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ABSTRACT

Despite recent advancements in federated learning (FL), the integration of gener-
ative models into FL has been limited due to challenges such as high communi-
cation costs and unstable training in heterogeneous data environments. To address
these issues, we propose PRISM, a FL framework tailored for generative models
that ensures (i) stable performance in heterogeneous data distributions and (ii) re-
source efficiency in terms of communication cost and final model size. The key
of our method is to search for an optimal stochastic binary mask for a random
network rather than updating the model weights, identifying a sparse subnetwork
with high generative performance; i.e., a “strong lottery ticket”. By communicat-
ing binary masks in a stochastic manner, PRISM minimizes communication over-
head. This approach, combined with the utilization of maximum mean discrep-
ancy (MMD) loss and a mask-aware dynamic moving average aggregation method
(MADA) on the server side, facilitates stable and strong generative capabilities by
mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying
characteristic, PRISM yields an lightweight model without extra pruning or quan-
tization, making it ideal for environments such as edge devices. Experiments on
MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms
existing methods, while maintaining privacy with minimal communication costs.
PRISM is the first to successfully generate images under challenging non-IID and
privacy-preserving FL environments on complex datasets, where previous meth-
ods have struggled. Our code is available at PRISM.

1 INTRODUCTION

Recent generative models have demonstrated remarkable advancements in image quality and have
been widely extended to various domains, including image-to-image translation (Choi et al., 2020;
Saharia et al., 2022)], layout generation (Seol et al., 2024)], text-to-image generation (Rombach
et al., 2022; Ramesh et al., 2022)], and video generation (Skorokhodov et al., 2022; Kim et al.,
2024)]. Achieving high-quality generation with current generative models demands increasingly
large datasets, leading to concerns that publicly available data will soon exhausted (Villalobos et al.,
2024)]. Leveraging the vast amount of data stored on edge devices becomes a potential solution, but
this poses significant challenges: not only does the private nature of the data make centralized train-
ing impractical, but edge computing itself faces hurdles, including limited resources and prohibitive
communication costs.

Federated learning (FL) (McMahan et al., 2017)] is a promising paradigm tailored to this setup,
enabling clients to collaboratively train a global model without sharing their local datasets with a
third party. However, high communication costs, performance degradation due to data heterogeneity,
and the need to preserve privacy remain significant challenges in FL. These challenges are further
intensified in the context of generative models. Unlike classification tasks, generative tasks lack a
well-defined objective function and focus on learning the data sample distribution, making the inte-
gration of FL and generative models even more difficult. A few recent works have made efforts to
train generative models over distributed clients (Hardy et al., 2019; Rasouli et al., 2020; Li et al.,
2022; Zhang et al., 2021; Amalan et al., 2022)]. These methods are generally built upon generative
adversarial networks (GANs) (Goodfellow et al., 2020)], which have shown impressive results in
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the field of image generation. DP-FedAvgGAN (Augenstein et al., 2019)], GS-WGAN (Chen et al.,
2020)], and Private-FLGAN (Xin et al., 2020)] apply differential privacy (DP) (Dwork et al., 2006;
Mironov, 2017)] to mitigate the potential privacy risk in FL setups. However, existing works still
face several challenges: 1) Due to the notorious instability of GANs (Farnia & Ozdaglar, 2020a;b;
Wang et al., 2022)], previous approaches underperform, especially in non-IID (independent, iden-
tically distributed) data distribution scenarios with strong data heterogeneity across FL clients. 2)
Performance evaluations are limited to relatively simple datasets such as MNIST, Fashion MNIST,
and EMNIST. 3) They suffer from significant communication overhead during model exchanges
between the server and clients.

To overcome these challenges, we propose PRivacy-preserving Improved Stochastic-Masking for
generative models (PRISM), a new strategy for training generative models in FL settings with the
following key features: First, at the heart of PRISM is the strong lottery ticket (SLT) hypothe-
sis (Frankle & Carbin, 2018)], suggesting the existence of a highly effective subnetwork within a
randomly initialized network. PRISM shifts the focus towards identifying an optimal global binary
mask, rather than updating the weights directly. This approach enables each client to transfer the
binary mask to the server instead of the full model, significantly reducing the overload in each com-
munication round. Moreover, when training is finished, PRISM produces a lightweight final model,
as each weight is already quantized, thanks to our initialization strategy. This feature provides signif-
icant advantages for resource-constrained edge devices. Second, PRISM incorporates the maximum
mean discrepancy (MMD) loss (Gretton et al., 2006; 2012)] during client-side updates, ensuring
stable training for generative models. Third, a mask-aware dynamic moving average aggregation
(MADA) is introduced to alleviate local model divergence. This allows PRISM to maintain the
previous global mask information and alleviate client drift under non-IID and DP-guaranteeing sce-
narios. By automatically adjusting the moving average parameter based on mask correlations, this
approach requires neither a regularization term nor hyperparameter tuning. Finally, PRISM offers
a hybrid strategy that can flexibly trade-off between image quality and communication cost. Taken
together, these features enable PRISM to consistently deliver robust performance in challenging
non-IID and DP-guaranteeing FL settings, while maintaining minimal communication overhead.

Our experimental results reveal that PRISM sets a new standard in generative model performance,
significantly outperforming GAN-based methods in both IID and non-IID scenarios. It acheives
state-of-the-art image generation on complex datasets such as CelebA and CIFAR10, whereas pre-
vious methods were limited to simpler datasets like MNIST and FMNIST. This highlights PRISM’s
potential for scalable and resource-efficient generative model learning in distributed environments.
Overall, our main contributions can be summarized as follows:

• We propose PRISM, an effective FL framework that achieves state-of-the-art performance
on various benchmark datasets. It is the first method to successfully generate images on
complex datasets such as CelebA in FL scenarios that involves data heterogeneity and
privacy preservation.

• PRISM offers an efficient solution for federated generative models with minimal com-
munication overhead by incorporating SLT with a stochastic binary mask. Even more, in
conjunction with the weight initialization strategy, the final model acquired from PRISM
becomes significantly lightweight, reducing to less than half the size of the initial model.

• We further enhance the stability of federated learning for generative models by introducing
MMD loss and a mask-aware dynamic moving average aggregation method (MADA).

To the best of our knowledge, this is the first work to address the challenges in communication
efficiency, privacy, stability, and generation performance altogether for federated generative models.
We provide new directions to this area based on several unique characteristics, including SLT with
stochastic binary mask, MMD loss, mask-aware dynamic moving average aggregation strategy, and
hybrid score/mask communications.

2 RELATED WORK

Federated learning for classification models. FL has achieved a significant success in training a
global model in a distributed setup, eliminating the necessity of sharing individual client’s local
datasets with either the server or other clients. Research has been conducted on various aspects of
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FL, such as data heterogeneity (Zhao et al., 2018; Li et al., 2021b)], communication efficiency (Isik
et al., 2022; Li et al., 2021a; Mitchell et al., 2022; Basat et al., 2022)], privacy (Wei et al., 2020)],
with most focusing on image classification tasks. Related to our approach, FedPM (Isik et al., 2022)]
and FedMask (Li et al., 2021a)] adopted binary mask communication to reduce the communication
costs in FL in classification tasks. FedMask (Li et al., 2021a)] introduces binary mask commu-
nication, focusing on communication efficiency and personalization in decentralized environments,
while FedPM (Isik et al., 2022)] utilizes stochastic masks to minimize uplink overhead and proposes
a bayesian aggregation method to robustly manage scenarios with partial client participation. While
the concept of incorporating SLT into FL paradigm has been studied in FedMask (Li et al., 2021a)]
and FedPM (Isik et al., 2022)] for classification tasks, PRISM stands as an independent strategy
tailored for the training of generative models across distributed clients: PRISM incorporates MMD
loss for more robust performance compared to GAN-based approaches and introduces MADA to
maintain a stable image generation performance in heterogeneous and DP-guaranteeing FL settings.

Federated learning for generative models. Several recent works have aimed to incorporate gen-
erative models into distributed settings (Hardy et al., 2019; Amalan et al., 2022; Li et al., 2022;
Zhang et al., 2021; Rasouli et al., 2020; Augenstein et al., 2019; Chen et al., 2020; Xin et al.,
2020)]. MD-GAN (Hardy et al., 2019)] was the first attempt to apply generative models in the FL
framework using GANs (Goodfellow et al., 2020)], extensively studied in image generation tasks.
In MD-GAN, each client holds a discriminator, and the server aggregates the discriminator feedback
from each client to train the global generator. To prevent overfitting of local discriminators, clients
exchange discriminators, incurring additional communication costs. Multi-FLGAN (Amalan et al.,
2022)] proposed all vs. all game approach by employing multiple generators and multiple discrimi-
nators and then selecting the most powerful network to enhance model performance. IFL-GAN (Li
et al., 2022)] improves both performance and stability by weighting each client’s feedback based on
the MMD between the images generated by the global model and the local generator. This approach
maintains a balance between the generator and the discriminator, leading to Nash Equilibrium. Other
works such as (Zhang et al., 2021; Rasouli et al., 2020)] have also explored the utilization of GANs
in FL. However, these works do not consider the challenge of privacy preservation in the context of
FL and also suffer from resource issues during training and inference.

Federated learning for generative models with privacy consideration. Only a few prior works
have focused on the privacy preservation in federated generative models (Augenstein et al., 2019;
Chen et al., 2020)]. DP-FedAvgGAN (Augenstein et al., 2019)] introduces to combine federated
generative models and differential privacy (DP) (Dwork et al., 2006; Mironov, 2017)] to ensure pri-
vacy preservation. GS-WGAN (Chen et al., 2020)] adopts Wasserstein GAN (Gulrajani et al., 2017)]
to bypass the cumbersome searching for an appropriate DP-value, leveraging the Lipschitz property.
While these approaches have successfully integrated FL and generative models, they inherit draw-
backs such as the notorious instability of GANs (Farnia & Ozdaglar, 2020a;b; Wang et al., 2022)]
and significant performance drop under data heterogeneity. Moreover, all existing approaches suffer
from huge communication and storage costs during and after training, respectively.

3 BACKGROUND

3.1 STRONG LOTTERY TICKETS

Strong Lottery Ticket (SLT) hypothesis (Frankle & Carbin, 2018; Malach et al., 2020; Orseau et al.,
2020)] suggest the existence of a sparse subnetwork within an initially random network that achieves
a superior performance. Edge-Popup (EP) algorithm (Ramanujan et al., 2020)] is one of the most
popular methods to discover SLT within the dense network, which introduces a scoring mechanism
to select potentially important weights among the widespread initialized weight values. More specif-
ically, given a randomly initialized dense networkWinit, a learnable score s is trained while keeping
the weight values frozen. These scores are designed to encapsulate the importance of each weight for
the objective function. As the scores get iteratively updated, the EP algorithm progressively shrinks
the model by applying binary masks to weights with higher scores, indicating their potentials to be
included in the winning lottery ticket. The obtained SLT can be expressed as W = Winit ⊙M ,
where M is the obtained binary mask and ⊙ denotes element-wise multiplication. SLT has been
primarily explored within the context of classification tasks, while Yeo et al. (Yeo et al., 2023)] have
recently shown that SLT can also be found in generative models.
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Figure 1: Overview of PRISM. PRISM finds the supermask for generative models in a FL scenario.
At every round t, each client k updates a local score skt via MMD loss (Step 1) and generates the
privacy-preserving binary maskMk

t (Step 2-1), which is sent to the server. The server aggregates the
masks to obtain the global probability θt+1 (Step 3), which is converted to a score st+1 and broad-
casted to the clients for the next round (Step 4). The global probability θt+1 is gradually updated
based on mask correlation λ between Mg

t and Mg
t−1.

3.2 DIFFERENTIAL PRIVACY

Sharing each client’s model or gradient can potentially lead to a privacy risk. (ϵ, δ)-differential pri-
vacy (DP) (Dwork et al., 2006)], (α, ϵ)-Rényi-Differential privacy (RDP) (Mironov, 2017)] are com-
monly employed when tackling the privacy concerns in FL.

Definition 1 ((ϵ, δ)-Differential Privacy (Dwork et al., 2006)]) A randomized mechanism M :
X → R is (ϵ, δ)-differential privacy, if for any two adjacent datasets D, D′ and for any measurable
sets S: Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

The above definition is designed to limit the impact of individual data points by introducing random-
ness intoM. The Gaussian mechanism (Mironov et al., 2019)] offers differential privacy guarantees
by injecting Gaussian noise N (0, σ2I) toM, where σ2 =

2ln(1.25/δ)∆2
2

ϵ2 and ∆2
2 is L2 sensitivity.

4 METHOD

We consider a FL setup with K clients, where each client k has its own local dataset Dk. Starting
from a randomly initialized modelWinit, the clients aim to collaboratively obtain a global generative
model W ∗ that well-reflects all data samples in the system, i.e., in ∪Kk=1Dk.

Overview of our approach. Figure 1 shows the overview of our PRISM. PRISM finds a subnet-
work with strong generative performance from the randomly initialized generative model Winit.
Rather than updating Winit, its focus is to find an optimal binary mask M∗ that has either 1 or 0
in its element and construct the final global model as W ∗ = Winit ⊙M∗. At a high-level, each
client k generates a binary mask Mk

t based on its local dataset at every communication round t,
which is aggregated at the server. After repeating the process for multiple rounds t = 1, 2, . . . , T ,
PRISM produces the final supermask M∗ = MT . Our approach, which aims to find the SLT in a
federated generative model setting, is fundamentally different from existing FedGAN methods. In
the following, we describe the detailed training procedure of PRISM along with its advantages.

4.1 PRISM : PRIVACY-PRESERVING IMPROVED STOCHASTIC MASKING

Local score updates with MMD loss. Before training starts, the server randomly initializes the
model Winit and broadcasts it to all clients, which remains fixed throughout the training process. At
the start of each round t, all clients download the score vector st from the server, representing the
importance of each parameter in Winit. Intuitively, if the score value of a specific parameter is high,
the corresponding weight is more likely to be included in the final SLT. PRISM allows each client
k to update the score vector st based on its local dataset to obtain skt , which is used to generate the
local mask. In this local score update procedure, we leverage maximum mean discrepancy (MMD)
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loss (Gretton et al., 2006; 2012)], providing stable convergence for training generative models (Li
et al., 2017a;b; Bińkowski et al., 2018; Santos et al., 2019; Ramanujan et al., 2020; Yeo et al., 2023)].
The MMD loss measures the distance between two distributions by comparing their respective mean
embeddings in a reproducing kernel hilbert space (RKHS) (Gretton et al., 2006; 2012)]. As in (San-
tos et al., 2019; Ramanujan et al., 2020)], we take VGGNet pretrained on ImageNet as a powerful
characteristic kernel. Specifically, given the local dataset Dk = {xki }Ni=1 of client k and the fake
image set Dk

fake = {yki }Mi=1 produced by its own generator, the local objective function at each
client k is written as follows:

Lk
MMD =

∥∥∥Ex∼Dk [ψ(x)]− Ey∼Dk
fake

[ψ(y)]
∥∥∥2 + ∥∥∥Cov(ψ(Dk))− Cov(ψ(Dk

fake))
∥∥∥2, (1)

where ψ(·) is a function that maps each sample to the VGG embedding space. Each client aims to
match the mean and covariance between real and fake samples after mapping them to the VGG em-
bedding space using kernel ψ(·). Based on Eq. 1, each client locally updates the scores to minimize
the MMD loss according to skt = st − η∇Lk

MMD. Here, we note that the VGG network is utilized
only for computing the MMD loss and is discarded when training is finished.

Binary mask generation and aggregation. After the local score update process, each client k
maps the score skt to a probability value θkt ∈ [0, 1] as θkt = Sigmoid(skt ), where Sigmoid(·) is
the sigmoid function. The obtained θkt is then used as the parameter of the Bernoulli distribution
to generate the stochastic binary mask Mk

t , according to Mk
t ∼ Bern(θkt ). Each client k uploads

only this binary mask Mk
t to the server, significantly reducing the communication overhead. At

the server side, the received masks are aggregated to estimate the global Bernoulli parameter as
θt+1 = 1

K

∑K
k=1M

k
t , which can be interpreted as the probabilistic score reflecting the importance

of the overall client’s weights. θt+1 is then converted to the score through the inverse of the sigmoid
function according to st+1 = Sigmoid−1(θt+1), which is broadcasted to the clients at the beginning
of the next round. We provide the detailed training process in Appendix C.

Model initialization for storage efficiency. When training is finished after T rounds of FL, θT is
obtained at the server. The supermask is then generated following M∗ ∼ Bern(θT ), which is used
to obtain the final global model as W ∗ = Winit ⊙M∗. This final model W ∗ can be stored effi-
ciently even in resource-constrained edge devices, thanks to the model initialization strategy. When
initializing Winit in PRISM, we employ the standard deviation of Kaiming Normal distribution (He
et al., 2015)], where the weight value in layer l is sampled from {−

√
2/nl−1,

√
2/nl−1}. Hence,

by storing the scaling factor
√

2/nl−1, each parameter in the initial model Winit is already quan-
tized to a 1-bit value. This makes the final model exceptionally lightweight without extra pruning or
quantization, which will be also showed via comparison in Section 5.5.

4.2 PRIVACY

To consider the situation of potential privacy treats, we incorporate (ϵ, δ)-differential privacy
(DP) (Dwork et al., 2006)] into our framework. A more detailed description related to the privacy
preservation of PRISM is provided in the Appendix A. In Appendix B, we describe a specific sce-
nario where PRISM can achieve additional privacy benefits.

4.3 MASK-AWARE DYNAMIC MOVING AVERAGE AGGREGATION

Data heterogeneity and privacy preservation pose significant challenges in accurately estimating the
correct update direction. Both the previous and current global models contain valuable information
about whether the local models are diverging Praneeth Karimireddy et al. (2019); Li et al. (2020);
Mendieta et al. (2022). To address this, we propose a mask-aware dynamic moving average ag-
gregation (MADA) that leverages information from previous aggregation rounds in a mask-aware
manner. When a client mask Mk

t deviates significantly from the global model, the newly updated
global mask Mg

t will also differ considerably from the previous round’s global mask Mg
t−1. How-

ever, such updates tend to favor the dominant clients. To mitigate this bias, the server calculates the
mask correlation λ, which measures the similarity between the current and previous global masks
(Mg

t and Mg
t−1, respectively). The server then interpolates between the two global masks using λ

to adjust how much of the current mask should be incorporated. While various metrics can be used
to compute the distance between masks, we employ the Hamming distance. In Appendix D, we ob-
serve that using alternative distance metrics like cosine similarity yields similar performance. The
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server-side aggregation process is defined as follows:

θt+1 = (1− λ)θt−1 + λ
1

K

K∑
k=1

Mk
t , λ := dist(Mg

t−1,M
g
t ), (2)

This prevents excessive deviation by interpolating the aggregated mask with the previous Bernoulli
parameter. As the global rounds progress, λ gradually decreases, promoting stable convergence.

4.4 TRADING-OFF BETWEEN PERFORMANCE AND COMMUNICATION COST

While PRISM optimizes for minimal communication overhead and delivers satisfactory perfor-
mance, it may not always meet the demand for higher-quality image generation. To address this,
we introduces a flexible solution by transmitting deterministic scores for the α% of layers (denoted
as PRISM∗), rather than sending the full binary mask to the server, offering a compromise between
performance and communication efficiency.

5 EXPERIMENTS

In this section, we validate the effectiveness of PRISM on MNIST, FMNIST, CelebA, and CIFAR10
datasets. The training set of each dataset is distributed across 10 clients following either IID or non-
IID data distributions, where the details are described in each subsection. For a fair comparison, we
set (ϵ, δ) = (9.8, 10−5) for all methods.

Baselines. We compare our method with several previous approaches for federated generative mod-
els under both privacy-preserving (with DP) and privacy-free (without DP) scenarios: In the privacy-
preserving scenario, we consider DP-FedAvgGAN (Augenstein et al., 2019)] and GS-WGAN (Chen
et al., 2020)] while in the privacy-free case, we adopt MD-GAN (Hardy et al., 2019)] and Multi-
FLGAN (Amalan et al., 2022)]. In the case of Multi-FLGAN, the number of sync servers increases
the communication cost quadratically, so we consider a 2×2 multi generator and discriminator setup.

Performance metrics. We evaluate the generative performance of each scheme using the commonly
adopted metrics, including Fréchet Inception Distance (FID) (Heusel et al., 2017)], Precision & Re-
call (Kynkäänniemi et al., 2019)], Density & Coverage (Naeem et al., 2020)]. We further demon-
strate the efficiency of PRISM by comparing the required communication cost (MB) at each FL
round and the storage (MB) for the final models from different schemes.

5.1 IID CASE

In this subsection, we examine an IID scenario where the training set of each dataset is uniformly
distributed among clients. We compare various evaluation metrics under (ϵ, δ)-DP guaranteed set-
ting (Table 1). Notably, PRISM outperforms current GAN-based models by a large margin. Figure 2
reveals that existing privacy-preserving methods often produce distorted images, particularly evident
in CelebA, while our method tends to generate high-quality results. The above results support that
PRISM can effectively find a SLT, achieving performance gains despite charging 48% less commu-
nication costs per round. It is worth noting that PRISM can further reduce the cost by applying extra
techniques such as universal coding. Additionally, when comparing PRISM to PRISM† (MADA
removed), PRISM demonstrates a significant improvement in overall performance.

5.2 NON-IID CASE

We investigate a more practical yet challenging non-IID scenario, where clients exhibit diverse local
data distributions, posing a significant challenge to train generative models. To simulate this setup,
we partition the MNIST, FMNIST, and CIFAR10 datasets into 40 segments based on class labels
and randomly assign four segments to each client. For CelebA, which contains multiple attributes
per image, we divide the dataset into two subsets representing opposite attributes (male and fe-
male) and allocate them to five clients each, thus modeling the non-IID scenario. Table 2 presents a
quantitative comparison of baselines and our methods when DP is guaranteed. PRISM demonstrates
robust performance under the non-IID scenario, consistent to the IID scenario. Figure 3 illustrates
that despite the heterogeneity of the data, our methods successfully generate high quality images,
while traditional methods exhibit subpar quality. Additionally, Figure 4 shows the overview of FID
scores, final model parameters, and communication costs for each method. PRISM provides the best
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Table 1: Quantitative comparison in IID scenario with a privacy budget (ϵ, δ) = (9.8, 10−5).
We compare FID, P&R, D&C, communication cost, and storage. Communication cost is the number
of bytes exchanged between clients and server. † indicates that MADA is removed.

Method
(comm.cost) Metric MNIST FMNIST CelebA Storage

GS-WGAN
(15MB)

FID↓ 71.1016 119.2589 230.7874
15MBP&R ↑ 0.0975 / 0.1505 0.3694 / 0.0015 0.7951 / 0.0

D&C ↑ 0.0257 / 0.0367 0.1264 / 0.0347 0.165 / 0.0021

DP-FedAvgGAN
(14MB)

FID ↓ 111.0855 118.5067 221.34
14MBP&R ↑ 0.2586 / 0.0047 0.5318 / 0.0163 0.1008 / 0.0

D&C ↑ 0.0803 / 0.0141 0.2028 / 0.0341 0.0211 / 0.0013

PRISM†

(5.75MB)

FID ↓ 48.5636 54.722 57.0573
7.25MBP&R ↑ 0.3343 / 0.4265 0.5836 / 0.1574 0.4998 / 0.1221

D&C ↑ 0.1211 / 0.1151 0.2156 / 0.2432 0.2572 / 0.2189

PRISM
(5.75MB)

FID ↓ 27.3017 46.1652 48.9983
7.25MBP&R ↑ 0.4377 / 0.5576 0.6355 / 0.211 0.6435 / 0.076

D&C ↑ 0.1738 / 0.1982 0.4002 / 0.2971 0.4089 / 0.2415

(a) GS-WGAN (b) DP-FedAvgGAN (c) PRISM† (d) PRISM

C
el

eb
A

FM
N

IS
T

M
N

IS
T

Figure 2: Qualitative results in IID scenario with a privacy budget (ϵ, δ) = (9.8, 10−5). We
compare generated images from the models in Table 1 on MNIST, FMNIST, and CelebA. † indicates
that MADA is removed.

performance with the lightest communication costs and smallest final model sizes, highlighting its
advantage over the other baseline methods in both IID and non-IID scenarios.

5.3 PERFORMANCE WITHOUT DIFFERENTIAL PRIVACY

We further explore the performance of PRISM without applying differential privacy. Quantitative
and qualitative comparisons with MD-GAN (Hardy et al., 2019)] and Multi-FLGAN (Amalan et al.,
2022)], the current state-of-the-art under this condition, are shown in Table 3 and Figure 5. PRISM
not only matches but also occasionally surpasses the performance of MD-GAN and Multi-FLGAN,
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Table 2: Quantitative comparison in non-IID scenario with (ϵ, δ) = (9.8, 10−5). We compare
FID, P&R, D&C, communication cost, and storage. Communication cost refers to the number of
bytes exchanged between clients and server. † indicates that MADA is removed.

Method
(comm.cost) Metric MNIST FMNIST CelebA Storage

GS-WGAN
(15MB)

FID ↓ 338.6659 131.6166 228.9705
15MBP&R ↑ 0.0 / 0.0 0.4186 / 0.0001 0.1363 / 0.0

D&C ↑ 0.0 / 0.0 0.1569 / 0.0297 0.0307 / 0.0025

DP-FedAvgGAN
(14MB)

FID ↓ 153.9325 146.632 222.8257
14MBP&R ↑ 0.4371 / 0.0336 0.7207 / 0.0043 0.2331 / 0.0004

D&C ↑ 0.1049 / 0.004 0.2589 / 0.0164 0.0668 / 0.0016

PRISM†

(5.75MB)

FID ↓ 49.6273 83.0481 59.4877
7.25MBP&R ↑ 0.3283 / 0.3844 0.4513 / 0.0775 0.4789 / 0.0898

D&C ↑ 0.1101 / 0.1022 0.2355 / 0.1428 0.2392 / 0.2058

PRISM
(5.75MB)

FID ↓ 34.2038 67.1648 39.7997
7.25MBP&R ↑ 0.4386 / 0.4236 0.4967 / 0.1231 0.6294 / 0.0713

D&C ↑ 0.1734 / 0.1597 0.2748 / 0.1681 0.4565 / 0.2967

(a) GS-WGAN (b) DP-FedAvgGAN (c) PRISM†
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eb
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T

(d) PRISM

Figure 3: Qualitative results in Non-IID scenario with a privacy budget (ϵ, δ) = (9.8, 10−5). We
compare generated images from the models in Table 2 on MNIST, FMNIST, and CelebA. † indicates
that MADA is removed.

all while significantly reducing communication overhead. Again, the fact that PRISM outperforms
PRISM† clearly demonstrates the effectiveness of MADA. Here, Multi-FLGAN takes 10 times more
communication cost than PRISM due to multi GAN strategy. However, in FL setups, users may
want to trade-off between the communication cost and generative performance. To accommodate
this, PRISM provides a flexible solution by transmitting deterministic scores for the α% of layers,
rather than sending the full binary mask to the server (PRISM∗). Remarkably, as shown in Table
3 and Figure 5, PRISM∗ significantly exceeds state-of-the-art performance across all benchmarks,
including CIFAR10, while maintaining a communication cost comparable to MD-GAN or much
lower than Multi-FLGAN. Further experiments on PRISM∗ can be found in Appendix E.
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(a) IID case (b) Non-IID case

Communication cost

2MB

Ideal

6MB 10MB 14MB

GS-WGAN

GS-WGAN

GS-WGAN

DP-FedAvgGAN

DP-FedAvgGAN

DP-FedAvgGAN

PRISM
PRISM

PRISM PRISM

Communication cost
DP-FedAvgGAN

DP-FedAvgGAN
14MB10MB6MB2MB

GS-WGAN

GS-WGAN

GS-WGAN

PRISM PRISM

DP-FedAvgGAN

Ideal

Figure 4: The performance of baselines and our PRISM with privacy budget (ϵ, δ) =
(9.8, 10−5). X-axis represents the number of parameters of final generator, while Y-axis represents
FID. The diameter of each circle denotes the required communication cost at every round. The ideal
case is the bottom-left corner with a small diameter.

Table 3: Quantitative comparison in non-IID scenario without DP. We compare FID, P&R, D&C.
Communication cost refers to the number of bytes exchanged between clients and server. † indicates
that MADA is removed. We set α = 80 for PRISM∗.

Method
(comm.cost) Metric MNIST FMNIST CelebA CIFAR10 Storage

MD-GAN
(14MB)

FID ↓ 37.7971 55.5094 18.907 52.7159
14MBP&R ↑ 0.3366 / 0.5435 0.5635 / 0.05 0.7612 / 0.6425 0.827 / 0.1968

D&C ↑ 0.1192 / 0.1405 0.3145 / 0.2033 0.7238 / 0.4267 1.2201 / 0.3829

Multi-FLGAN
(52MB)

FID ↓ 32.1014 125.9276 314.8386 163.0540
14MBP&R ↑ 0.5659 / 0.3353 0.4781 / 0.0035 0.0 / 0.0 0.9345 / 0.0

D&C ↑ 0.3171 / 0.2709 0.24 / 0.0595 0.0 / 0.0 0.3638 / 0.0668

PRISM†

(5.75MB)

FID ↓ 15.2329 35.1448 24.2591 68.4238
7.25MBP&R ↑ 0.7128 / 0.5289 0.7239 / 0.1049 0.7988 / 0.1868 0.65 / 0.1732

D&C ↑ 0.5106 / 0.4851 0.645 / 0.3768 1.0746 / 0.5809 0.5575 / 0.3031

PRISM
(5.75MB)

FID ↓ 9.698 32.7517 21.8567 61.1198
7.25MBP&R ↑ 0.7665 / 0.6253 0.7614 / 0.1281 0.7835 / 0.1615 0.5924 / 0.2323

D&C ↑ 0.6088 / 0.6003 0.8361 / 0.4383 1.047 / 0.6079 0.4334 / 0.3171

PRISM∗

(15MB)

FID ↓ 6.9568 29.0081 13.0209 35.5326
7.25MBP&R ↑ 0.7717 / 0.7992 0.697 / 0.1572 0.7893 / 0.392 0.6662 / 0.3642

D&C ↑ 0.6082 / 0.6499 0.7002 / 0.4056 1.072 / 0.7396 0.5764 / 0.4481

5.4 EFFECT OF DYNAMIC MOVING AVERAGE AGGREGATION

In this section, we empirically demonstrate the effectiveness of dynamic moving average aggrega-
tion using the MNIST dataset. Figure 6 visualizes local model updates over communication rounds t.
At each global round t, clients receive the aggregated global mask Mg

t−1 and continue local training
for several epochs. Afterward, the trained local mask Mk

t is uploaded for the next communication
round. We introduce the local divergence metric ∆t := hd(Mg

t ,M
k
t ), which is defined as the Ham-

ming distance between the received mask and the trained local mask to track the discrepancy of
local model updates. For simplicity, we visualize the results for the first client, but similar trends
were observed across other clients. In Figure 6, PRISM exhibits impressive FID scores and reduced
local updates than PRISM†, clearly demonstrating that MADA not only restricts the local model
divergence but also achieves significant performance gain across various challenging FL settings.
This is accomplished by automatically obtaining λ based on the current mask, without requiring
additional regularization terms or hyperparameter tuning.

5.5 RESOURCE EFFICIENCY AT INFERENCE TIME

Once PRISM identifies the SLT, each client saves the final model W ∗ =Winit ⊙M∗ for inference.
As discussed in Section 4.1, one advantage of PRISM is the extremely lightweight final model. This
is attributed to the uniform binarization of the weights Winit with signed constants, allowing for
more efficient storage of each initialized weight through the utilization of ternary quantization (Zhu
et al., 2016)]. The final model sizes of the baselines and our method are reported in Table 1, Table
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(b) Multi-FLGAN (c) PRISM 

Figure 5: Qualitative results in non-IID scenario without considering privacy budget. Generated
images from the models in Table 3 on MNIST, FMNIST, CelebA, and CIFAR10. Here, we set
α = 80 for PRISM∗.

(a) MNIST (b) FMNIST (c) CelebA

Figure 6: Local divergence ∆t and FID values in the non-IID and DP-considering scenario.

2, and Table 3. While the baselines need to save the full weights, PRISM only stores the pruned and
1-bit quantized values. Note that in addition to our method, applying various lossless compression
techniques (e.g., arithmetic coding (Rissanen & Langdon, 1979)]) can further reduce the required
resources of PRISM.

6 CONCLUSION

While image generation has emerged as promising area in deep learning, the fusion of FL with gen-
erative models remains relatively unexplored. In this paper, we introduce PRISM, an efficient and
stable federated generative framework that capitalizes on stochastic binary masks and MMD loss.
To further enhance stability under non-IID and privacy-preserving scenario, we introduce a mask-
aware dynamic moving average aggregation strategy (MADA) that mitigates client drift. Addition-
ally, PRISM offers a hybrid mask/score aggregation method, allowing for a flexible and controllable
trade-off between performance and efficiency. Our extensive experiments, including scenarios in-
volving differential privacy and non-IID setups, demonstrate that PRISM is robust in unstable en-
vironments. To the best of our knowledge, PRISM is the first framework to consistently generate
high-quality images with significantly reduced communication overhead in FL settings.
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REPRODUCIBILITY STATEMENT

Anonymous github link of our code is available at https://anonymous.4open.science/
r/PRISM_ICLR-25-F824 and it can reproduce all of figures and tables in this paper. Implemen-
tation details and pseudocode algorithms are detailed in Appendix C.
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A APPENDIX

A PRIVACY

Diffenrential privacy (DP) and Rényi Differential Privacy (RDP) Dwork et al. (2006); Mironov
(2017) are the most popular definitions to analysis the privacy in FL environments. These help
mitigate privacy concerns by limiting the contribution of individual data points. (ϵ, δ)-DP and (α, ϵ)-
RDP basically calculates the distance of outcome for the algorithm of adjacent datasets.

Definition 2 ((ϵ, δ)-Differential Privacy) A randomized mechanism M : X → R is (ϵ, δ)-
differential privacy, if for any two adjacent datasets D, D′ and for any measurable sets S:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ (3)

Definition 3 ((α, ϵ) Rényi Differential Privacy) For two probability distributions P and Q, the
Rényi divergence of order α > 1 defined as follows:

Rα(P ||Q) ≜
1

α− 1
logEx∼Q(

P (x)

Q(x)
)α (4)

then, a randomized mechanism M : X → R is (α, ϵ) Rényi differential privacy, if for any two
adjacent datasets D, D′ and for any measurable sets S:

Rα(M(D)||M(D′)) ≤ ϵ (5)

Theorem 1 Mironov (2017) showed that ifM is (α, ϵ)-RDP guarantee, is also (ϵ+ log 1/δ
α−1 )-DP.

In this section, we provide more detailed explanation of privacy preserving in PRISM and also
present updated results when DP is applied. To satisfy the (ϵ, δ)-DP, our goal is privatize the
probability vector θ ∈ [0, 1]d by adding gaussian noise N (0, σ2), where σ2 =

2ln(1.25/δ)∆2
2

ϵ2 and
∆2 = maxD,D′ ||M(D)−M(D′)||2. When the local training is end, each client has scores s ∈ Rd
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Table 4: Generator architecture used in our experiments.

Layer Type Input Channels Output Channels Kernel Size
FirstConv Conv 128 512 (4, 4)

Resblock0

Conv1 512 256 (3, 3)
Conv2 256 256 (3, 3)
BatchNorm2d 512 512
ReLU - - -
Bypass Conv 512 256 (1, 1)

Resblock1

Upsample - - -
Conv1 512 256 (3, 3)
Bypass Conv 512 256 (1, 1)
Upsample - - -
Conv2 256 128 (3, 3)
Conv3 128 128 (3, 3)

Resblock2

Conv1 128 64 (3, 3)
Conv2 64 64 (3, 3)
BatchNorm2d 64 64 -
ReLU - - -

LastConv Conv 64 1 (3, 3)
Tanh - - -

to choose which weight to prune. Recall that probability θ ∈ [0, 1]d can be obtained through sig-
moid function. We inject gaussian noise and clip to θ̃ ∈ [c, 1 − c]d, where c is a small value
0 < c < 1

2 . In out setup, we fix it at 0.1. Now, we ensure θ̃ is (ϵ, δ)-DP. For a fair comparison,
we use (ϵ, δ) = (9.8, 10−5) to PRISM and our baselines in all of our experiments. In addition, we
regulate the global round to ensure that the overall privacy budget does not exceed ϵ. To track the
overall privacy budget, we employ subsampled moments accountant Wang et al. (2019). We refer to
the Opacus library which is the user-friendly pytorch framework for differential privacy Yousefpour
et al. (2021).

Imola & Chaudhuri (2021); Isik et al. (2022) have shown that performing post processing to already
privatized vector θ̃ such as Bernoulli sampling enjoys privacy amplification under some conditions.
By doing so, the overall privacy budget becomes smaller ϵamp ≤ min{ϵ, dγα(c)}, where γα(·) is
the binary symmetry Rényi divergence as expressed below:

γα(c) =
1

α− 1
log(cα(1− c)α + (1− c)αc1−α), (6)

where α refers to the order of the divergence. Note that d limits the privacy amplification when the
model size becomes large. Since PRISM assumes that the model size is large enough due to SLT,
we focus on communication efficiency rather than privacy amplification.

B PRIVACY AMPLIFIED SCENARIO

In this section, we discuss about potential privacy benefit of PRISM under some conditions. Typical
FL setting, a malicious third party can estimate W k

t −W
g
h from the communicated gradients. By

analyzing these gradients, an attacker can extract information about the local data. However, with
PRISM, only the binary masksMk

t andMg
t are exchanged, which hinders an attacker’s efforts since

they do not have access to the synchronized initial weightWinit shared between the client and server.

15
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Table 5: FID comparison where distance metric is cosine similarity for MADA.

Distance Case MNIST FMNIST CelebA

PRISM w/ hd IID, DP 27.3017 46.1652 48.9983
PRISM w/ cos 27.7895 44.4084 49.0747

PRISM w/ hd Non-IID, DP 34.2038 67.1648 39.799
PRISM w/ cos 34.9577 69.2994 51.1734

C TRAINING DETAILS

In this section, we provide the detailed description of our implementations and experimental set-
tings. In Table 4, we provide the model architectures used in our experiments. We use ResNet-based
generator and set the local epoch to 100 and learning rate to 0.1. In addition, we do not employ
training schedulers or learning rate decay. Our code is based on Santos et al. (2019); Yeo et al.
(2023). They employ the ImageNet-pretrained VGG19 network for feature matching by minimizing
the Eq. 1. However, calculating the first and second moments require the large batch size to obtain
the accurate statistics. To address this issue, Santos et al. (2019) introduces Adam moving average
(AMA). With a rate λ, the update of AMA m is expressed as follows:

m← m− λADAM(m−∆), (7)

where ADAM denotes Adam optimizer Kingma & Ba (2014) and ∆ is the discrepancy of the means
of the extracted features. Note that ADAM(m−∆) can be interpreted as gradient descent by mini-
mizing the L2 loss:

min
m

1

2
∥m−∆∥2 . (8)

This means the difference of statistics (m −∆) is passed through a single MLP layer and updated
using the Adam optimizer to the direction of minimizing Eq. 8. By utilizing AMA, Eq. 1 is for-

mulated as Lk
MMD =

∥∥∥Ex∼Dk [ψ(x)]− Ey∼Dk
fake

[ψ(y)]
∥∥∥2+∥∥∥Cov(ψ(Dk))− Cov(ψ(Dk

fake))
∥∥∥2 ,

Algorithm 1, 2 provides the psuedocode for MADA and PRISM∗ correspondingly. AMA is omitted
to simply express the flow of our framework. See our code for pytorch implementation. We train the
local generator for 100 local iterations with learning rate of 0.1. For the AMA layer, learning rate is
set to 0.005. In addition, we use the Adam optimizer with β1 = 0.5, β2 = 0.999 to update the scores
of the generators. After all clients complete their training, communication round is initiated. We
set the global epoch to 150 for the MNIST dataset and 350 for the CelebA and CIFAR10 datasets.
As we do not adjust the parameters, note that there is room for performance improvements through
hyperparameter tuning.

D SELECTION OF OTHER DISTANCE METRIC

Figure 5 provide the FID performance of PRISM when using cosine similarity instead of hamming
distance for MADA. PRISM with cosine similarity achieves competitive performance compared to
the scheme using Hamming distance in most cases. Although the performance degrades for CelebA
in the non-IID scenario, it still outperforms all baseline methods, further demonstrating the robust-
ness of the approach.

E ANALYSIS OF HYBRID AGGREGATION

In this section, we further analyze PRISM∗, which leverages both binary mask and score communi-
cations. To explore the trade-off between communication cost and generative capability, we consider
two strategies: the backward path and forward path. The backward path progressively increases the

16

https://anonymous.4open.science/r/PRISM-B0D6


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 MADA

Parameter: learning rate η, communication rounds T, local iterations I
Input: local datasets ∪Kk=1Dk, ImageNet pretrained VGGNet ψ, random noise z

Server execute:
Initialize a random weight Winit and score vector s, then broadcasts to all clients.
for round t = 1, ..., T do

Client side:
for each client k ∈ [1,K] do

skt = st ▷ Download score vector
for local iteration i = 1, , , L do

θkt ← Sigmoid(skt )
Mk

t ∼ Bern(θkt )
W k

t ←Winit ⊙Mk
t

Dk
fake ←W k

t (z) ▷ Generate fake images
Extract real and fake features ψ(Dk), ψ(Dk

fake)

skt ← skt − η∇Lk
MMD(ψ(Dk), ψ(Dk

fake)) ▷ Update local score vector
end for
θ̄kt ← Sigmoid(skt )
θ̃kt =← θ̄kt +N (0, Iσ2)
Clip to [c, 1-c]
Mk

t ∼ Bern(θkt ))
Upload binary mask Mk

t to the server.
end for
Server side:
θ̂t+1 ←

∑K
k=1M

k
t ▷ Aggregate the received binary masks

st+1 ← Sigmoid−1(θ̂t+1)

λ← hd(Mt, Bern(θ̂t+1)) ▷ Compute the hamming distance
st+1 ← (1− λ)st + λst+1

end for
Sample the supermask M∗ ∼ Bern(θT )
Obtain the final model W ∗ ←Winit ⊙M∗

Algorithm 2 PRISM-α

Input: ratio of score layer α
Output: probability θkt (100− α) and binary mask Mk

t (α)

Client side:
for layer l = 1, ..., L do

if IsScoreLayer(l,α,L) then
Return probability θkt (l)

else
Return binary mask Mk

t (l)
end if

end for

number of score layers from deeper layers to earlier layers. Conversely, in the forward path, we
select score layers from earlier layers to deeper layers. Figure 7 visually demonstrates the trade-off
between communication cost and FID of both strategies. The FID gradually improves as we increase
α values in both cases. Note that the additional communication cost of the backward path tends to
increase more smoothly. Based on these observations, we adopt the backward path for Table 3 and
Figure 5. Figure 8 provides a comprehensive comparison across a wide range of α values, showing
that PRISM∗ consistently produces high quality images. Note that all experiments are conducted in
privacy-free scenario.
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(a) IID case (b) Non-IID case

Sweet spotSweet spot

Figure 7: Analysis of PRISM∗ using CIFAR10 dataset. The backward path selects α% of score
layers from deeper layers, closer to the output, while the forward path chooses from the opposite
end, nearer to the input. Solid-line demonstrates FID following each direction while dash-line shows
communication cost (MB) of each path.

(b) 𝛼𝛼 = 20(a) 𝛼𝛼 = 0 (c) 𝛼𝛼 = 50 (d) 𝛼𝛼 = 70 (e) 𝛼𝛼 = 100

High cost
High quality

Less cost
Less quality

Figure 8: The effect of adjusting α of PRISM∗. Qualitative comparison according to α. Note that
α = 0 is identical to PRISM.

F SELECTION OF MASKING MECHANISM

Table 6: Effect of mask selection on MNIST.

Dataset Metric Random Top-k% Bernoulli (ours) Weight

MNIST
FID ↓ 391.8257 20.3616 12.7373 5.9895
P&R ↑ 0.0 / 0.0006 0.5232 / 0.3782 0.7323 / 0.5904 0.6783 / 0.8414
D&C ↑ 0.0 / 0.2511 0.2854 / 0.0 0.5556 / 0.5313 0.446 / 0.678

In Table 6, we compare the effect of the mask extraction algorithm on generative model training.
For this, we relied on prior studies on the existence of SLT and the convergence of MMD with a
characteristic kernel [46, 14]. Our results empirically show SLT’s convergence under mask aver-
aging generative FL setting. We also explore the Random and Top-k% algorithms. The Bernoulli
method employed in PRISM outperformed top-k%, while Random and Weight represent the lower
and upper bounds of performance achievable by SLT, respectively.

G COMPARISON WITH CENTRALIZED SETTING

In Table 7, we report the results of models trained under FL vs. vanilla (centralized data) setups.
PRISM shows performance degradation due to privacy, data heterogeneity, and communication over-
head in FL settings. However, centralized training is not applicable in scenarios where distributed
samples cannot be shared, which is the primary focus of our work. Therefore, our original submis-
sion did not include this comparison, consistent with existing FL research.
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Table 7: Comparison of PRISM with centralized setting.

Method Metric MNIST FMNIST CelebA

PRISM
FID ↓ 34.2038 67.1648 39.7997
P&R ↑ 0.4386 / 0.4236 0.4967 / 0.1231 0.6294 / 0.0713
D&C ↑ 0.1734 / 0.1597 0.2748 / 0.1681 0.4565 / 0.2967

PRISM (vanilla)
FID ↓ 5.8238 5.5004 19.1512
P&R ↑ 0.6913 / 0.851 0.6985 / 0.8534 0.6621 / 0.3895
D&C ↑ 0.4689 / 0.679 0.4864 / 0.6965 0.5348 / 0.5947

Figure 9: Generated images of PRISM where ddpm is used.

H EXTEND TO DIFFUSION MODEL

In this section, we conducted additional experiments that diffusion model (Ho et al., 2020)] is uti-
lized instead of MMD based generator. As training with diffusion models is highly time-consuming,
we provide the generated images at intermediate steps in Figure 9. While the results appear some-
what noisy, PRISM can be extended to large-scale models given sufficient training time and client
resources.

I ADDITIONAL EXPERIMENTS ON LARGE-SCALE DATASETS

In this section, we provide qualitative results on large-scale datasets in Figure 10 under Non-IID and
privacy-free scenario. Both experiments are conducted under exactly same settings as in the main
manuscript.

J COMMUNICATION COST DURING DOWNLINK PROCESS

In this work, we mainly focus on reducing uplink costs. While PRISM transmits a float-type score
during downlink, which is less communication-efficient compared to binary mask transmission in
the uplink. As commonly noted in the FL community, servers typically possess powerful computa-
tional and transmission capabilities, whereas clients are resource-constrained. Therefore, our efforts
are concentrated on addressing uplink communication costs.
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Figure 10: Generated images of CelebA 128x128 dataset and CIFAR100 dataset under Non-IId and
privacy-free scenario.

K ADDITIONAL EXPERIMENTS ON CROSS-DEVICE ENVIRONMENTS

PRISM is designed to provide efficient communication cost, making it well-suited for cross-device
settings with a large number of clients and limited bandwidth. In Table 8, we provide a quantitative
comparison for an environment with 50 clients on the MNIST dataset, where 10 clients (i.e., 0.2
partial participation) participate in each round.

Table 8: Performance with cross-device environment.

Case Metric MD-GAN DP-FedAvgGAN GS-WGAN PRISM

Non-IID w/ DP
FID ↓ N/A 118.3975 98.6553 34.7157
P&R ↑ N/A 0.1095 / 0.3723 0.8477 / 0.0359 0.4344 / 0.3401
D&C ↑ N/A 0.0301 / 0.0289 0.2621 / 0.0105 0.1692 / 0.1476

Non-IID w/o DP
FID ↓ 15.4119 N/A N/A 14.3168
P&R ↑ 0.7305 / 0.359 N/A N/A / N/A 0.7533 / 0.4757
D&C ↑ 0.5266 / 0.3803 N/A N/A 0.5804 / 0.5293

L ADDITIONAL EXPERIMENTS FOR BASELINES

We present the additional experiments to validate the fairness of our entire experiments. In Table 9,
we compare a FID performance on MNIST dataset with Non-IID and privacy-preserving scenario.
Since they utilize GANs, there are separate learning rates for the generator and discriminator, and
we examined these combinations. In the tables below, the top row represents the discriminator’s lr /
generator’s lr, while the subsequent row reports the FID scores. Due to the notorious instability of
GAN training caused by the coupled learning dynamics between the generator and discriminator,
we observed divergence in some settings. For GS-WGAN, the best performance was achieved with
1e-4 / 1e-5, but it still failed to generate MNIST images properly.

M COMPUTATION COST ANALYSIS

One might say that SLT process within PRISM increases computational complexity, especially in
large networks. As the number of model parameters increases, the required score parameters also
increase linearly. However, in SLT, weight parameters are not learned through gradient descent. The
only additional components are the sigmoid and Bernoulli processes introduced during the binary
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Table 9: Baseline’s FID performance for adjusting learning rate using MNIST dataset.

Non-IID, DP 1e-4, 1e-4 (default) 1e-3, 1e-4 1e-5, 1e-4 1e-4, 1e-3 1e-4, 1e-5

GS-WGAN diverge 108.0657 diverge diverge 96.1892

Non-IID, DP 1e-4, 1e-4 (default) 1e-3, 1e-4 1e-5, 1e-4 1e-4, 1e-3 1e-4, 1e-5

Dp-FedAvgGAN 153.9325 206.759 diverge 177.3752 232.2336

masking procedure. While this undeniably incurs some additional computational cost, it is negligible
from the perspective of gradient descent executed on GPUs. In addition, to prove that the additional
computational cost is not substantial, we provide FLOPS comparison in Table ??.

Table 10: Comparison of FLOPS between PRISM and other baselines.

DP-FedAvgGAN GS-WGAN PRISM

FLOPS 0.002G 1.94G 0.34G
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