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ABSTRACT

Simultaneous neural machine translation (SNMT) models start emitting the target
sequence before they have processed the source sequence. The recent adaptive
policies for SNMT use monotonic attention to perform read/write decisions based
on the partial source and target sequences. The lack of sufficient information
might cause the monotonic attention to take poor read/write decisions, which in
turn negatively affects the performance of the SNMT model. On the other hand,
human translators make better read/write decisions since they can anticipate the
immediate future words using linguistic information and domain knowledge. In
this work, we propose a framework to aid monotonic attention with an external
language model to improve its decisions. We conduct experiments on the MuST-C
English-German and English-French speech-to-text translation tasks to show the
effectiveness of the proposed framework. It improves the quality-latency trade-off
over the state-of-the-art monotonic multihead attention.

1 INTRODUCTION

Simultaneous Neural Machine Translation (SNMT) addresses the problem of real-time interpretation
in machine translation. A typical application of real-time translation is conversational speech or live
video caption translation. In order to achieve live translation, an SNMT model alternates between
reading from the source sequence and writing to the target sequence using either a fixed or an adaptive
read/write policy.

The fixed policies (Ma et al., 2019a) may introduce too much delay for some examples or not enough
for others. The recent works focus on training adaptive policies using techniques such as monotonic
attention. There are several variants of monotonic attention: hard monotonic attention (Raffel et al.,
2017), monotonic chunkwise attention (Chiu & Raffel, 2018), monotonic infinite lookback attention
(MILk) (Arivazhagan et al., 2019), and monotonic multihead attention (MMA) (Ma et al., 2019b).
These monotonic attention processes can anticipate target words using only the available prefix
source and target sequence. However, human translators anticipate the target words using their
language expertise (linguistic anticipation) and contextual information (extra-linguistic anticipation)
(Vandepitte, 2001) as well.

Figure 1: The finetuned XLM-RoBERTa language model predicts German words using the prefix as
input (Green: Correct, Red: Incorrect, Black: Neutral).
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Figure 2: Overview of the simultaneous translation model with future information.

Motivated by human translation experts, we aim to augment monotonic attention with future informa-
tion using language models (LM) (Devlin et al., 2019; Conneau et al., 2019). The LMs can learn
linguistic and extra-linguistic information (Petroni et al., 2019), and help to improve the performance
of the SNMT model. We modify monotonic attention using the plausible future information obtained
from LMs to improve the MMA model’s read/write policy. As shown in Figure 1, at each step, the
LM takes the prefix target (and source, for cross-lingual LM) sequence and predicts the plausible
future information. We hypothesize that aiding the monotonic attention with this future information
might help the SNMT model improve the latency-quality trade-off.

The main contributions of this paper are: (1) A novel monotonic attention mechanism to leverage the
plausible future information (2) Improved latency-quality trade-offs compared to the state-of-the-art
MMA models on MuST-C (Di Gangi et al., 2019) English-German and English-French speech-to-
text translation tasks. (3) Analyses on how our proposed monotonic attention achieves superior
performance over MMA. We also analyze the performance of the proposed framework with custom
and general-purpose LM.

2 MODEL

2.1 MONOTONIC ATTENTION

The source and the target sequences are represented as x = {x1, x2, · · · , xS} and y =
{y1, y2, · · · , yT }, with S and T being the length of the source and the target sequences. The
simultaneous machine translation models (SNMT) produce the target sequence concurrently with
the growing source sequence. In other words, the probability of predicting the target token yi ∈ y
depends on the partial source and target sequences (x≤j ∈ x, y<i ∈ y). In this work, we consider
sequence-to-sequence based SNMT model in which each target token yi is generated as follows:

hj = E(x≤j) (1)
si = D(y<i, ci = A(hj)) (2)

yi = Output(si) (3)

where E(.) and D(.) are the Transformer (Vaswani et al., 2017) encoder and decoder layers, ci is
a context vector and A represents the attention mechanism. In offline MT, the context vector is
computed using a soft attention mechanism (Bahdanau et al., 2015). In monotonic attention based
SNMT, the context vector is computed as follows:

ei,j = MonotonicEnergy(yi−1, hj) (4)
pi,j = Sigmoid(ei,j) (5)
zi,j ∼ Bernoulli(pi,j) (6)

When generating a new target token yi, the decoder chooses whether to read/write based on Bernoulli
selection probability pi,j . When zi,j = 1, we set ti = j, ci = hj (write) and generate the target
token yi; otherwise, we set ti = j + 1 (read) and repeat Eq. 4 to 6. Here ti refers to the index of the
encoder entry needed to produce the ith target token. Instead of hard alignment of ci = hj , Raffel
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Figure 3: Overview of the monotonic multihead attention with future information.

et al. (2017) compute an expected alignment (α) in a recurrent manner and propose a closed-form
parallel solution.

Arivazhagan et al. (2019) propose Monotonic Infinite Lookback Attention (MILk), which combines
the soft attention with monotonic attention to attend all the encoder states from the beginning of the
source sequence till ti for each yi. Ma et al. (2019b) extend MILk to monotonic multihead attention
(MMA) to integrate it into the Transformer model.

The MMA model implements the monotonic energy function in Eq. 4 through scaled-dot product
attention. For a Transformer model with L decoder layers and H attention heads per layer, the energy
function of a h-th head encoder-decoder attention in the l-th decoder layer is computed as follows:

el,hi,j =

(
hjW

K
l,h(yi−1W

Q
l,h)T

√
dk

)
i,j

(7)

pl,hi,j = Sigmoid(el,hi,j ) (8)

where WK
l,h and WQ

l,h are the projection matrices for hj and yi−1, yi−1 is the representation of the
previous output token and dk is the dimension of the attention head.

The MMA attention for each head is calculated as follows:

ul,hi,o =

(
hoW

K
l,h(yi−1W

Q
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√
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i,j

, o ∈ 1, 2, · · · , ti (9)

βi,j =

|x|∑
k=j

(
αi,kexp(ui,j)∑k
n=1 exp(ui,n)

)
(10)

ci =

|x|∑
j=1

βi,jhj (11)

The attention mechanisms in MILk and MMA encourage the model to output the target token with
limited source information by adding latency loss metrics to the training objective. Please refer to
Arivazhagan et al. (2019) and Ma et al. (2019b) for more details.

2.2 MONOTONIC ATTENTION WITH FUTURE INFORMATION

The monotonic attention described in Section 2.1 performs anticipation based only on the currently
available source and target information. We augment this anticipation process using future information
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which is extracted using LMs. LMs are known to inherently provide linguistic information (Petroni
et al., 2019), while the extra-linguistic information is also obtained when the LM is finetuned on a
particular task. To incorporate the future information, we propose the following modifications to the
monotonic attention.

2.2.1 FUTURE REPRESENTATION LAYER

At every decoding step i, the previous target token yi−1 is equipped with a plausible future token ŷi
as shown in the Figure 2. Since the token ŷi comes from an LM possibly with a different tokenizer
and vocabulary set, applying the model’s tokenizer and vocabulary might split the token ŷi further
into multiple sub-tokens {ŷ1i , ŷ2i , · · · , ŷmi }. To get a single future token representation ỹi ∈ Rd from
all the sub-tokens, we apply a sub-token summary layer as follows:

ỹi = Γ({ŷ1i , ŷ2i , · · · , ŷmi }) (12)

The Γ represents a general sequence representation layer such as a Transformer encoder layer or a
simple normalized sum of sub-token representations.

We enrich ỹi at every layer l of the decoder block by applying a residual-feed forward network similar
to the final sub-layer in the transformer decoder block.

ỹl
i = FFN(ỹl−1

i ) (13)

2.2.2 MONOTONIC ENERGY LAYER WITH FUTURE INFORMATION

We can add the plausible future information to the output layer or append it to the target token
representation yi−1. However, the MMA read/write decisions happen in Eq. 7, therefore, we
integrate ỹi into the Eq. 7.

This way of integration of future information allows the model to condition the LM output usage on
the input speech. Hence, it can choose to discard incorrect information. The integration is carried out
by modifying Eq. 4 - Eq. 8 in the following way:

First, we compute the monotonic energy for future information using the enriched future token
representation ỹl

i available at each layer:

ẽli,j =

(
hjW̃

K
l (ỹiW̃

Q
l )T√

d

)
i,j

(14)

where W̃K
l and W̃Q

l are the projection matrices for hj and ỹi, and dk is the dimension of the attention
head of Eq. 7.

We integrate the future monotonic energy function into Eq. 8 as follows:

p̃l,hi,j = Ω(el,hi,j , ẽ
l
i,j), (15)

Ω represents a general modulation operator and can be replaced with feature-wise linear modulation
(Perez et al., 2018) or multiplicative or additive operations. As shown in Figure 3, during training,
each head in the monotonic energy el,hi,j sees the same future monotonic energy ẽli,j , since during the
inference of multihead monotonic attention, the write operations depend on the slowest head.

After computing p̃l,hi,j , we compute ci using Eq. 11. The overall process is described in Algorithm
1. In our experiments, we use the MMA-Infinite Lookback attention model, but our algorithm can
be easily extended for MMA-H by modifying the context vector computation to choose only one
encoder state.

2.2.3 INFERENCE

During the inference time, the start token does not contain any future information. After predicting
the first target token, for every subsequent prediction of target token yi, we invoke the LM to predict
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Algorithm 1: Monotonic Attention with Future Information

1 Input: Training examples, E = {xn, yn}Nn=1, hyperparameters such as learning rate (α), λ
(latency), language model (LM)

2 Extract plausible future information using LM, ŷni = LM(yn1 , · · · , yni−1) ∀i, n
3 Append each ŷn information to target sequence yn. New target sequence
ȳn = {(yn1 , ŷn1 ), (yn2 , ŷ

n
2 ), · · · , (yn|y|, ∅)}

4 Modified training examples are Ē = {xn, ȳn}Nn=1
5 Initialize model parameters θ
6 while training is not done do
7 Sample a training example(s) from Ē
8 compute {h1, · · · , h|x|} for x (Eq. 1)
9 tokenize y and ŷi

10 Run a sub-token summary layer ( Eq. 12) on ŷ) , to obtain ỹi for each yi−1
11 for each decoding step do
12 Compute monotonic energy and future monotonic energy for yi−1, ỹi (Eq. 7 and 14)
13 Compute read/write decision (Eq. 15)
14 compute context vector ci (Eq. 11), and output target token (Eq. 2, 3)
15 end
16 Compute the latency loss along with negative log likelihood
17 Update θ with gradient descent
18 end
19 Return: θ

the next plausible future token. Whenever new source information arrives, we run step 8 of Algorithm
1. Similarly, for every new target token prediction, we extract new plausible future information from
LM using the available predicted sequence, and then we run step 9 to 14 of the Algorithm 1.

3 EXPERIMENTS

3.1 DATASETS AND METRICS

We conduct our experiments on the English(En)-German(De) and English(En)-French(Fr) speech-to-
text (ST) translation tasks. These tasks are more involved compared to the text-to-text translation task
since these are low resource tasks. Moreover, due to different input-output modalities, the difference
in source and target sequence lengths is larger compared to the text-to-text task. We use the EnDe,
and EnFr portions of the MuST-C dataset. More details about the datasets have been provided in the
Appendix.

The speech sequence is represented using 80-dimensional log mel features extracted using the
Kaldi (Povey et al., 2011) toolkit with a 25ms window size and 10ms shift. The target sequence is
represented as subwords using a SentencePiece (Kudo & Richardson, 2018) model with a unigram
vocabulary of size 10,000. We evaluate the performance of the models on both the latency and
quality aspects. We use Average Lagging(AL) as our latency metric and case-sensitive detokenized
SacreBLEU (Post, 2018) to measure the translation quality, similar to Ma et al. (2020b). The best
models are chosen based on the dev set results and reported results are computed using the MuST-C
tst-COMMON test sets.

3.2 IMPLEMENTATION DETAILS

Our base model is adopted from Ma et al. (2020b) and the initial implementation is taken from
Fairseq1 repository. In the text-to-text case, each encoder state corresponds to a vocabulary unit.
Hence, the read/write decisions are taken for each encoder state. For SNMT, each encoder state
represents only 40ms of speech, assuming a sub-sampling factor of 4 from the convolutional layers.
We use a pre-decision ratio of 7 (speech segment size of 280ms), which means that the simultaneous

1https://github.com/pytorch/fairseq
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read/write decisions are made after every seven encoder states, which roughly corresponds to a word
(Ma et al., 2020b). Since we train MMA-IL (Ma et al., 2019b) models, we set λvar = 0 for all
our experiments as it was not reported to be helpful for models with infinite lookback. We use λ
or λlatency to refer to the hyperparameter corresponding to the weighted average (λavg) in MMA.
The values of this hyperparameter λ are chosen from the set {0.01, 0.05, 0.1}. The Γ layer in Eq.
12 computes the normalized sum of the sub-token representations. For SLM, it simply compute the
embedding since it shares the same vocabulary set. The Ω layer in Eq. 15 performs the additive
operation to add the energies corresponding to previous output token yi−1 and the prediction ŷi. All
the models were trained by simulating 8 GPU settings on a single NVIDIA v100 GPU.

3.3 MODELS

We train a baseline model based on Ma et al. (2020b), called the MMA model. The base MMA model
encoder and decoder embedding dimensions are set to 392, whereas our proposed model’s encoder
and decoder embeddings are set to 256 to have similar parameters (≈ 39M ) for a fair comparison.
Apart from the encoder and decoder embedding dimension, all other hyperparameter settings and
training procedures are similar for all the reported models. We train two MMA models based on two
different LMs used for extracting future information. Further details have been provided in Section
3.4.

We follow the similar training process as Ma et al. (2020b). We train an English ASR model using
the source speech data. Next, we train a simultaneous model without the latency loss (setting
λlatency = 0) after initializing the encoder from the English ASR model. After this step, we finetune
the simultaneous model for different λs. This training process is repeated for all the reported models
and for each task.

3.4 LANGUAGE MODEL

We use two different language models to train our proposed LM-based simultaneous speech translation
model. Firstly, we use the pretrained XLM-RoBERTa (Conneau et al., 2019) model from Huggingface
Transformers2 model repository. It is a multilingual (more than 100 languages) LM trained on a
wide variety of cross-lingual tasks. The model contains 550M parameters with 24 layers, 1,024
hidden-states. Since the LM output can be very open-ended and might not directly suit/cater to our
task and dataset, we finetune the head of the model using the target MuST-C text data corresponding
to each task.

We also train a smaller language model (SLM), which contains 6 Transformer decoder layers, 512
hidden-states and 24M parameters. We use the MuST-C data along with additional data augmentation
(refer to Appendix) to reduce overfitting. Although trained on a much smaller monolingual dataset, it
helps to remove the issues related to vocabulary mismatch as discussed in the Section 2.2.1. This LM
has lower inference time and has higher accuracy on the next token prediction task as compared to
XLM, 30.15% vs. 21.5% for German & 31.65% vs. 18.45% for French. More details about LMs have
been provided in the Appendix. The models trained using these LMs are referred to as MMA-XLM
and MMA-SLM.

3.5 RESULTS

In this section, we provide the results for MMA, MMA-XLM, and MMA-SLM in the form of
latency-quality trade-off curves. We also provide analysis for the results in the later part of the
section.

Latency-Quality Curves The hyperparameter corresponding to the average latency loss allows
us to train separate models for different latency regimes. Moreover, the quality and latency for a
particular model can also be varied by controlling the speech segment size during the inference.
Speech segment size or step size refers to the duration of speech (in ms) processed corresponding
to each read decision. We vary these hyperparameters for all the three models, namely MMA,
MMA-XLM and MMA-SLM. The evaluation was carried out using SimulEval toolkit (Ma et al.,
2020a).

2https://huggingface.co/transformers/
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(a) EnDe Task (b) EnFr Task

Figure 4: BLEU vs Average Lagging results for MMA, MMA-XLM and MMA-SLM models for
different speech segment step sizes.

The BLEU-AL curves for all the models have been provided in Figure 4. We vary the step sizes
from 120 ms to 520 ms in order to get performances corresponding to different latency regimes. We
can observe that the LM-based models using both XLM and SLM provide a significant performance
improvement over the baseline MMA model. We observe improvements in the range of 1-2 BLEU
scores consistently across all the latency regimes.

LM anticipation vs Latency In order to measure the relative weight given to the predictions from
the LM, we compare the norm of the monotonic energies corresponding to the LM predictions epred
(Eq. 14) and the previous output tokens eoutput (Eq. 7 ). Let us define LM prediction weight as

LMpw =

(
‖epred‖
‖eoutput‖

)
(16)

In Figure 5, we plot the variation of LMpw(averaged) vs. λ. For the sake of these plots, we also
computed LMpw for 2 additional values of λ, {0.001, 0.005} We can observe that as the latency
requirements become more and more strict, the model starts to give more weightage to the predictions
coming from the LM. In other words, as the need for anticipation increases, the model starts to rely
more on the LM predictions.

Effect of LM Size on Latency-Quality We train several SLM models with varying sizes in our
experiments and choose the best model based on the top-1 accuracy. As we increase the number
of layers in the LM model from 2 to 4 to 6 layers, the SLM and the proposed MMA with future
information models have shown performance improvements. However, increasing the number of
layers greater than 6 does not yield any performance improvements. We also notice this degradation
of performance with the XLM model while varying the number of hidden layers in the LM head. The
best performances which are reported in Figure 4 are observed with the 6 layer SLM model.

Effect of LM Size on CAAL As we can observe from the Figure 4, the results for MMA-XLM
and MMA-SLM are very close. Not only does MMA-SLM perform slightly better than MMA-XLM,
but the prediction computation time is also much lower since XLM is much deeper than SLM. The
average time taken to compute one token during prediction for SLM is 6.1ms as compared to 24.78ms
for XLM. However, XLM is more suitable for multilingual settings since we can use same LM for all
the languages.

In order to account for the computation time incurred by the model, we also use the Computation
Aware Average Latency (CAAL) introduced in Ma et al. (2020b). AL (non-computation aware) is
measured in terms of the duration of speech listened to before generating target token, while CAAL
uses the wall-clock time, which also factors in the time elapsed due to the model complexity. In
Figure 6, we provide the CAAL for various λ values for approximately similar BLEU. For a given
value of AL, LM based MMA models have a higher CAAL when compared to the MMA model. This
gap is expected and occurs due to the time taken for the LM to compute the predictions. However,
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Figure 5: LM prediction weight vs λ

(a) EnDe Task (b) EnFr Task

Figure 6: Computational Aware Average Latency of MMA, MMA-XLM, MMA-SLM with similar
BLEU scores and different latencies = {0.1, 0.05, 0.01}

both MMA-XLM and MMA-SLM improve the latency-quality trade-off and hence reduce the AL
for a given BLEU. As observed, MMA-SLM has lesser CAAL as compared to MMA since the
extra computation time is balanced by the reductions in AL due to the algorithmic improvements.
MMA-XLM, on the other hand, has a slightly higher CAAL. English speakers utter 6.2 syllables per
sec (Pellegrino et al., 2011), which means 160ms/syllable. Both German and French readers read
roughly 5 syllables/sec, 200ms/syllable (Trauzettel-Klosinski et al., 2012). Considering this human
perception speed, a gap of 6ms or 24ms per sub-word (which might contain multiple syllables) should
not cause acute deterioration in the user experience.

4 RELATED WORK

The earlier works in streaming simultaneous translation such as Cho & Esipova (2016); Gu et al.
(2016); Press & Smith (2018) lack the ability to anticipate the words with missing source context.
Ma et al. (2019a) established a more sophisticated approach by integrating their read/write agent
directly into MT. Similar to Dalvi et al. (2018), they employ a fixed agent that first reads k source
tokens and then proceeds to alternate between write and read until the source tokens are finished.
Recently, the adaptive policies based on several variants of monotonic attention for SNMT have been
explored: hard monotonic attention (Raffel et al., 2017), monotonic chunkwise attention (MoChA)
(Chiu & Raffel, 2018) and monotonic infinite lookback attention (MILk) (Arivazhagan et al., 2019).
MILk improves upon the wait-k training with an attention that can adapt how it will wait based on
the current context. Monotonic multihead attention (MMA) (Ma et al., 2019b) extends MILk to
transformer-based models.

Gulcehre et al. (2015; 2017) propose shallow fusion of language models (LMs) into text-to-text
machine translation (MT) by combining LM and MT scores at inference time using a log-linear model.
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However, this has a mismatch between training and inference of MT. To overcome this drawback,
Stahlberg et al. (2018) integrate the LM scores during MT training. They use a pretrained LM and
train the MT system to optimize the combined score of LM and MT on the training set. Sriram et al.
(2018) explored a similar idea for Automatic Speech Recognition (ASR) using a gating network
for controlling the relative contribution of the LM. These techniques allow the main sequence to
sequence model (either ASR or MT) to focus on modeling the source sentence, while the LM controls
the target side generation. Wu et al. (2020) implicitly uses future information during training of
SNMT systems by simultaneously training different wait-k systems. The translation model is jointly
trained with a controller model that decides which k is optimal to use for training a particular batch
of examples. However, they do not use any explicit future information during training and inference.

End-to-end speech translation (Indurthi et al., 2020; Sperber & Paulik, 2020) has recently made
great progress and even surpassed the cascaded models (ASR followed by MT) (Ney, 1999; Post
et al., 2013). Ren et al. (2020) investigate how to adapt the simultaneous models for speech-to-text
translation tasks. Han et al. (2020) use meta-learning algorithm MAML (Finn et al., 2017) to improve
wait-k based simultaneous speech-to-text models. Ma et al. (2020b) explore the usage of monotonic
multihead attention for speech translation by introducing a pre-decision module.

5 CONCLUSION

In this work, we provide a generic framework to integrate plausible future information into simultane-
ous models. This information helps to improve the anticipation for monotonic attention based models.
We rely on language models to extract future information and propose a new monotonic attention
mechanism to infuse into simultaneous models. We conduct several experiments on low resource
speech-to-text translation tasks to show the effectiveness of proposed approach. We have achieved
superior quality-latency trade-off compared to the state-of-the-art monotonic multihead attention. In
the future work, we plan to extend the proposed framework to the text-to-text simultaneous translation
and analyze different future information fusion mechanisms.
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A LANGUAGE MODELS

As mentioned earlier, we train two different language models (LMs) and use them to improve the
anticipation in monotonic attention based Simultaneous models.

A.1 XLM-ROBERTA(XLM-R)

XLM-R Large model 3 was trained on the 100 languages CommonCrawl corpora total size of 2.5TB
with 550M parameters from 24 layers, 1024 hidden states, 4096 feed-forward hidden-states, and 16
heads. Total number of parameters is 558M. We finetune the head of the XLM-R LM model using
the Masked Language Modeling objective which accounts for 0.23% of the total model parameters,
i.e., 1.3M parameters.

A.2 SMALLER LANGUAGE MODEL

Since the LM predictions are computed serially during inference, the time taken to compute the LM
token serves as a bottleneck to the latency requirements. To reduce the LM computation time, we train
a smaller Language Model (SLM) from scratch using the Causal Language Modeling objective. SLM
is composed of 6 Transformer decoder blocks, 512 hidden-states, 2048 feed-forward hidden-states &
8 attention heads. It alleviates the need for the sub-token summary layer since it shares the vocabulary
and tokenization with the MMA models. The train examples are at the sentence level, rather than
forming a block out of multiple sentences(which is the usual case for Language Models).

Since the target texts contain lesser than 250k examples, we use additional data augmentation
techniques to upsample the target data. We also use additional data to avoid overfitting on the
MuST-C target text. Details have been provided in A.2.1.

A.2.1 DATA AUGMENTATION

Up-Sampling: To boost the LM performance and mitigate overfitting, we use contextual data
augmentation (Kobayashi, 2018) to upsample the MuST-C target text data by substituting and
inserting words based on LM predictions. We use the NLPAUG 4 package to get similar words based
on contextual embeddings. From the Hugging Face Repository, we use two different pretrained BERT
(Devlin et al., 2019) models for German bert-base-german-dbmdz-cased & bert-base-german-dbmdz-
uncased and bert-base-fr-cased for French. We upsample German to 1.13M examples and French to
1.38M examples.

Additional Data: We also use additional data to avoid overfitting. For German we use the
Newscrawl(WMT 19) data which includes 58M examples. For French, we use Common Crawl and
Europarl to augment 4M extra training examples.

We observe that both upsampling and data augmentation help us to reduce the overfitting on the
MuST-C dev set.

A.3 TOKEN PREDICTION

For each output token, the LM prediction is obtained by feeding the prefix upto that token to the
LM model. These predictions are pre-computed for training and validation sets. This ensures
parallelization and avoids the overhead to run the LM simultaneously during the training process.
During inference, the LM model is called every time a new output token is written.

B DATASET

The MuST-C dataset comprises of English TED talks, the translations and transcriptions have been
aligned with the speech at sentence level. Dataset statistics have been provided in the Table 1.

3https://huggingface.co/xlm-roberta-large
4https://pypi.org/project/nlpaug/
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Task # Hours # Sentences # Talks # Words
Train Dev Test Source Target

English-German 408 225k 1,423 2,641 2,093 4.3M 4M
English-French 492 269k 1,412 2,632 2,510 5.2M 5.4M

Table 1: Dataset Statistics(# - Number of)

MMA MMA-XLM/CLMHyperparameter
encoder layers 12 12

encoder embed dim 292 256
encoder ffn embed dim 2048 2048
encoder attention heads 4 4

decoder layers 6 6
decoder embed dim 292 256

decoder ffn embed dim 2048 2048
monotonic ffn embde dim – 2048
decoder attention heads 4 4

dropout 0.1 0.1
optimizer adam adam
adam-β (0.9, 0.999) (0.9, 0.999)

clip-norm 10.0 10.0
lr scheduler inverse sqrt inverse sqrt
learning rate 0.0001 0.0001

warmup-updates 4000 4000
label-smoothing 0.0 0.0

max tokens 40000 40000
conv layers 2 2
conv stride (2,2) (2,2)

Table 2: Model Hyperparameters

C HYPERPARAMETERS

The details regarding the hyperparameters for the model have been provided in Table 2.
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