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ABSTRACT

The existence of adversarial examples brings huge concern for people to apply
Deep Neural Networks (DNNs) in safety-critical tasks. However, how to gener-
ate adversarial examples with categorical data is an important problem but lack
of extensive exploration. Previously established methods leverage greedy search
method, which can be very time-consuming to conduct successful attack. This
also limits the development of adversarial training and potential defenses for cate-
gorical data. To tackle this problem, we propose Probabilistic Categorical Adver-
sarial Attack (PCAA), which transfers the discrete optimization problem to a con-
tinuous problem that can be solved efficiently by Projected Gradient Descent. In
our paper, we theoretically analyze its optimality and time complexity to demon-
strate its significant advantage over current greedy based attacks. Moreover, based
on our attack, we propose an efficient adversarial training framework. Through a
comprehensive empirical study, we justify the effectiveness of our proposed attack
and defense algorithms.

1 INTRODUCTION

Adversarial attacks (Goodfellow et al., 2015) have raised great concerns for the applications of Deep
Neural Networks(DNNs) in many security-critical domains (Cui et al., 2019; Stringhini et al., 2010;
Cao & Tay, 2001). The majority of existing methods focus on differentiable models and continuous
input space, where we can apply gradient-based approaches to generate adversarial examples. How-
ever, there are many machine learning tasks where the input data are categorical. For example, data
in ML-based intrusion detection systems (Khraisat et al., 2019) contains records of system opera-
tions; and in financial transaction systems, data includes categorical information such as the types
of transactions. Therefore, how to explore potential attacks and corresponding defenses for cate-
gorical inputs is also desired. Existing methods introduce search-based approaches for categorical
adversarial attacks (Yang et al., 2020b; Lei et al., 2019a). For example, the method in (Yang et al.,
2020a) first finds top-K features of a given sample that have the maximal influence on the model
output, and then, a greedy search is applied to obtain the optimal combination of perturbation in
these K features. However, these search-based methods cannot be guaranteed to find the strongest
adversarial examples. Moreover, they can be computationally expensive, especially when data is
high dimensional and the number of categories for each feature is large.

In this paper, we propose a novel Probabilistic Categorical Adversarial Attack (PCAA) algorithm
to generate categorical adversarial examples by estimating their probabilistic distribution. In detail,
given a clean sample, we assume that (each feature of) the adversarial example follows a categorical
distribution, and satisfies: (1) the generated samples following this distribution have a high expected
loss value and (2) the generated samples only have a few features which are different from the
original clean sample. (See Section 3 for more details.) In this way, we transfer the categorical
adversarial attack in the discrete space to an optimization problem in a continuous probabilistic
space. Thus, we are able to apply gradient-based methods such as (Madry et al., 2017) to find
adversarial examples. On one hand, the distribution of adversarial examples in PCAA is searched in
the whole space of allowed perturbations. This can facilitate our method to find stronger adversarial
examples (with higher loss value) than the greedy search methods (Yang et al., 2020b). Moreover,
when the dimension of input data expands, the increase of computational cost of PCAA will be
significantly slower than search-based methods (Section 3.4). Therefore, our method can enjoy good
attacking optimality and computational efficiency simultaneously. For example, in our experiments
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in Section 5.1, our PCAA method is the only attacking method that has the highest (or close to
highest) attacking successful rate while maintaining the low computational cost.

The advantages of PCAA allow us to further devise an adversarial training method (PAdvT), by
repeatedly (by mini-batches) generating adversarial examples using PCAA. Empirically, PAdvT
achieves promising robustness on different datasets over various attacks. For example, on AG’s
news dataset, we outperform representative baselines with significant margins, approximately 10%
improvement in model robustness compared with the best defense baseline; on IMDB dataset, we
obtain comparable performance with ASCC-defense(Dong et al., 2021a), which is a SOTA defense
method via embedding space adversarial training. However, compared to ASCC, our method does
not rely on the assumption that similar words have a close distance in the embedding space. Com-
pared to other defenses, our defense has much better robustness by more than 15%. Our main
contributions can be summarized below:

• We propose a time-efficient probabilistic attacking method (PCAA) for models with cate-
gorical input.

• Based on PCAA, we devise a probabilistic adversarial training method to defend categorical
adversarial attacks.

2 RELATED WORK

Attacks on categorical data. There has been a rise in the importance of the robustness of machine
learning in recent years. On the one hand, evasion attack, poison attack, adversarial training, and
other robustness problem with continuous input space have been well studied especially in the image
domain (Shafahi et al., 2018; Madry et al., 2017; Ilyas et al., 2019). On the other hand, adversarial
attacks focusing on discrete input data, like text data, which have categorical features, are also
starting to catch the attention of researchers. Kuleshov et al. (2018) discussed the problems of
attacking text data and highlighted the importance of investment into discrete input data. Ebrahimi
et al. (2017b) proposed to modify the text token based on the gradient of input one-hot vectors. Gao
et al. (2018) developed a scoring function to select the most effective attack and a simple character-
level transformation to replace projected gradient or multiple linguistic-driven steps on text data.
Samanta & Mehta (2017) proposed an algorithm to generate a meaningful adversarial sample that
is legitimate in the text domain. Yang et al. (2020a) proposed a two-stage probabilistic framework
to attack discrete data. Lei et al. (2019b) and Yang et al. (2020a) improved the greedy search and
proposed two different greedy attack methods. Alzantot et al. (2018) proposed a black-box attack to
generate syntactically similar adversarial examples. However, the previous methods usually search
in a greedy way, which has exponential time complexity.

Defenses on categorical data. There are also a lot of defense methods in the continuous data do-
main compared with discrete data. For example, the most effective one is adversarial training Madry
et al. (2017), which searches for the worst case by PGD during the training and trains on the worst
adversarial examples to increase the robustness of the models. Several works have been proposed for
categorical adversarial defenses. Pruthi et al. (2019) used a word recognition model to preprocess
the input data and increased the robustness of downstream tasks. Zhou et al. (2020) proposed to use
random smoothing to defense substitution-based attacks. Wang et al. (2021) detected adversarial ex-
amples to defend synonym substitution attacks based on the fact that word replacement can destroy
mutual interaction. Swenor & Kalita (2022) used random noise to increase the model robustness.
Xie et al. (2022) used a huge amount of data to detect the adversarial examples. Dong et al. (2021b)
combined different attack methods, such as Hot-flip (Ebrahimi et al., 2017a) and l2-attack (Miyato
et al., 2017), and adversarial training as the defense method. It also proposed its own adversarial
method ASCC which takes the solution space as a convex hull of word vectors and achieves good
performance in sentiment analysis and natural language inference. However, the defense methods
are mainly focusing on NLP, which may rely on word embeddings.

3 PROBABLISTIC CATEGORICAL ADVERSARIAL ATTACK (PCAA)

3.1 PROBLEM SETUP

Categorical Attack. We first introduce necessary definitions and notations. In detail, we consider
a classifier f that predicts labels y ∈ Y based on categorical inputs x ∈ X . Each input sample x
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Figure 1: The overall framework of Probabilistic Categorical Adversarial Attack. First, a dis-
tribution π is used to sample adversarial examples x′. Then, the gradient of loss function will be
used to update the probability distribution π.

contains n categorical features, and each feature xi take a value from d categorical values. In this
paper, we consider l0-attack, which restricts the number of perturbed features. In particular, given
the budget size ϵ, we aim to find an adversarial example x′ which solves the following optimization
problem:

maxL(f(x′), y) s.t. ∥x′ − x∥0 ≤ ϵ. (1)

Existing search-based methods. To solve the problem, there existing search-based methods such
as Greedy Search (Yang et al., 2020a) and Gradient-Guided Search (Lei et al., 2019a). In general,
they consist of two major steps. First, they search for features in x whose change can result in the
greatest influence on the model output. This can be estimated by either perturbing a feature xi, or
calculating the scale of the model’s gradient to the feature xi. The second step involves greedy or
global searches among all possible combinations of the features identified by the first step. This
process is time-consuming if the feature dimension n or the number of categories d is large.

3.2 OBJECTIVE OF PROBABILISTIC CATEGORICAL ADVERSARIAL ATTACK (PCAA)

Probabilistic Categorical Attack. In this work, we propose an alternative approach to solve the
problem in Eq.(1), by transferring it to the continuous probabilistic space. In detail, we assume that
each feature of (adversarial) categorical data x′

i follows a categorical distribution: Categorical(πi),
where πi ∈ Πi = (0, 1)d. And each πi,j represents the probability that the feature i belongs to
the category j. In the remaining of the paper, we will use πi to denote the categorical distribution
Categorical(πi) without the loss of generality. Therefore, each input sample x’s distribution can be
represented as an array π = [π0;π1; ...;πn] ∈ Π ⊂ Rn×d, where the element πi.j represents the
probability that the feature xi belongs to the category j. Then, we define the following optimization
problem to find a probability distribution π in the space of Π:

max
π∈Π

Ex′∼πL(f(x′), y), s.t. Pr
x′∼π

(∥x′ − x∥0 ≥ ϵ) ≤ δ (2)

where ϵ denotes the perturbation budget size and δ is the tail probability constraint. By solving the
problem in Eq.(2), we aim to find a distribution with parameter π such that: (1) on average, the
generated samples x′ following distribution π have a high loss value; and (2) with low probability,
the sample x′ has a l0 distance to the clean sample x larger than ϵ. In this way, the generated samples
x′ are likely to mislead the model prediction while preserving most features of x.

3.3 AN EFFICIENT ALGORITHM OF PCAA

In this subsection, we provide a feasible algorithm to solve our proposed Eq.(2) in practice. First,
in order to handle the probability constraint in Eq.(2), we substitute the l0 distance between x′ and
x by calculating the sum of Cross Entropy Loss between πi and xi: LCE(πi, xi) for all features
i ∈ |x|. It is because LCE(πi, xi) measures the probability that the i-th feature of the generated
samples is different from xi. Therefore, we use the sum of Cross Entropy

∑
i∈|n| LCE(πi, xi) to

approximate the number of changed features, which is the l0 difference ||x′−x||0. In our algorithm,
we penalize the searched π when the term

∑
i∈|n| LCE(πi, xi) exceeds a positive value ζ (as Eq.
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3). In this case, we equivalently limit the probability that the generated samples x′ have the number
of perturbed features larger than ϵ.

Pr
x′∼π

(||x′ − x|| ≥ ϵ) →

∑
i∈|n|

LCE(xi, πi)− ζ

+

(3)

Moreover, since the Cross-Entropy Loss is differentiable in terms of π, we further transform the
problem to its Lagrangian form:

max
π

Ex′∼πL(f(x′), y)− λ

∑
i∈|n|

LCE(xi, πi)− ζ

+

(4)

where λ is the penalty coefficient, and [·]+ is max(·, 0). Next, we will show how to solve the
maximization problem above by applying gradient methods.

Back propagation through Gumbel-Softmax. Note that the gradient of the expected loss function
with respect to π cannot be directly calculated in Eq. 4, so we apply the Gumbel-Softmax esti-
mator Jang et al. (2017). In practice, to avoid the projection onto probability simplex which hurts
the time efficiency and Gumbel-Softmax does not require a normalized probability distribution, we
consider an unnormalized categorical distribution πi ∈ (0, C]d where C > 0 is a large constant
guaranteeing that the searching space is sufficiently large. The distribution generates sample vectors
x′
i as follows:

x′
ij =

exp((log πij + gj)/τ)∑d
j=1 exp((log πij + gj)/τ)

, for j = 1, ..., d (5)

where gj denotes i.i.d samples from the Gumbel(0, 1) distribution, and τ denotes the softmax tem-
perature. This re-parameterization process facilitates us to calculate the gradient of the expected loss
in terms of π. Therefore, we can derive the following estimator of gradients for the expected loss:

∂Ex′∼πL(f(x′), y)

∂π
≈ ∂

∂π
EgL(f(x′(π, g)), y) = Eg

[
∂L
∂x′

∂x′

∂π

]
≈ 1

ng

ng∑
i=1

[
∂L
∂x′

∂x′(π, gi)

∂π

]
(6)

where ng is the number of i.i.d samples from g. In Eq. 6, the first approximation is from the repa-
rameterization of a sample x′; the second equality comes from exchanging the order of expectation
and derivative, and the third, we approximate the expectation of gradients by calculating the average
of gradients. Finally, we derive the practical solution to solve Eq. 4 as demonstrated in Figure 1, by
leveraging the gradient ascent algorithm, such as Madry et al. (2018). In Algorithm 1, we provide the
details of our proposed attack method. Specifically, in each step, we first update the unnormalized
distribution π by gradient ascent. Then, we clip π back to its domain (0, C]d.

Algorithm 1 Probabilistic Categorical Adversarial Attack (PCAA)
Input Data D, budget ϵ, number of samples ng , penalty coefficient λ, maximum iteration I , learning
rate γ
Output Adversarial Distribution π

Initialize distribution π0

for t ≤ I do
Estimate expected gradient using Eq6: ∇πEπL ≈ 1

ng

∑ng

i=1

[
∂L
∂x′

∂x′(πt,gi)
∂π

]
Gradient ascent: π̃t+1 = πt + γ · ∇π (EπL − λ∇π[LCE(πt, x)− ζ]+)
Clip to (0, C]d: πt+1 = max(π̃t+1, C)

end for
Return distribution π

3.4 TIME COMPLEXITY ANALYSIS

In this subsection, we compare the time complexity of our method with search-based methods to
illustrate the efficiency advantage of our proposed attack method. Here, we assume that the whole
dataset has N data points, each data point has n features, each feature has d categories and the budget
of allowed perturbation is ϵ. We first introduce the details of four different search-based methods.
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• Greedy Search(GS). It consists of two stages. The first stage involves traversing all features.
For the ith feature, it replaces the original category with all other d− 1 categories respectively
and records the change of the model loss for each category. The largest change is treated as
the impact score for the ith feature. Then it selects the top ϵ features with the highest impact
scores to perturb. In the second stage, it finds the combination with the greatest loss among all
possible combinations of categories for selected features.

• Greedy attack.(GA)(Yang et al., 2020a). This method is a modified version of Greedy Search.
The first stage is similar to that of GS, while the second stage searches for the best perturbation
feature by feature. For the ith selected feature, it replaces the original category with one that
results in the largest loss and then searches the next selected feature until all selected features
are traversed. Therefore, it only needs to go over each feature once without traversing all
combinations in the second stage.

• Gradient-guided GS.(GGS)(Lei et al., 2019a). In order to determine which features should be
perturbed, this method utilizes gradient information in the first stage. It computes the gradient
of the loss function w.r.t the original input and treats the gradient of each feature as the impact
score. Those ϵ features with the greatest impact scores are selected to be perturbed. In the
second stage, it follows the same strategy as that of the second stage in GS, and pursues the
combination resulting in the greatest loss among all possible combinations.

• Gradient-guided greedy attack(GGA). On the basis of GGS, it remains the same first stage
and modifies the second stage by adopting the same strategy as that in the second stage of GA.

We analyze the time complexity of our PCAA and the aforementioned methods for comparison.

Probability Categorical Adversarial Attack. In practical implementation, we adopt the uncon-
strained optimization in Eq. 4. Therefore, the time complexity is only from gradient descent. Fur-
ther, assume that we sample ns times when estimating the expected gradient and the maximum
number of iterations is I . We need to compute gradient ns times during one iteration, thus the time
complexity of PCAA is:

N · ns · O(nd) · I = C1NO(nd) (7)
where C1 is some constant related to ns and I .

Greedy search. As described above, the Greedy search consists of two stages. In the first stage, it
needs to traverse all n features and compute a loss when plugging in each level. Then n · d times
of calculation are needed. In the second stage, all possible combinations of categories for top ϵ
features need to be considered and the number of possible combinations is dϵ. Therefore, the time
complexity for Greedy Search is

N · [Ω(stage1) + Ω(stage2)] = N · [O(nd) +O(dϵ)] = N · O(nd+ dϵ) (8)

Greedy attack. In the first stage, it traverses all categories within each feature to find the best ϵ
features to perturb, which needs n · d computation. And in the second stage, it searches ϵ selected
features respectively for the d categories that lead to the greatest loss. Thus, the time complexity is

N · [Ω(stage1) + Ω(stage2)] = N · [O(nd) +O(ϵd)] = N · O(nd+ ϵd) (9)

Gradient guided greedy search. In the first stage, it computes gradients w.r.t the original input,
and in the second stage, it also needs to traverse all possible combinations for selected features.
Therefore the time complexity is

N · [Ω(stage1) + Ω(stage2)] = N · [O(n) +O(dϵ)] = N · O(n+ dϵ) (10)

Gradient-guided greedy attack. This method combines the first stage in GGS and the second stage
in GA. Thus its time complexity is

N · [Ω(stage1) + Ω(stage2)] = N · [O(n) +O(ϵd)] = N · O(n+ ϵd) (11)

From the above analysis, two search-based methods suffer from the exponential increase of time
complexity (8 10) when the number of feature categories d and budget size ϵ is increasing. More-
over, two greedy-based methods (GA and GGA) accelerate the second stage and achieve better time
efficiency, but sacrifice the performance as they greatly narrow down the searching space. However,
PCAA is free of these problems, since it achieves great time efficiency to greedy-based methods
while remain comparable performance with search-based methods. We will show this with more
evidence in the experimental part.
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4 PROBABILISTIC ADVERSARIAL TRAINING (PADVT)

Adversarial trainingSzegedy et al. (2014)Goodfellow et al. (2015)Madry et al. (2018) is one of the
most effective methods to build robust models. Its training incorporates adversarial examples to im-
prove robustness. However, greedy methods have limited applications in adversarial training when
dealing with categorical input models due to their slow speed. The proposed PCAA method signifi-
cantly improves time efficiency. In this case, we propose Probabilistic Adversarial Training (PAdvT)
based on PCAA in order to train robust models on categorical data. Recalling the formulation of
PCAA in Eq. 4, and denoting the parameters for classifier f with θ, the training objective for PAdvT
is formulated as

min
θ

max
π

Ex′∼π

L(f(x′; θ), y)− λ

∑
i∈|n|

LCE(xi, πi)− ζ

+ (12)

Since our objective involves a penalty coefficient, we adopt the strategy in Yurochkin et al. (2020) to
update λ during training. We adaptively choose λ according to LCE(x, π)−ϵ from the last iteration:
when the value is large, we increase λ to strengthen the constraints and vice versa.

The implementation of PAdvT is illustrated in Algorithm. 2. It first solves the inner maximization
problem by applying algorithm. 1. Then it samples nadv examples from the adversarial distribution
π. Finally, it applies Adam Kingma & Ba (2015) to solve the outer minimization problem. The
process will continue until the maximal number of iterations is reached.

Algorithm 2 Probabilistic Adversarial Training (PAdvT)
Input Data D, parameters of clean model θ, budget ϵ, parameters of Algorithm1, nadv , initial
penalty coefficient λ0, penalty coefficient step size α, parameters of Adam optimizer, number of
iterations I
Output parameters θ of robust model

repeat
Sample mini-batch B = {x1, ..., xm} from training set
for i = 1, ...,m(in parallel) do

Apply Algorithm1 to xi and obtain adversarial distribution πi

Sample nadv examples {x′i
1 , ..., X

′i
nadv

} from πi using Gumbel Softmax tricks
end for
Update θ by Adam to minimize the average adversarial loss
Update λ = max{0, λ− α(ζ − 1

m

∑
i∈[m]

∑
j∈[n] LCE(x

i
j , π

i
j))}

until Training converged
Return parameters θ

5 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness and efficiency of PCAA and
PAdvT. In Section 5.1, we demonstrate that PCAA achieves a better balance between attack success
rate and time efficiency. In Section. 5.2, PAdvT achieves competitive or stronger robustness against
categorical attacks across different tasks.

5.1 CATEGORICAL ADVERSARIAL ATTACKS

Experimental Setup. In this evaluation, we focus on three datasets.(1) Intrusion Prevention Sys-
tem (IPS) (Wang et al., 2020). IPS dataset has 242,467 instances, with each input consisting of 20
features and each feature has 1,103 categorical values. The output space has three labels. A stan-
dard LSTM based classifier(Bao et al., 2022) is trained for IPS dataset. (2) AG’s News corpus. This
dataset consists of titles and description fields of news articles. The tokens of each sentence corre-
spond to the categorical features, and the substitution set (of size 70) corresponds to the categorical
values. A character-based CNN(Zhang et al., 2015) is trained on this dataset. (3) Splice-junction
Gene Sequences (Splice) (Noordewier et al., 1990). Splice dataset has 3,190 instances. Each one
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Table 1: Attacking results on IPS, AG’s news, and Splice datasets. SR. represents the attack success rate;
T. represents the average running time in seconds; and ”-” indicates the running time over 10 hours. Each
experiment runs 5 times and 95% confidence intervals are shown.

Dataset Attack ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 4 ϵ = 5
Method SR.(↑) T.(↓) SR.(↑) T.(↓) SR.(↑) T.(↓) SR.(↑) T.(↓) SR.(↑) T.(↓)

IPS

GS 66.11±0.03 38.5 81.24±0.01 2028 − − − − − −
GA 66.11±0.03 35.4 71.32±0.02 38.1 79.44±0.06 39.9 85.28±0.07 41.5 91.15±0.11 43.2

GGS 41.53±0.04 2.06 75.47±0.03 1022 − − − − − −
GGA 41.53±0.04 0.98 63.72±0.06 2.01 70.76±0.05 2.94 75.89±0.08 3.74 82.43±0.10 4.56
PCAA 60.66±0.05 6.62 77.51±0.04 6.64 85.32±0.08 6.75 91.67±0.06 6.66 94.63±0.12 6.54

AG

GS 41.22±0.01 15.3 67.38±0.02 21.9 75.87±0.04 356 83.10±0.02 19160 − −
GA 41.22±0.01 15.3 60.71±0.05 15.4 66.33±0.04 15.5 74.47±0.07 15.7 86.63±0.12 15.9

GGS 32.39±0.03 0.352 59.21±0.02 3.24 67.79±0.03 151 79.22±0.05 7551 − −
GGA 32.39±0.03 0.352 41.29±0.07 0.393 56.11±0.06 0.511 67.53±0.10 0.613 72.28±0.07 0.856
PCAA 47.31±0.07 9.02 61.47±0.09 8.91 70.81±0.06 9.11 79.55±0.13 9.06 87.41±0.10 8.92

Splice

GS 72.11±0.01 0.905 75.84±0.02 1.02 81.41±0.01 1.36 85.19±0.03 2.73 90.88±0.04 8.25
GA 72.11±0.01 0.905 74.42±0.03 0.911 78.18±0.06 0.915 80.61±0.04 0.922 83.74±0.05 0.928

GGS 61.71±0.02 0.028 68.28+-0.03 0.083 72.82±0.02 0.251 77.11±0.04 0.917 82.53±0.04 3.56
GGA 61.71±0.02 0.028 65.26±0.08 0.031 70.31±0.05 0.0337 74.84±0.07 0.035 80.49±0.08 0.037
PCAA 64.32±0.04 1.57 70.83±0.07 1.62 79.28±0.09 1.67 82.82±0.06 1.73 84.77±0.11 1.39

is a gene fragment of 60 features with 5 categorical values. The output space has three labels. The
LSTM model is trained for Splice.

Baseline Attacks. Our goal is to generate powerful attacks on categorical models directly on input
space, without relying on the embedding space. Thus, search-based methods are most suitable
in this setting. Therefore, we compare PCAA with the following search-based attacks including
Greedy Search(GS), Greedy Attack(GA), Gradient-guided GS (GGS) and Gradient-guided greedy
attack(GGA). The details of these baselines can be found in Section 3.4.

For each dataset, we evaluate the performance in terms of the attack success rate (SR.) and the
average running time (T.) under various budget sizes ϵ ranging from 1 to 5. Since PCAA learns the
adversarial categorical distribution, the generation of adversarial examples is based on sampling. In
the evaluation, we sample 100 examples from the adversarial distribution for each attack instance
and dismiss those with more perturbed features than the budget size. We claim a success attack if
one out of all samples successfully changes the prediction. The average running time for PCAA
includes both the optimization of Eq. 4 and the sampling process.

Performance Comparison. The experimental results on IPS, AG’s news, and Splice datasets are
demonstrated in Table 1. (1) In IPS dataset, each data contains more than 1000 categories for each
feature, and our method has a significant advantage. As the budget size increases, GS and GGS
run so long that they are no longer feasible. While GA and GGA remain efficient, our method
outperforms them by significant margins, e.g., over 10% higher than GGA in success rate and faster
over 7 times than GA in time. (2) In AG’s news data , GS has the highest success rate with small
budgets. However, our method PCAA has much better time efficiency than GS under all budgets
while maintaining competitive performance and outperforming all the other attacks. (3) In Splice,
there are only 5 categories for each feature, which corresponds to the low-dimensional cases. The
advantage of our method may not be as great as in other cases (i.e., IPS and AG) as the running
time of greedy methods is acceptable. However, PCAA still generates strong attacks with only 6%
less than GS in success rate, and remains highly efficient when the budget size increases, so it still
provides a practical and competitive attack.

Time Efficiency Comparison. It is evident from Table 1 that PCAA’s average running time is
unaffected by the size of the budget, whereas greedy methods are clearly more time-consuming as
budgets increase. Thus, the proposed PCAA method significantly improves time efficiency. As
shown in Table1, when the substitution set is large (e.g., IPS and AG), the running time of GS and
GGS will explode even under some moderate budget size such as ϵ = 3. Since the running time
is too long for meaningful comparison, we do not record the performance for these budget sizes of
those baselines. In small substitution sets, i.e., Splice, the time efficiency gap between PCAA and
greedy methods is not large. Due to the small size of the substitution set, greedy methods need much
fewer quires than in high-dimensional cases, but PCAA still takes a much shorter time for a budget
size of more than 4.
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Figure 3: PAdvT and baseline defense performances under different attacks on IMDB dataset.

5.2 CATEGORICAL ADVERSARIAL DEFENSES

Figure 2: PAdvT and baseline defenses under dif-
ferent attacks on AG’s news dataset.

Experimental Setup. For the defense evalua-
tion, we focus on two datasets, AG’s News Cor-
pus and IMDB. It is because IPS and Splice
have too few samples (no more than 1000
for each dataset). In particular: (1) AG’s
News corpus. is the same dataset used in
the attack evaluation and the model is also a
character-based CNN. As character swapping
does not require embeddings for each charac-
ter, we can apply attacking methods on input
space. Therefore, the robustness of the defense
models is evaluated using six attacks,i.e., Hot-
Flip (Ebrahimi et al., 2017a), GS, GA, GGS, GGA, and PCAA. (2) IMDB reviews dataset(Maas
et al., 2011). Under this dataset, we focus on a word-level classification task and we study two
model architectures, namely Bi-LSTM and CNN, are trained for prediction. To evaluate the robust-
ness, four attacks are deployed, including a genetic attack (Alzantot et al., 2018) (which is an attack
method proposed to generate adversarial examples in embedding space), as well as GS, GGS, and
PCAA.

Baseline Defenses. We compare our PAdvT with following baseline defenses:

• Standard training. It minimizes the average cross-entropy loss on clean input.

• Hot-flip(Ebrahimi et al., 2017a). It uses the gradient with respect to the one-hot input repre-
sentation to find out the which individual feature under perturbation has the highest estimated
loss. It is initially proposed to model char flip in Char-CNN model, and we also apply it to
word-level substitution, as in (Dong et al., 2021a).

• Adv l2-ball(Miyato et al., 2017). It uses an l2 PGD adversarial attack inside the word embed-
ding space for adversarial training.

• ASCC-Defense(Dong et al., 2021a). A state-of-the-art defense method in text classification.
It uses the worst perturbation over a sparse convex hull in the word embedding space for
adversarial training.

Performance Comparison. The experimental results on AG’s news dataset are shown in Fig. 2.
The Y-axis represents the error rate and X-axis represents different defense methods while multi-
rows represents different attacking methods. Our defense method achieves leading robustness on
Char-CNN over all attacks with significant margins, surpassing Hot-Flip-defense by 10%. Fig. 3 il-
lustrates the defense results on the IMDB dataset, and we have similar observations with Fig. 2. Our
PAdvT shows competitive adversarial robustness as ASCC-defense. Notably, ASCC is a defense
method that conducts adversarial training on word-embedding space. It relies on the key assumption
that similar words have a close distance in embedding space. However, our method does not rely
on this assumption, which may result in the performance being competitive (slightly worse) than
ASCC. For all other defenses, it outperforms them across different architectures significantly.
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5.3 ABLATION STUDY

Concentration of PCAA. To further understand the behavior of our attack algorithm, in this sub-
section, we ask the question: what is the variance of our optimized probability distribution π∗ (from
solving Eq.2))? Intuitively, we desire the distribution π to have smaller variance, so that we don’t
need too many times of sampling to obtain the optimal adversarial examples. To confirm this point,
we conduct an ablation study based on an experiment on IPS dataset to visualize the distribution π,
which is optimized via PCAA under various budget sizes. In Fig 4, we choose three budget sizes
ϵ = 1, 3, 5 and choose 4 features to present the adversarial categorical distributions. Notably, in
Fig. 4, the left two columns are the features that are not perturbed. The right two columns are fea-
tures which will be perturbed by PCAA. From the figure, we can see that for each feature (perturbed
or unperturbed), there exists one category with a much higher probability compared to other cate-
gories. This fact indicates during the sampling process of PCAA, for a certain feature, the samplings
are highly likely to have the same category for this feature. As a result, we confirm that our sampled
adversarial examples are well-concentrated.

Ablation analysis for PAdvT. In our training objective in Eq. 12, ζ controls the budget size used
for adversairal training and possibly affects the robustness of the model. We conduct an ablation
study on the IMDB dataset to understand the impact of ζ. The results are demonstrated in Table. 2.
When ζ increases, the success rates of all attacks decreases, meaning that the robustness of models is
enhanced. However, large ζ will increases the clean error and sacrifice the clean accuracy of models.
Thus, ζ controls the balance between the clean accuracy and the adversarial robustness of the model.
When ζ = 0.4, our algorithm reaches a good balance between model accuracy and robustness.

Table 2: Ablation study: impact of the budget regularization term ζ on PAdvT
Clean Err Genetic SR GS SR Gradient Search SR PCAA SR

LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN
ζ = 0.1 16.1 16.9 37.5 29.6 41.3 43.5 39.5 41.4 40.2 42.2
ζ = 0.2 17.2 17.3 34.1 32.7 39.9 41.3 38.6 39.7 39.1 40.6
ζ = 0.32 17.9 18.1 30.1 31.4 38.7 38.3 38.5 37.6 38.8 37.8
ζ = 0.4 18.4 18.6 26.3 28.5 37.8 36.2 36.4 34.9 36.9 35.7

Figure 4: Visualization of Optimized Categorical Distribution for Various Features (IPS)

6 CONCLUSION

In this paper, we propose a novel probabilistic optimization formulation for attacking models with
categorical input. Our framework significantly improves the time efficiency compared with greedy
methods and shows promising empirical performance across different datasets. Furthermore, we
design an adversarial training method based on the proposed probabilistic attack that achieves better
robustness.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL RESULTS

In this subsection, we present the results of Fig. 2 and 3 where the values represent error rates. We
run each experiment for 5 times and compute the 95% confidence interval.

Table 3: PAdvT and baseline defense performances under different attacks on IMDB dataset
Clean Err Genetic SR GS SR Gradient Search SR PCAA SR

LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN
ERM 15.50±0.005 15.23±0.007 92.62±0.022 65.68±0.031 94.86±0.030 82.02±0.049 91.61±0.011 80.54±0.030 92.26±0.087 81.42±0.073

Hotflip 17.37±0.049 16.57±0.051 50.63±0.030 55.93±0.025 75.24±0.015 66.35±0.012 67.96±0.021 65.47±0.022 68.08±0.069 65.90±0.074
Adv l2 32.53±0.034 37.38±0.043 56.59±0.036 54.35±0.033 79.69±0.030 67.00±0.034 78.34±0.031 65.81±0.038 78.58±0.068 66.23±0.077
ASCC 17.76±0.036 18.37±0.030 19.66±0.047 22.52±0.046 34.67±0.047 33.28±0.045 33.46±0.054 32.61±0.061 33.97±0.101 32.87±0.082
PAdvT 18.57±0.033 18.85±0.049 26.01±0.065 28.35±0.049 37.30±0.063 36.36±0.061 35.60±0.067 34.85±0.053 35.46±0.104 35.47±0.093

Table 4: PAdvT and baseline defense performances under different attacks on AG’s news dataset
Clean Err Hotflip PCAA GS GGS GA GGA

ERM 8.70±0.009 79.72±0.015 80.75±0.066 83.09±0.015 79.28±0.010 74.43±0.010 67.53±0.016
Hotflip 13.99±0.017 60.07±0.013 63.47±0.057 64.28±0.018 62.41±0.019 60.51±0.017 58.33±0.013
PAdvT 14.62±0.028 45.38±0.037 49.50±0.081 50.65±0.035 47.14±0.041 44.71±0.040 42.18±0.045

We also run PAdvT with mixture of adversarial examples and clean samples on IMDB dataset.
Results are shown in Table 5 where values represent error rates. It is noticeable that clean samples
will slightly improve the clean performance and lead to small decreasing of robustness.
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Table 5: Comparison of PAdvT on IMDB dataset with/without mixture of clean samples.
Clean Err Genetic GS GGS PCAA

IMDB LSTM(mix) 18.27 26.22 37.67 35.79 36.05
IMDB LSTM 18.57 26.01 37.3 35.60 35.46

IMDB CNN(mix) 18.69 28.51 36.47 34.96 35.72
IMDB CNN 18.85 28.35 36.36 34.85 35.47

A.2 VISUALIZATION ON IMDB

We run PCAA attack on IMDB dataset over two victim models LSTM and word-CNN. The can-
didate sets are pre-specified synonym set. The following Tables 6 and 7 show some successful
adversarial examples, where the red words are adversarial words and blue are original words. It is
obvious that these replacements do not hurt the semantic meaning but can fool the classifiers.

Table 6: IMDB Adversarial Examples from PCAA on LSTM

Class Perturbed Class Perturbed Texts
Negative Positive I watched this film for 45 minutes and counted 9

mullets. That’s a mullet every 5 minutes. Seri-
ously, though this film is residing evidence(living
proof) that formula works if it ain’t broke, it don’t
need fit in a streetwise yet vulnerable heroine, a
hardened ex-cop martial arts master with a heart
of gold and a serial killer with ’issues’ pure magic.

Negative Positive Claustrophobic camera angles that do not
aid(help) the movie. Too long face only shots,
where you most of the time get the hunch(feeling)
that the lower half of the film is missing that
the screen is cut off because there seems to be
important actions going on, but you can not see
them. There is anyway already too much confu-
sion in the movie, so these viewing angles make
it worse and do not contribute to artful visuals.
I like artfully made movies and unconventional
camera work. I can handle deep and slow movies
but this one is trying too hard to be something
artful and fails, in my opinion, painfully. Nothing
to get attached to any of the characters because
they are not worked out well enough to work
out characters. More is needed than just minute
long face shots. At least with this set of script
director actors, I wonder whether some of the not
so decent(good) acting is due to the script and
director or due to the actors. I will stay away from
films both written and directed by le you for sure
in the future. What an annoying film even for
person(someone) who would be interested in that
part of history and for someone who spent time in
Shanghai.
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Positive Negative I really liked this version of ’vanishing point’ as
opposed to the 1971 version. I finds(found) the
1971 version quite boring if I can get up in the
middle of a movie a few times as I did with the
1971 version, then to me it is not all that great. Of
course, this could be due to the fact that I was only
nine at the time the 1971 version was brought out.
However, I have noticed(seen) many remakes ev-
erytime(where) I have liked the original and older
one better. I found that the plot of the 1997 ver-
sion was more understandable and had basically
kept true to the original without undermining the
meaning of the 1971 version. In my opinion I felt
the 1997 version had more excitement and wasn’t
so blasé boring.

Positive Negative The cast is marvellous(excellent), the acting good,
the plot interesting, the evolvement full of sus-
pense, but it is hard to cram all those elements
into a film that is barely 80 minutes long. If more
time was taken to develop the plot and subplots,
it would have a much better effect. Another 30
minutes of substance would have made this a very
alright(good) film rather than just a good one.

Positive Negative There is great detail in a ‘bug ’s life’. Everything
is covered. The film expects(looks) great and the
animation is sometimes jaw dropping. The film
isn’t too terribly original. It ’s basically a modern
take on kurosawa ’s seven samurai only with bugs,
I enjoyed the character interaction however, and
the naughty boys(bad guys) in this film actually
seemed bad. It seems that Disney usually makes
their bad guys carbon copy cut outs, the grasshop-
pers are menacing and hopper the lead bad guy
was a brilliant creation. Check this one out.

Table 7: IMDB Adversarial Examples from PCAA on word-CNN

Class Perturbed Class Perturbed Texts
Positive Negative I am a college student studying A levels and need

help and comments from anyone who has any
views at all about the theme of mothers in film.
In The Mother, whether you have gone through
something similar or just want to comment and
help me research more about this film, any com-
ment would much greatly appreciated. The com-
ments will be used alone(solely) for exam pur-
poses and will be included in my written exam. So
if you have any views at all I’m convinced(sure) I
can put them to use and you could help me get an
A. I am also studying about a boy and tadpole. So
if you have seen these films as well, I would ap-
preciate it if you could leave comments on here on
that page. Thank you.
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Negative Positive This movie is so horrendous(awful). It is hard to
find the right words to describe it. At first the story
is so ridiculous. A narrow minded human can
write a better plot. The actors are boring and un-
talented. Perhaps they were compelled to play in
this dorky(cheesy) film. The camera receptions of
the national forest are the only good in this whole
movie. I should feel ashame because I paid for this
lousy picture. Hopefully nobody makes a sequel
or make a similar film with such a worse storyline.

Positive Negative This movie is wonderful, the writing, directing,
acting, all are marvelous(fantastic). Very witty
and clever script quality performances by actors.
Ally Sheedy is strong and dynamic and delight-
fully quirky really original and heart warmingly
unpredicatable. The scenes are alive with fresh
energy and really talented generating(production)

Positive Negative This may not be war peace but the two academy
noms wouldn’t have been forthcoming. If it
weren’t for the genius of James Wong Howe, this
is one of the few films I’ve fallen in love with as
a infant(child) and gone back to without dissatis-
faction. Whether you have any interest in what
it offers fictively or not, BBC is a visual feast.
I’m not saying it’s his best work. I’m no ex-
pert there for sure but the look of this movie is
astounding(amazing). I love everything about it,
Elsa Lanchester, the cat, the crazy hoodoo, the
retro downtown Ness, but the way it was put on
film is breathtaking. I even like the inconsistencies
pointed out on this page aforementioned(above)
and the special effects that seem backward. Now
it all creates a really consistent world.

Positive Negative Bette Midler is again divine raunchily hilari-
ous(humorous) in love with burlesque, capable
of bringing you down to tears either with old
jokes, with new dresses or merely with old songs,
with more power punch than ever. All in all,
sung(singing) new ballads power, singing the
good old perennial ones such as the rose ‘stay with
me’ and yes even ‘wind beneath my wings’. The
best way to appreciate the Divine Miss M has al-
ways been libe since this is the next best thing
to it. I strongly recommended to all with a mix-
ture of adult extensive(wide) eyed enchantment
and appreciation and a child ’s mischievous wish
for pushing all boundaries.
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