MIMIC-IV 0.111 0.110±0.02 0.110±0.03 0.111±0.03 0.114±0.04 0.110±0.04 0.111±0.05 0.113±0.04 0.113±0.05 0.110±0.05 0.112±0.04 0.106±0.04

Evaluation. We follow the clinical labeling scheme (Lam et al., 2024) to capture the physiological
states of respiratory failure, defining score ≥ 3 as positive and < 3 as control (Appendix B.1).
Encounters are categorized as True Positive, False Positive, True Negative, or False Negative based
on predictions within the specified prediction window (criteria in Appendix B.1). Performance
is reported as AUC with mean ± standard error over 20 independent test-time training runs. In
addition, following best practices for clinical prediction model assessment (Huang et al., 2020), we
report Brier score for all models to evaluate calibration and clinical utility more comprehensively.

4.2 COMPARISON WITH BASELINES

Baselines. We consider a set of foundational and representative TTT and TTA methods and adapt
each to the EHR domain to ensure fair and meaningful comparison in our experimental evaluations
(Appendix B.3 provides full details of adapting baselines to EHR setting): TEST, TENT (Wang
et al., 2020), TTT (Sun et al., 2020), TTT++ (Liu et al., 2021), ClusT3 (Hakim et al., 2023), NC-
TTT (Osowiechi et al., 2024), T3A (Iwasawa & Matsuo, 2021), SAR (Niu et al., 2023) and CoTTA
(Wang et al., 2022). We also evaluate two ablated versions of our method: PriTTT, which removes
the adaptive distribution matching module and relies solely on updates to the mask probabilities
for test-time training. DynTTT, which removes the dynamic masking module and focuses only on
adaptive distribution matching.

Results & Analysis. Tables 1 (AUC) and 2 (Brier) report discrimination and calibration across three
cohorts. AdaTTT obtains the top AUC on every site. Among non-TTT/TTA methods, SAR is closest
on Site A (84.30±0.04), and CoTTA is competitive on MIMIC-IV (76.60±0.05), yet both remain
below AdaTTT. Regarding calibration, AdaTTT improves or matches calibration on Site A/B (Brier
0.086/0.085 vs. TEST 0.089/0.089) and achieves 0.106±0.04 on MIMIC-IV.

Figure 1: Risk score evolution during test-time training for
a patient from Site A. Risk increases as intubation nears,
which reflects model adaptation.

The behavior of the baselines is con-
sistent with their assumptions and
with the numbers in Tables 1–2.
TENT’s entropy minimization en-
courages confidence that can be
misplaced on out-of-distribution pa-
tients. Standard TTT and TTT++
attach feature-agnostic SSL objec-
tives and, in the latter, enforce rela-
tively rigid source–target alignment;
both are brittle when clinical feature
importance is highly unequal across
variables and when hospital shifts are
complex. ClusT3’s discrete codes
and domain-consistency assumption
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struggle with continuous physiology and site heterogeneity; NC-TTT’s contrastive likelihoods de-
pend on well-specified “noise,” which is hard to define for heterogeneous EHR features. Classifier-
only adjustment in T3A helps when classes are tightly clustered (MIMIC-IV 76.10±0.03) but cannot
correct representation shift (Site A 82.50±0.04). SAR stabilizes BN-based updates and fares well
on Site A (84.30±0.04) but remains sensitive to batch-statistics quality, yielding inconsistent im-
provements on Site B/MIMIC-IV.

We also examine how AdaTTT achieves its gains. Figure 1 illustrates the evolution of risk scores
across time points for a patient from Site A. Early predictions trend lower, but risk escalates ap-
proaching the intubation event (within 24 hours), demonstrating dynamic response to clinical de-
terioration. First, aligning the auxiliary SSL objective with the clinical endpoint is critical: with
dynamic, feature-aware masking, the SSL branch prioritizes clinically salient variables and down-
weights weak signals. Figure 2 traces feature importance from pretrained priors through early to
late training epochs2. During warm-up, masking follows the priors; as training proceeds, the dis-
tribution stabilizes and aligns with learned relevance, indicating tighter coupling between SSL and
IMV prediction than in feature-agnostic TTT/TTT++. Second, at deployment the model refines
importance per input: Figure 3 shows that some features remain stable while others (e.g., respira-
tory rate) gain weight across iterations, consistent with model faithfulness and clinical plausibility.
In parallel, prototype-guided partial optimal transport flexibly matches test-time representations to
learned prototypes, limiting overfitting to idiosyncratic or noisy samples while preserving clinically
meaningful structure (see Appendix C.1 for an illustrative alignment). Ablations support this in-
terpretation: PriTTT (feature-aware masking only) and DynTTT (distribution matching only) each
improve over TTT/TTT++, but their combination yields the most consistent AUC and Brier gains
across sites.

Figure 2: Feature importance evolution during
training. The heatmap shows the changes in fea-
ture importance in the initial epochs and final
epochs.

Figure 3: An example of feature impor-
tance evolution during test-time training. The
heatmap shows the changes in feature impor-
tance across different iterations.

Computational Cost. Our proposed AdaTTT framework incorporates both feature importance up-
dates and optimal transport computation during the test-time training phase. These additional op-
erations inevitably increase the computational cost compared to standard TTT frameworks. We use
the Sinkhorn algorithm (Sinkhorn, 1967) that leverages entropy regularization to ensure scalable
computations. We evaluate the execution time of a single gradient update during test-time training.
The average execution time is 0.29s, and did not change much, remaining at 0.26s when increasing
the prototype size from 4 to 16.

4.3 SENSITIVITY ANALYSIS

In this section, we examine the effect of the number of test-time training iterations and compare
reset versus sequential update mechanisms. Additional ablations are provided in Appendix C.2
which investigate (1) the impact of prototype size, (2) the role of prototype learning, and (3) the
effect of dynamic masking and the two SSL objectives.

Comparison of the number of iterations. Figure 4 presents the impact of the number of test-time
training iterations on model performance across three different test cohorts. We evaluate the AUC
scores as the number of gradient updates increases from 1 to 5 iterations. Across all sites, AdaTTT
exhibits a stable and consistent improvement in AUC with more iterations. In contrast, PriTTT

2ICULOS: ICU length-of-stay to time t; Resp: respiratory rate; HR: heart rate; LD: lymphocyte differential;
BUN: blood urea nitrogen; O2Sat: oxygen saturation; WBC: white blood count.
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(a) Site A. (b) Site B. (c) MIMIC-IV.

Figure 4: Evaluation of the number of gradient updates for test-time training on different test cohorts.

(a) Site A. (b) Site B. (c) MIMIC-IV.

Figure 5: Cumulative AUC trend over an increasing number of patients.

and DynTTT show less consistent trends, with fluctuations in performance, particularly in Site B.
PriTTT updates feature importance dynamically without a stable reference and is sensitive to initial
feature importance variations. Meanwhile, DynTTT lacks feature selection control, which can lead
to suboptimal emphasis on features between the main and SSL tasks.

Reset versus Sequential Update Mechanism. Compared with the reset strategy, the sequential up-
date mechanism applies one gradient step at each new data point and retains the updated parameters
across subsequent data points. Figure 5 presents the cumulative AUC trend across different sites
under the sequential update mechanism. In Site B and MIMIC-IV, performance initially improves
as the model adapts to recent distributional shifts (e.g., achieving 80.27% AUC on MIMIC-IV),
demonstrating the benefits of short-term adaptation. However, as updates continue across a larger
patient population, the model’s performance gradually deteriorates. This degradation is likely due
to accumulated adaptation noise, which shifts the model’s focus away from its originally learned
feature structure.

5 CONCLUSION

In this study, we introduce Adaptive Test-Time Training (AdaTTT) framework for predicting IMV
need 24 hours in advance in ICU patients across multi-center cohorts. Our approach leverages dy-
namic self-supervised learning with feature-aware masking and adaptive distribution matching via
POT to mitigate domain shifts commonly encountered in real-world EHR data. Through compre-
hensive evaluations on multi-center ICU datasets, we demonstrate that AdaTTT consistently out-
performs traditional test-time adaptation methods in improving predictive accuracy. Our frame-
work provides a scalable, efficient, and real-time adaptation strategy for predictive clinical decision-
making in critical care settings.

ETHICS STATEMENT

Compliance and oversight. This study analyzes de-identified electronic health records (EHR)
from multiple partner institutions (anonymized as Sites A/B) under appropriate institutional review
and data-governance oversight, with a waiver of consent where applicable due to de-identification
and minimal risk. All activities complied with relevant privacy regulations (e.g., HIPAA) and lo-
cal security policies. No attempt was made to re-identify individuals, and all reported results are
aggregate.
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Intended use and clinical safety. The model is a research prototype for risk stratification and is
not a stand-alone medical device. It should only be used with clinician oversight. Any real-world
deployment would require prospective evaluation, safety monitoring, and regulatory review. We
report discrimination and calibration (AUC, Brier score) to support assessment of clinical utility and
risk.

Fairness and shift. We evaluate across distinct clinical sites to assess robustness under distribution
shift, and we report calibration as recommended for clinical prediction models. Despite these efforts,
residual bias and under-representation are possible; models trained in one setting may underperform
elsewhere. We caution against out-of-scope use.

Source-free adaptation safeguards. Test-time adaptation updates only the encoder on a per-
encounter basis and then resets weights before the next patient/time point, preventing cross-patient
carryover. No patient-level exemplars or gradients are stored; adaptation logs contain no protected
health information.

Transparency and conflicts. We will release code and configuration sufficient for reproduction
(subject to data-use constraints). Funding and potential conflicts will be disclosed in the camera-
ready version. All authors adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We describe the cohort construction, preprocessing, and labeling scheme in Sec. B.1; the architecture
and training protocol in Sec. B.2 and Sec. 4.1; and sensitivity analyses/ablations in Sec. C.2. We
report full metric definitions (AUC, Brier) and evaluation procedures. We will release anonymized
code (data loaders, feature engineering, training/evaluation scripts, and plotting utilities) to allow
end-to-end replication with public data, and provide configuration files to reproduce all tables/figures
from logs.
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A THEORETIC ANALYSIS

A.1 PROOF OF I(Z ′;Y ′
m) ≥ I(Y ′

s ;Y
′
m)

Using the chain rule of mutual information, we can expand the mutual information between Z ′ and
the joint variables (Y ′

m, Y ′
s ) as

I(Z ′;Y ′
m, Y ′

s ) = I(Z ′;Y ′
s ) + I(Z ′;Y ′

m | Y ′
s ). (19)

Using the chain rule of mutual information again, we have

I(Z ′;Y ′
m) = I(Z ′;Y ′

m, Y ′
s )− I(Z ′;Y ′

s | Y ′
m)

=
(
I(Z ′;Y ′

s ) + I(Z ′;Y ′
m | Y ′

s )
)
− I(Z ′;Y ′

s | Y ′
m).

(20)

In the test-time training framework, Z ′ is optimized to retain information from Y ′
s that is predictive

of Y ′
m. We model this by assuming

I(Z ′;Y ′
m | Y ′

s )− I(Z ′;Y ′
s | Y ′

m) ≥ 0.

Applying the Data Processing Inequality (DPI) to our Markov chain, we obtain

I(Y ′
s ;Y

′
m) ≤ I(Y ′

s ;Z
′). (21)

From the mutual information decomposition derived earlier, we know that

I(Z ′;Y ′
m) ≥ I(Z ′;Y ′

s ) + I(Z ′;Y ′
m | Y ′

s ). (22)

Since mutual information is always non-negative,

I(Z ′;Y ′
m | Y ′

s ) ≥ 0. (23)

Therefore,
I(Z ′;Y ′

m) ≥ I(Z ′;Y ′
s ). (24)

Combining this with the DPI result

I(Y ′
s ;Y

′
m) ≤ I(Y ′

s ;Z
′) = I(Z ′;Y ′

s ),

we obtain the final inequality as
I(Z ′;Y ′

m) ≥ I(Y ′
s ;Y

′
m). (25)
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A.2 PROOF OF PREDICTION ERROR BOUNDS OF THE MAIN TASK

A.2.1 BINARY CASE

For the two-class problem, the classifier predicts the input z′ with the posterior η(z′) = P{Y ′
m =

1 | Z ′ = z′} > 0.5 as positive, the minimum prediction error is

p(e) =

∫
Z′

min{η(z′), 1− η(z′)}dp(z′). (26)

Then Shannon entropy for a binary random variable with the distribution (η, 1− η) is defined as

H(η) = −η · log η − (1− η) · log(1− η), η ∈ [0, 1]. (27)

The expectation of the above function with respect to z′ ∼ Z ′ is

H(Y ′
m | Z ′) = Ez′∼Z′ [H(η(z′))] =

∫
Z′

H(η(z′))dp(z′). (28)

Based on Fano’s inequality, we have Herr(p(e)) ≥ H(Y ′
m | Z ′). As p(e) ≤ 0.5 and the function

Herr(p(e)) is monotonically increasing for 0 ≤ η ≤ 0.5, we have

p(e) ≥ H−1
err (H(Y ′

m | Z ′)). (29)

Given that H(Y ′
m | Z ′) = H(Y ′

m) − I(Z ′;Y ′
m) and H(Y ′

m | Y ′
s ) = H(Y ′

m) − I(Y ′
s ;Y

′
m), in the

ideal test-time training under our Markov chain assumption Y ′
s → Z ′ → Y ′

m, Z ′ is as informative
about Y ′

m as Y ′
s is, we have

H(Y ′
m | Z ′) = H(Y ′

m | Y ′
s ), (30)

then the lower bound of p(e) is obtained as

p(e) ≥ H−1
err (H(Y ′

m | Y ′
s )). (31)

Under Hellman’s inequality (Hellman & Raviv, 1970), we have

p(e) ≤ 1

2
H(Y ′

m | Z ′), (32)

given I(Z ′;Y ′
m) ≥ I(Y ′

s ;Y
′
m), the upper bound of p(e) is derived as

p(e) ≤ 1

2
H(Y ′

m | Y ′
s ). (33)

A.2.2 MULTI-CLASS CASE

In a multi-class scenario, we assume k classes, denoted as {1, . . . , k}, and the main head classifier
Ŷ ′
m maps the input z′ ∈ Z ′ to one of these k classes. For η = [η1, . . . , ηk], we have

h(η) = −
k∑

Y ′
m=1

ηY ′
m
log ηY ′

m
, (34)

H(Y ′
m | Z ′) = Ez′∼Z′ [h(η(z′))] =

∫
Z′

h(η(z′))dp(z′), (35)

p(e) = P (Y ′
m ̸= Ŷ ′

m) = 1−
k∑

Y ′
m=1

∫
Z′
1{Y ′

m=Ŷ ′
m}ηY ′

m
(z′)dp(z′) = 1− Ez′∼Z′ [max{η(z′)}] .

(36)
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Table 3: Criteria of clinical labeling scheme.

Condition Criteria Points

PaO2/FiO2 (not NaN)

200 < PaO2/FiO2 ≤ 300mmHg 1
PaO2/FiO2 ≤ 200mmHg (severe hypoxemia) 2
IMV ≤ 24 hours 3
PaO2/FiO2 ≤ 200mmHg and IMV ≤ 24 hours 4
IMV > 24 hours 5

SpO2/FiO2 (not NaN)

141 < SpO2/FiO2 ≤ 221mmHg 1
SpO2/FiO2 ≤ 141mmHg (severe hypoxemia) 2
IMV ≤ 24 hours 3
SpO2/FiO2 ≤ 141mmHg and IMV ≤ 24 hours 4
IMV > 24 hours 5

Based on the simplified Fano’s inequality (Thomas & Joy, 2006), we have

p(e) ≥ H(Y ′
m | Z ′)− 1

log(|Y ′
m|)

≥ H(Y ′
m | Z ′)− 1

log(k)

(37)

Similar to the derivation in binary base, we can obtain

p(e) ≥ H(Y ′
m | Y ′

s )− 1

log(k)
, (38)

and when k ≥ 4, the following always holds:

H(Y ′
m | Y ′

s )− 1

log(k)
≤ p(e) ≤ 1

2
H(Y ′

m | Y ′
s ). (39)

B DATASET, MODEL AND BASELINES

B.1 DATASET

Patient inclusion and exclusion criteria. Patients were included in the respiratory failure predic-
tion analysis if they had an ICU stay of at least five hours, were not mechanically ventilated before
ICU admission, and had documented vital signs and laboratory values prior to the prediction start
time. Those with a Do Not Resuscitate (DNR) order were excluded, and data within 24 hours of
surgery were omitted to avoid bias from surgery-related ventilation. Monitoring continued until me-
chanical ventilation was initiated or ICU discharge. To ensure sufficient data, predictions began four
hours post-admission and were updated hourly using the latest clinical information.

Data abstraction and processing. We extracted EHR data encompassing 50 vital signs and labora-
tory measurements, 6 demographic features, 12 Systemic Inflammatory Response Syndrome (SIRS)
and Sequential Organ Failure Assessment (SOFA) criteria, 12 medication categories, and 62 comor-
bidities. To handle varying sampling frequencies, vital signs and laboratory values were aggregated
into hourly time-series bins, with multiple measurements per hour summarized using the median.
Data updates occurred hourly, with missing values carried forward for up to 24 hours if no new data
were available. Remaining missing values were imputed using the mean. Additionally, we derived
150 features from the 50 vital signs and laboratory measurements, including baseline values (mean
over the previous 72 hours), local trends (change since the last measurement), and time since last
measured (TSLM).

Clinical labeling scheme for the various physiological states of respiratory failure. Table 3 lists
the labeling criteria used in (Lam et al., 2024).

Encounter-level evaluation. Table 4 lists the details of evaluation metrics.
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Table 4: Definitions of evaluation metrics based on predictions and labels.

Metric Definition
True Positive (TP) A positive prediction (predictions[t] ≥ threshold) where there is at least

one positive label within the prediction window (up to 24 hours before T0
a).

False Positive (FP) A positive prediction (predictions[t] ≥ threshold) where no positive labels
exist within the prediction window (up to 24 hours before T0).

False Negative (FN) A negative prediction (predictions[t] < threshold) where a positive label
exists within the prediction window (up to 24 hours before T0).

True Negative (TN) A negative prediction (predictions[t] < threshold) where no positive labels
exist throughout the evaluated timestamps.

a T0 is defined as the first timestamp where a patient is ventilated based on the simultaneous
recording of PEEP and FiO2.

B.2 NETWORK ARCHITECTURE

Figure 6: The developed network architecture. The encoder consists of a TSLM Layer followed by
a feedforward neural network. Both main head and SSL head are feedforward neural networks

Our model follows a Y-shaped design with a shared encoder and two task heads (Fig. 6). At
each hourly timestamp we assemble a structured input comprising static demographics, comorbidi-
ties/medications, and time-varying vitals/labs augmented with their time-since-last-measurement
(TSLM). A lightweight TSLM layer ingests each raw value xj and its recency ∆tj , applying a
learnable decay/gating function to down-weight stale observations and inject a recency embedding;
the resulting features are concatenated with the static covariates and passed to a multilayer per-
ceptron encoder fe(·; θe) to produce a latent representation z ∈ Rd. Two shallow feedforward
heads operate on z: a main classifier πm(·; θc) outputs the probability of IMV within 24 h, and a
self-supervised head πs(·; θs) supports reconstruction and masked-feature modeling driven by our
dynamic, feature-aware masking scheme. At deployment the classifier and SSL head are frozen, and
for each test example we adapt only the encoder for a few gradient steps; the adapted encoder is then
used to produce the final risk score, after which weights are reset before the next instance.

B.3 BASELINES

We compare against representative TTA/TTT methods and adapt each fairly to the EHR setting:
TEST, TENT (Wang et al., 2020), TTT (Sun et al., 2020), TTT++ Liu et al. (2021), ClusT3
(Hakim et al., 2023), NC-TTT (Osowiechi et al., 2024), T3A (Iwasawa & Matsuo, 2021), SAR
(Niu et al., 2023), and CoTTA (Wang et al., 2022).

Fairness and EHR-specific protocol. All methods use the same data pipeline (hourly aggrega-
tion, carry-forward ≤24h, mean imputation, and TSLM features), the same shared encoder as ours
(Sec. B.2), and identical source-domain pretraining (optimizer, weight decay, early stopping). At
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deployment we enforce the source-free constraint (no source samples/labels). For gradient-based
methods we fix the same test-time budget: five update steps, identical step size schedule, and reset-
to-pretrained after each instance; the classifier head is frozen unless the baseline explicitly modifies
it. Methods that require batch statistics (e.g., BN-based TTA) use the same first-in–first-out buffer
of recent test samples to compute moments; the buffer size and confidence thresholds are tuned
on the development validation split under the same hyperparameter budget (Bayesian optimization)
for all methods. For approaches that rely on data augmentation (e.g., CoTTA), we replace image
transforms with tabular augmentation: feature masking.

Methods.

• TEST: evaluate the pretrained model with no adaptation.

• TENT (Wang et al., 2020): minimize prediction entropy at test time; we update only BN
affine parameters and running statistics.

• TTT (Sun et al., 2020): jointly train the network on the main task and the same auxiliary
SSL objective as ours (reconstruction + masked–feature modeling) in the source domain;
at test time, adapt the encoder only by minimizing this SSL loss. For fairness, TTT uses
uniform, feature-agnostic masking (no dynamic masking), and does not use prototypes or
optimal transport.

• TTT++ (Liu et al., 2021): identical SSL setup as TTT above and the same encoder-only
test-time updates; additionally aligns first/second-order moments between source and tar-
get. Because source data are unavailable at deployment, source moments are cached from
the development split during training and used for alignment at test time.

• ClusT3 (Hakim et al., 2023): add a projector on top of the shared encoder and adapt by
maximizing mutual information with discrete codes. We use an MLP projector (tabular
analogue of the original CNN projector) and the same codebook size across sites.

• NC-TTT (Osowiechi et al., 2024): optimize a noise-contrastive auxiliary likelihood at
test time. The noise distribution is factorized Gaussian with per-feature mean/variance
estimated on the development split.

• T3A (Iwasawa & Matsuo, 2021): optimization-free classifier adjustment that builds class
prototypes from confident test predictions and reweights logits. We compute prototypes
from the FIFO buffer, with the confidence threshold tuned on the development split; no
backprop or encoder change.

• SAR (Niu et al., 2023): sharpness-aware entropy minimization with unreliable-sample fil-
tering for small/test-time batches. We follow the BN-only update rule as in TENT, add
SAM-style perturbations to BN parameters, and use the same FIFO buffer; filter thresholds
are validated once on the development split.

• CoTTA (Wang et al., 2022): maintain an EMA teacher and perform augmentation/weight-
averaged pseudo-labeling with periodic weight restoration. Tabular augmentation is feature
masking; teacher momentum and restoration period are tuned under the shared budget.
Encoder is adapted.

C ADDITIONAL RESULTS AND FIGURES

C.1 AN EXAMPLE OF PARTIAL OPTIMAL TRANSPORT (POT)

To further illustrate how our method aligns test-time features with learned prototypes, we visualize
an example of Partial Optimal Transport (POT) in Figure 7. The chord diagram shows the transport
plan γ between the test-time features z′ (top half of the circle) and prototypes P (bottom half). The
width of each arc reflects the transported mass γij between feature z′i and prototype pj .

Unlike fixed alignment methods, our formulation allows flexible, soft alignment by augmenting the
test-time features with perturbed copies to enable better adaptation to test-time distribution shifts,
which prevents overfitting to noisy test samples while preserving meaningful prototype relation-
ships.
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Figure 7: An example of POT between prototypes P and z′.

Figure 8: Effect of prototype size on AUC performance across different sites.

C.2 ADDITIONAL SENSITIVITY ANALYSIS.

Comparison of the size of prototypes. Figure 8 shows the AUC performance for Site A, Site B
and MIMIC-IV across different prototype sizes. Site B and MIMIC-IV exhibit a slight increase in
performance as the prototype size increases, while Site A maintains relatively stable AUC values
with minimal variation. Site B and MIMIC-IV have more diverse underlying data distribution and
while Site A may have more homogeneous patterns. Given that the complexity of external cohorts
is unknown in advance, model calibration may be necessary to ensure optimal generalization.

Comparison of Prototype Learning. Our framework leverages prototypes to capture the training
domain distribution and facilitate more effective alignment with test-time representations. To assess
the contribution of prototype learning, we conduct two ablation studies.

First, as reported in Table 1 of the manuscript, we evaluate the PriTTT baseline, which removes the
adaptive distribution matching component, thereby isolating the effect of prototype-guided align-
ment. Second, we examine the impact of prototype learning by replacing end-to-end learned proto-
types with post hoc cluster centroids. Specifically, we extract training representations after model
training and apply k-means clustering. Each cluster is represented by the average embedding of its
members, and the resulting k centroids are used as fixed prototypes for distribution matching during
test-time training.
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Table 5: Performance Comparison with and without Prototype Learning

Method Site A Site B MIMIC
AdaTTT 85.02 ± 0.05 84.10 ± 0.05 77.17 ± 0.08
DynTTT 84.54 ± 0.10 83.84 ± 0.12 76.79 ± 0.05
AdaTTT w/o proto-learn 84.57 ± 0.04 84.05 ± 0.06 76.85 ± 0.07
DynTTT w/o proto-learn 84.35 ± 0.07 83.69 ± 0.08 77.05 ± 0.10

Table 6: Ablation on masking strategy and SSL objectives (AUC %, ↑ higher is better).

Dataset TEST Random Masking Reconstruction Only Dynamic Mask Only AdaTTT (Full)

Site A 84.01 82.45±0.05 83.53±0.02 84.71±0.02 85.02±0.05
Site B 83.75 82.60±0.06 82.47±0.05 83.18±0.04 84.10±0.05
MIMIC-IV 75.28 74.21±0.04 75.00±0.04 76.24±0.02 77.17±0.08

The results in Table 5 show that models using learned prototypes consistently outperform their post
hoc counterparts across all datasets, which highlights the benefit of joint prototype learning and
alignment in capturing richer, task-relevant training distributions.

Dynamic masking and SSL objectives.

We ablate the masking strategy and the auxiliary objectives. Replacing dynamic, task-aware
masking with random masking degrades AUC by ∼1.5–3.0 points across sites (e.g., Site A:
85.02±0.05 → 82.45±0.05; MIMIC-IV: 77.17±0.08 → 74.21±0.04). Using a single objective
alone (reconstruction-only or masked-feature-only) underperforms the full setup, indicating com-
plementary roles: reconstruction regularizes representations, while masked feature modeling en-
courages uncertainty-aware recovery of informative variables (Table 6).
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