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ABSTRACT

Autonomous vehicles are gradually entering city roads today, with the help of
high-definition maps (HDMaps). However, the reliance on HDMaps prevents
autonomous vehicles from stepping into regions without this expensive digital
infrastructure. This fact drives many researchers to study online HDMap con-
struction algorithms, but the performance of these algorithms is still unsatisfying.
We present P-MapNet, in which the letter P highlights the fact that we focus on
incorporating map priors to improve model performance. Specifically, we ex-
ploit priors in both SDMap and HDMap. On one hand, we extract weakly aligned
SDMap from OpenStreetMap, and encode it as an alternative conditioning branch.
Despite the misalignment challenge, our attention-based architecture adaptively
attends to relevant SDMap skeletons and significantly improves performance. On
the other hand, we exploit a masked autoencoder to capture the prior distribu-
tion of HDMap, which can serve as a refinement module to mitigate occlusions
and artifacts. Both priors lead to performance improvements, especially in farther
regions. We benchmark on the nuScenes dataset, demonstrating 13.46% mIoU
margin over the baseline. Codes and models will be publicly available.

1 INTRODUCTION

While we still don’t know the ultimate answer to fully autonomous vehicles that can run smoothly in
each and every corner of the earth, the community does have seen some impressive milestones, e.g.,
robotaxis are under steady operation in some big cities now. Yet current autonomous driving stacks
heavily depend on an expensive digital infrastructure: HDMaps. With the availability of HDMaps,
local maneuvers are reduced to lane following and lane changing coupled with dynamic obstacle
avoidance, significantly narrowing down the space of decision making. But the construction of
HDMaps, which is shown in the left-top panel of Fig. 1, is very cumbersome and expensive. And
what’s worse, HDMaps cannot be constructed for good and all, because they must be updated every
three months on average. It is widely recognized that reducing reliance on HDMaps is critical.

Thus, several recent methods (Li et al., 2022; Liu et al., 2022a) construct HDMaps using multi-
modal online sensory inputs like LiDAR point clouds and panoramic multi-view RGB images, and a
conceptual illustration of this paradigm is given in the left-middle panel of Fig. 1. Despite promising
results achieved by these methods, online HDMap constructors still report limited quantitative met-
rics and this study focuses on promoting their performance using priors. Specifically, two sources
of priors are exploited: SDMap and HDMap, as demontrated in the left-botoom panel of Fig. 1.

SDMap Prior. Before the industry turns to build the digital infrastructure of HDMaps in a large
scale, Standard Definition Maps (SDMaps) have been used for years and largely promoted the con-
venience of our everyday lives. Commercial SDMap applications provided by Google or Baidu
help people navigate big cities with complex road networks, telling us to make turns at crossings
or merge into main roads. SDMaps are not readily useful for autonomous cars because they only
provide centerline skeletons (noted as SDMap Prior in the left-bottom panel of Fig. 1). So we aim
to exploit SDMap priors to build better online HDMap construction algorithms, which can be in-
tuitively interpreted as drawing HDmaps around the skeleton of SDMaps. However, this intuitive
idea faces a primary challenge: misalignment. Per implementation, we extract SDMaps from Open-
StreetMap using GPS signals but unfortunately they are, at best, weakly aligned with the ground
truth HDMap in a certain scenario. An illustration is given in the right panel of Fig. 1, noted as
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Figure 1: Left: Since offline HDMap construction is cumbersome and expensive, people are pursu-
ing online HDMap construction algorithms and our P-MapNet improves them using both SDMap
and HDMap priors. Right: Despite the misalignment between SDMaps and HDMaps, our P-MapNet
can significantly improve map construction performance, especially on the far side.

SDMap with Ground Truth. To this end, we leverage an attention based neural network architecture
that adaptively attends to relavent SDMap features and successfully improve the performance by
large margins in various settings (see Table. 2 and Table. 12).

HDMap Prior. Although useful, SDMap priors cannot fully capture the distribution of HDMap
output space. As noted by Ours with SDMap Prior in the right panel of Fig. 1, HDMap genera-
tion results are broken and unnecessarily curved. This is credited to the fact that our architecture
is, like prior methods, designed in a BEV dense prediction manner and the structured output space
of BEV HDMap cannot be guaranteed. As such, HDMap prior comes to the stage as a solution
and the intuition is that if the algorithm models the structured output space of HDMaps explicitly,
it can naturally correct these unnatural artifacts (i.e., broken and unnecessarily curved results men-
tioned above). On the implementation side, we train a masked autoencoder (MAE) on a large set of
HDMaps to capture the HDMap prior and used it as a refinement module. As noted by Ours with
both Map Priors in the right panel of Fig. 1, our MAE successfully corrects aforementioned issues.

P-MapNet as a far-seeing solution. A closer look at the positive margins brought by incorporating
priors reveals that P-MapNet is a far-seeing solution. As shown in the right panel of Fig. 1, after
incorporating the SDMap prior, missing map elements far from the ego vehicle (denoted by the car
icon) are successfully extracted. This is understandable as the road centerline skeletons on the far
side are already known in the SDMap input. Meanwhile, the HDMap prior brings improvements in
two kinds of regions: crossings with highly structured repetitive patterns and lanes on the far side.
This is credited to the fact that our masked autoencoder can incorporate the priors about how typical
HDMaps look like, e.g., lanes should be connected and largely straight and crossings are drawn in a
repetitive manner. As the later experiments in Table. 2 demonstrate, positive margins steadily grow
along with the sensing range. We believe P-MapNet, as a far-seeing solution, is potentially helpful
in deriving more intelligent decisions that are informed of maps on the far side.

In summary, our contributions are three-fold: (1) We incorporate SDMap priors into online map
constructors by attending to weakly aligned SDMap features and achieve significant performance
improvements; (2) We also incorporate HDMap priors using a masked autoencoder as a refinement
module, correcting artefacts that deviate the structured output space of HDMaps; (3) We achieve
state-of-the-art results on public benchmarks and present in-depth ablative analyses that reveal the
mechanisms of P-MapNet. For example, P-MapNet is a far-seeing solution.
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2 RELATED WORK

2.1 ONLINE HD MAP CONSTRUCTION

Traditionally, HD maps are manually annotated offline, combining point cloud maps via SLAM al-
gorithms (Bao et al., 2022; Houston et al., 2021) for high accuracy but at a high cost and without
real-time updates. In contrast, recent efforts have focused on utilizing onboard sensors for the effi-
cient and cost-effective generation of online HD maps Philion & Fidler (2020); Saha et al. (2022);
Li et al. (2022); Dong et al. (2022); Liu et al. (2022a); Liao et al. (2023). HDMapNet (Li et al.,
2022) employs pixel-wise segmentation and heuristic post-processing, evaluating results with Aver-
age Precision (AP) and Intersection over Union (IoU). More recent approaches (Liao et al., 2022;
Liu et al., 2022a; Ding et al., 2023; Yuan et al., 2023; Zhang et al., 2023), have adopted end-to-end
vectorized HD map construction techniques, leveraging Transformer architectures (Vaswani et al.,
2017). However, these methods rely solely on onboard sensors and may face limitations in handling
challenging environmental conditions, such as occlusions or adverse weather.

2.2 LONG-RANGE MAP PERCEPTION

To enhance the practicality of HD maps for downstream tasks, some studies aim to extend their
coverage to longer perception ranges. SuperFusion (Dong et al., 2022) combines LiDAR point
clouds and camera images for depth-aware BEV transformation, yielding forward-view HD map
predictions up to 90 m. NeuralMapPrior Xiong et al. (2023) maintains and updates a global neural
map prior, enhancing online observations to generate higher-quality, extended-range HD map pre-
dictions. Gao et al. (2023) proposes using satellite maps to aid online map construction. Features
from onboard sensors and satellite images are aggregated through a hierarchical fusion module to
obtain the final BEV features. MV-Map (Xie et al., 2023) specializes in offline, long-range HD map
generation. It aggregates all relevant frames during traversal and optimizes neural radiance fields for
improved BEV feature construction.

3 SDMAP GENERATION

In this section, we outline our approach to generate weakly-aligned SDMap priors by leveraging
OpenStreetMap (OSM) data and the GPS signals derived from autonomous vehicles. We specifically
employ the nuScenes (Caesar et al., 2020) and Argoverse2 (Wilson et al., 2021) datasets as the
primary basis for our research, as these datasets hold a prominent position within the autonomous
driving domain. These datasets are richly equipped with sensors, including cameras, LiDAR, radars,
GPS, and IMU, and they offer comprehensive map annotations such as roads, sidewalks, and lanes.

Non-main roads

Roads beyond ROI

(a) SDMap data before processing

(b) SDMap data after processing

Consistent & Neater

Figure 2: The generated SDMap data covered most
of the main roads, as they are usually not easily
changed. The red box in the figure shows that the sec-
ondary roads, such as living streets, or roads beyond
RoI were filtered out. The final processed SDMap data
has better consistency with HDMap data.

However, it’s important to note that these
datasets do not include the corresponding
SDMap information for the captured regions.
To address this limitation, we leverage Open-
StreetMap (Haklay & Weber, 2008) to obtain
the relevant SDMap data for these regions.

More specifically, our SDMap generation pro-
cedure involves two steps. The first step cen-
ters around the alignment of OSM1 data with
the operational regions of autonomous vehicles.
Here we take the nuScenes dataset as an illus-
trative example, but it’s vital to highlight that
this procedure is compatible with all running
vehicles with on-board GPS sensor. Each sub-
map annotation of the nuScenes dataset uses
a unique coordinate system, which takes the
southwest corner of the captured region as the
original point and adopts the WGS 84 Web
Mercator projection, akin to the one utilized by

1https://www.openstreetmap.org/
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Figure 3: P-MapNet overview. P-MapNet is designed to accept either surrounding cameras or
multi-modal inputs. It processes these inputs to extract sensors features and SDMap priors features,
both represented in the Bird’s Eye View (BEV) space. These features are then fused using an at-
tention mechanism and subsequently refined by the HDMap prior module to produce results that
closely align with real-world map data.

Google Maps. By downloading and subsequently projecting the OSM data onto this coordinate sys-
tem, we effectively achieve alignment of OSM to the active operational region, laying the ground-
work for subsequent processing.

Then, we transition to the SDMap extraction and refinement phase. As our primary objective
is to obtain an urban road map for precise pilot planning, we begin by extracting the road map
from the comprehensive OSM data, which encompasses a myriad of details including buildings and
terrains. However, as illustrated in Fig. 2(a), the extracted data can sometimes feature duplicated
road segments or roads that fall outside our Region of Interest (RoI). Incorporating such data in our
final SDMap might introduce unwanted noise, undermining the precision we seek. To ensure the
accuracy of our SDMap, we adopted a systematic filtering process. Initially, we identified trunk
roads (often referred to as main roads) by filtering through the annotation category tags within the
OSM data. Subsequently, with reference to the map annotation data available in the datasets, we
intersected the road polygon sections from the annotation with the extracted SDMap. Only the
sections with an intersection are retained, which effectively filtered out areas outside the RoI. The
post-filtering results can be visualized in Fig. 2(b). To make the SDMap more usable in subsequent
phases, we converted the finalized SDMap into a rasterized format, intended to act as foundational
SDMap priors.

4 METHOD

4.1 ARCHITECTURE

In this section, we introduce P-MapNet, a novel and efficient framework for far-seeing perception
through the seamless integration of SDMap and HDMap priors. As illustrated in Fig. 3, our approach
comprises four distinct modules. The first step involves extracting bird-eye-view (BEV) features
from on-board sensors. Specifically, we process surrounding images from the camera and point
cloud data from the lidar through the BEV feature extractor, as detailed in Fig. 3(b). Concurrently,
SDMap priors are derived using a ConvNet, as shown in Fig. 3(c). Upon obtaining the two feature
maps, the immediate challenge is their integration. Merely concatenating them is suboptimal due to
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the spatial misalignment of the SD priors. To address this, we employ a transformer-based module
for feature alignment and fusion, as depicted in Fig.3(d) and detailed in Sec. 4.2, to produce the
enhanced BEV features, which are subquently decoded by the segmentation head to produce initial
prediction. Finally, the initial prediction undergoes refinement through the HDMap prior refinement
module, as shown in Fig. 3(e) and elaborated in Sec. 4.3, producing final predictions that are more
in tune with the real-world semantic distribution.

BEV Feature Extractor. We start by introducing the BEV feature extractor in Fig. 3(b). The BEV
feature extractor ingests two types of on-board sensor data as input, the surrounding images and the
LiDAR point cloud, which are formally denoted a {Ii | i = 1, 2, · · ·N} and P , respectively. The
initial step is the extraction of surrounding image features, represented as FIi , utilizing a shared
network such as ResNet (He et al., 2016) or EfficientNet (Tan & Le, 2019). Drawn inspiration
from HDMapNet (Li et al., 2022), we consequently transform these image feature maps from their
native perspective view into the BEV space, denoted as Bcamera ∈ RH×W×Ccam , where H and W
are the height and width of the BEV grid, respectively, and Ccam is the feature dimensionality.
As for the LiDAR points P , we use Pointpillars (Lang et al., 2019) to extract LiDAR features
Blidar ∈ RH×W×Clidar . Finally, we concatenate the BEV features of camera and lidar to get the
comprehensive BEV feature maps from all sensors, which are denoted as Bsensors ∈ RH×W×C .

Segmentation Head and Losses. For the extraction of semantic details from the enhanced BEV
feature map, we utilize a decoder head. We opt for a fully convolutional network with dense predic-
tion, similar to Li et al. (2022), for the segmentation of map elements, enabling the use of conven-
tional 2D positional encoding during refinement. Our segmentation head contains a total of three
branches, semantic segmentation, instance embedding prediction and direction prediction. The se-
mantic segmentation branch classifies various map element types, including dividers, sidewalks, and
boundaries. The instance embedding branch aids in predicting lanes at an instance level. To facil-
itate the creation of a vectorized HDMap during post-processing, the direction prediction branch
determines the orientation of each lane pixel, ensuring a coherent linkage between pixels.

To train these three distinct branches, we introduce three specialized kinds of loss functions. For
the semantic branch, we employ the cross-entropy loss, denoted as Lseg. Drawing inspiration from
De Brabandere et al. (2017), the instance embedding prediction is supervised by a clustering loss,
represented as Lins. For direction prediction, we categorize the results into 36 classes, each corre-
sponding to a 10-degree interval, thereby allowing the use of a cross-entropy loss, symbolized by
Ldir. The final loss, L, is a weighted aggregation of the aforementioned losses, expressed as:

L = λsegLseg + λinsLins + λdirLdir (1)

The coefficients λseg, λins, and λdir serve to balance the different loss components.

4.2 SDMAP PRIOR MODULE

Given the intrinsic challenges associated with onboard sensor perception, such as distant road in-
visibility, occlusion, and adverse weather conditions, the need to incorporate SDMap prior becomes
crucial, as SDMap provides a stable and consistent representation of the environment. However, af-
ter extraction and processing, the rasterized SDMap priors may face a spatial misalignment, where
the SDMap prior doesn’t align precisely with the current operational location, often resulting from
inaccurate GPS signals or rapid vehicle movement. Such misalignment renders the straightforward
method of directly concatenating BEV features with SDMap features in the feature dimension in-
effective. To tackle this challenge, we adopt a multi-head cross-attention module. This allows the
network to utilize cross attention to determine the most suitably aligned location, thereby effectively
enhancing the BEV feature with the SDMap prior.

Specifically, as illustrated in Fig. 3(b), we initially utilize a convolutional network to downsample the
BEV features, denoted as Bsensors. This not only averts excessive memory consumption on low-level
feature maps but also partially alleviates the misalignment between the image BEV features and the
LiDAR BEV features. The downsampled BEV features (BEV Token in Fig. 3(b)) are represented
as Bsmall ∈ RH

d ×W
d ×C , where d is the downsampling factor. These features, combined with sine

positional embedding, are processed through the multi-head self-attention, resulting in the initial
BEV queries Qbev.
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The associated SDMap, Msd, undergoes processing via a convolutional network in conjunction
with sine positional embedding, producing the SDMap prior tokens Fsd, as shown in Fig. 3(c).
Subsequently, the multi-head cross-attention is deployed to enhance the BEV features by integrating
the information from SDMap priors. The formal representation is,

Q′ = Concat (CA1(Qbev,Fsd,W1), . . . ,CAm(Qbev,Fsd,Wm)) ,

Bimproved = layernorm (Qbev +Dropout(Proj(Q′))),
(2)

where the CAi is the i-th single head cross-attention, m is the number of head, W is the parameter set
to compute the query, key and value embeddings, Proj is a projection layer and Bimproved represents
the resized BEV feature derived from the multi-head cross-attention that incorporates the SDMap
prior. Subsequentially, the improved bev features pass through a segmentation head to get the initial
HDMap element prediction, denoted as Xinit ∈ RH×W×(Nc+1). Here, the (Nc+1) channels denote
the total number of map element classes, including an additional background class.

4.3 HDMAP PRIOR REFINEMENT

While real roads typically exhibit continuous and consistent characteristics, current road segmen-
tation models (Li et al., 2022; Dong et al., 2022; Xiong et al., 2023; Zhu et al., 2023) predict on
a pixel-by-pixel basis. As illustrated in Fig. 1, the initial predictions from the segmentation head
display gaps such as absent sidewalks and broken lane lines. Such inconsistencies make the out-
comes unsuitable for autonomous driving applications. To better incorporate the HDMap prior of
road continuity, we introduce a ViT (Dosovitskiy et al., 2020)-style HDMap prior refinement mod-
ule, as shown in Fig. 3(e), to refine the initial prediction via modeling global correlations. Further,
we lean on a masked-autoencoder (MAE) pretraining methodology, inspired by (He et al., 2022),
for the pretraining of our refinement network.

Specifically, our refinement module, denoted as H, takes Xinit as input, and outputs the refined
results: Xrefined = H(Xinit), where Xrefined maintains the same dimensions as Xinit. Similar to
the standard ViT, during the refinement phase, the Xinit is initially divided into non-overlapping
patches and embedded by a linear projection with positional embeddings, followed by a sequence
of Transformer blocks. To obtained the refined results, we first upsample the embedded features
back to size of RH×W×D, where D is feature dimension, and then use the segmentation head for
prediction.

In the pretraining phase, we begin by cropping the HDMap data to match the sensor perception
range, resulting in a sample denoted as Xmap ∈ RH×W×(Nc+1). We then divide the Xmap into a
sample of size h× w:

Xmap =
{
xi ∈ Rh×w×(Nc+1) | i = 1, 2, . . . , ⌊H/h⌋ · ⌊W/w⌋

}
(3)

where ⌊·⌋ denotes rounding down. A random portion of Xmap is selected to be masked, noted as
{xm

i }, and the remainder are visible patches {xv
i }. We convert all the categories within {xm

i } to
background categories to achieve effective masking, and denote the result as {x̄m

i }. Finally, we
obtain the input for the pretraining phase by merging {x̄m

i } and {xv
i }, formulated as Xmasked =

{x̄m
i }

⋃
{xv

i }, with the ground truth Xmap = {xm
i }

⋃
{xv

i }. This random masking approach bolsters
the network’s ability to capture HDMap priors more efficiently. To guarantee that the reconstructed
output aligns well with the original semantic annotation Xmap, training is facilitated using the cross-
entropy loss function.

5 EXPERIMENTS

5.1 DATASET AND METRICS

We evaluate P-MapNet on two popular datasets in autonomous driving research, nuScenes (Caesar
et al., 2020) and Argoverse2 (Wilson et al., 2021). The nuScense contains 1000 scenes with six
surrounding cameras and a LiDAR. And the Argoverse2 contains 1000 3D annotated scenarios in
six cities. We focus on the tasks of semantic HDMap segmentation and instance detection. Similar
to HDMapNet (Li et al., 2022), we conduct an evaluation of three map elements: lane dividers,
pedestrian crossings, and road boundaries.
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Figure 4: Qualitative results on the nuScenes val set. We conducted a comparative analysis within
a range of 240m×60m, utilizing C+L as input. In our notation, “S” indicates that our method
utilizes only the SDMap priors, while “S+H” indicates the utilization of the both. Our method
consistently outperforms the baseline method under various weather conditions and in scenarios
involving viewpoint occlusion.

In order to conduct a comprehensive evaluation of the effectiveness of our method across varying
distances, we set three distinct perception ranges along the direction of vehicle travel: [−30m, 30m],
[−60m, 60m], [−120m, 120m]. Additionally, we utilized different map resolutions, specifically
0.15m for the short range of [−30m, 30m] and 0.3m for the rest two longer ranges. We use
intersection-over-union (IoU) as the first metrics for segmentation results.

Furthermore, we incorporate a post-process to get the vectorized map and evaluate it using the aver-
age precision (AP). Following Dong et al. (2022), we set the threshold of IoU as 0.2 and threshold
of CD as 0.2m, 0.5m, 1.0m.

5.2 IMPLEMENTATION DETAILS

P-MapNet is trained with the NVIDIA GeForce RTX 3090 GPU. We use the Adam (Kingma & Ba,
2014) optimizer and StepLR schedule for trainning with a learning rate of 5 × 10−4. For fairness
comparison, we adopt the EfficientNet-B0 (Tan & Le, 2019) pretrained on ImageNet (Russakovsky
et al., 2015) as the perspective view image encoder and use a MLP to convert to the BEV features. To
encode the point clouds for the LiDAR BEV features, we utilize the PointPillars framework (Lang
et al., 2019), operating at a dimensionality of 128. During the pretraining phase for the HDMap
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Table 1: P-MapNet achieves state-of-the-art on NuScenes val set. The symbol “†” denotes results
reported in Xie et al. (2023), Dong et al. (2022), while “NMP” represents the “HDMapNet+NMP”
configuration as described in Xiong et al. (2023). For superlong-range perception, we compared
with SuperFusion Dong et al. (2022) and BEVFusion (Liu et al., 2022b). “C” and “L” respectively
refer to the surround-view cameras and LiDAR inputs. Ours used both SDMap priors and HDMap
priors.

Range Method Modality Divider Ped Crossing Boundary mIoU

60× 30m

VPN † C 36.5 15.8 35.6 29.3
Lift-Splat-Shoot † C 38.3 14.9 39.3 30.8

HDMapNet C 40.5 19.7 40.5 33.57
NMP † C 44.15 20.95 46.07 37.05

HDMapNet C+L 45.9 30.5 56.8 44.40
P-MapNet(Ours) C 44.3 23.3 43.8 37.13
P-MapNet(Ours) C+L 54.2 41.3 63.7 53.07

90× 30m
BEVFusion † C+L 33.9 18.8 38.8 30.5
SuperFusion † C+L 37.0 24.8 41.5 34.43

P-MapNet(Ours) C+L 44.73 31.03 45.47 40.64

Table 2: Quantitative results of map segmentation mIoU scores (%). Performance comparison
of HDMapNet (Li et al., 2022) baseline and ours on the nuScenes val set (Caesar et al., 2020). In
the case of using “HD.Prior.” with P-MapNet, “Epoch” represents the number of refinement epochs.

Range Method SD.Prior. HD.Prior. Modality Epoch Divider Ped Crossing Boundary mIoU FPS

60× 30m

HDMapNet C 30 40.5 19.7 40.5 33.57 35.4
P-MapNet ✓ C 30 44.1 22.6 43.8 36.83 (+3.26) 30.2
P-MapNet ✓ ✓ C 10 44.3 23.3 43.8 37.13 (+3.56) 12.2

HDMapNet C+L 30 45.9 30.5 56.8 44.40 21.4
P-MapNet ✓ C+L 30 53.3 39.4 63.1 51.93 (+7.53) 19.2
P-MapNet ✓ ✓ C+L 10 54.2 41.3 63.7 53.07 (+8.67) 9.6

120× 60m

HDMapNet C 30 39.2 23.0 39.1 33.77 34.2
P-MapNet ✓ C 30 44.8 30.6 45.6 40.33 (+6.56) 28.7
P-MapNet ✓ ✓ C 10 45.5 30.9 46.2 40.87 (+7.10) 12.1

HDMapNet C+L 30 53.2 36.9 57.1 49.07 21.2
P-MapNet ✓ C+L 30 63.6 50.2 66.8 60.20 (+11.13) 18.7
P-MapNet ✓ ✓ C+L 10 65.3 52.0 68.0 61.77 (+12.70) 9.6

240× 60m

HDMapNet C 30 31.9 17.0 31.4 26.77 22.3
P-MapNet ✓ C 30 46.3 35.7 44.6 42.20 (+15.43) 19.2
P-MapNet ✓ ✓ C 10 49.0 40.9 46.6 45.50 (+18.73) 9.1

HDMapNet C+L 30 40.0 26.8 42.6 36.47 13.1
P-MapNet ✓ C+L 30 52.0 41.0 53.6 48.87 (+12.40) 10.9
P-MapNet ✓ ✓ C+L 10 53.0 42.6 54.2 49.93 (+13.46) 6.6

prior, we trained for 20 epochs for each range. Subsequently, we combined the BEV Feature Fusion
with the HDMap Prior Refinement module and conducted an additional 10 epochs of training to
obtain the final HDMap predictions.

5.3 RESULTS

Segmentation Results. First, we conducted a comparative analysis of our approach with the cur-
rent state-of-the-art (SOTA) approaches in both short-range (60m × 30m) perception and long-
range (90m × 30m) with 0.15m resolution. As indicated in Tab. 1, our method exhibits superior
performance compared to both existing vision-only and fused methods. Specifically, our method
conducted experiments at 0.3m resolution for long-range perception, after which we upsample the
predictions to 0.15m resolution and apply certain morphological operations to ensure a fair com-
parison. Secondly, we performed a performance comparison with HDMapNet (Li et al., 2022) at
various distances and using different sensor modalities, with the results summarized in Tab. 2 and
Tab. 3. Our method achieves a remarkable 13.4% improvement in mIOU at a range of 240m×60m.
It is noteworthy that the effectiveness of SD Map priors becomes more pronounced as the per-
ception distance extends beyond or even surpasses the sensor detection range, thus validating the
efficacy of SD Map priors. Lastly, our utilization of HD Map priors contributes to additional per-
formance improvements by refining the initial prediction results to be more realistic and eliminating
any anomalies, as demonstrated in Fig. 4. For additional qualitative experiment results, please refer
to the supplementary materials in our Appendix C.

Vectorization Results. We also conducted a comparison of vectorization results by employing post-
processing to obtain vectorized HD Maps. As detailed in Appendix B.4, we achieve the best instance
detection AP results across all distance ranges. The visualization of the vectorized HD Map output
can be found in Appendix C.
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Table 3: Quantitaive results of map segmentation on Argoverse2 val set. We conducted a com-
parison between the P-MapNet method and HDMapNet (Li et al., 2022), using only surround-view
cameras as input, and our results demonstrated superior performance.

Range Method Divider Ped Crossing Boundary mIoU

60× 30m
HDMapNet 41.7 19.2 30.8 30.56

P-MapNet (S) 51.1 25.6 43.7 40.13 (+9.57)
P-MapNet (S+H) 51.5 26.4 43.7 40.53 (+9.97)

120× 60m
HDMapNet 42.9 23.6 34.7 33.73

P-MapNet (S) 48.6 32.0 45.8 42.13 (+8.40)
P-MapNet (S+H) 49.5 32.3 45.8 42.53 (+8.80)

Table 4: Ablations about SD Maps fusion method. The experiments are conducted with range of
120×60m and C+L as inputs. “w/o SDMap” is the baseline method (Li et al., 2022). “w/o SDMap,
w Self.Attn” only employed self-attention, and cross-attention, which integrates SD Map priors, was
not utilized.

Fusion Method Divider Ped Crossing Boundary mIoU

w/o SDMap 53.2 36.9 57.1 49.07
w/o SDMap, w/ Self.Attn. 57.7 42.0 60.6 53.43

Simply-concat 59.4 43.2 61.6 54.73
CNN-concat 60.2 45.5 63.1 56.27
Cross.Attn. 63.6 50.2 66.8 60.20

5.4 ABLATION STUDY

All experiments are conducted on nuScenes val set with a perception range of 120m× 60m and the
camera-LiDAR fusion(C+L) configuration. More ablation studies are provided in Appendix A.3.

Effectiveness of SDMap Prior Fusion. To validate the effectiveness of our proposed fusion ap-
proach for SDMap priors, we experimented with various fusion strategies, the details of which are
summarized in Tab. 4. In an initial evaluation, a straightforward concatenation (termed ”Simple-
concat”) of the rasterized SDMap with BEV features Bsensor led to a mIoU boost of 4%. A more
involved approach, where we deployed CNNs to encode and concatenate the rasterized SDMap,
furthered this improvement to 6%. Nonetheless, the straightforward concatenation techniques were
hampered by spatial misalignment issues, preventing the full capitalization of the SDMap priors’ po-
tential. Interestingly, leveraging self-attention solely for BEV queries also enhanced performance.
Among all the approaches tested, our method anchored on cross-attention demonstrated the most
substantial gains.

Pretraining and Masking Strategy. We conducted a comparison between results with and without
pre-training, which clearly demonstrates that pretraining is effective in capturing HDMap priors.
We devised two distinct mask strategies: the grid-based strategy and the random-mask strategy. Our
approach, which utilized the random sampling strategy, produced the most promising results. For
additional details, please refer to Appendix B.5.

6 DISCUSSION AND CONCLUSION

In summary, P-MapNet stands as a pioneering framework that harnesses prior information from both
SDMap and HDMap, marking a significant advancement in this field. Our attention-based architec-
ture has proven highly adaptable to the challenges posed by misaligned SDMap data. Additionally,
the utilization of a masked autoencoder has allowed us to effectively capture the prior distribution
of HDMap, facilitating its role as a refinement module for addressing concerns such as occlusions
and artifacts. Extensive experimentation has demonstrated that our method serves as an effective
far-seeing solution for HDMap construction and localization challenges in autonomous driving sce-
narios.
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Appendix

A FURTHER STUDY ON SDMAP PRIOR

A.1 INTEGRATING SDMAP PRIOR INTO END-TO-END VECTORIZED FRAMEWORK

As demonstrated in Tab.5, to confirm the universality of our SDMap prior, we integrated our SDMap
Prior Module into MapTR(Liao et al., 2022) (with only minor modifications), a state-of-the-art end-
to-end framework, referred to as the MapTR-SDMap method. Our MapTR-SDMap method also led
to a significant improvement in mean Average Precision (mAP).

The visualization results in Fig. 5 also show that MapTR-SDMap performs better under the most
challenging 240×60m ultra-long range of perception. It can also be seen that the segmentation-post-
processing approach has stable results because it is sense-prediction, while the end-to-end vectoriza-
tion approach still has some challenges such as significant predictive bias and challenges in keypoint
selection. In conclusion, our proposed SDMap Prior fusion method demonstrates performance im-
provement in both the segmentation-postprocessing framework and the end-to-end framework.

Table 5: Comparisons with MapTR (Liao et al., 2022) on nuScenes val set. We conducted a
comparison between MapTR fused with the SDMap prior method (MapTR-SDMap) and the vanilla
MapTR (Liao et al., 2022), using only surround-view cameras as input and we use predefined CD
thresholds of 0.5m, 1.0m and 1.5m. Our results demonstrated superior performance, highlighting
the effectiveness of our SDMap prior fusion method.

Range Method Divider Ped Crossing Boundary mAP

60× 30m
MapTR 49.50 41.17 51.08 47.25

MapTR-SDMap 50.92 43.71 53.49 49.37 (+2.21)
P-MapNet 26.08 17.66 48.43 30.72

120× 60m
MapTR 26.00 18.89 15.73 20.20

MapTR-SDMap 27.23 21.95 19.50 22.89 (+2.69)
P-MapNet 19.50 24.72 42.48 28.90

240× 60m
MapTR 12.69 7.17 4.23 8.03

MapTR-SDMap 22.74 16.34 10.53 16.53 (+8.50)
P-MapNet 14.51 25.63 28.11 22.75

A.2 INCONSISTENCIES BETWEEN GROUND TRUTH AND SDMAPS

Influence of Inconsistencies between Ground Truth and SDMaps. As detailed in Sec. 3, our
SDMap priors are derived from OpenStreetMap (OSM). Nonetheless, due to discrepancies between
labeled datasets and actual real-world scenarios, not all roads datasets are comprehensively anno-
tated. This leads to incongruities between the SDMap and HDMap. Upon a closer examination
of OSM, we noticed that there is a category in OSM called service road, which is for access roads
leading to or located within an industrial estate, camp site, business park, car park, alleys, etc.

Incorporating service category roads can enrich the SDMap prior information with greater details.
However, it also implies a potential increase in inconsistencies with dataset annotations. In light of
this, we take ablation experiments to determine the advisability of incorporating service category
roads.

As shown in Fig. 6, we select two cases to demonstrate the impact of inconsistencies between
datasets map annotations and SDMaps. Specifically, in the Fig. 6(a), the inclusion of a service
roads (an industrial estate) yields a positive outcome, where the SDMap aligns well with the ground
truth dataset.

Nevertheless, in most cases, SDMaps with service roads are inconsistent with the ground truth of
datasets, primarily due to the lack of detailed annotations for internal roads. Consequently, during
the training process, the network learns the distribution of most service roads and filters them as
noise. This inadvertently led to some primary roads being erroneously filtered out as noise. As
depicted in Fig. 6(b), the service road (two alleys) highlighted in the red box is absent in the ground
truth. The network perceives it as noise and consequently does not produce the corresponding road.
However, it also neglects to generate a road for the primary route indicated in the ground truth, de-
lineated within the green box, resulting in a significant discrepancy. Conversely, the network that
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Figure 5: The qualitative results of vectorized results on a perception range of 240m × 60m .
We integrate the SDMap Prior Module into the MapTR(Liao et al., 2022) (with only minor modifi-
cations), referred to as the MapTR-SD. PMapNet-CAM is our method with both SDMap prior and
HDMap prior utilizing the post process.

excludes service roads avoids learning numerous erroneous SDMap distributions. This enables the
network to more effectively assimilate SDMap information pertaining to main roads, even though
many detailed SDMaps may be missing. The visualization in the right side of Fig. 6(b) demon-
strates that the SDMap prior effectively guides the generation of HDMap. It even reconstructs the
pedestrian crosswalks and lane at remote intersections, even though these reconstructions do not
align with the actual ground truth.
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(a) Positive Result of Incorporating service Road 

(b) Negative Result of Incorporating service Road 

w/ service Road  w/o service Road

w/ service Road  w/o service Road

Multview Images

Multview Images

Figure 6: The two scenarios underscore the effects of discrepancies between the ground truth and
SDMaps. (b) shows that the network filters most of the service roads as noise since majority of them
are incongruous with the ground truth, which affects the performance of trunk roads. SDMap prior
exhibits commendable efficacy when service roads are not introduced. (a) demonstrates that when
the distribution of the service road deviates from the norm, its performance is enhanced since the
network refrains from filtering it out as noise.

Table 6: Quantitative results on different OSM category. Incorporating service road introduce
richer information but also involve inconsistency. In terms of segmentation mIoU results, the ab-
sence of service roads in the SDMap prior leads to an improvement of approximately 2% in perfor-
mance.

With service road Divider Ped Crossing Boundary mIoU

w/ service 62.4 47.9 65.3 58.53
w/o service 63.6 50.2 66.8 60.20

In terms of quantitative metrics, as show in Tab. 6, excluding service roads results in a 2% mIoU
improvement. The modest difference in these metrics suggests that the network can effectively
filter out noise when introduced to numerous SDMaps that deviate from the ground truth. It further
emphasizes the effectiveness of an SDMap focused on main roads in guiding the generation of the
HDMap.

Visualization Analysis of the Inconsistencies between Ground Truth and SDMaps. As seen
in Fig. 7, we select a case to show the negative result in the near side due to the inconsistencies.
Obviously, the baseline shows that when SDMap prior information is not integrated, both the left
and right forks at the near side can be predicted, but the far side cannot be predicted clearly due to
weather reasons and visual distance.

When leveraging the SDMap prior to bolster HDMap generation, the predictions for the near side
forks roads deteriorate due to the SDMap’s exclusive focus on trunk roads. Furthermore, incorpo-
rating the HDMap prior alleviates artifacts and bridges the gaps, but this inadvertently diminishes
prediction performance on the near side fork roads, as shown in Fig. 7(a).

However, we also validate the case using the model with service roads as in Fig. 7(b). The network
perceives the service SDMap of the fork road (to the industrial park) as noise and filters it out,
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Figure 7: The negative results in the near side fork roads. (a) demonstrates that the baseline
exhibits proficient performance in predicting near side forks. Yet, due to the SDMap’s exclusive
focus on main roads, the prediction accuracy for near side forks diminishes upon integrating both
the SDMap and HDMap prior information. (b) shows that even if service road information is added,
the network will filter out this SDMap as noise.

as mentioned in the previous part. The other left side fork road is not contained in the service.
Consequently, it performs suboptimal as well since the SDMaps is not detailed enough and the
discrepancies between SDMaps and dataset’s ground truth.

In summary, we introduce SDMap priors information and undertaken a comprehensive analysis of
several intriguing cases. Our intent is to offer insights that may inspire future researchers to further
the utilization of SDMap priors in HDMap generation.

A.3 ABLATION OF ATTENTION LAYERS

As the number of transformer layers increases, performance of our method improves, but it even-
tually reaches a point of saturation since the SDMap priors contain low-dimensional information,
excessively large network layers are susceptible to overfitting, as shown in Tab. 7.

Table 7: Ablations about the number of Attention Layer. During training, we evaluated memory
usage with a batch size of 4, while for inference, we measured frames per second (FPS) with a batch
size of 1.

Attention Layer Divider Ped Crossing Boundary mIoU Memory FPS

1 62.6 48.4 65.6 58.87 19.03 19.60
2 63.6 50.2 66.8 60.20 20.2 18.56
4 60.6 44.9 63.2 56.23 23.24 18.45
6 58.7 42.4 61.8 54.30 OOM -

A.4 ABLATION OF BEV FEATURE DOWNSAMPLING FACTOR

Different downsampling factor d impact the size of feature map Bsmall in the fusion module. Larger
feature maps convey more information but can result in higher GPU memory usage and slower
inference speed. As shown in Tab. 8, to strike a balance between speed and accuracy, we opt for a
size of 50× 25.
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Table 8: Ablations about downsampling factor. We conducted a comparison of mIOU results for
feature sizes at a range of 120 × 60m with different down-sampling multiples. The term “OOM”
represents the GPU memory is exhausted. During training, we evaluated memory usage with a batch
size of 4, while for inference, we measured frames per second (FPS) with a batch size of 1.

Factor Feature Map Size Divider Ped Crossing Boundary mIoU Memory(GB) FPS

d = 2 100× 50 - - - - OOM -
d = 4 50× 25 63.6 50.2 66.8 60.20 20.2 18.56
d = 8 25× 12 60.7 45.0 63.3 56.33 18.3 19.60

Table 9: Ablations about mask proportion. We use different random mask ratios for pre-training,
with higher mask ratios being harder for the reconstruction.

Mask Proportion Divider Ped Crossing Boundary mIoU

25% 64.8 51.4 67.6 61.27
50% 65.3 52.0 68.0 61.77
75% 64.7 52.1 67.7 61.50

B FURTHER STUDY ON HDMAP PRIOR

B.1 PERCEPTUAL METRIC OF HDMAP PRIOR

The HDMap Priors Module endeavors to map the network output onto the distribution of HDMaps
to make it appear more realistic. To evaluate the realism of the HDMap prior refinement Mod-
ule output, we utilized a perceptual metric LPIPS(Zhang et al., 2018) (lower values indicate better
performance). LPIPS leverages deep learning techniques to more closely simulate human visual
perception differences, providing a more precise and human vision-aligned image quality assess-
ment than traditional pixel-level or simple structural comparisons. The enhancements achieved in
the HDMap Prior Module are considerably greater when compared to those in the SDMap Prior
Module as demonstrated in Tab.10.

Table 10: Perceptual Metric of HDmap Prior. We utilizing the LPIPS metric to evaluate the
realism of fusion model on 120m × 60m perception range. And the improvements in the HDMap
Prior Module are more significant compared to those in the SDMap Prior Module.

Range Method Modality mIoU↑ LPIPS↓ Modality mIoU↑ LPIPS↓

120× 60m
Baseline C 33.77 0.8050 C+L 49.07 0.7872

P-MapNet (S) C 40.33(+6.56) 0.7926(1.54%)↓ C+L 60.20(+11.13) 0.7607(3.37%)↓
P-MapNet (S+H) C 40.87(+7.10) 0.7717(4.14%)↓ C+L 61.77(+12.70) 0.7124(9.50%)↓

240× 60m
Baseline C 26.77 0.8484 C+L 36.47 0.8408

P-MapNet (S) C 42.20(+15.43) 0.8192(3.44%)↓ C+L 48.87(+12.40) 0.8097(3.70%)↓
P-MapNet (S+H) C 45.50(+18.73) 0.7906(6.81%)↓ C+L 49.93(+13.46) 0.7765(7.65%)↓

B.2 GENERALIZABILITY OF PRE-TRAINING REFRINEMENT MODULE

In order to verify the generalizability of our HDMap Prior refinement module, we pre-train on Ar-
goverse2 and nuScenes datasets respectively, and refine on nuScenes dataset and test the prediction
results mIOU. The results are shown in the Tab. 11, and it can be seen that the model pre-trained on
Argoverse2 is only 0.64% mIOU lower than the pre-trained model on nuScenes, which can prove
that our refinement module indeed captures the HDMap priors information with high generalization
rather than overfitting on the dataset.

B.3 MASK PROPORTION EXPERIMENT

As show in Tab. 9, we test the effect of using different mask ratios for pre-training on the refinement
results, too high a mask ratio will lead to the lack of valid information and the actual refinement
process of the input difference is large, too low a mask ratio can not force the network to capture the
HDMap priors, we choose the optimal 50% as the ratio of pre-training of our method.
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Table 11: Cross-Data experiment of HDMap Priors. We pre-trained the HDMap Prior Module
on the Argoverse2 and nuScenes datasets, respectively, and then tested it on the nuScenes val set,
using a model of 120× 60m, using Lidar and cameras as inputs.

Pre-Train Dataset Divider Ped Crossing Boundary mIoU ↑ LPIPS ↓
Argoverse v2 64.5 51.3 67.6 61.13 (+0.93) 0.7203 (8.49%)↓

Nuscense 65.3 52.0 68.0 61.77 (+1.57) 0.7124 (9.50%)↓

B.4 VECTORIZATION RESULTS BY POST-PROCESSING

We compared the vectorization results by incorporating post-processing to generate vectorized HD
Maps. As outlined in Tab. 12, we attained the highest instance detection AP results across all
distance ranges.

Table 12: Quantitative results of AP scores. Performance comparison of vectorize map instances
on the nuScense val setCaesar et al. (2020). For the AP metric, we follow the approach of Li et al.
(2022), and we use predefined CD thresholds of 0.5m, 1.0m and 1.5m.

Range Method SD.Prior. HD.Prior. Modality Epoch Divider Ped Crossing Boundary mAP

60× 30m

HDMapNet C 30 27.68 10.26 45.19 27.71
P-MapNet ✓ C 30 32.11 11.33 48.67 30.70 (+2.99)
P-MapNet ✓ ✓ C 10 26.08 17.66 48.43 30.72 (+3.01)

HDMapNet C+L 30 29.46 13.89 54.07 32.47
P-MapNet ✓ C+L 30 36.56 20.06 60.31 38.98 (+6.51)
P-MapNet ✓ ✓ C+L 10 37.81 24.96 60.90 41.22 (+8.75)

120× 60m

HDMapNet C 30 14.40 8.98 34.99 19.46
P-MapNet ✓ C 30 19.39 14.59 38.69 24.22 (+4.76)
P-MapNet ✓ ✓ C 10 19.50 24.72 42.48 28.90 (+9.44)

HDMapNet C+L 30 21.11 18.90 47.31 29.11
P-MapNet ✓ C+L 30 28.30 25.67 52.51 35.49 (+6.38)
P-MapNet ✓ ✓ C+L 10 30.63 28.42 53.27 37.44 (+8.33)

240× 60m

HDMapNet C 30 7.37 5.09 21.59 11.35
P-MapNet ✓ C 30 10.86 12.74 25.52 16.38 (+5.03)
P-MapNet ✓ ✓ C 10 14.51 25.63 28.11 22.75 (+11.40)

HDMapNet C+L 30 11.29 11.40 29.05 17.25
P-MapNet ✓ C+L 30 17.87 20.00 35.89 24.59 (+7.34)
P-MapNet ✓ ✓ C+L 10 21.47 24.14 34.23 26.61 (+9.36)

Table 13: Detailed runtime. We conducted tests on the time consumption of each component in
P-MapNet at a range of 60× 120m on one RTX 3090 GPU.

Component Runtime (ms) Proportion

Image backbone 7.56 7.63%
View transformation 3.25 3.28%

Lidar backbone 17.60 17.76%
SDMap prior module 4.40 4.45%

HDMap prior refinement 66.12 66.87 %

Total 98.87 100 %

B.5 ABLATION OF MASK STRATEGY

The grid-based strategy uses a patch size of 20× 20 pixels and keeps one of every two patches. And
the random-mask strategy selects one of the patch sizes from 20× 20, 20× 40, 25× 50, or 40× 80
with a 50% probability for masking. The visualization results are presented in Figure 8. With pre-
training, the refinement module effectively learns the HDMap priors. As depicted in Tab.14, our
approach employing the random sampling strategy yielded the most favorable results.

B.6 DETAILED RUNTIME

In Tab. 13, we provide the detailed runtime of each component in P-MapNet with camera and lidar
inputs.
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Figure 8: Different mask strategies. “Maksd” refers to the pre-training inputs after applying vari-
ous masking strategies, and “Epoch-1” and “Epoch-20” denote the reconstruction results at the first
and twentieth epochs of the pre-training process, respectively.

Table 14: Ablations about mask strategy. “w/o pretrain” signifies that we do not pre-train the
HDMap Prior Refinement module. Interestingly, our random-mask method yields superior results
in this context.

Mask Strategy Divider Ped Crossing Boundary mIoU

w/o Pre-train 64.1 51.4 67.4 60.97
Gird-based 65.1 52.3 67.8 61.73

Random-mask 65.3 52.0 68.0 61.77

C QUALITATIVE VISUALIZATION

C.1 SEGMENTATION QUALITATIVE RESULTS

As depicted in the Fig. 10, Fig. 11, Fig.9 and Fig. 5, we provide additional perceptual results under
diverse weather conditions, and our method exhibits superior performance.

C.2 SD MAP DATA VISUALIZATION

We supplemented the SD Map data on both the Argoverse2 (Wilson et al., 2021) and nuScenes (Cae-
sar et al., 2020) datasets, the specific details are outlined in Tab. 15. The visualization of SD map
data and HD Map data facilitated by the dataset, is presented in Fig. 12 and Fig. 13.
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GT+SDMap Baseline Ours-CAM (S) Ours-CAM (S+H)

Figure 9: The qualitative results of only camera method on a perception range of 240m× 60m.
The SDMap Prior Module improves the prediction results by fusing road structure priors. While
HDMap Prior Module makes it closer to the distribution of HDMap to a certain extent, making it
look more realistic.

Table 15: SDMap data details. In order to generate the SDMap data, we extract the road, road link
and special road data from the highway section of OSM data and perform coordinate alignment and
data filtering.

Dataset Sub-Map Lane Numbers Total Length(km)

NuScenes(Caesar et al., 2020)

Singapore-OneNorth 576 23.4
Singapore-HollandVillage 359 16.9

Singapore-Queenstown 393 17.9
Boston-Seaport 342 32.1

Argoverse2(Wilson et al., 2021)

Austin 193 46.5
Detroit 853 160.6
Miami 1226 178.2

Palo Alto 315 33.4
Pittsburgh 640 112.3

Washington DC 1020 150.6
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Surrounding Views SDMap GT S S+H Baseline 

Figure 10: Visualization under various weather conditions was conducted, with the baseline method
being HDMapNet (Li et al., 2022). The evaluation was performed using the C+L sensor configura-
tion and a perception range of 240m× 60m. “S” indicates that our method utilizes only the SDMap
priors, while “S+H” indicates the utilization of the both.
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Surrounding Views SDMap GT S+H Baseline S 

Figure 11: Visualization under various weather and light conditions was conducted, with the baseline
method being HDMapNet (Li et al., 2022). The evaluation was performed using the C+L sensor
configuration and a perception range of 240m × 60m. “S” indicates that our method utilizes only
the SDMap priors, while “S+H” indicates the utilization of the both.
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Austin Detroit

Miami Palo Alto

Pittsburgh Washington

SD Map

HD Map

Figure 12: The visualizations of SD Map data and HD Map data on the Argoverse2 dataset.
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Boston Seaport Singapore Holland Village

Singapore QueentownSingapore Onenorth

SD Map

HD Map

Figure 13: The visualizations of SD Map data and HD Map data on the nuScenes dataset.
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