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ABSTRACT

Offline-to-online reinforcement learning (off2on RL) integrates the sample effi-
ciency of offline pretraining with the adaptability of online fine-tuning. However,
it suffers from a constraint-release dilemma: conservative objectives inherited
from offline training ensure stability yet hinder adaptation, while uniformly dis-
carding them induces instability. Existing approaches impose global constraints
across all samples, thereby overlooking the distributional heterogeneity wherein
offline and online data gradually overlap. We propose Dynamic Alignment for
RElease (DARE), a distribution-aware framework that enforces the constraints at
the sample level in a behavior-consistent manner. To this end, DARE employs
a diffusion-based behavior model with energy guidance to generate reference ac-
tions, assigns alignment scores to individual samples, leverages Gaussian fitting to
distinguish offline-like from online-like data, and exchange behavior-inconsistent
samples between offline and online batches to ensure behavior-consistent con-
straint enforcement. We theoretically prove that DARE reduces offline–online
distributional discrepancy while ensuring that value estimation errors remain
bounded. Our empirical results on the D4RL benchmark demonstrate that in-
tegrating DARE into representative off2on methods (Cal-QL and IQL) consis-
tently improves policy performance and achieves stable, robust, and adaptive fine-
tuning. (Anonymized code archive is included in the supplementary material)

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress in diverse sequential decision-
making domains, such as recommendation systems (Wang et al., 2018; Chen et al., 2024),
robotics (Rafailov et al., 2023; Zhao et al., 2023), and large language models (Du et al., 2023;
Zhai et al., 2024). These successes have been driven mainly by two learning paradigms: online RL,
which learns through direct interactions with the environment, and offline RL, which relies solely
on pre-collected datasets. Online RL can reach high performance but requires massive environment
interactions (Mnih et al., 2015; Song et al., 2023; Alonso et al., 2024). Offline RL, in contrast, avoids
these risks by training on static datasets, offering higher sample efficiency but limited adaptability to
unseen situations (Fujimoto et al., 2019; Kumar et al., 2020; Uehara et al., 2024). To combine their
complementary strengths, recent work has explored the offline-to-online (off2on) RL paradigm (Xie
et al., 2021; Zhang & Zanette, 2024), where an agent is first pretrained on offline data and then
fine-tuned through a small number of online interactions (Lee et al., 2022; Kostrikov et al., 2021;
Nakamoto et al., 2023). However, when the agent explores beyond the offline dataset, it encounters
out-of-distribution (OOD) issue, which often causes value overestimation and policy drift. This is-
sue, coupled with the conservative loss introduced during offline training, hinders exploration and
adaptation while removing it abruptly can destabilize learning (Ball et al., 2023).

To address this constraint-release dilemma, existing off2on approaches are mostly built upon spe-
cific offline algorithms and fall into two main categories, Policy-constraint and Value-regularization.
Policy-constraint methods limit the policy to stay close to the offline behavior (Wu et al., 2022;
Zhang et al., 2023), which helps maintain stability but often suppresses exploration and slows im-
provement. Value-regularization methods (Nakamoto et al., 2023), such as CQL (Kumar et al.,
2020), encourage conservative value estimates to avoid overestimation, but suffer from unstable Q-
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value fluctuations and high computational cost (Lee et al., 2022; Zhang et al., 2024b). More recent
studies attempt to ease the transition from offline pretraining to online fine-tuning by introducing
auxiliary components (Wang et al., 2023), such as aligning the actor and critic to reduce policy-
value inconsistency (Luo et al., 2024), and employing generative models to enrich training data (Liu
et al., 2024). Despite these advances, most methods apply constraints uniformly across all samples,
regarding the offline dataset merely as initialization and neglecting its distributional structure (Mao
et al., 2024). In practice, however, offline and online data gradually overlap during fine-tuning, with
some offline samples exhibiting exploratory behavior and some online samples remaining aligned
with the offline policy. Failing to account for this heterogeneity results in constraints that are either
overly conservative or released too aggressively.

To fill this gap, we propose Dynamic Alignment for RElease (DARE), an offline-to-online RL frame-
work that enforces constraints in a sample-specific and behavior-consistent manner. Because offline
and online data distributions overlap, dataset labels (offline vs. online) are insufficient to determine
whether a sample exhibits offline-like or online-like behavior. DARE addresses this issue by eval-
uating each sample’s behavioral alignment and apply constraints accordingly. Specifically, DARE
leverages a diffusion-based generative model to generate reference actions. These reference actions
allow us to assign alignment scores to individual samples, quantifying their behavioral consistency
with the offline policy. By fitting the alignment distributions with Gaussian models, we derive a
data-driven rule that distinguishes offline-like from online-like samples. These behaviorally incon-
sistent samples are then adaptively exchanged between offline and online batches, ensuring that
constraints are preserved or relaxed in a behavior-consistent manner. In the end, we integrate DARE
into two representative off2on algorithms, Cal-QL and IQL, demonstrating that it can be seamlessly
applied by enforcing conservative objectives on offline-like samples while relaxing constraints for
online-like ones.

We provide theoretical analysis of DARE, showing that our exchanges mechanism monotonically
narrows the distributional discrepancy and that both the residual error and value estimation error
remain bounded. Our ablation studies further dissect the contribution of each component, including
the exchange budget and alignment mechanism. The empirical evaluations on the D4RL benchmark
demonstrate that DARE enhances fine-tuning robustness and stability, achieving superior policy
performance.

2 RELATED WORKS

Offline-to-online Reinforcement Learning. A critical challenge in off2on RL lies in accurate
value estimation under out-of-distribution (OOD) actions and in mitigating the distributional shift
that emerges during fine-tuning. To address the challenge, several methods aim to reduce Q-value
bias. For example, SO2 (Zhang et al., 2024b) introduces perturbed updates to smooth value esti-
mates, and SUF (Feng et al., 2024) adjusts the update-to-data (UTD) ratio to mitigate overfitting
to static datasets. Another line of work focuses on distributional shift. Cal-QL (Nakamoto et al.,
2023) and FamO2O (Wang et al., 2023) calibrate Q-values with offline data and progressively up-
date them online, while Off2On (Lee et al., 2022) balances conservative pretraining with exploratory
fine-tuning. Ball et al. (Ball et al., 2023) employ Layer Normalization to stabilize Q-value learning
and prevent over-extrapolation during online fine-tuning. In parallel, PEX (Yu & Zhang, 2023) mit-
igates distributional shift by expanding the offline policy with additional exploratory components.
More recent approaches such as OCR-CFT (Luo et al., 2024) and OPT (Shin et al., 2025) go be-
yond conventional fine-tuning. They reconstruct critics, align them with the policy, and then switch
to purely online optimization, effectively increasing the update-to-data (UTD) ratio. While these
methods advance stability and adaptability, they typically enforce constraints globally or rely on
auxiliary heuristics, overlooking the heterogeneous overlap between offline and online samples.

Diffusion Model in Reinforcement Learning. Diffusion models have recently been adopted in RL
as powerful generative tools. Diffuser (Janner et al., 2022) employs a diffusion model to generate en-
tire action trajectories, guided by a separately trained return predictor to bias sampling toward high-
return behaviors. SYNTHER (Lu et al., 2023b) extends this idea to both offline and online RL by us-
ing diffusion-based data upsampling to enrich training distributions. Other works exploit classifier-
or function-guided diffusion for more targeted generation. For example, PolyGRAD (Rigter et al.,
2023) embeds policy information into a classifier-guided diffusion model for on-policy world mod-
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eling, while Chen et al. (Chen et al., 2022) leverage reward or Q-functions to guide diffusion sam-
pling toward task-relevant behaviors. CEP (Lu et al., 2023a) approximates energy-based guidance
through contrastive learning, focusing on offline data generation, and EDIS (Liu et al., 2024) ex-
tends energy-guided diffusion to the off2on setting by steering action sampling during fine-tuning.
In contrast to these approaches, which use diffusion for trajectory or data generation, we explicitly
model the offline behavior policy itself and leverage it to guide constraint release during fine-tuning.

3 PRELIMINARIES

3.1 OFFLINE-TO-ONLINE REINFORCEMENT LEARNING

RL is a framework in which an agent learns to maximize cumulative rewards by interacting with
an environment (Mnih et al., 2013; Van Hasselt et al., 2016). The problem is modeled as a Markov
Decision Process (MDP), defined by a tuple (S,A, P,R, γ), where S is the state space, A is the
action space, P is the transition probability, R is the reward function, and γ ∈ [0, 1) is the discount
factor. At each timestep t, the agent observes a state st, takes an action at ∈ A, receives a reward
rt = R(st, at), and then transitions to a new state st+1 according to P (st+1|st, at).
In offline RL, the agent learns solely from a static dataset Doff collected by unknown policy ν,
without additional interaction with the environment (Fujimoto & Gu, 2021). The off2on RL extends
this setting by further fine-tuning the policy with limited online interaction. During fine-tuning,
the agent must balance knowledge from offline data with new online experiences Don, adapting the
policy while avoiding overfitting to OOD actions. The replay buffer then becomes D = Doff ∪Don.

3.2 CALIBRATED Q-LEARNING

Calibrated Q-learning (Cal-QL) (Nakamoto et al., 2023) aims to learn a conservative and calibrated
value function from an offline dataset. Cal-QL builds on CQL (Kumar et al., 2020) and constrains
the learned Q-function to produce Q-values that are larger than the Q-value of a reference policy ν:

LCal-QL(Q) =
1

2
· E(s,a,s′)∼D

[(
Q(s, a)− B̂πQ̂target(s, a)

)2
]

+ α
(
Es∼D,a∼π [max(Q(s, a), V ν(s))]− E(s,a)∼D [Q(s, a)]

)︸ ︷︷ ︸
R

.
(1)

Here, α controls the strength of conservatism. We denote the second term in Eq. 1 as R, the regu-
larizer. During online fine-tuning, R naturally reduces to the standard CQL penalty.

3.3 IMPLICIT Q-LEARNING

Implicit Q-Learning (IQL) (Kostrikov et al., 2021) avoids Q-value overestimation on OOD actions
by using expectile regression, L2

τ (u) = |τ − 1(u < 0)|u2. The value function is learned by mini-
mizing the expectile regression loss:

LIQL(V ) = E(s,a)∼D

[
L2
τ

(
Q̂target(s, a)− V (s)

)]
, (2)

The Q-function is then updated via:

LIQL(Q) = E(s,a,s′)∼D

[
(r(s, a) + γV (s′)−Q(s, a))

2
]
. (3)

IQL extracts the policy through advantage-weighted regression (Nair et al., 2020), where the learned
Q-function is used to prioritize actions with higher advantages:

LIQL(π) = E(s,a)∼D

[
exp

(
β
(
Q̂target(s, a)− V (s)

))
log π(a|s)

]
. (4)

4 MOTIVATION

3
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Figure 1: Characteristics of distributional shift in fine-tuning.

We start by analyzing the
distributional shift that oc-
curs during the offline-to-
online transition, as it rep-
resents a major challenge to
achieve stable fine-tuning.
Accordingly, we compute
the mean squared error
(MSE) between the actions
predicted by the offline-
pretrained policy and those
in the offline dataset. Fig. 1a shows the histogram of MSE values on HalfCheetah-medium-v2, in-
dicating a significant mismatch between the policy outputs and dataset actions. As online training
continues, such discrepancies can exacerbate into a considerable distributional shift. Fig. 1b illus-
trates this via a t-SNE projection: after 100k steps, online samples (orange) and offline data (blue)
occupy distinct regions in feature space. While t-SNE is qualitative, such separation in projection
suggests that offline and online distributions diverge substantially. These observations imply that
applying a uniform loss to all samples is suboptimal, since some remain close to the offline distribu-
tion while others have shifted OOD. To further investigate this during fine-tuning, we approximate
the offline action distribution with a behavior model and use it to score both offline and online sam-
ples via KL-based alignment. As shown in Fig. 1c, the distributions of these two scores exhibit a
huge overlap. Such observations highlight the need for a reliable sample-level criterion to evaluate
whether a data point is offline-like or online-like, so that training constraints can be applied in a
behavior-consistent manner.

5 DARE: DYNAMIC ALIGNMENT FOR RELEASE

We propose DARE, a framework for offline-to-online reinforcement learning (RL) that enforces
constraints adaptively, accounting for sample-specific characteristics and behavioral consistency
with the offline dataset. Specifically, DARE generates reference actions via an energy-guided dif-
fusion model that is guided by Q-function estimates. It then calculates alignment scores to quan-
tify each sample’s consistency with the offline data, and deploys Gaussian fitting to derive a data-
driven threshold that separates offline-like from online-like samples. Through this process, DARE
preserves conservative constraints on offline-like samples while adaptively relaxing them for ex-
ploratory ones.

5.1 REFERENCE ACTIONS THROUGH ENERGY-GUIDED DIFFUSION MODEL

Energy-guided diffusion has been widely deployed in generative modeling to improve data quality
or sample efficiency (Lu et al., 2023a; Liu et al., 2024; Zhang et al., 2024a; Xu et al., 2024). Here,
we adapt this formulation to the off2on RL setting in order to facilitate constraint release. Specif-
ically, we construct reference actions that preserve the offline behavior while incorporating value
information from the Q-function, enabling sample-level alignment estimation during fine-tuning.

Mathematically, we take the pretrained diffusion behavior model ν0 as the base distribution and use
the Q-function as the energy term, which defines an induced policy π0. The marginal distribution of
a noise-perturbed action at at time t is

πt(at | s) ∝ νt(at | s) eEt(s,at), (5)

where Et(s, at) is parameterized by a neural network fϕ(s, at, t) derived from Q(s, a0) and updated
during fine-tuning. The corresponding score function is

∇at
log πt(at | s) = ∇at

log νt(at | s) +∇at
Et(s, at). (6)

This construction results in an energy-guided policy π0, from which reference actions â ∼ π0(· | s)
are sampled.

4
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5.2 ALIGNMENT SCORES VIA KULLBACK–LEIBLER DIVERGENCE

During the online phase, each training batch b = boff ∪bon contains samples from both the offline
dataset Doff and the online replay buffer Don. However, the dataset source alone does not indicate
whether a sample exhibits offline-like or online-like behavior. An offline sample may reflect online
exploratory behavior, while an online sample may still follow the offline distribution.

To capture this distinction, we assign each sample an alignment score that measures its consistency
with the offline behavioral policy. For each state si in b, we generate a reference action âi ∼ π0(· |
si) using the energy-guided diffusion model in Eq. 5 and Eq. 6. The alignment score of the observed
pair (si, ai) is then defined as the KL divergence between the actual action and the reference action:

Align(si, ai) = DKL

(
ai ∥ âi

)
. (7)

A higher alignment score indicates that the sample deviates more from the offline behavioral policy.
This score is used to distinguish offline-like from online-like samples during fine-tuning.

5.3 SAMPLE-LEVEL EXCHANGE BASED ON GAUSSIAN FITTING

To apply proper constraints for each sample, we first classify the sample as offline-like or online-
like based on the alignment scores given in Eq. 7. The major challenge of determining a distinct
separation point is that the score distributions of offline and online samples often overlap as shown
in Fig. 1c. In addition, the data exhibit different OOD patterns across different batches, making it
impractical to apply a single separation point for all batches. To tackle this issue, for each batch, we
approximate the distributions of offline scores {doffi } and online scores {doni } with Gaussian models
parameterized by empirical means (µoff , µon) and standard deviations (σoff , σon). While Gaussian
models do not capture all distributional details, they provide a light-weight yet stable approximation
that avoids overfitting to empirical distributions and results in interpretable decision boundaries.

The separation point τ is determined by the intersection of two Gaussian probability density func-
tions (PDF):

ϕ(τ ;µoff , σ
2
off ) = ϕ(τ ;µon, σ

2
on), (8)

where ϕ(τ ;µ, σ2) = 1√
2πσ2

exp
(
− (τ−µ)2

2σ2

)
. Taking logarithms to both sides in Eq. 8, we get,

− (τ − µoff )
2

2σ2
off

− log σoff = − (τ − µon)
2

2σ2
on

− log σon, (9)

When an intersection exists, the valid root τ between µoff and µon in Eq. 9 is the separation point;
Otherwise, it is set to the midpoint.

Given the separation point τ , we identify candidate samples: offline points with unusually high
scores (doffi ≥ τ ) that behave online-like, and online points with unusually low scores (doni < τ )
that behave offline-like. We then exchange the top-M pairs between the offline batch and the online
batch. Mathematically, we have

M = min
(
|{doffi ≥ τ}|, |{doni < τ}|, n

)
, (10)

where n is a hyperparameter setting the maximum number of pairs exchanged. This exchange leads
to updated batches b′off and b′on that better reflect behavior consistency.

Built on the resulting batch b′ = b′off ∪ b′on, we enforce differentiated constraints during policy
optimization. For offline-like samples in b′off , we preserve the conservative objectives used in the
original offline algorithm to ensure stability. For online-like samples in b′on, we relax or remove
such penalties, enabling the policy to adapt more flexibly to new behaviors.

5.4 THEORETICAL ANALYSIS

To understand why the proposed exchange mechanism improves off2on adaptation, we analyze its
theoretical properties from: (i) Geometric contraction, showing that the proposed exchange scheme

5
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monotonically reduces the distributional discrepancy between offline and online samples; and (ii)
Stability, showing that the value estimation remains bounded throughout the exchange process.

Let boff = {xoff
i }Ni=1 and bon = {xon

j }Nj=1 denote the offline and online batches. We study the distri-
butional geometry of these batches by projecting them onto a one-dimensional statistic d : X → R,
yielding {doffi } and {donj }. The H∆H-divergence is defined as dH∆H(P,Q) = 2 sup(a,b] |P{d ∈
(a, b]} −Q{d ∈ (a, b]}| (Ben-David et al., 2010).
Theorem 1 (Monotone decay of threshold-class discrepancy). Let M be the number of accepted
exchanges. The H∆H-divergence between the offline and online projections satisfies:

d
(M)
H∆H ≤ max

{
0, d

(0)
H∆H − 2M

N

}
. (11)

Beyond geometric contraction, we further analyze whether such exchanges affect the stability of
value estimation. Let rQ̂(s, a) = (TπQ̂)(s, a)− Q̂(s, a) and Eα = αEµoff

|rQ̂|+ (1− α)Eµon |rQ̂|
as the mixed residual . This requires a mild coverage condition to relate residuals to value errors:
Assumption 1 (Coverage and Control). There exists κ ≥ 1 such that for all bounded measurable h,

∥h∥∞ ≤ κEµmix |h|, µmix := αµoff + (1− α)µon. (12)

Theorem 2 (Bounded value estimation error). Assume |rQ̂(s, a)| ≤ BT and the coverage condition
in Assumption 1. Then after M exchanges,

∥Q̂−Qπ∥∞ ≤ κ

1− γ

(
E(0)
α +

2BTM

N

)
. (13)

These guarantees show that the exchange mechanism progressively aligns the offline and online
distributions while keeping the value estimation bounded. Full proofs are provided in Appendix A.

6 INTEGRATING DARE INTO OFFLINE ALGORITHMS

We integrate DARE into two representative offline RL algorithms, Cal-QL and IQL, by applying
differentiated updates to the exchanged batches b′off and b′on. For offline-like samples in b′off , we
retain the original conservative objectives to preserve stability. For online-like samples in b′on, we
relax these constraints to facilitate adaptation.

6.1 DARE INSTANTIATIONS

DARE-Cal-QL We extend Cal-QL with DARE, resulting in the variant DARE-Cal-QL (DARE-C).
Cal-QL applies a conservative regularizer R uniformly to all samples to mitigate value overestima-
tion. In DARE-C, this penalty is applied selectively: R is retained for offline-like samples in b′off to
preserve stability, but removed for online-like samples in b′on to facilitate adaptation. The original
objective Eq. 1 becomes

LCal-QL
DARE (Q) = E(s,a,s′)∼D

[
1{(s,a,s′)∈b′off}

(
(Q(s, a)− B̂πQ̂target(s, a))

2 + αR
)

+ 1{(s,a,s′)∈b′on}
(
Q(s, a)− B̂πQ̂target(s, a)

)2]
.

(14)

DARE-IQL When applied to IQL, DARE brings in a variant DARE-IQL (DARE-I). IQL trains
the Q-function via value regression and updates the policy through advantage-weighted regression.
In DARE-I, these updates are differentiated: for offline-like samples b′off , we retain the original
value targets and policy regression; for online-like samples b′on, we replace the value targets with
TD-based maximum-Q estimates and switch the policy update to an entropy-regularized SAC ob-
jective (Haarnoja et al., 2018). The original Q-function and policy updates in and Eq. 3 and Eq. 4
become:

LIQL
DARE(Q) = E(s,a,s′)∼D

[
1{(s,a,s′)∈b′off}

(
r(s, a) + γV (s′)−Q(s, a)

)2
+ 1{(s,a,s′)∈b′on}

(
r(s, a) + γmax

a′
Q̂target(s

′, a′)−Q(s, a)
)2]

,
(15)
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and
LIQL

DARE(π) = E(s,a)∼D

[
1{(s,a)∈b′off} exp

(
β(Q̂target(s, a)− V (s))

)
log π(a | s)

]
+ Es∼D,ã∼π(·|s)

[
1{(s,ã)∈b′on}

(
α log π(ã | s)−Q(s, ã)

)]
.

(16)

6.2 ALGORITHM SUMMARY

Algorithm 1 summarizes DARE, intigrating the exchange mechanism with modified value and pol-
icy updates. We instantiate it on Cal-QL and IQL as representative baselines.

Algorithm 1 Dynamic Alignment for Release (DARE)
1: Initialize: Offline policy πoff as πon with Q networks, diffusion behavior model ν0(· | s).
2: Initialize: Replay buffers Doff with offline data, Don with online data, energy function fϕ.
3: for each iteration do
4: Interact with environment using πon and collect new transitions to Don.
5: Sample batch b = boff ∪ bon = {(si, ai, ri, s′i)} from Doff ∪ Don.
6: Sample actions {âi} via energy-guided sampling process under state {si} via Eq. 6.
7: Compute the alignment scores in Eq. 7 and find the intersection point τ by Eq. 9.
8: Exchange M samples between boff and bon by Eq. 10, then get b′off and b′on.
9: Update policy using LCal-QL in Eq. 14 or LIQL in Eq. 15 and Eq. 16 with b′off and b′on.

10: Update energy function fϕ.
11: end for

7 EXPERIMENTS

In this section, we present empirical evaluations of DARE against strong baselines in off2on RL. We
begin by comparing DARE with representative offline RL algorithms on the D4RL benchmark. We
then evaluate DARE along two dimensions: Robustness and Stability. To evaluate robustness, we
sweep the exchange limit and measure sensitivity to excessive sample swaps. Stability is accessed by
increasing the update-to-data (UTD) ratio and observing sensitivity to aggressive update schedules.
We also compare our Gaussian-fitting strategy against a direct score-based exchange. In the end,
the ablation studies are performed to demonstrate the contributions of the energy function and the
exchange mechanism.

7.1 BENCHMARKS AND BASELINES

We evaluate DARE on two standard D4RL benchmarks (Fu et al., 2020): MuJoCo Locomotion and
AntMaze Navigation, -both using the “-v2” version. As for baselines, in CQL group, we compare
DARE-C against CQL (Kumar et al., 2020), Cal-QL, and EDIS-C (Liu et al., 2024), a Cal-QL
variant; in IQL group, we compare DARE-I against IQL, PEX (Zhang et al., 2023), and EDIS-I,
the IQL counterpart of EDIS-C. For fairness, EDIS-C and DARE-C in the CQL group are initialized
from the same Cal-QL models, and all models in the IQL group are from the same IQL models.
All above models are trained offline for 1M steps and fine-tuned online for 0.2M steps. We average
the results over the last four evaluations and five random seeds. Additional implementation details,
including the performance of the initial offline-trained models, are provided in Appendix B.

7.2 OVERALL PERFORMANCE

The fine-tuning results are presented under both CQL group and IQL group in Tab. 1. Overall,
DARE brings a significant improvement of around 15% total score of all datasets in both groups. It
also consistently outperforms the baselines across different tasks, with highest scores on 11/13 tasks
under the CQL group and on 10/13 tasks under the IQL group. These results demonstrate that the
proposed exchange mechanism brings consistent benefits across diverse benchmarks in the off2on
setting. Appendix C provides the complete fine-tuning learning curves, which illustrate how DARE
maintains stable improvements across both locomotion and antmaze tasks.

7
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Table 1: Performance after 0.2M online fine-tuning. Each result is averaged over the final 4 evaluations and 5 random seeds
± standard deviation. The “-C” and “-I” suffixes indicate the implementation based on Cal-QL and IQL, respectively. The
highest scores are bolded.

Dataset CQL Group IQL Group
Base (CQL) Cal-QL EDIS-C DARE-C Base (IQL) PEX EDIS-I DARE-I

HC-ME 96.3±1.6 96.4±0.9 95.1±0.7 97.0±0.8 91.7±2.3 89.2±3.6 91.4±3.9 93.5±2.1
H-ME 111.9±0.9 111.9±0.7 111.9±1.7 112.0±0.4 53.9±39.0 90.2±20.1 99.7±13.5 102.3±9.6
W2D-ME 110.3±0.5 110.4±0.5 108.2±7.1 111.2±0.6 111.8±4.9 114.8±3.0 113.1±0.9 114.7±1.6
HC-MR 50.9±0.5 51.1±1.1 56.4±2.8 78.5±1.4 47.4±1.0 53.3±1.2 45.7±0.7 49.4±1.0
H-MR 82.1±33.2 93.0±13.4 100.9±5.9 103.5±1.1 87.0±28.2 93.5±13.7 93.7±9.7 97.8±3.0
W2D-MR 86.9±3.4 88.4±4.6 108.9±4.2 110.6±1.9 91.8±6.2 92.0±6.4 89.2±3.8 97.0±3.1
HC-M 64.6±2.6 66.9±1.8 68.8±1.8 79.3±3.2 57.8±1.3 65.8±2.9 49.3±0.3 63.3±1.8
H-M 81.9±8.1 86.6±9.1 94.7±7.2 99.6±4.7 77.5±22.2 84.3±20.1 58.9±6.3 99.8±2.8
W2D-M 83.0±0.7 83.4±1.5 85.9±1.5 87.0±3.4 85.8±7.6 90.2±13.1 86.4±1.6 92.2±3.2

total (L) 767.9 788.1 830.8 878.7 704.7 773.3 727.4 810.0
AM-MD 85.8±5.6 86.8±4.7 93.4±2.9 94.8±4.0 82.0±6.0 82.8±6.4 84.9±5.8 78.6±5.4
AM-MP 86.2±4.4 89.1±5.4 94.4±2.9 93.4±4.2 80.4±3.6 81.7±4.7 78.1±7.2 83.5±4.8
AM-UD 82.4±7.4 90.1±7.8 86.1±3.7 91.1±6.5 31.6±16.1 4.6±8.4 34.9±9.3 74.4±11.7
AM-U 93.2±1.8 95.5±1.3 95.2±2.9 97.7±2.5 90.5±3.5 92.9±3.7 92.2±2.3 94.0±3.3

total (AM) 347.6 361.5 369.1 377.0 284.5 262.0 290.1 330.5

total 1115.5 1149.6 1200.1 1255.7 989.2 1035.3 1017.5 1140.5
Abbreviations: HC = halfcheetah, H = hopper, W2D = walker2d, L = locomotion, AM = antmaze; M = medium,
ME = medium-expert, MR = medium-replay, MD = medium-diverse, MP = medium-play, UD = umaze-diverse, U = umaze. All
environments use -v2 version.
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Figure 2: Adaptive exchange counts during online training across different tasks.

7.3 IMPACT OF EXCHANGE CAP

Since DARE relies on the exchange mechanism to reassign samples between offline and online
batches, its effectiveness depends on the accuracy of the estimated intersection point. Unreliable
exchanges will reduce training efficiency or even destabilize learning.

Dataset n = 32 n = ∞

D
A

R
E

-C M 265.9 258.5
MR 292.6 283.9
ME 320.2 320.3

Total 878.7 862.7

D
A

R
E

-I M 249.7 255.3
MR 240.8 244.2
ME 300.3 310.5

Total 790.8 810.0

Table 2: Effect of the maximum
exchange limit n for DARE-C
and DARE-I.

To mitigate potential instability from excessive exchanges, we
introduce the hyperparameter n in Eq. 10 to cap the number
of swaps per batch. Fig. 2 shows that DARE adapts exchange
frequency differently across environments, with the actual num-
ber of exchanges in most cases remaining relatively low (typi-
cally < 70). We then compare capped (n = 32) and uncapped
(n = ∞) settings on MuJoCo Locomotion tasks in Tab. 2. Under
DARE-C, n = 32 achieves better overall performance, suggest-
ing that excessive swaps cause instability. In contrast, DARE-
I obtains higher scores without such a limit. Such observation
indicates that the smaller n restricts aggressive swapping and
the larger one allow more flexible adaptation. A comprehen-
sive breakdown of exchange dynamics across environments, to-
gether with detailed results under different n, is provided in Ap-
pendix D.

7.4 IMPACT OF LARGE UPDATE-TO-DATA RATIOS

To assess the stability of DARE, we investigate the effect of the UTD ratio, which determines the
number of gradient updates performed per environment step.
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Dataset EDIS-I PEX DARE-I

HC-MR 45.0±0.9 58.4±2.8 49.7±0.5
H-MR 94.1±9.7 88.5±22.8 100.2±2.4
W2D-MR 75.9±9.0 99.9±10.5 101.4±6.7
HC-M 48.8±0.2 76.1±1.6 66.3±1.4
H-M 60.8±5.3 84.6±21.4 101.2±4.3
W2D-M 81.4±5.5 92.5±18.2 99.1±1.6

total 406.0 495.8 517.9

Table 3: Performance of IQL-based
methods under UTD = 10.

While a higher ratio accelerates learning, it also induces
more frequent exchange between offline and online-like
samples, potentially affecting stability. We evaluate
DARE’s performance with an aggressive setting with
UTD = 10 after 0.1M fine-tuning steps on MuJoCo loco-
motion tasks. As shown in Tab. 3, DARE-I achieves the
highest total scores under UTD = 10, compared to both
PEX and EDIS-I. These results indicate that DARE re-
mains stable even when the exchange becomes more fre-
quent under aggressive update regimes. Detailed results
of the UTD experiments, along with the corresponding
learning curves, are provided in Appendix E.

7.5 EFFECTIVENESS OF GAUSSIAN FITTING
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Figure 3: Comparison of Gaussian fitting and direct exchange.

To evaluate the design choice
of using Gaussian fitting by
Eq. 8, we compare it with a di-
rect exchange. The direct ex-
change sorts the sampled train-
ing batch b according to the
alignment scores in Eq. 7, and
assigns the top-ranked sam-
ples to b′off and the remain-
ing to b′on. Fig. 3 depicts the
learning curves under the Cal-
QL framework. In most envi-
ronments, our Gaussian-fitting
strategy achieves more stable
performance compared to the
direct exchange. Although direct sorting is simple, its cutoff depends heavily on the sampled batch
and can fluctuate. In contrast, Gaussian fitting models the score distributions and uses their intersec-
tion point as the decision boundary, which will make the partition more stable.

7.6 ABLATION STUDY
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Figure 4: Ablation study of DARE-I.

In the end, we perform an ablation study to assess the
contribution of each component in DARE-I. As shown in
Fig. 4, removing either the energy guidance in the dif-
fusion model or the sample exchange mechanism leads
to significant performance drops across multiple tasks.
These results highlight the important roles of both com-
ponents in ensuring the overall effectiveness of DARE-I.
Additional ablation results are provided in Appendix F
due to space constraints.

8 CONCLUSION

We have presented DARE, a distribution-aware framework for offline-to-online reinforcement learn-
ing that adaptively relaxes constraints at the sample level. By integrating energy-guided diffusion,
alignment scoring, Gaussian fitting, and an exchange mechanism, DARE distinguishes offline-like
from online-like samples, preserving conservative constraints on the former while adaptively relax-
ing them for the latter. Our analysis establishes that DARE reduces the offline-to-online distribu-
tion discrepancy while ensuring bounded value estimation. Experiments on MuJoCo and AntMaze
benchmarks demonstrate that integrating DARE into existing methods consistently improves stabil-
ity during fine-tuning, robustness, and overall policy performance. Future directions include explor-
ing richer behavior models to better capture multi-modal offline data and more effectively guide the
exchange process.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in atari. Advances in
Neural Information Processing Systems, 37:58757–58791, 2024.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175,
2010.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao. On the opportunities
and challenges of offline reinforcement learning for recommender systems. ACM Transactions
on Information Systems, 42(6):1–26, 2024.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Jiaheng Feng, Mingxiao Feng, Haolin Song, Wengang Zhou, and Houqiang Li. Suf: Stabilized
unconstrained fine-tuning for offline-to-online reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 11961–11969, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Ruifeng Chen, Zhilong Zhang, Xinwei Chen, and Yang
Yu. Energy-guided diffusion sampling for offline-to-online reinforcement learning. arXiv preprint
arXiv:2407.12448, 2024.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 22825–22855. PMLR, 2023a.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Ad-
vances in Neural Information Processing Systems, 36:46323–46344, 2023b.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qin-Wen Luo, Ming-Kun Xie, Yewen Wang, and Sheng-Jun Huang. Optimistic critic reconstruc-
tion and constrained fine-tuning for general offline-to-online rl. Advances in Neural Information
Processing Systems, 37:108167–108207, 2024.

Yixiu Mao, Qi Wang, Yun Qu, Yuhang Jiang, and Xiangyang Ji. Doubly mild generalization for
offline reinforcement learning. Advances in Neural Information Processing Systems, 37:51436–
51473, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36:62244–62269, 2023.

Rafael Rafailov, Kyle Beltran Hatch, Victor Kolev, John D Martin, Mariano Phielipp, and Chelsea
Finn. Moto: Offline pre-training to online fine-tuning for model-based robot learning. In Confer-
ence on Robot Learning, pp. 3654–3671. PMLR, 2023.

Marc Rigter, Jun Yamada, and Ingmar Posner. World models via policy-guided trajectory diffusion.
arXiv preprint arXiv:2312.08533, 2023.

Yongjae Shin, Jeonghye Kim, Whiyoung Jung, Sunghoon Hong, Deunsol Yoon, Youngsoo Jang,
Geonhyeong Kim, Jongseong Chae, Youngchul Sung, Kanghoon Lee, et al. Online pre-training
for offline-to-online reinforcement learning. arXiv preprint arXiv:2507.08387, 2025.

Yunlong Song, Angel Romero, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza. Reaching
the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics,
8(82):eadg1462, 2023.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. Advances in Neural Infor-
mation Processing Systems, 36:30997–31020, 2023.

Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gokcen Eraslan, Avantika
Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and genera-
tive modeling via conservative fine-tuning of diffusion models. Advances in Neural Information
Processing Systems, 37:127511–127535, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song,
and Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforce-
ment learning. Advances in Neural Information Processing Systems, 36:47081–47104, 2023.

Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. A reinforcement learning
framework for explainable recommendation. In 2018 IEEE international conference on data
mining (ICDM), pp. 587–596. IEEE, 2018.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon,
and Arash Vahdat. Energy-based diffusion language models for text generation. arXiv preprint
arXiv:2410.21357, 2024.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pp. 40452–40474. PMLR, 2023.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935–110971,
2024.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Ruiqi Zhang and Andrea Zanette. Policy finetuning in reinforcement learning via design of experi-
ments using offline data. Advances in Neural Information Processing Systems, 36, 2024.

Yasi Zhang, Peiyu Yu, and Ying Nian Wu. Object-conditioned energy-based attention map align-
ment in text-to-image diffusion models. In European Conference on Computer Vision, pp. 55–71.
Springer, 2024a.

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of q-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 38, pp. 16908–16916, 2024b.

Kai Zhao, Yi Ma, Jinyi Liu, HAO Jianye, Yan Zheng, and Zhaopeng Meng. Improving offline-
to-online reinforcement learning with q-ensembles. In ICML Workshop on New Frontiers in
Learning, Control, and Dynamical Systems, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

Ethics Statement This work does not involve human subjects, personally identifiable information,
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Reproducibility Statement We have made every effort to ensure reproducibility of our results.
A full description of the proposed algorithm, training settings is provided in the main text. Hy-
perparameters used are documented in the appendix. Source code and scripts for reproducing all
experiments are included in the supplementary materials.
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A PROOFS

A.1 SETUP AND NOTATION

Let boff = {xoff
i }Ni=1 and bon = {xon

j }Nj=1 be the offline and online batches (cardinality N each).
Let d : X → R be a one-dimensional statistic. Write doffi := d(xoff

i ) and donj := d(xon
j ). Define the

empirical distributions on the projected values as

µoff :=
1

N

N∑
i=1

δxoff
i
, µon :=

1

N

N∑
j=1

δxon
j
, (17)

where δx denotes the Dirac measure at x, characterized by the property∫
f(y) dδx(y) = f(x), ∀f : X → R. (18)

Accordingly, for any test function f ,

Eµoff
[f ] =

∫
f dµoff =

1

N

N∑
i=1

f(xoff
i ), Eµon

[f ] =
1

N

N∑
j=1

f(xon
j ). (19)

That is, expectations under µoff and µon coincide exactly with sample averages over the correspond-
ing batches.

Let Foff(t) and Fon(t) be the empirical CDFs (Cumulative Distribution Function) of d under the two
measures and ∆F (t) := Foff(t) − Fon(t). Define ∆Fmax := supt ∆F (t), ∆Fmin := inft ∆F (t),
and the CDF amplitude A := ∆Fmax −∆Fmin ≥ 0.

Consider the threshold-interval hypothesis class Ithr = {(a, b] ⊂ R : a < b}. Following Ben-David
et al. (2010), the H∆H-divergence is used between the d-projections of two measures P,Q by

dH∆H(P,Q) := 2 sup
(a,b]∈Ithr

∣∣P{d ∈ (a, b]} −Q{d ∈ (a, b]}
∣∣. (20)

Since P{d ∈ (a, b]} = FP (b)− FP (a), one has

dH∆H(P,Q) = 2
(
∆Fmax −∆Fmin

)
= 2A. (21)

Symmetric exchange. An exchange replaces one offline atom x (with value dx) by an online
atom y (with value dy) symmetrically: x : off → on and y : on → off . For all t ∈ R, the updated
difference of CDFs satisfies

∆F ′(t) = ∆F (t)− 1

N
1{t ≥ dx}+

1

N
1{t ≥ dy}. (22)

An exchange is effective if it reduces the amplitude by at least one unit of granularity, i.e., A′ ≤
A − 1

N , where A′ is the post-exchange amplitude. Let M be the number of accepted (effective)
exchanges.
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A.2 EXISTENCE OF EFFECTIVE PAIRS AND CAPACITY BOUND

Let tmax ∈ argmaxt ∆F (t) and tmin ∈ argmint ∆F (t). Define

SR
off := {i : doffi ≥ tmax}, SL

on := {j : donj ≤ tmin}. (23)

Lemma 1 (Sufficient condition for an effective exchange). If SR
off ̸= ∅ and SL

on ̸= ∅, any pair (x, y)
with x chosen from SR

off and y from SL
on induces an exchange that reduces the amplitude by at least

1/N , i.e. A′ ≤ A− 1
N .

Proof. Pick x with dx ≥ tmax and y with dy ≤ tmin. By Eq. 22, for t = tmax we have 1{tmax ≥
dx} = 1 (since dx ≤ tmax is false but ∆F ’s jump locations are right-closed; one may take the
immediate right limit), and 1{tmax ≥ dy} = 1 because dy ≤ tmin ≤ tmax. Thus ∆F ′(tmax) =
∆F (tmax) − 1/N + 1/N = ∆F (tmax) or, with standard right/left-limit care, it cannot increase
beyond ∆Fmax. At t = tmin, we get ∆F ′(tmin) = ∆F (tmin) − 1/N + 1/N = ∆F (tmin) or it
cannot decrease below ∆Fmin.

Crucially, for any t > tmax we have ∆F ′(t) = ∆F (t) − 1/N + 1/N = ∆F (t), while for any
t ∈ (tmin, tmax), ∆F ′(t) = ∆F (t) − 1/N + 1/N = ∆F (t). The only strict change that impacts
the amplitude occurs on (−∞, tmin] and on [tmax,∞) through the step structure: moving an offline
atom from the rightmost side suppresses the upper envelope by 1/N and moving an online atom
from the leftmost side lifts the lower envelope by 1/N . Therefore A′ ≤ A− 1/N .

Proposition 1 (Capacity bound). Let A0 be the initial amplitude. Any sequence of accepted ex-
changes satisfies M ≤ ⌊A0N⌋.

Proof. Each accepted exchange decreases A by at least 1/N and A ≥ 0 always. Hence after M
steps AM ≤ A0 −M/N ≥ 0, which implies M ≤ A0N .

A.3 MONOTONE DECREASE OF THRESHOLD-CLASS DISCREPANCY

Theorem 3 (Monotone decay of threshold-class discrepancy on the projected d-axis). Let M be the
number of accepted exchanges (as per the rule A′ ≤ A− 1

N ). Then for the threshold-interval class,

d
(M)
H∆H ≤ max

{
0, d

(0)
H∆H − 2M

N

}
. (24)

Proof. Let Ak denote the amplitude after k accepted exchanges. By definition of an effective ex-
change, each step decreases the amplitude by at least 1/N :

Ak ≤ Ak−1 − 1
N , k = 1, 2, . . . ,M. (25)

Iterating this inequality yields AM ≤ max{0, A0−M/N}. Finally, since dH∆H = 2A by Eq. 21,
we obtain the desired bound.

Remark 1. Theorem 3 guarantees that the discrepancy under the threshold-interval hypothesis
class decreases monotonically along the d-projection. In other words, the one-dimensional sepa-
rability measured by dH∆H shrinks deterministically with each accepted exchange. However, this
control is specific to the projected d-axis and the threshold function class. It does not imply that the
total variation distance between µoff and µon over the full (s, a)-space decreases. In the following
section we provide an independent stability analysis in the original (s, a) domain.

A.4 STABILITY OF TRAINING RESIDUAL

Let rQ̂(s, a) = (TπQ̂)(s, a)− Q̂(s, a) and assume a uniform bound

|rQ̂(s, a)| ≤ BT for all (s, a). (26)

Fix α ∈ (0, 1) and define the mixed residual

Eα(Q̂;µoff , µon) := αEµoff
|rQ̂|+ (1− α)Eµon |rQ̂|. (27)
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Lemma 2 (One-step stability). One symmetric exchange changes Eα by at most 2BT /N in absolute
value: ∣∣Eα(Q̂;µ′

off , µ
′
on)− Eα(Q̂;µoff , µon)

∣∣ ≤ 2BT

N
. (28)

Proof. Let h(s, a) := |rQ̂(s, a)|, so by Eq. 26 we have ∥h∥∞ ≤ BT . Using the standard total-
variation inequality |Eµh−Eνh| ≤ 2∥h∥∞ TV(µ, ν) and the fact that a single-atom replacement in
a uniform empirical measure has TV(µ′, µ) = 1/N , the claimed bounds for the offline and online
parts follow ∣∣α(Eµ′

off
|r| − Eµoff

|r|)
∣∣ ≤ α · 2BT · 1

N
,∣∣(1− α)(Eµ′

on
|r| − Eµon |r|)

∣∣ ≤ (1− α) · 2BT · 1

N
.

(29)

Summing the two bounds establishes the desired inequality.

Proposition 2 (Accumulated stability). After M (possibly reverted-or-accepted, but realized) ex-
changes, ∣∣E(M)

α − E(0)
α

∣∣ ≤ 2BTM

N
. (30)

Proof. By Lemma 2, each exchange changes Eα by at most 2BT /N in absolute value. Summing
these deviations over M steps yields the bound above.

Assumption 2 (Coverage and Control). There exists κ ≥ 1 such that for all bounded measurable h,

∥h∥∞ ≤ κEµmix
|h|, µmix := αµoff + (1− α)µon. (31)

Proposition 3 (Bellman contraction). ∥Q̂−Qπ∥∞ ≤ 1
1−γ ∥rQ̂∥∞.

Theorem 4 (From residual to ∞-norm error). Under Assumption 2 and Eq. 26,

∥Q̂−Qπ∥∞ ≤ κ

1− γ
Eα(Q̂;µoff , µon). (32)

Consequently, after M exchanges,

∥Q̂−Qπ∥∞ ≤ κ

1− γ

(
E(0)
α +

2BTM

N

)
. (33)

Proof. By Proposition 3 and Assumption 2 with h = rQ̂, ∥Q̂ − Qπ∥∞ ≤ 1
1−γ ∥rQ̂∥∞ ≤

κ
1−γ Eµmix

|rQ̂| =
κ

1−γ Eα. The second inequality follows from Proposition 2.

Remark 2. Assumption 1 requires that the mixed sampling distribution µmix = αµoff + (1 −
α)µon provides sufficient coverage of the state–action space so that the worst-case residual can be
controlled by its average under µmix. In particular, the constant κ quantifies the potential mismatch:
κ = 1 corresponds to ideal coverage, whereas larger values of κ indicate that the distribution may
under-sample certain regions, making the sup-norm error bound looser.

A.5 SUMMARY OF GUARANTEES

• Geometry on d (Theorem 3). Accepted exchanges monotonically reduce the threshold-
class discrepancy: d(M)

H∆H ≤ max{0, d(0)H∆H − 2M/N}, with capacity M ≤ ⌊A0N⌋.
• Stability in (s, a) (Theorem 4). Regardless of geometry on d, the mixed residual and the
∞-norm value error remain controlled: |E(M)

α − E(0)
α | ≤ 2BTM/N and ∥Q̂ − Qπ∥∞ ≤

κ
1−γ (E

(0)
α + 2BTM/N).

15
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B EXPERIMENTAL DETAILS

In our experiments, we evaluate DARE on two standard D4RL benchmarks (Fu et al., 2020): Mu-
JoCo Locomotion and AntMaze Navigation. For instantiation, we extend Cal-QL (Nakamoto et al.,
2023) to DARE-C and IQL (Kostrikov et al., 2021) to DARE-I. In the CQL-based group, we com-
pare against CQL (Kumar et al., 2020), Cal-QL, and EDIS-C (Liu et al., 2024), a Cal-QL variant. In
the IQL-based group, we include IQL, PEX (Zhang et al., 2023), and EDIS-I, the IQL counterpart of
EDIS-C. All models are first trained offline for 1M steps and then fine-tuned online for 0.2M steps.
The results are averaged over the last four evaluations and five random seeds. For a fair compari-
son, all methods are initialized from the same offline-trained models, using Cal-QL models for
EDIS-C and DARE-C and IQL models for PEX, EDIS-I, and DARE-I.

B.1 HYPERPARAMETERS FOR DARE

For the implementation of DARE, there is only one additional hyperparameter, the maximum ex-
change number n. We set n = 32 for DARE-C and n = ∞ for DARE-I. In addition, for the
SAC-style policy update in DARE-I, the entropy coefficient α is set to 0.2 on locomotion tasks and
0.01 on AntMaze tasks, respectively.

B.2 HYPERPARAMETERS FOR CQL AND CAL-QL

We implement the CQL and Cal-QL based on https://github.com/tinkoff-ai/CORL,
and primarily follow the authors’ recommended hyperparameters (Tarasov et al., 2023). Since CQL-
based algorithms are known to be sensitive to hyperparameter choices, we provide the exact settings
in our experiments to facilitate the reproducibility. Please refer to Tab. 4 for the details about the
hyperparameters in our CQL-based implementation.

Table 4: Hyperparameters in CQL-based implementation.

Hyperparameter Mojoco locomotion AntMaze navigation
General Settings
Replay buffer size 2,000,000 2,000,000
Batch size 256 256
Discount factor γ 0.99 0.99
Reward scale / bias 1.0 / 0.0 10.0 / -5.0
Normalize states True False
Normalize reward False True
Orthogonal initialization True True
Is sparse reward False True

CQL Hyperparameters
Policy learning rate 1× 10−4 1× 10−4

Critic learning rate 3× 10−4 3× 10−4

Soft target update rate τ 0.005 0.005
Target update period 1 1
Automatic entropy tuning True True
Backup entropy False False
CQL regularization (α, offline / online) 10.0 / 10.0 5.0 / 5.0
CQL Lagrange False True
CQL temperature 1.0 1.0
Target action gap −1.0 0.8
Max target backup False True
Clip diff range [−200, ∞) [−200, ∞)
Importance sampling True True

Network Architecture
Q-network hidden layers 3 5
Hidden dimension (actor / critic) 256 / 256 256 / 256

16

https://github.com/tinkoff-ai/CORL


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 HYPERPARAMETERS FOR IQL AND PEX

We implement IQL and PEX based on https://github.com/Haichao-Zhang/PEX, the
hyperparameters of which is illustrated in Tab. 5.

Table 5: Hyperparameters for the IQL-based experiments.

Hyperparameter Value
Discount factor γ 0.99
Hidden dimension 256
Number of hidden layers 2
Batch size 256
Learning rate 3× 10−4

Target update rate 0.005
Expectile parameter τ 0.9, AntMaze / 0.7, Locomotion
Inverse temperature β 10.0, AntMaze / 3.0, Locomotion

B.4 HYPERPARAMETERS FOR EDIS

The implementation of EDIS are referred to https://github.com/liuxhym/EDIS. For
EDIS-C, we use its official implementation of Cal-QL. For EDIS-I, we modify the classes of Q-
function, value function, and policy function to match those in IQL and PEX, so that the same
offline models can be loaded for initialization. The hyperparameters used in the EDIS module
remain unchanged and, for convenience, are detailed in Tab. 6.

Table 6: Hyperparameters in EDIS.

Hyperparameter Value
Network Type (Denoising) Residual MLP
Denoising Network Depth 6 layers
Denoising Steps 128 steps
Denoising Network Learning Rate 3× 10−4

Denoising Network Hidden Dimension 1024 units
Denoising Network Batch Size 256 samples
Denoising Network Activation Function ReLU
Denoising Network Optimizer Adam
Learning Rate Schedule (Denoising Network) Cosine Annealing
Training Epochs (Denoising Network) 50,000 epochs
Training Interval Environment Step (Denoising Network) Every 10,000 steps
Energy Network Hidden Dimension 256 units
Negative Samples (Energy Network Training) 10
Energy Network Learning Rate 1× 10−3

Energy Network Activation Function ReLU
Energy Network Optimizer Adam

B.5 HYPERPARAMETERS FOR ENERGY-GUIDED DIFFUSION MODEL

The implementation of the energy-guided diffusion model is refered to https://github.com/
thu-ml/CEP-energy-guided-diffusion. Briefly, the behavior model follows the archi-
tecture and training strategy of Chen et al. (2022). We train the models for 6 × 105 gradient steps
using the Adam optimizer with a learning rate of 1× 10−4 and a batch size of 4096.

The energy guidance model fϕ is implemented as a 4-layer MLP with 256 hidden units and SiLU
activations. Training is performed using the Adam optimizer with a learning rate of 3 × 10−4 and
a batch size of 256. To train this energy network, a contrastive learning objective based on self-
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normalized energy labels is defined as:

min
ϕ

Ep(t) Eq0(x
(1:K)
0 )

Ep(ϵ(1:K))

[
−

K∑
i=1

e−βE(x(i)
0 )∑K

j=1 e
−βE(x(j)

0 )
log

e−fϕ(x
(i)
t ,t)∑K

j=1 e
−fϕ(x

(j)
t ,t)

]
. (34)

Here, each perturbed sample is generated by the forward diffusion process: x(i)
t = αtx

(i)
0 + σtϵ

(i),
with constants αt, σt defined by the diffusion schedule. The guidance scale s follows the empirical
settings from prior work (Lu et al., 2023a), as summarized in Tab. 7.

Table 7: Guidance scale s across different environments.

Dataset Guidance Scale s

walker2d-medium-expert-v2 5.0
halfcheetah-medium-expert-v2 3.0
hopper-medium-expert-v2 2.0
walker2d-medium-replay-v2 5.0
halfcheetah-medium-replay-v2 8.0
hopper-medium-replay-v2 3.0
walker2d-medium-v2 10.0
halfcheetah-medium-v2 10.0
hopper-medium-v2 8.0
antmaze-umaze-v2 3.0
antmaze-medium-play-v2 4.0
antmaze-umaze-diverse-v2 1.0
antmaze-medium-diverse-v2 3.0

B.6 OFFLINE MODEL PERFORMANCE

Before fine-tuning, we present the performance of the offline-trained models on both Locomotion
and AntMaze benchmarks. These results serve as the initialization for all compared methods, ensur-
ing that performance differences in the online phase come solely from the fine-tuning strategy rather
than the quality of the offline implementation codebases. Tab. 8 summarizes the scores of CQL,
Cal-QL and IQL across different datasets.

Table 8: Offline training performance before online fine-tuning.

Dataset CQL Cal-QL IQL
HC-ME 90.4±3.5 82.9±4.1 90.2±1.4
H-ME 108.1±2.4 109.0±2.1 32.8±32.6
W2D-ME 109.7±0.2 108.6±0.8 108.3±2.0
HC-MR 45.5±0.2 46.5±0.2 43.9±0.4
H-MR 90.2±10.5 64.8±27.1 84.2±13.6
W2D-MR 78.6±4.5 85.0±2.9 70.8±4.1
HC-M 47.1±0.3 48.3±0.3 48.1±0.1
H-M 63.9±1.5 61.9±2.0 56.2±4.4
W2D-M 81.9±1.2 83.7±1.2 74.0±3.1

total (L) 715.4 690.7 608.5

AM-MD 57.6±3.5 66.2±6.1 70.4±5.2
AM-MP 64.8±6.1 68.4±3.8 74.6±4.7
AM-UD 28.2±23.9 46.0±20.1 60.2±6.4
AM-U 87.6±4.6 76.6±2.7 91.4±0.8

total (AM) 238.2 257.2 296.6

total 953.6 947.9 905.1
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C COMPARISONS OF ONLINE FINE-TUNING PROCESSES

C.1 ONLINE FINE-TUNING PROCESSES FOR DARE-C

As a complement to the main results in Tab. 1, we depict the online training dynamics across algo-
rithms. As shown in Figs. 5 and 6, our method consistently outperforms both Cal-QL and EDIS on
the locomotion and AntMaze benchmarks, while exhibiting smoother training trajectories.
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Figure 5: Online training curves on Locomotion benchmarks comparing Cal-QL, EDIS, and Ours.
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Figure 6: Online training curves on AntMaze benchmarks comparing Cal-QL, EDIS, and Ours.
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C.2 ONLINE FINE-TUNING PROCESSES FOR DARE-I

We also visualize the complete online performance under the IQL framework across all tasks. As
shown in Figs. 7 and 8, our method improves over both PEX and EDIS in terms of learning dynamics
and asymptotic returns, with the exceptions of halfcheetah-medium, halfcheetah-medium-replay and
antmaze-medium-diverse. In general, our approach converges more smoothly and reaches higher
normalized scores with fewer training steps, demonstrating better sample efficiency and robustness
during online fine-tuning.
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Figure 7: Online training curves on Locomotion benchmarks comparing PEX, EDIS, and Ours.
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Figure 8: Online training curves on AntMaze benchmarks comparing PEX, EDIS, and Ours.
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D ADDITIONAL RESULTS ON EXCHANGE CAP

D.1 EXCHANGE BEHAVIOR ACROSS RL BENCHMARKS

Fig. 9 shows the per-batch exchange statistics across environments. Consistent with Fig. 2, the
realized number of swaps remains modest for most tasks (typically <70).
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Figure 9: Per-batch exchange statistics across environments during online training (appendix).

D.2 EFFECT OF THE MAXIMUM EXCHANGE CAP ON DARE-C

Tab. 9 extends Tab. 2 by adding n=16 for DARE-C. A moderate cap (n=32) gives the best overall
performance, outperforming both a stricter cap (n=16) and the uncapped setting (n=∞). Further-
more, Fig. 10 visualizes the training dynamics under different n.

Dataset n = 16 n = 32 n = ∞

D
A

R
E

-C M 255.9 265.9 258.5
MR 285.0 292.6 283.9
ME 320.1 320.2 320.3

Total 861.0 878.7 862.7

Table 9: Effect of the maximum exchange limit n for DARE-C on MuJoCo Locomotion.
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Figure 10: Training processes of DARE-C under different exchange caps n on locomotion tasks.

D.3 EFFECT OF THE MAXIMUM EXCHANGE CAP ON DARE-I

For DARE-I, we remove the cap consistently performed best across tasks. Capping at n = 32 does
not improve asymptotic returns. We therefore use n = ∞ for DARE-I in all main experiments.
Fig. 11 presents the training curves under different n, where the uncapped setting reaches higher
performance.
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Figure 11: Training processes of DARE-I under different exchange caps n (we select n = ∞ by default).
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E ADDITIONAL RESULTS FOR UPDATE-TO-DATA RATIOS

We extend Tab. 3 by adding the UTD = 1 results in Tab. 10. At both UTD = 1 and UTD = 10,
DARE-I achieves the highest total after 0.1M online steps. In addition, the training curves for
UTD = 10 in Fig. 12 show the same pattern.

Table 10: Performance of IQL-based methods under UTD = 1 and UTD = 10.

Dataset UTD = 1 UTD = 10
PEX EDIS-I DARE-I PEX EDIS-I DARE-I

HC-MR 51.6±1.5 45.1±0.4 47.6±1.5 58.4±2.8 45.0±0.9 49.7±0.5
H-MR 86.6±9.6 92.9±11.0 94.9±3.9 88.5±22.8 94.1±9.7 100.2±2.4
W2D-MR 90.0±6.8 76.0±7.4 93.4±4.7 99.9±10.5 75.9±9.0 101.4±6.7
HC-M 60.9±1.9 48.8±0.2 59.0±1.1 76.1±1.6 48.8±0.2 66.3±1.4
H-M 68.3±17.3 61.1±5.3 97.6±7.9 84.6±21.4 60.8±5.3 101.2±4.3
W2D-M 84.3±15.2 79.3±8.3 89.7±7.4 92.5±18.2 81.4±5.5 99.1±1.6

total 442.2 403.2 482.2 495.8 406.0 517.9
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Figure 12: Online training processes comparison across Mujoco Locomotion tasks for UTD = 10
settings.
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F ADDITIONAL RESULTS FOR ABLATION STUDY

We present additional ablations to assess the contribution of the two key parts in DARE-C and
DARE-I: energy guidance in the diffusion model and the sample exchange mechanism. As shown
in Figs. 13 and 14, removing either part causes clear drops on MuJoCo Locomotion tasks.
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Figure 13: Ablation study for DARE-C.
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Figure 14: Ablation study for DARE-I.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G CHOICE OF ONLINE LOSS FOR IQL

We update IQL by applying SAC-style online losses on b′on while keeping standard IQL losses on
b′off (full formulas in Sec. 6.1). This choice primarily targets the policy term.

For completeness, we also evaluate an alternative that keeps the same Q-target as in DARE-I (Eq. 15)
while adjusts the value loss for online samples by using a higher expectile τ = 0.99:

LIQL(V ) = E(s,a)∼D

[
1(s,a)∈b′off L

2
τ

(
Q̂(s, a)− V (s)

)
+ 1(s,a)∈b′on L

2
0.99

(
Q̂(s, a)− V (s)

)]
.

(35)
We refer to this variant as DARE-IV. Tab. 11 shows that DARE-I yields higher returns and lower
variance. The same table also shows that our sample-level constraint release with batch exchange
is effective when exchanges are enabled (n = ∞). Taken together, these results suggest that our
strategy adapts well and integrates with different forms of constraint release.

Table 11: Performance of DARE-IV and DARE-I on MuJoCo Locomotion tasks.

Dataset DARE-IV DARE-I
n = ∞ n = 0 n = ∞

HC-ME 91.9±2.8 92.0±2.1 93.5±1.0
H-ME 97.9±13.4 93.1±26.0 102.3±9.6
W2D-ME 113.2±1.2 111.2±0.8 114.7±1.1
HC-MR 48.1±1.3 45.5±1.3 49.4±1.0
H-MR 96.5±5.8 92.5±6.0 97.8±3.0
W2D-MR 96.3±6.5 86.2±5.2 97.0±3.1
HC-M 60.0±2.5 54.2±0.7 63.3±1.8
H-M 94.6±9.8 91.4±11.9 99.8±2.4
W2D-M 92.5±2.6 85.8±4.6 92.2±2.6

total 791.0 751.9 810.0
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