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Abstract

The burst of applications empowered by massive data have aroused unprecedented
privacy concerns in AI society. Currently, data confidentiality protection has been
one core issue during deep model training. Federated Learning (FL), which enables
privacy-preserving training across multiple silos, gained rising popularity for its
parameter-only communication. However, previous works have shown that FL
revealed a significant performance drop if the data distributions are heterogeneous
among different clients, especially when the clients have cross-domain charac-
teristic, such as traffic, aerial and in-door. To address this challenging problem,
we propose a novel idea, PartialFed, which loads a subset of the global model’s
parameters rather than loading the entire model used in most previous works. We
first validate our algorithm with manually decided loading strategies inspired by
various expert priors, named PartialFed-Fix. Then we develop PartialFed-Adaptive,
which automatically selects personalized loading strategy for each client. The
superiority of our algorithm is proved by demonstrating the new state-of-the-art
results on cross-domain federated classification and detection. In particular, solely
by initializing a small fraction of layers locally, we improve the performance of
FedAvg on Office-Home and UODB by 4.88% and 2.65%, respectively. Further
studies show that the adaptive strategy performs significantly better on domains
with large deviation, e.g. improves AP50 by 4.03% and 4.89% on aerial and
medical image detection compared to FedAvg.

1 Introduction

Endless collection of texts, images and videos for training data-hungry models increases potential
threats to the safety systems. Any attacks to these data centers could cause billions of information
leakage. A safer way is to keep the user data purely local on their devices. But this contradicts with
the widely adopted stochastic gradient descent (SGD) training procedure, which usually requires
data communication for random batch sampling. Federated Learning [12] develops a paradigm for
training large models under such situation. Locally trained models are aggregated using FedAvg [19]
and then served as initialization model for the next local iteration. The training data confidentiality is
achieved by only allowing transferring the model’s parameters (rather than the data) under different
cryptograph algorithms, which include differential privacy [7], homomorphic encryption [37], block
chain [22], etc.

However, recent studies [39, 26, 25] have shown that FedAvg does not provide satisfactory results
in the presence of data heterogeneity. A major problem is that all models are designed to fit an
“average client” [29], which is difficult when local and global distributions are deviated from each
other. This phenomenon is not uniquely observed. Researchers in multi-domain learning have also
discovered that directly fitting non-identical domains into a single feature extractor is suboptimal
[3]. The leading solution to this problem is to reconfigure the network into domain-agnostic and
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domain-specific layers [23, 33]. Similar conclusion has also been drawn simultaneously in the field
of multi-task learning [27]. The performance is boosted by letting each task choosing task-agnostic
and task-specific layers on the fly. Based on such generous observations, we propose a Personalized
Federated Learning (PFL) method from the idea of client-agnostic and client-specific initialization.
Initialization is considered because it plays the essential role of transferring global knowledge in FL.

Figure 1 dipicts the overall architecture. At the heart of our algorithm is a mixed initialization strategy.
Instead of fully utilizing the averaged global parameters for initialization, clients will only select
a fraction of them, and load the remaining parameters from previous local models. The selection
process is decided by a customized loading strategy, which might vary from client to client and
time to time. To validate PartialFed thoroughly, we first propose PartialFed-Fix, where the loading
strategies are inspired by human priors in functionality and classification of different parts of the
network. Then we propose an automatic strategy which is learned jointly with the network parameters
by gradient descent. We name this algorithm PartialFed-Adaptive.

In the case of PartialFed-Fix, our algorithm can be viewed as a federated version of multi-path
networks in the multi-domain learning [24, 33]. The shared parameters of different clients are jointly
learned by FedAvg, while the client-specific parameters are only learned locally. Treating the network
as a combination of global and local blocks makes it possible to learn the knowledge from other clients
while keeping the local knowledge stored safely. Although PartialFed-Fix can achieve improved
performance, we argue that the fixed loading strategy is a suboptimal solution for PFL since different
clients may have different dependencies on the global model. For example, a client might prefer
the classifier of the global model at the start of training, which often acquires better generalization
ability. In the end, the client is likely to train a local classifier, which brings superior personalized
performance. We show that our dynamic algorithm PartialFed-Adaptive is able to capture this change
of parameter loading behaviors during the training process.

Despite its simplicity, PartialFed gains surprising performance on many non i.i.d. FL experiments.
We construct real world FL experiments by introducing cross-domain classification and detection
dataset [30, 33]. For example, on Office-Home dataset, our PartialFed-Fix and PartialFed-Adaptive
surpass FedAvg by 4.88% and 5.43% on average accuracy, respectively. Similarly, on UODB
dataset, PartialFed-Fix and PartialFed-Adaptive outperform FedAvg by 2.65% and 2.68% on AP50,
respectively. More interestingly, the adaptive loading strategy greatly reduce the possibility of clients
getting inferior performance caused by the distribution deviation.

2 Related Work

Personalized Federated Learning The pioneering work of FedAvg [19] aims to train a global
model for all clients. But the goal is hard to achieve when data distributions are non i.i.d.. Wang et al.
[31] directly finetune the global model on local dataset for personalized performance. Mansour et al.
[18] provide theoretical study of clustering, data interpolation and model interpolation in personalized
learning. FedProx [13] introduces a regularization based algorithm. FedCurv [26] and FedCL [35]
further consider using Elastic Weight Consolidation (EWC) for parameters importance estimation.
T. Dinh et al. [28] theoretically improve the vanilla regularization with Moreau Envelopes. [5, 8]
consider using model interpolation to address the PFL problem. Meta learning is also utilized to
learn a better initialization for personalized finetuning [6]. The most related works to this paper is
parameter decoupling strategies which split networks into global and private layers. Arivazhagan
et al. [2] consider global base network with personalized classifiers while FedBN [14] and SiloBN [1]
consider private Batch Normalization (BN) layers. The special cases of PartialFed-Fix are equivalent
to these methods, and we further examined their combinations and more strategies.

Multi-Domain Learning The problem of training on heterogeneous distributions has been widely
studied in multi-domain learning. The difference is that multi-domain learning aggregate data together
while FL store data in silos. Our method is related to the recent work [3, 23, 24], which aims to
learn a single network across all domains with minimal number of task specific parameters. Bilen
and Vedaldi [3] propose to use domain-specific batch and instance normalization while Rebuffi et al.
[23, 24] further take series and parallel residual adapters as the domain-specific parts. Wang et al.
[33] extend the idea to object detection with SE-ResNet [10] and introduce a multi-domain detection
benchmark. Data-driven architectures are also explored in [20, 38, 32] where network pruning or
neural architecture search are employed.
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Figure 1: The snapshot of PartialFed. In each iteration of federated learning, the central server will
send the global model to all clients. Each client will then mix the global parameters from server with
local parameters from itself by partial initialization, which is used for the next local training.

3 Partially-Loaded Federated Learning

3.1 Preliminary

Federated Learning We formally describe the problem setup in this section. Assume there are
N ∈ N clients c ∈ C who are willing to participate in the joint training. Each client owns a
private dataset Dc = {(xci , yci ) : i ∈ {1, ..., nc}}, where nc is the cardinality of the dataset. We use
n =

∑
c∈C nc to denote the total amount of data in all clients. The data distribution P c(x, y) varies

from client to client. To be more specific, we do not put any i.i.d. assumptions on either P c(x) or
P c(y|x), which indicates domain gap and label difference are allowed in the framework.

At the start of each federated iteration t, a central server will send a global model Wt to all clients as
parameter initialization. Clients will then use their private data Dc to train Wt and get an updated
Wc

t . All Wc
t , c ∈ C are then sent to server and fused by FedAvg:

Wt+1 ←
∑
c∈C

nc
n
Wc

t (1)

The resulting model is used as initialization for the next federated iteration. When networks are
structurally heterogeneous in each client, Wt denotes the maximum set of shareable parameters.
The algorithm will stop on its convergence. Note that we do not incorporate client selection as in
McMahan et al. [19], which can be easily added if required.

PartialFed Compared to vanilla FL, PartialFed changes the client’s parameter initialization process.
After receiving global model Wt, each client c will additionally load the local model Wc

t−1 from
last iteration (See Alg. 1). Instead of purely initializing training with global model Wt, PartialFed
uses a mixed initialization, where each parameter is either loaded from global model Wt or local
model Wc

t−1. We hope that by partially loading global parameters, client can benefit from sharing
knowledge while avoiding local knowledge forgetting caused by FedAvg. The choice of mixing
strategy Ac

t will be discussed in section 3.2 and 3.3. All the models are finetuned locally in the last
training iteration.

A major advantage of PartialFed is the minimal changes to the original framework. Without sharing
gradients, subset of data and customized attributes, clients can enjoy themselves from a highest
parameter privacy protocol. In addition, since the server do not need extra operations like knowledge
distillation [16] except for FedAvg, the uploaded models are not required to do any forward computa-
tion. This enables homomorphic encryption [37] and protects client from information leakage caused
by model attacks [36].
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Algorithm 1 PartialFed: Partially-Loaded Federated Learning

ClientIteration(c,Wt):
Load Wc

t−1 from local storage
Get partial loading strategy Ac

t . partial initialization
Get partially loaded initialization Wc

t,init by:

Wc
t,init[i] =

{
Wc

t−1[i] if Ac
t [i] = 0

Wt[i] if Ac
t [i] = 1

, i denotes the index of parameter (2)

Set Wc
t = Wc

t,init
for each local epoch from 1 to E do . regular training

for batch b ∈ Dc do
w ← w − ηO`(w; b), for w ∈Wc

t
end for

end for
Save Wc

t on local storage
Return Wc

t

Server:
Initialize W0 = [w0,0, w1,0, ..., wk,0] at random
for each round t = 1, 2, . . . do

for client c ∈ C in parallel do
Wc

t ← ClientIteration(c,Wt) . device training
end for
Wt+1 ←

∑
c∈C

nc

n Wc
t . execute FedAvg

end for

3.2 PartialFed-Fix

We first discuss the fixed manual strategies in this section. Deep networks are often intuitively divided
into different functional parts: feature extractor, classifier, etc. These intuitions can be transformed
into corresponding loading strategies. An example strategy is shown in Equ.3, where parameters
except fully connected layer (fc) are loaded from global model. We empirically validate the efficiency
by transferring commonly used assumptions to our algorithm in this section.

Ac
t [i] =

{
1 if layer i is fc
0 else

(3)

"Bottom-up v.s. Top-down" One of the commonly accepted assumptions in deep network is that
blocks close to input image are more related to low-level features while top blocks are associated
with high-level concepts. Sharing bottom layers assumes that different clients share similar low-level
texture features while the opposite assumes high-level visual concepts are composed analogously.
We examine whether PFL training benefits more from sharing global "feature extractor" or global
"classifier". To be more specific, we use ResNet18 [9] for these experiments, which has four stages
(each with two ResBlock) and a fully-connected layer (Figure 2). A detailed description of the used
dataset can be found in section 4.1.

The results are listed in Table 1. Firstly, all experiments with partial parameters loading outperform
the full parameter loading, which proves the superiority of the proposed PartialFed. Secondly, there
are no significant gap with additional parameters loading from global s1 to s1-s4, but loading global
fc in this case severely degrades the performance. Thirdly, we find there’s consistent accuracy drop
from strategy fc to s2-fc. We hypothesis that sharing too much high-level concepts will hurt the
personalized federated learning.

Batch Normalization Batch statistics are considered as a key factor when heterogeneous distri-
butions occur and has been widely studied in domain adaptation [15], multi-domain learning [3],
and federated learning [1, 14]. We study how the loading strategies of BN will affect the PFL
training. Table 2 displays the results on Office-Home dataset. Loading BN locally (i.e. w/o BN) gains
improvements on all four domains. Given that the parameters of BN layers are only a very small
fraction of ResNet, the improvement is non-trivial. On the other hand, since the BN layer is such
brittle in non i.i.d. settings, we hope that a multi-distribution normalization strategy can be proposed
in the future.
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Table 1: Bottom-up sharing v.s. Top-down sharing on Office-Home dataset: The left table shows
bottom-up loading strategies, while the right part shows the opposite top-down loading strategies.
The column Load describes the partially loaded global layers and s1-s4 is the abbreviation for loading
all global parameters start from stage1 to stage4 (See Figure 2 for ResNet stages). "P", "A", "C", "R"
are abbreviations for the domain names. The last row is the result of loading all parameters from the
global model (equivalent to s1-fc), which is equivalent to vanilla FedAvg with finetuning.

Bottom-up Top-down

Load P A C R mean Load P A C R mean

s1 89.46 70.70 73.33 80.53 78.50 fc 88.70 71.48 72.88 81.86 78.73
s1-s2 89.46 70.12 73.44 80.64 78.41 s4-fc 87.39 71.48 73.77 80.42 78.27
s1-s3 90.54 70.70 73.33 80.53 78.50 s3-fc 87.61 70.70 71.09 80.64 77.51
s1-s4 90.22 70.51 71.21 83.52 78.86 s2-fc 88.37 68.75 70.65 82.74 77.63
Full 87.99 68.70 65.85 79.22 75.44 Full 87.99 68.70 65.85 79.22 75.44

Recalling that previous section shows loading fc and s1-s4 simultaneously could harm the performance
. We hope this rule can be combined with the BN rule. This leads to the last row of Table 2, where
both global BN and global fc are not loaded. Surprisingly, this simple modification significantly
improves FedAvg from 75.44% to 80.32%, which is 4.88% improvements.

Table 2: Batch Normalization Strategy on Office-Home
Load P A C R mean

Full 87.99 68.70 65.85 79.22 75.44
w/o BN 88.37 72.46 71.99 82.30 78.78
w/o BN&fc 90.43 73.44 74.33 83.08 80.32

Skip Loading Except for the "shared feature extractor - private classifier" network partition, another
widely adopted routine in multi-domain and multi-task learning is a loop of "share-private-share-
private-..." sub-networks [33, 27]. This paradigm is found to be helpful when tasks interference
happens. This paragraph examines the performance of skip sharing with PartialFed.

For simplicity, we label each ResBlock in ResNet18 with letters as in Figure 2. The same number
of blocks (4 blocks) is loaded globally for all experiments. The input convolution and fc layer are
loaded as default. Experimental results are revealed in Table 3. Methods that load adjacent layers (e.g.
AaBb) get similar mean accuracy except for the CcDd strategy. Since CcDd is a kind of top-down
strategies mentioned above, which does not perform well in general, we infer this is the reason for
its inferior performance. Interestingly, the two strategies with skip loading, ABCD and abcd, get
higher performance than all the other strategies, which justify the idea of skip sharing. We attribute
the efficiency of skip loading to the fact that clients have the demand of learning client-specific
knowledge at all levels of the network instead of only a part of them.

Load P A C R mean

AaBb 89.57 71.68 72.88 80.53 78.66
AaCc 89.89 72.27 71.88 80.31 78.59
BbCc 89.78 71.09 71.76 80.75 78.35
BbDd 89.02 70.70 71.65 80.75 78.03
CcDd 87.83 69.34 69.98 81.19 77.08
ABCD (Skip) 90.00 73.05 72.21 81.79 79.31
abcd (Skip) 89.35 73.24 73.10 80.53 79.06

Table 3: Skip strategy results on Office-Home Figure 2: ResNet18 Partition

3.3 PartialFed-Adaptive

The hand-designed strategies in PartialFed-Fix are intuitive but not efficient. The search space of
all fixed strategies has a complexity of 2k (k denoted the number of layers). If we further consider
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the factor of time t and client number N , it reaches a complexity of N × t × 2k. It’s hard to find
an optimal strategy by hand in such large space. Therefore, we propose a learnable loading strategy,
PartialFed-Adaptive. The main idea is to learn the initialization strategy through a data-driven
approach that adaptively chooses which parameters to be loaded globally given the specific client.
The objective of the algorithm is to minimize the following loss function on client c:

min
Ac

t

min
W c

t

Ltrain(Dc,W
c
t |W c

t,init = Ac
t(Wt,W

c
t−1)) (4)

where Ac
t(Wt,W

c
t−1)) is the initialization given by strategy Ac

t and t is the federated iteration. Note
that here we only consider the personalized loss for client c, but the custom initialization strategy
also affects the global training in an implicit way. We leave this problem for future work and focus
on the greedy situation in this paper.

The original strategy Ac
t makes discrete decisions, which is not differentiable. In order to optimize

strategies and model parameters jointly with gradient descent, we adopt Gumbel-Softmax sampling
[17, 11] for modeling strategy Ac

t . More precisely, Ac
t is parametrized by a distribution vector

αc
t ∈ [0, 1]2k with shape [k, 2]. Each row αc

t [i] specifies the probability of loading local and global
parameter for the ith parameter wi and satisfies αc

t [i, 0] + αc
t [i, 1] = 1. For differentiable training,

reparameterization trick is used:

uc
t [i, j] =

exp
(
(logαc

t [i, j] +G(j))/τt
)∑

k∈{0,1}
exp

(
(logαc

t [i, k] +G(k))/τt
) , j ∈ 0, 1 (5)

where G = − log(− logU) is a standard Gumbel distribution with U sampled i.i.d. from Unif(0, 1)
and τt is the temperature parameter of softmax at federated iteration t. We also use the hard sample
trick described in PyTorch document 1 to obtain discrete sampling. The main idea is to substitute soft
sample output ysoft with hard output yhard − fstop_gradient(ysoft) + ysoft.

Algorithm 2 PartialFed-Adaptive

ClientIteration-Adaptive(c,Wt):
Load Wc

t−1 from local storage
Initialize αc

t = αc
t−1

for each local epoch from 1 to E do
for batch b ∈ Dc do

Sample strategy Ab by Equ. 5 with parameter αc
t

Composite batch parameter by:

Wc
b[i] =

{
Wc

t−1[i] if Ab[i] = 0

Wt[i] if Ab[i] = 1
, i denotes the index of parameter (6)

Compute loss l with parameter Wc
b

if batch index % (fm + fs) < fm then
w ← w − ηO`(w,αc

t ; b), for w ∈Wc
b . model parameter update

else
αc
t ← αc

t − ηO`(w,αc
t ; b) . strategy parameter update

end if
end for

end for
Sample best parameter Wc

t according to αc
t

Return Wc
t

Training Strategy The overall learning scheme is summarized in Alg. 2. The model parameters
and strategy parameters are iteratively updated by EM algorithm. The updating frequency is denoted
as fm and fs. At every training step, a discrete batch strategy Ab is sampled by Gumbel-Softmax,
which guides the composition of global and local parameters. The composited parameter Wc

b is used
to compute loss and either itself or the strategy parameter αc

t is updated according to training step
index. The temperature parameter τt in Equ. 5 is initialized as 5.0 and annealed to 0 as in [27]. The
sampling strategy approaches the original discrete distribution with τ getting close to zero limit [17].

1https://pytorch.org/docs/master/generated/torch.nn.functional.gumbel_softmax.html
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4 Experiments
We evaluate the performance of PartialFed, on real-world non i.i.d. tasks including cross-domain
classification and detection.

4.1 Settings
Datasets For federated classification, we use the popular Office-Home [30] dataset, which contains
four domains: Art, Clipart, Product and Real World. All domains share the same 65 typical categories
in office and home. Each domain has an average of 3k images. Each client use a single domain as its
private data, which in total gives 4 clients.

For the detection task, we adopt challenging multi-domain detection dataset UODB [33], which is
composed of 11 detection tasks with different domains, categories and data sizes (Table 5). Similar
to Office-Home dataset, we take each domain as a client. Except for domain gap, there’s also a
big difference in the number of training images, from minimum 0.5K to maximum 35K. Note that
FedAvg weights each client model by their sample numbers, the severe data imbalance makes it
extremely difficult for federated learning.

Implementation Details We use PyTorch [21] 2 to implement our algorithms. The detection
experiments also use Detectron2 [34]3. For Office-Home Dataset, we adopt ResNet-18 as backbone
network. SE-ResNet-50 [10] is used as the detection backbone, which is the same setting as the
original paper [33]. Both models are pretrained on ILSVRC2012 ImageNet [4]. For sampling the
best parameters in Alg. 2, we try both hard and soft sampling. Hard sampling takes the parameter
that maximize the logits while the soft sampling uses a weighted sum of global and local parameters
with the sample logits. Soft sampling is also followed with finetuning. We find soft sampling is better
in most cases, so we report the performance of the soft sampling strategy if not specified. For details,
we list the hyper parameters in the Appendix.

4.2 Cross-Domain Classification

The results on Office-Home dataset are displayed in Table 4. We report the Top-1 accuracy for each
domain and on average. On average, the All model trained with data from all domains surpasses
single domain training, but it does not work well on Product domain. This reflects that naively sharing
all parameters is not suitable for all domains even in the non federated training.

Adaptive Granularity We experiment adaptive learning at three levels from coarse to fine: stage,
block and layer level for ResNet. For example, for the stage-level adaptive, the choice space has
complexity of 25, which decides whether each group in [wstage1, wstage2, wstage3, wstage4, fc] is
selected globally or locally. The adaptive strategies outperforms fixed ones on average. Among
them, the layer level PartialFed-Adaptive works best and outperforms stage-level and block-level by
0.41%. Theoretically, learning at smaller granularity improves the performance upper bound, but also
increases the burden for training algorithms. In practice, clients should choose granularity according
to its computational and data resources.

Comparison With State-Of-The-Art We compare our methods with a set of SOTA algorithms.
All of them are reimplemented by referring to the open-sourced code published by the author. Hyper
parameters are selected as suggested in the original paper, and the best results are reported. The
algorithms are also implemented in a personalized version (i.e. finetune the model at end if needed)
for fair comparison. While most existing methods improves the vanilla FedAvg, the best FedBN is still
inferior to the single domain training due to domain conflicts. This makes FL unacceptable because
the extra communication does not introduce positive impacts. On the other hand, our PartialFed,
outperforms both single domain and full data training, which makes it practical in more scenarios.

Although being simple, PartialFed-Fix without global BN and fc is already fairly strong on this
dataset. It surpasses vanilla FedAvg by 4.88% and FedBN by 1.53% on average accuracy. But it is
still affected by domain conflicts and gets only 90.43% on domain Product, which is lower than single
domain training. PartialFed-Adaptive overcomes this problem by automatic learning the suitable
strategies for each client. It is the only method that beats single domain training on Product domain.

2licensed under https://github.com/pytorch/pytorch/blob/master/LICENSE
3licensed under the Apache License 2.0
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This is a thriving result since it improves all clients performance instead of a subset of them. On
average, it surpasses vanilla FedAvg by 5.43% and FedBN by 2.09%, respectively.

Table 4: Office-Home Results: The first row is the single domain results and the second row
is directly training one All model with all data. The next block shows vanilla FedAvg and its
improvements. For our methods, we first display three representative fixed strategies discussed in
section 3.2. Then PartialFed-Adaptive is listed in the last block. Three different granularities are
experimented as in the table. We emphasize the best two results of each domain with red and orange.

Method P A C R mean

Single 91.59 70.22 73.77 80.42 79.00
All 89.29 71.99 76.71 81.63 79.90

FedAvg[19] 87.99 68.70 65.85 79.22 75.44
FedProx[13] 87.55 67.52 67.19 79.89 75.54
pFedMe[28] 86.24 70.28 68.19 79.56 76.07
FedBN[14] 88.37 72.46 71.99 82.30 78.78

PartialFed-Fix

s1-s4 90.22 70.51 71.21 83.52 78.86
w/o BN&fc 90.43 73.44 74.33 83.08 80.32
ABCD (skip) 90.00 73.05 72.21 81.79 79.31

PartialFed-Adaptive

stage 91.96 73.44 74.89 81.53 80.46
block 91.74 73.54 74.28 82.30 80.46
layer 92.16 74.02 75.26 82.05 80.87

4.3 Cross-Domain Detection

The results of federated detection is summarized in Table 6. The vanilla FedAvg improves perfor-
mance of clients with relative small datasets: Watercolor and Clipart. But it performs poorly on
datasets with special properties, e.g. WiderFace for face detection, DeepLesion for medical image
detection. FedBN works well and is able to relief the decline in face and aerial image detection,
but it works even worse than FedAvg on DeepLesion, which is distributionally dissimilar to natural
images. FedProx does not perform well in this dataset. Restricting contrasting client models to fit the
averaged model with regularization term seems harmful given domain gaps at such degree.

For the fixed loading strategy, we first examine SE module and its combination with batch normaliza-
tion, which is related to the attention mechanism [10]. We also implemented a skip loading strategy
similar to the one in section 3.2. We tested two strategies: loading local first block and loading both
local first and third block in each SE-ResNet stage. The first one works better on smaller datasets
because it provides more knowledge by sharing more parameters. For the adaptive strategy, The
block-level adaptive strategy gets best performance in this case. We hypothesis that searching a
SE-ResNet-50 strategy at layer-level is too costing and hard to learn, which results in the lower
performance of Adaptive-layer.

In general, PartialFed-Fix and PartialFed-Adaptive beats FedAvg by 2.65% and 2.68% and beats
FedBN by 0.95% and 0.98%. And again, our PartialFed-Adaptive gets superior performance on
distributionally difficult domains, including DeepLesion, WiderFace and DOTA. This proves the
effectiveness of our algorithm on extreme domain shift.

Table 5: UODB description
Datasets KITTI WiderFace PascalVOC LISA DOTA COCO Watercolor Clipart Comic Kitchen DeepLesion

Domain traffic face natural traffic aerial natural watercolor clipart comic indoor medical
Train 4k 13k 16k 8k 14k 35k 1k 0.5k 1k 5k 23k
Test 4K 6k 5k 2k 10k 5k 1k 0.5k 1k 2k 5k
Classes 3 2 20 4 15 20 6 20 6 11 2
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Table 6: UODB Results: The first line is the single domain result. The second line depicts vanilla
FedAvg results, which is followed by other competing algorithms. We use blue color to highlight
domains with large distributional or task deviations, which are challenging for FL algorithms.
PartialFed-Fix is displayed with four strategies by considering the network structure. wo se&BN
denotes for PartialFed-Fix without loading global SE and BN parameters. fb and tb means the first
and third ResBlock in every ResNet stages. Three levels of adaptive methods are also experimented.
We emphasize the best two results of each domain with red and orange.

Method@AP50 KITTI WFace VOC LISA DOTA COCO WC CP CM Kit DL mean

Single 59.07 54.99 79.10 94.71 68.18 51.35 40.31 36.13 35.07 96.17 62.01 61.55

FedAvg[19] 59.91 50.99 80.54 93.39 65.04 51.74 43.19 42.81 33.46 95.41 58.26 61.34
FedProx[13] 61.98 48.32 80.10 92.28 62.52 51.73 42.51 42.32 32.95 94.98 58.11 60.71
FedBN[14] 62.14 52.58 81.52 94.28 67.47 51.49 49.11 43.69 39.15 94.86 57.11 63.04

PartialFed-Fix

w/o se 63.16 51.34 80.97 93.44 66.10 52.45 46.89 44.86 35.96 95.36 58.43 62.63
w/o se&BN 64.46 52.29 81.72 92.86 67.17 51.89 44.83 46.33 37.07 95.51 58.96 63.01
w/o fb (skip) 62.69 56.04 80.94 94.47 68.33 51.91 49.21 43.15 40.17 95.92 61.09 63.99
w/o fb+tb (skip) 60.75 56.69 80.81 93.39 69.67 51.90 45.03 39.26 37.38 93.96 61.58 62.77

PartialFed-Adaptive

stage 61.08 55.83 81.18 93.36 68.93 51.75 48.15 44.07 38.24 95.79 63.00 63.76
block 63.44 56.04 81.40 94.25 69.07 51.89 46.74 45.41 36.50 96.34 63.15 64.02
layer 62.05 54.08 80.83 94.35 68.90 51.91 45.53 44.10 38.83 95.70 62.61 63.53

4.4 Strategy Analysis

We visualize how the strategy changes with FL training, as displaced in Figure 3. Interestingly, there’s
a clear tendency for all domains to share low-level knowledge than high-level knowledge (i.e. the
probability is larger compared to top stages). This coincides with our conclusion in the bottom-up
fixed strategies. In the stage1 and stage2, Clipart domain differs from other domain, possibly due
to its unique image style. For the high-level fc layer, all domains tends to use private parameters at
very first of the training except for Art domain. Loading local fc layer coincides with our findings
in the fixed strategies. On the other hand, we find out that client model with Art data learns slower
than other domains at the beginning, possibly due to its deviation from the pretrained ImageNet
model. Borrowing the knowledge from other domains seems to be a wiser choice in this situation.
It’s fascinating to see that the adaptive methods is capable of capturing these kind of changes.

Figure 3: The change of stage-level strategy across training time. The x and y axis denotes the
federated iteration and the probability of loading global parameters. From left to right exhibits
different stages from low-level stage1 to high-level fc. Different domains are colored differently.
The red dashed box highlight the increase in the tendency of Art domain to share fc layer during
early training stages.

Our experiments have shown that the adaptive learning strategy has advantages in learning client-
specific strategies, which can relief client from negative impacts caused by distribution shift. But
it also suffers from the risk of incomplete training, either underfitting or overfitting. For example,
we find out that searching a 50 layers ResNet at layer-level is already hard. How to improve the
strategy learning efficiency is related to neural architecture search, which considers balance between
exploration and exploitation. The data-driven approach also ignores meta-information like datasets
cardinality. A possible way to address this is to incorporate human prior into the adaptive algorithm,
which is a combination of PartialFed-Fix and PartialFed-Adaptive.
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5 Conclusion
We demonstrate a simple yet novel approach for personalized federated learning. The core of our
method is a mixed initialization, which only partially utilizing the global parameters given by FedAvg.
Inspired by commonly accepted priors, we develop a set of manual mix strategies and validate
their reliability. To make it further, we develop a data-aware strategy which is adaptively learned
with model parameters. Our experiments show that the proposed two strategies, PartialFed-Fix and
PartialFed-Adaptive, outperform a set of state-of-the-art methods on cross-domain FL experiments
including object classification and detection. More importantly, PartialFed-Adaptive is found to
automatically reduce performance degradation caused by extreme distribution heterogeneity.
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