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ABSTRACT

Offline-to-online reinforcement learning (off2on RL) integrates the sample effi-
ciency of offline pretraining with the adaptability of online fine-tuning. However,
it suffers from a constraint-release dilemma: conservative objectives inherited
from offline training ensure stability yet hinder adaptation, while uniformly dis-
carding them induces instability. Existing approaches impose global constraints
across all samples, thereby overlooking the distributional heterogeneity wherein
offline and online data gradually overlap. We propose Dynamic Alignment for
RElease (DARE), a distribution-aware framework that enforces the constraints at
the sample level in a behavior-consistent manner. To this end, DARE employs
a diffusion-based behavior model with energy guidance to generate reference ac-
tions, assigns alignment scores to individual samples, leverages Gaussian fitting to
distinguish offline-like from online-like data, and exchange behavior-inconsistent
samples between offline and online batches to ensure behavior-consistent con-
straint enforcement. We theoretically prove that DARE reduces offline—online
distributional discrepancy while ensuring that value estimation errors remain
bounded. Our empirical results on the D4RL benchmark demonstrate that in-
tegrating DARE into representative off2on methods (Cal-QL and IQL) consis-
tently improves policy performance and achieves stable, robust, and adaptive fine-
tuning. (Anonymized code archive is included in the supplementary material)

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress in diverse sequential decision-
making domains, such as recommendation systems (Wang et al., 2018; (Chen et al., |2024),
robotics (Rafailov et al. 2023} Zhao et al., 2023)), and large language models (Du et al.| 2023}
Zhai et al.| |2024). These successes have been driven mainly by two learning paradigms: online RL,
which learns through direct interactions with the environment, and offline RL, which relies solely
on pre-collected datasets. Online RL can reach high performance but requires massive environment
interactions (Mnih et al.||2015;|Song et al.,|2023};|Alonso et al.,[2024)). Offline RL, in contrast, avoids
these risks by training on static datasets, offering higher sample efficiency but limited adaptability to
unseen situations (Fujimoto et al.,[2019; Kumar et al., 2020} |[Uehara et al.,|2024). To combine their
complementary strengths, recent work has explored the offline-to-online (off2on) RL paradigm (Xie
et al., 2021; Zhang & Zanette, |2024), where an agent is first pretrained on offline data and then
fine-tuned through a small number of online interactions (Lee et al., 2022} [Kostrikov et al., 2021}
Nakamoto et al., [2023)). However, when the agent explores beyond the offline dataset, it encounters
out-of-distribution (OOD) issue, which often causes value overestimation and policy drift. This is-
sue, coupled with the conservative loss introduced during offline training, hinders exploration and
adaptation while removing it abruptly can destabilize learning (Ball et al., 2023).

To address this constraint-release dilemma, existing off2on approaches are mostly built upon spe-
cific offline algorithms and fall into two main categories, Policy-constraint and Value-regularization.
Policy-constraint methods limit the policy to stay close to the offline behavior (Wu et al.| 2022;
Zhang et al.| 2023)), which helps maintain stability but often suppresses exploration and slows im-
provement. Value-regularization methods (Nakamoto et al.l [2023)), such as CQL (Kumar et al.,
2020)), encourage conservative value estimates to avoid overestimation, but suffer from unstable Q-
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value fluctuations and high computational cost (Lee et al., [2022; Zhang et al., |2024b). More recent
studies attempt to ease the transition from offline pretraining to online fine-tuning by introducing
auxiliary components (Wang et al., [2023), such as aligning the actor and critic to reduce policy-
value inconsistency (Luo et al.l 2024)), and employing generative models to enrich training data (Liu
et al.,[2024)). Despite these advances, most methods apply constraints uniformly across all samples,
regarding the offline dataset merely as initialization and neglecting its distributional structure (Mao
et al.| [2024). In practice, however, offline and online data gradually overlap during fine-tuning, with
some offline samples exhibiting exploratory behavior and some online samples remaining aligned
with the offline policy. Failing to account for this heterogeneity results in constraints that are either
overly conservative or released too aggressively.

To fill this gap, we propose Dynamic Alignment for RElease (DARE), an offline-to-online RL frame-
work that enforces constraints in a sample-specific and behavior-consistent manner. Because offline
and online data distributions overlap, dataset labels (offline vs. online) are insufficient to determine
whether a sample exhibits offline-like or online-like behavior. DARE addresses this issue by eval-
uating each sample’s behavioral alignment and apply constraints accordingly. Specifically, DARE
leverages a diffusion-based generative model to generate reference actions. These reference actions
allow us to assign alignment scores to individual samples, quantifying their behavioral consistency
with the offline policy. By fitting the alignment distributions with Gaussian models, we derive a
data-driven rule that distinguishes offline-like from online-like samples. These behaviorally incon-
sistent samples are then adaptively exchanged between offline and online batches, ensuring that
constraints are preserved or relaxed in a behavior-consistent manner. In the end, we integrate DARE
into two representative off2on algorithms, Cal-QL and IQL, demonstrating that it can be seamlessly
applied by enforcing conservative objectives on offline-like samples while relaxing constraints for
online-like ones.

We provide theoretical analysis of DARE, showing that our exchanges mechanism monotonically
narrows the distributional discrepancy and that both the residual error and value estimation error
remain bounded. Our ablation studies further dissect the contribution of each component, including
the exchange budget and alignment mechanism. The empirical evaluations on the D4RL benchmark
demonstrate that DARE enhances fine-tuning robustness and stability, achieving superior policy
performance.

2 RELATED WORKS

Offline-to-online Reinforcement Learning. A critical challenge in off2on RL lies in accurate
value estimation under out-of-distribution (OOD) actions and in mitigating the distributional shift
that emerges during fine-tuning. To address the challenge, several methods aim to reduce Q-value
bias. For example, SO2 (Zhang et al.l |2024b) introduces perturbed updates to smooth value esti-
mates, and SUF (Feng et al., 2024)) adjusts the update-to-data (UTD) ratio to mitigate overfitting
to static datasets. Another line of work focuses on distributional shift. Cal-QL (Nakamoto et al.,
2023)) and FamO20 (Wang et al.| [2023) calibrate Q-values with offline data and progressively up-
date them online, while Off20n (Lee et al.|[2022) balances conservative pretraining with exploratory
fine-tuning. Ball et al. (Ball et al.,|2023) employ Layer Normalization to stabilize Q-value learning
and prevent over-extrapolation during online fine-tuning. In parallel, PEX (Yu & Zhang} |2023)) mit-
igates distributional shift by expanding the offline policy with additional exploratory components.
More recent approaches such as OCR-CFT (Luo et al.| [2024) and OPT (Shin et al., 2025) go be-
yond conventional fine-tuning. They reconstruct critics, align them with the policy, and then switch
to purely online optimization, effectively increasing the update-to-data (UTD) ratio. While these
methods advance stability and adaptability, they typically enforce constraints globally or rely on
auxiliary heuristics, overlooking the heterogeneous overlap between offline and online samples.

Diffusion Model in Reinforcement Learning. Diffusion models have recently been adopted in RL
as powerful generative tools. Diffuser (Janner et al.,[2022) employs a diffusion model to generate en-
tire action trajectories, guided by a separately trained return predictor to bias sampling toward high-
return behaviors. SYNTHER (Lu et al., 2023b) extends this idea to both offline and online RL by us-
ing diffusion-based data upsampling to enrich training distributions. Other works exploit classifier-
or function-guided diffusion for more targeted generation. For example, PolyGRAD (Rigter et al.,
2023) embeds policy information into a classifier-guided diffusion model for on-policy world mod-
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eling, while Chen et al. (Chen et al., 2022)) leverage reward or Q-functions to guide diffusion sam-
pling toward task-relevant behaviors. CEP (Lu et al., [2023a) approximates energy-based guidance
through contrastive learning, focusing on offline data generation, and EDIS (Liu et al.| 2024) ex-
tends energy-guided diffusion to the off2on setting by steering action sampling during fine-tuning.
In contrast to these approaches, which use diffusion for trajectory or data generation, we explicitly
model the offline behavior policy itself and leverage it to guide constraint release during fine-tuning.

3 PRELIMINARIES

3.1 OFFLINE-TO-ONLINE REINFORCEMENT LEARNING

RL is a framework in which an agent learns to maximize cumulative rewards by interacting with
an environment (Mnih et al., 2013; Van Hasselt et al., 2016). The problem is modeled as a Markov
Decision Process (MDP), defined by a tuple (S,.A, P, R,~), where S is the state space, A is the
action space, P is the transition probability, R is the reward function, and y € [0, 1) is the discount
factor. At each timestep t, the agent observes a state s;, takes an action a; € A, receives a reward
ry = R(s¢, at), and then transitions to a new state s, according to P(s;y1|s¢, at).

In offline RL, the agent learns solely from a static dataset D,ss collected by unknown policy v,
without additional interaction with the environment (Fujimoto & Gu\[2021)). The off2on RL extends
this setting by further fine-tuning the policy with limited online interaction. During fine-tuning,
the agent must balance knowledge from offline data with new online experiences D,,,, adapting the
policy while avoiding overfitting to OOD actions. The replay buffer then becomes D = D,y UD,,.

3.2 CALIBRATED Q-LEARNING
Calibrated Q-learning (Cal-QL) (Nakamoto et al.,|2023) aims to learn a conservative and calibrated

value function from an offline dataset. Cal-QL builds on CQL (Kumar et al., 2020) and constrains
the learned Q-function to produce Q-values that are larger than the Q-value of a reference policy v:

1 N 2
LcaqL(Q) =5 “E(s,a,5)~D [(Q(S,G) - BﬂQtargel(Sva)) ]

+ « (ESND,(LNW [maX(Q(s, a), VU(S))] - ]E(s,a)ND [Q(sv a)]) .
R

(D

Here, a controls the strength of conservatism. We denote the second term in Eq. [I|as R, the regu-
larizer. During online fine-tuning, R naturally reduces to the standard CQL penalty.

3.3 IMPLICIT Q-LEARNING

Implicit Q-Learning (IQL) (Kostrikov et al., [2021) avoids Q-value overestimation on OOD actions
by using expectile regression, LZ(u) = |7 — 1(u < 0)|u?. The value function is learned by mini-
mizing the expectile regression loss:

L1qr(V) = Egs.aop | L2 (Quga(s.0) = V(9))] @)
The Q-function is then updated via:
»CIQL(Q) = E(S,a,s’)N'D |:(7"(8, a) + ’YV(S,) - Q(S7 a))2:| . (3)

IQL extracts the policy through advantage-weighted regression (Nair et al.,[2020), where the learned
Q-function is used to prioritize actions with higher advantages:

Liqr(n) = E¢sa)~p [exp(ﬁ (Qlarget(sva) - V(3)>> log W(a|8)] . 4)

4 MOTIVATION
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pretrained policy and those

in the offline dataset. Fig.[Ta| shows the histogram of MSE values on HalfCheetah-medium-v2, in-
dicating a significant mismatch between the policy outputs and dataset actions. As online training
continues, such discrepancies can exacerbate into a considerable distributional shift. Fig. [Tb]illus-
trates this via a t-SNE projection: after 100k steps, online samples (orange) and offline data (blue)
occupy distinct regions in feature space. While t-SNE is qualitative, such separation in projection
suggests that offline and online distributions diverge substantially. These observations imply that
applying a uniform loss to all samples is suboptimal, since some remain close to the offline distribu-
tion while others have shifted OOD. To further investigate this during fine-tuning, we approximate
the offline action distribution with a behavior model and use it to score both offline and online sam-
ples via KL-based alignment. As shown in Fig. the distributions of these two scores exhibit a
huge overlap. Such observations highlight the need for a reliable sample-level criterion to evaluate
whether a data point is offline-like or online-like, so that training constraints can be applied in a
behavior-consistent manner.

5 DARE: DYNAMIC ALIGNMENT FOR RELEASE

We propose DARE, a framework for offline-to-online reinforcement learning (RL) that enforces
constraints adaptively, accounting for sample-specific characteristics and behavioral consistency
with the offline dataset. Specifically, DARE generates reference actions via an energy-guided dif-
fusion model that is guided by Q-function estimates. It then calculates alignment scores to quan-
tify each sample’s consistency with the offline data, and deploys Gaussian fitting to derive a data-
driven threshold that separates offline-like from online-like samples. Through this process, DARE
preserves conservative constraints on offline-like samples while adaptively relaxing them for ex-
ploratory ones.

5.1 REFERENCE ACTIONS THROUGH ENERGY-GUIDED DIFFUSION MODEL

Energy-guided diffusion has been widely deployed in generative modeling to improve data quality
or sample efficiency (Lu et al.,|2023a; Liu et al., 2024; Zhang et al.| 2024a; Xu et al.,|2024)). Here,
we adapt this formulation to the off2on RL setting in order to facilitate constraint release. Specif-
ically, we construct reference actions that preserve the offline behavior while incorporating value
information from the Q-function, enabling sample-level alignment estimation during fine-tuning.

Mathematically, we take the pretrained diffusion behavior model 1/ as the base distribution and use
the Q-function as the energy term, which defines an induced policy 7. The marginal distribution of
a noise-perturbed action a; at time ¢ is

mi(ag | ) o< ve(ag | 8) efr(s:a1) (5)

where &,(s, a;) is parameterized by a neural network f(s, a;, t) derived from Q(s, ag) and updated
during fine-tuning. The corresponding score function is

Va, logmi(as | 8) = Vg, logvi(as | 8) + Va, (s, at). (6)

This construction results in an energy-guided policy 7, from which reference actions @ ~ mo(- | )
are sampled.
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5.2 ALIGNMENT SCORES VIA KULLBACK-LEIBLER DIVERGENCE

During the online phase, each training batch b = b, ¢¢Ub,,, contains samples from both the offline
dataset Dy and the online replay buffer D,,,. However, the dataset source alone does not indicate
whether a sample exhibits offline-like or online-like behavior. An offline sample may reflect online
exploratory behavior, while an online sample may still follow the offline distribution.

To capture this distinction, we assign each sample an alignment score that measures its consistency
with the offline behavioral policy. For each state s, in b, we generate a reference action d; ~ mo(- |
s;) using the energy-guided diffusion model in Eq. and Eq. @ The alignment score of the observed
pair (s;, a;) is then defined as the KL divergence between the actual action and the reference action:

Align(si, CL,;) = DKL (ai || &7) (7)

A higher alignment score indicates that the sample deviates more from the offline behavioral policy.
This score is used to distinguish offline-like from online-like samples during fine-tuning.

5.3 SAMPLE-LEVEL EXCHANGE BASED ON GAUSSIAN FITTING

To apply proper constraints for each sample, we first classify the sample as offline-like or online-
like based on the alignment scores given in Eq. [/} The major challenge of determining a distinct
separation point is that the score distributions of offline and online samples often overlap as shown
in Fig. In addition, the data exhibit different OOD patterns across different batches, making it
impractical to apply a single separation point for all batches. To tackle this issue, for each batch, we
approximate the distributions of offline scores {d?"f } and online scores {d?"} with Gaussian models
parameterized by empirical means (i, f, fton) and standard deviations (o, f, 0or, ). While Gaussian
models do not capture all distributional details, they provide a light-weight yet stable approximation
that avoids overfitting to empirical distributions and results in interpretable decision boundaries.

The separation point 7 is determined by the intersection of two Gaussian probability density func-
tions (PDF):
¢(T;Noff703f'f) = ¢(T§,Ufomggn)v )]

where ¢(7; p, 0%) = \/2;7 exp( — %) Taking logarithms to both sides in Eq. we get,

T — Mo 2 T — 0n2
_(%L;J‘if)—logo'off—_( 20!; ) —log oon, 9

When an intersection exists, the valid root 7 between 1,5 and fio,, in Eq.[9]is the separation point;
Otherwise, it is set to the midpoint.

Given the separation point 7, we identify candidate samples: offline points with unusually high

scores (d?f I > ) that behave online-like, and online points with unusually low scores (d" < T)
that behave offline-like. We then exchange the top-M pairs between the offline batch and the online
batch. Mathematically, we have

M = min([{d* = 7}, [{a" < 7}, n)), (10)

where n is a hyperparameter setting the maximum number of pairs exchanged. This exchange leads
to updated batches b/, s and b, that better reflect behavior consistency.

Built on the resulting batch &' = by, ¥ Ubl,,, we enforce differentiated constraints during policy
optimization. For offline-like samples in b/, ¢ We preserve the conservative objectives used in the
original offline algorithm to ensure stability. For online-like samples in b, we relax or remove

such penalties, enabling the policy to adapt more flexibly to new behaviors. .

5.4 THEORETICAL ANALYSIS

To understand why the proposed exchange mechanism improves off2on adaptation, we analyze its
theoretical properties from: (i) Geometric contraction, showing that the proposed exchange scheme
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monotonically reduces the distributional discrepancy between offline and online samples; and (ii)
Stability, showing that the value estimation remains bounded throughout the exchange process.

Letb,rp = {2$%}N | and b, = {23"}7, denote the offline and online batches. We study the distri-
butional geometry of these batches by projecting them onto a one-dimensional statistic d : X — R,
yielding {d9™} and {d"}. The HAH-divergence is defined as dgam (P, Q) = 2 Sup () [P{d €
(a,b]} — Q{d € (a,b]}| (Ben-David et al., 2010).

Theorem 1 (Monotone decay of threshold-class discrepancy). Let M be the number of accepted
exchanges. The HA H -divergence between the offline and online projections satisfies:
2M }

M 0
quA)H S max{(), d(H)AH TN

(1)

Beyond geometric contraction, we further analyze whether such exchanges affect the stability of
value estimation. Let 75 (s, a) = (I7Q)(s,a) — Q(s,a) and & = oy . [rp| + (1 — )Ey,, |rg|
as the mixed residual . This requires a mild coverage condition to relate residuals to value errors:

Assumption 1 (Coverage and Control). There exists k > 1 such that for all bounded measurable h,

”hHoo < K’Eﬂmix|h|) HPmix ‘= O off + (1 - a) Hon- (12)

Theorem 2 (Bounded value estimation error). Assume |r(s,a)| < Br and the coverage condition
in Assumption[I} Then after M exchanges,

2B M
T) (13)

1@ - Q" < (e +

1—nv

These guarantees show that the exchange mechanism progressively aligns the offline and online
distributions while keeping the value estimation bounded. Full proofs are provided in Appendix A.

6 INTEGRATING DARE INTO OFFLINE ALGORITHMS

We integrate DARE into two representative offline RL algorithms, Cal-QL and IQL, by applying
differentiated updates to the exchanged batches ', ¢ and b on. For offline-like samples in &', ff> We
retain the original conservative objectives to preserve stability. For online-like samples in & ,,,, we
relax these constraints to facilitate adaptation.

6.1 DARE INSTANTIATIONS

DARE-Cal-QL We extend Cal-QL with DARE, resulting in the variant DARE-Cal-QL (DARE-C).
Cal-QL applies a conservative regularizer R uniformly to all samples to mitigate value overestima-
tion. In DARE-C, this penalty is applied selectively: R is retained for offline-like samples in b’ ¢  to
preserve stability, but removed for online-like samples in ¥',,, to facilitate adaptation. The original
objective Eq.[I|becomes

‘ngAli{%L(Q) = IE(s,a,s’)ND |:]l{(S,a7Sl)€bloff} ((Q(57 a) - Bﬂ@targel(sa a))2 + O/R,)

o (14)

+ ﬂ{((e,a,s')eb’m} (Q(sv a) - BﬂQtargel(Sv a))ﬂ .
DARE-IQL When applied to IQL, DARE brings in a variant DARE-IQL (DARE-I). IQL trains
the Q-function via value regression and updates the policy through advantage-weighted regression.
In DARE-, these updates are differentiated: for offline-like samples &', s 7, we retain the original
value targets and policy regression; for online-like samples ',,,, we replace the value targets with
TD-based maximum-Q estimates and switch the policy update to an entropy-regularized SAC ob-
jective (Haarnoja et al., 2018). The original Q-function and policy updates in and Eq. [3]and Eq. [
become:

Lohre (@) = Es.0,51~D {]l«s,a,s')ebn,ff} (r(s,a) +V(s") = Q(s,a))

A 2
+ ﬂ{(s,a,s’)eb’on} (T(S7 a) + ’YIH;}X Qtarget(5l7 al) - Q(Sv CL)) :|7

2

15)
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and
‘C%RE(W) = ]E(s,a)ND |:]l{(s,a)eb/‘,ff} exp (B(Qtarget(& (l) — V(S))) log 7T(a | 8):|

(16)
+ Esob,anr(]s) [ﬂ{(s,a)eb/w}(a logm(a | s) — Q(S7C~L)):|'

6.2 ALGORITHM SUMMARY

Algorithm [I| summarizes DARE, intigrating the exchange mechanism with modified value and pol-
icy updates. We instantiate it on Cal-QL and IQL as representative baselines.

Algorithm 1 Dynamic Alignment for Release (DARE)

1: Initialize: Offline policy 7, as 7o, With Q networks, diffusion behavior model v (- | s).
2: Initialize: Replay buffers D, with offline data, D,,, with online data, energy function fy.
3: for each iteration do

Interact with environment using 7,,, and collect new transitions to D,,,.

Sample batch b = by U by, = {(ss, ai,7i, s;) } from Doy p U Doy,

Sample actions {d,} via energy-guided sampling process under state {s;} via Eq.[6]
Compute the alignment scores in Eq.[7]and find the intersection point 7 by Eq.[9]
Exchange M samples between b, sy and b,y by Eq.|10] then get b/, ¢ and ¥/ ,,.

9:  Update policy using Lcq.qL in Eq.[14|or LigL in Eq and Eq. With Vofpand b y,.
10:  Update energy function fy.

11: end for

AN A S

7 EXPERIMENTS

In this section, we present empirical evaluations of DARE against strong baselines in off2on RL. We
begin by comparing DARE with representative offline RL algorithms on the D4RL benchmark. We
then evaluate DARE along two dimensions: Robustness and Stability. To evaluate robustness, we
sweep the exchange limit and measure sensitivity to excessive sample swaps. Stability is accessed by
increasing the update-to-data (UTD) ratio and observing sensitivity to aggressive update schedules.
We also compare our Gaussian-fitting strategy against a direct score-based exchange. In the end,
the ablation studies are performed to demonstrate the contributions of the energy function and the
exchange mechanism.

7.1 BENCHMARKS AND BASELINES

We evaluate DARE on two standard D4RL benchmarks (Fu et al., [2020): MuJoCo Locomotion and
AntMaze Navigation, -both using the “-v2” version. As for baselines, in CQL group, we compare
DARE-C against CQL (Kumar et al. [2020), Cal-QL, and EDIS-C (Liu et al.| 2024), a Cal-QL
variant; in IQL group, we compare DARE-I against IQL, PEX (Zhang et al., 2023), and EDIS-I,
the IQL counterpart of EDIS-C. For fairness, EDIS-C and DARE-C in the CQL group are initialized
from the same Cal-QL models, and all models in the IQL group are from the same IQL models.
All above models are trained offline for 1M steps and fine-tuned online for 0.2M steps. We average
the results over the last four evaluations and five random seeds. Additional implementation details,
including the performance of the initial offline-trained models, are provided in Appendix [B]

7.2 OVERALL PERFORMANCE

The fine-tuning results are presented under both CQL group and IQL group in Tab. Overall,
DARE brings a significant improvement of around 15% total score of all datasets in both groups. It
also consistently outperforms the baselines across different tasks, with highest scores on 11/13 tasks
under the CQL group and on 10/13 tasks under the IQL group. These results demonstrate that the
proposed exchange mechanism brings consistent benefits across diverse benchmarks in the off2on
setting. Appendix [C|provides the complete fine-tuning learning curves, which illustrate how DARE
maintains stable improvements across both locomotion and antmaze tasks.
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Table 1: Performance after 0.2M online fine-tuning. Each result is averaged over the final 4 evaluations and 5 random seeds
=+ standard deviation. The “-C” and “-I” suffixes indicate the implementation based on Cal-QL and IQL, respectively. The
highest scores are bolded.

Dataset CQL Group IQL Group
Base (CQL)  Cal-QL EDIS-C  DARE-C | Base (IQL) PEX EDIS-I DARE-I

HC-ME 96.3+1.6 96.4+0.9  95.1+07  97.0+0.8 91.74+2.3 89.243.6  91.4+39  93.5+2.1
H-ME 111.9409  111.9+£0.7 1119417 112.0+£04 | 53.9+39.0 90.24+20.1 99.7+13.5 102.3+9.6
W2D-ME 110.3+0.5  110.4+0.5 108.2+7.1 111.2+0.6 | 111.8+49 114.8+3.0 113.1+09 114.7+1.6
HC-MR 50.9+0.5 51.1+£1.1 564428  78.5+14 | 47.4+1.0 53.3+1.2 457407 49.4+1.0
H-MR 82.1+33.2 93.0+13.4 100.9+5.9 103.5+1.1 | 87.0£28.2 93.5+13.7 93.7+£9.7 97.84+3.0
W2D-MR 86.9+3.4 88.4+4.6 108.9+42 110.6+1.9 | 91.8+6.2 92.0+64  89.24+3.8  97.0+3.1
HC-M 64.6+2.6 66.9+1.8  68.8+1.8  79.3+3.2 57.8+1.3 65.84+2.9 493403  63.3+1.8
H-M 81.9+8.1 86.6+9.1 94.7+7.2 99.6+4.7 7754222  84.3+20.1 58.9+6.3 99.8+2.8
W2D-M 83.0+0.7 83.4+1.5 85.9+1.5 87.0+3.4 85.8+7.6 90.2+13.1 86.4+1.6 92.24+3.2
total (L) | 7679 788.1 830.8 8787 | 7047 773.3 7274 810.0
AM-MD 85.8+5.6 86.8+4.7 93.4+42.9 94.8+4.0 82.0+6.0 82.8+6.4 84.9+5.8 78.6+5.4
AM-MP 86.2+4.4 89.1+5.4 94.4+2.9 93.4+4.2 80.4+3.6 81.7+4.7 78.1£7.2 83.5+4.8
AM-UD 82.4+7.4 90.1+7.8 86.1+3.7 91.1+6.5 31.6+16.1 4.6+8.4 349493  74.4+11.7
AM-U 93.2+1.8 95.5+1.3 952429  97.7+25 90.5+3.5 929437 922423  94.0+3.3
total (AM) | 347.6 361.5 369.1 3770 | 2845 262.0 290.1 330.5
total | 11155 1149.6 1200.1 12557 | 989.2 1035.3 1017.5 1140.5

Abbreviations: HC = halfcheetah, H = hopper, W2D = walker2d, L = locomotion, AM = antmaze; M = medium,
ME = medium-expert, MR = medium-replay, MD = medium-diverse, MP = medium-play, UD = umaze-diverse, U = umaze. All
environments use —v2 version.
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Figure 2: Adaptive exchange counts during online training across different tasks.

7.3 IMPACT OF EXCHANGE CAP

Since DARE relies on the exchange mechanism to reassign samples between offline and online
batches, its effectiveness depends on the accuracy of the estimated intersection point. Unreliable
exchanges will reduce training efficiency or even destabilize learning.

To mitigate potential instability from excessive exchanges, we
introduce the hyperparameter n in Eq. [I0] to cap the number
of swaps per batch. Fig. 2| shows that DARE adapts exchange
frequency differently across environments, with the actual num-
ber of exchanges in most cases remaining relatively low (typi-
cally < 70). We then compare capped (n = 32) and uncapped
(n = o0) settings on MuJoCo Locomotion tasks in Tab.@ Under
DARE-C, n = 32 achieves better overall performance, suggest-
ing that excessive swaps cause instability. In contrast, DARE-
I obtains higher scores without such a limit. Such observation
indicates that the smaller n restricts aggressive swapping and
the larger one allow more flexible adaptation. A comprehen- )
sive breakdown of exchange dynamics across environments, to- 1able 2: Effect of the maximum

gether with detailed results under different n, is provided in Ap- exchange limit n for DARE-C
pendix [D] and DARE-L

Dataset n=32 | n=00
M 265.9 | 258.5
MR 292.6 | 2839
ME 320.2 | 320.3
Total 878.7 | 862.7
M 249.7 | 255.3
MR 240.8 | 244.2
ME 300.3 | 310.5
Total 790.8 | 810.0

DARE-I | DARE-C

7.4 IMPACT OF LARGE UPDATE-TO-DATA RATIOS

To assess the stability of DARE, we investigate the effect of the UTD ratio, which determines the
number of gradient updates performed per environment step.



Under review as a conference paper at ICLR 2026

While a higher ratio accelerates learning, it also induces
more frequent exchange between offline and online-like

samples, potentially affecting stability. We evaluate gi—/{l\éR 32‘?i8'2 gg '54;&222'88 ﬁ(ﬂ%&i
DARE’s performance with an aggressive setting with  w2D-MR  75.949.0 99.9+105 101.446.7
UTD = 10 after 0.1M fine-tuning steps on MuJoCo loco- ~ HC-M 488402  76.1+1.6  663+14
motion tasks. As shown in Tab. 3] DARE-I achieves the %% v g’?'ii” 84.6x21.4 101'12i4‘3
highest total scores under UTD = 10, compared to both - 4255 925182 99116
PEX and EDIS-I. These results indicate that DARE re- _'°@! 4060 49538 S17.9
mains stable even when the exchange becomes more fre-

quent under aggressive update regimes. Detailed results 1able 3: Performance of IQL-based
of the UTD experiments, along with the corresponding Methods under UTD = 10.
learning curves, are provided in Appendix [E]

Dataset EDIS-I PEX DARE-I

7.5 EFFECTIVENESS OF GAUSSIAN FITTING

To evaluate the design choice
of using Gaussian fitting by e o
Eq.[8l we compare it with a di- L
rect exchange. The direct ex- J

change sorts the sampled train- / /
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strategy achieves more stable
performance compared to the
direct exchange. Although direct sorting is simple, its cutoff depends heavily on the sampled batch
and can fluctuate. In contrast, Gaussian fitting models the score distributions and uses their intersec-
tion point as the decision boundary, which will make the partition more stable.

N
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Figure 3: Comparison of Gaussian fitting and direct exchange.

7.6 ABLATION STUDY

DARE-I Ablation

In the end, we perform an ablation study to assess the
contribution of each component in DARE-I. As shown in
Fig. [ removing either the energy guidance in the dif-
fusion model or the sample exchange mechanism leads
to significant performance drops across multiple tasks.
These results highlight the important roles of both com-
ponents in ensuring the overall effectiveness of DARE-I.

Additional ablation results are provided in Appendix Figure 4: Ablation study of DARE-L.
due to space constraints.
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8 CONCLUSION

We have presented DARE, a distribution-aware framework for offline-to-online reinforcement learn-
ing that adaptively relaxes constraints at the sample level. By integrating energy-guided diffusion,
alignment scoring, Gaussian fitting, and an exchange mechanism, DARE distinguishes offline-like
from online-like samples, preserving conservative constraints on the former while adaptively relax-
ing them for the latter. Our analysis establishes that DARE reduces the offline-to-online distribu-
tion discrepancy while ensuring bounded value estimation. Experiments on MuJoCo and AntMaze
benchmarks demonstrate that integrating DARE into existing methods consistently improves stabil-
ity during fine-tuning, robustness, and overall policy performance. Future directions include explor-
ing richer behavior models to better capture multi-modal offline data and more effectively guide the
exchange process.
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APPENDIX

Ethics Statement This work does not involve human subjects, personally identifiable information,
or sensitive user data. All datasets used are publicly available benchmark datasets. Our methods
focus on algorithmic improvements for off2on RL and do not raise foreseeable risks of harmful
societal or environmental impacts.

Reproducibility Statement We have made every effort to ensure reproducibility of our results.
A full description of the proposed algorithm, training settings is provided in the main text. Hy-
perparameters used are documented in the appendix. Source code and scripts for reproducing all
experiments are included in the supplementary materials.

LLM Usage Large language models (LLMs) are used solely as writing assistants to help polish the
manuscript’s grammar and clarity.

A PROOFS

A.1 SETUP AND NOTATION

Let bofy = {x?ff N and b, = {mjon §V:1 be the offline and online batches (cardinality N each).
Letd : X — R be a one-dimensional statistic. Write d$ := d(2¢%) and d3" = d(z§"). Define the
empirical distributions on the projected values as

1 1
Hoff *= N Z‘sz;’ffv Hon = N Z(SI;?“7 (17)
i=1 j=1
where §, denotes the Dirac measure at z, characterized by the property
[twdw =@, vrixor (18)

Accordingly, for any test function f,

1 & . 1 &
Buelfl = [ Fon = 5 S0 Bl = 5 f@). a9)
i=1 j=1

That is, expectations under pog and pi,;, coincide exactly with sample averages over the correspond-
ing batches.

Let Fog(t) and Fi,y, (t) be the empirical CDFs (Cumulative Distribution Function) of d under the two
measures and AF'(t) := Fog(t) — Fou(t). Define AFax = sup; AF(t), AFy, = inf AF(),
and the CDF amplitude A := AFax — AFmin > 0.

Consider the threshold-interval hypothesis class Zin, = {(a,b] C R : a < b}. Following|Ben-David
et al. (2010), the H A H-divergence is used between the d-projections of two measures P, () by

daan (P, Q) :== 2( ZUI% |P{d € (a,b]} — Q{d € (a,b]}|. (20)
a,b|€Liny

Since P{d € (a,b]} = Fp(b) — Fp(a), one has
dHAH(P7 Q) = 2(AF‘max - AF’min) =2A. (2])

Symmetric exchange. An exchange replaces one offline atom x (with value d,) by an online
atom y (with value d,) symmetrically: x: off = on and y: on — off. For all ¢ € R, the updated
difference of CDFs satisfies

1 1
AF'(t) = AF(t) — Nl{t >d,}+ Nl{t > d,}. (22)
An exchange is effective if it reduces the amplitude by at least one unit of granularity, i.e., A" <

A— %, where A’ is the post-exchange amplitude. Let M be the number of accepted (effective)
exchanges.

13



Under review as a conference paper at ICLR 2026

A.2 EXISTENCE OF EFFECTIVE PAIRS AND CAPACITY BOUND

Let tax € argmaxy AF(t) and t,i, € argming AF(t). Define
SE = [ do > tax ) Sk ={j 1 d" < tmin}- (23)

Lemma 1 (Sufficient condition for an effectlve exchange). If SI # 0 and SL, + 0, any pair (z,y)
with x chosen from Sk off and y from SL induces an exchange that reduces the amplitude by at least
1/N,ie A/ <A-—+

Proof. Pick x with d; > tnax and y with d, < t,5,. By Eq. . for t = tmax we have 1{tax >
d.} = 1 (since d;, < tmax is false but AF s jump locations are right-closed; one may take the
immediate right limit), and 1{t;max > dy} = 1 because dy < tmin < tmax. Thus AF' (tyax) =
AF(tmax) — 1/N + 1/N = AF(tmaX) or, with standard right/left-limit care, it cannot increase
beyond AP ax. Att = tmin, we get AF (tmin) = AF (tmin) — 1/N + 1/N = AF(tmin) or it
cannot decrease below AF ;.

Crucially, for any ¢ > ty,.x we have AF'(t) = AF(t) — 1/N + 1/N = AF(t), while for any
t € (tmins tmax), AF'(t) = AF(t) —1/N +1/N = AF(t). The only strict change that impacts
the amplitude occurs on (—00, tyin] and on [tyax, 00) through the step structure: moving an offline
atom from the rightmost side suppresses the upper envelope by 1/N and moving an online atom
from the leftmost side lifts the lower envelope by 1/N. Therefore A’ < A —1/N. O

Proposition 1 (Capacity bound). Let Ag be the initial amplitude. Any sequence of accepted ex-
changes satisfies M < [AgN|.

Proof. Each accepted exchange decreases A by at least 1/N and A > 0 always. Hence after M
steps Ay < Ag — M/N > 0, which implies M < AgN. O

A.3 MONOTONE DECREASE OF THRESHOLD-CLASS DISCREPANCY

Theorem 3 (Monotone decay of threshold-class discrepancy on the projected d-axis). Let M be the
number of accepted exchanges (as per the rule A’ < A — % ). Then for the threshold-interval class,

oM
diiRy < max {0, digh, - ~ =t (24)

Proof. Let Ay, denote the amplitude after k£ accepted exchanges. By definition of an effective ex-
change, each step decreases the amplitude by at least 1/N:

Ap < A1 — %, k=1,2,..., M. (25)

Iterating this inequality yields Ay; < max{0, Ao — M /N}. Finally, since dgan = 2A by Eq. .
we obtain the desired bound.

Remark 1. Theorem [3| guarantees that the discrepancy under the threshold-interval hypothesis
class decreases monotonically along the d-projection. In other words, the one-dimensional sepa-
rability measured by dyap shrinks deterministically with each accepted exchange. However, this
control is specific to the projected d-axis and the threshold function class. It does not imply that the
total variation distance between fio and fio, over the full (s, a)-space decreases. In the following
section we provide an independent stability analysis in the original (s, a) domain.

A.4 STABILITY OF TRAINING RESIDUAL
Let rQ(s, a) = (T’“Q)(s7 a) — Q(s, a) and assume a uniform bound

Irg(s,a)| < By forall (s,a). (26)
Fix a € (0,1) and define the mixed residual

8@(@? Hoff s ,Uon) = aEuoffh"Q‘ + (1 - 04) E/l‘on

rol. Q7
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Lemma 2 (One-step stability). One symmetric exchange changes ., by at most 2By /N in absolute

value:
2Bt

N (28)

’goé(Q; ;u’é)ﬁv Ngn) - goz(@; Hoff, Non)! <

Proof. Let h(s,a) := |ry(s,a)|, so by Eq. |26/ we have [|h||oc < Br. Using the standard total-

variation inequality |E, 2 —E, h| < 2||h||s TV (i, v) and the fact that a single-atom replacement in
a uniform empirical measure has TV (u', 1) = 1/N, the claimed bounds for the offline and online
parts follow

1
|a(E/u‘;ff‘r| - Euoff|T|)’ <a-2Br- N?
1 (29)
(1 = @) (B | = By, )] < (1 = @) 2B - <.
Summing the two bounds establishes the desired inequality. O

Proposition 2 (Accumulated stability). After M (possibly reverted-or-accepted, but realized) ex-
changes,
2BrM

N (30)

600 - £0) <

Proof. By Lemma each exchange changes &, by at most 2B /N in absolute value. Summing
these deviations over M steps yields the bound above. [

Assumption 2 (Coverage and Control). There exists k > 1 such that for all bounded measurable h,

Ihllee < KE

fimise |2 fhmix 1= @ ot + (1 — @) fron. 31)

Proposition 3 (Bellman contraction). ||Q — Q" ||oc < = 176 lloo-

Theorem 4 (From residual to co-norm error). Under Assumption2)and Eq.

”Q - QWHOO < %SOL(Q;HOH:#OH)' (32)

Consequently, after M exchanges,

R 2BrM
— 0™l < £(0) L) 33
10 - Q7| _1i7(a+ - (33)
o . . _ A T 1
Proof. By Proposition 3| and Assumption 2l with b = 75, |Q = Q[ < 5lIrpllee <
75 Bt rol = 725 &a- The second inequality follows from Proposition O

Remark 2. Assumption 1| requires that the mixed sampling distribution pimix = Qpog + (1 —
@) lion provides sufficient coverage of the state—action space so that the worst-case residual can be
controlled by its average under pi.,ix. In particular, the constant x quantifies the potential mismatch:
k = 1 corresponds to ideal coverage, whereas larger values of « indicate that the distribution may
under-sample certain regions, making the sup-norm error bound looser.

A.5 SUMMARY OF GUARANTEES

* Geometry on d (Theorem [3). Accepted exchanges monotonically reduce the threshold-
class discrepancy: d%H < max{0, d(IS)AH — 2M/N}, with capacity M < [AgN].

* Stability in (s, a) (Theorem E]) Regardless of geometry on d, the mixed residual and the
oo-norm value error remain controlled: \EéM) - 8&0)| < 2B7M/N and [|Q — Q7 ||oe <

(6 +2Br M/N).
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B EXPERIMENTAL DETAILS

In our experiments, we evaluate DARE on two standard D4RL benchmarks (Fu et al., 2020): Mu-
JoCo Locomotion and AntMaze Navigation. For instantiation, we extend Cal-QL (Nakamoto et al.|
2023)) to DARE-C and IQL (Kostrikov et al., 2021)) to DARE-I. In the CQL-based group, we com-
pare against CQL (Kumar et al.,|2020)), Cal-QL, and EDIS-C (Liu et al.,[2024), a Cal-QL variant. In
the IQL-based group, we include IQL, PEX (Zhang et al.,|2023)), and EDIS-I, the IQL counterpart of
EDIS-C. All models are first trained offline for 1M steps and then fine-tuned online for 0.2M steps.
The results are averaged over the last four evaluations and five random seeds. For a fair compari-
son, all methods are initialized from the same offline-trained models, using Cal-QL models for
EDIS-C and DARE-C and IQL models for PEX, EDIS-I, and DARE-I.

B.1 HYPERPARAMETERS FOR DARE

For the implementation of DARE, there is only one additional hyperparameter, the maximum ex-
change number n. We set n = 32 for DARE-C and n = oo for DARE-I. In addition, for the
SAC-style policy update in DARE-I, the entropy coefficient « is set to 0.2 on locomotion tasks and
0.01 on AntMaze tasks, respectively.

B.2 HYPERPARAMETERS FOR CQL AND CAL-QL

We implement the CQL and Cal-QL based on https://github.com/tinkoff-ai/CORL,
and primarily follow the authors’ recommended hyperparameters (Tarasov et al.,[2023). Since CQL-
based algorithms are known to be sensitive to hyperparameter choices, we provide the exact settings
in our experiments to facilitate the reproducibility. Please refer to Tab. [ for the details about the
hyperparameters in our CQL-based implementation.

Table 4: Hyperparameters in CQL-based implementation.

Hyperparameter Mojoco locomotion AntMaze navigation
General Settings

Replay buffer size 2,000,000 2,000,000
Batch size 256 256
Discount factor v 0.99 0.99
Reward scale / bias 1.0/0.0 10.0/-5.0
Normalize states True False
Normalize reward False True
Orthogonal initialization True True

Is sparse reward False True
CQL Hyperparameters

Policy learning rate 1x1074 1x1074
Critic learning rate 3x 1074 3x 1074
Soft target update rate 7 0.005 0.005
Target update period 1 1
Automatic entropy tuning True True
Backup entropy False False
CQL regularization (c, offline / online)  10.0/10.0 5.0/5.0
CQL Lagrange False True

CQL temperature 1.0 1.0

Target action gap —1.0 0.8

Max target backup False True

Clip diff range [—200, o) [—200, o)
Importance sampling True True
Network Architecture

Q-network hidden layers 3 5

Hidden dimension (actor / critic) 256 /256 256 /256
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B.3 HYPERPARAMETERS FOR IQL AND PEX

We implement IQL and PEX based on https://github.com/Haichao-Zhang/PEX, the
hyperparameters of which is illustrated in Tab. 5}

Table 5: Hyperparameters for the IQL-based experiments.

Hyperparameter Value
Discount factor ~y 0.99
Hidden dimension 256
Number of hidden layers 2
Batch size 256
Learning rate 3x 1074
Target update rate 0.005

0.9, AntMaze / 0.7, Locomotion
10.0, AntMaze / 3.0, Locomotion

Expectile parameter 7
Inverse temperature 3

B.4 HYPERPARAMETERS FOR EDIS

The implementation of EDIS are referred to https://github.com/liuxhym/EDIS. For
EDIS-C, we use its official implementation of Cal-QL. For EDIS-I, we modify the classes of Q-
function, value function, and policy function to match those in IQL and PEX, so that the same
offline models can be loaded for initialization. The hyperparameters used in the EDIS module

remain unchanged and, for convenience, are detailed in Tab. @

Table 6: Hyperparameters in EDIS.

Hyperparameter Value
Network Type (Denoising) Residual MLP
Denoising Network Depth 6 layers
Denoising Steps 128 steps
Denoising Network Learning Rate 3x 1074
Denoising Network Hidden Dimension 1024 units
Denoising Network Batch Size 256 samples
Denoising Network Activation Function ReLU
Denoising Network Optimizer Adam
Learning Rate Schedule (Denoising Network) Cosine Annealing
Training Epochs (Denoising Network) 50,000 epochs
Training Interval Environment Step (Denoising Network) Every 10,000 steps
Energy Network Hidden Dimension 256 units
Negative Samples (Energy Network Training) 10
Energy Network Learning Rate 1x1073
Energy Network Activation Function ReLU
Energy Network Optimizer Adam

B.5 HYPERPARAMETERS FOR ENERGY-GUIDED DIFFUSION MODEL

The implementation of the energy-guided diffusion model is refered to ht tps://github.com/
thu-ml/CEP-energy-guided-diffusion. Briefly, the behavior model follows the archi-
tecture and training strategy of |Chen et al.| (2022). We train the models for 6 x 10° gradient steps
using the Adam optimizer with a learning rate of 1 x 10~ and a batch size of 4096.

The energy guidance model f, is implemented as a 4-layer MLP with 256 hidden units and SiLU
activations. Training is performed using the Adam optimizer with a learning rate of 3 x 10~* and
a batch size of 256. To train this energy network, a contrastive learning objective based on self-
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normalized energy labels is defined as:

i e—BE=) e— oz )

min ]Ep(t) E 2 (1) ]Ep(E(I:K)) - I @ log I D . (34)
¢ qo(zy ) — ijl e—BE@S)) ijl e—fo(z) 1)

Here, each perturbed sample is generated by the forward diffusion process: xﬁ") =y ;vg") + o,

with constants oy, 0, defined by the diffusion schedule. The guidance scale s follows the empirical
settings from prior work (Lu et al.,[2023a)), as summarized in Tab.

Table 7: Guidance scale s across different environments.

Dataset Guidance Scale s
walker2d-medium-expert-v2 5.0
halfcheetah-medium-expert-v2 3.0
hopper-medium-expert-v2 2.0
walker2d-medium-replay-v2 5.0
halfcheetah-medium-replay-v2 8.0
hopper-medium-replay-v2 3.0
walker2d-medium-v2 10.0
halfcheetah-medium-v2 10.0
hopper-medium-v2 8.0
antmaze-umaze-v2 3.0
antmaze-medium-play-v2 4.0
antmaze-umaze-diverse-v2 1.0
antmaze-medium-diverse-v2 3.0

B.6 OFFLINE MODEL PERFORMANCE

Before fine-tuning, we present the performance of the offline-trained models on both Locomotion
and AntMaze benchmarks. These results serve as the initialization for all compared methods, ensur-
ing that performance differences in the online phase come solely from the fine-tuning strategy rather
than the quality of the offline implementation codebases. Tab. [8| summarizes the scores of CQL,
Cal-QL and IQL across different datasets.

Table 8: Offline training performance before online fine-tuning.

Dataset | CQL Cal-QL IQL
HC-ME 90.4+3.5 82.94+4.1 90.2+1.4
H-ME 108.14+2.4 109.0+£2.1  32.8432.6

W2D-ME | 109.7+0.2 108.6+0.8 108.3£2.0
HC-MR 45.5+02  46.5+02  43.94+04

H-MR 90.2+10.5 64.8+27.1 84.2+13.6
W2D-MR | 78.6+4.5 85.0+29  70.8+4.1
HC-M 47.1£03  48.3+03  48.1+0.1
H-M 63.9+15  61.942.0 56.2+44
W2D-M 81.9+12  83.7+12  74.0+3.1
total (L) \ 715.4 690.7 608.5

AM-MD 57.6+3.5 66.2+6.1 70.4+5.2
AM-MP 64.8+6.1 68.4+3.8  74.6+4.7
AM-UD 28.2+239 46.04£20.1 60.2+6.4

AM-U 87.6t4.6  76.6+2.7  91.44+0.8
total (AM) | 2382 257.2 296.6
total | 9536 947.9 905.1
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C COMPARISONS OF ONLINE FINE-TUNING PROCESSES

C.1 ONLINE FINE-TUNING PROCESSES FOR DARE-C

As a complement to the main results in Tab. [T} we depict the online training dynamics across algo-
rithms. As shown in Figs. [5|and [6] our method consistently outperforms both Cal-QL and EDIS on
the locomotion and AntMaze benchmarks, while exhibiting smoother training trajectories.
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Figure 5: Online training curves on Locomotion benchmarks comparing Cal-QL, EDIS, and Ours.
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Figure 6: Online training curves on AntMaze benchmarks comparing Cal-QL, EDIS, and Ours.
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C.2 ONLINE FINE-TUNING PROCESSES FOR DARE-I

We also visualize the complete online performance under the IQL framework across all tasks. As
shown in Figs.[7]and[8] our method improves over both PEX and EDIS in terms of learning dynamics
and asymptotic returns, with the exceptions of halfcheetah-medium, halfcheetah-medium-replay and
antmaze-medium-diverse. In general, our approach converges more smoothly and reaches higher
normalized scores with fewer training steps, demonstrating better sample efficiency and robustness
during online fine-tuning.
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Figure 7: Online training curves on Locomotion benchmarks comparing PEX, EDIS, and Ours.
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D ADDITIONAL RESULTS ON EXCHANGE CAP

D.1 EXCHANGE BEHAVIOR ACROSS RL BENCHMARKS

Fig. 0] shows the per-batch exchange statistics across environments. Consistent with Fig. 2] the
realized number of swaps remains modest for most tasks (typically < 70).
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Figure 9: Per-batch exchange statistics across environments during online training (appendix).

D.2 EFFECT OF THE MAXIMUM EXCHANGE CAP ON DARE-C

Tab. 0] extends Tab. 2| by adding n=16 for DARE-C. A moderate cap (n=32) gives the best overall
performance, outperforming both a stricter cap (n=16) and the uncapped setting (n=00). Further-
more, Fig. [I0] visualizes the training dynamics under different n.

Dataset | n =16 n=32 n=o0
M 255.9 265.9 258.5
MR 285.0 292.6 283.9
ME 320.1 320.2 320.3
Total 861.0 878.7 862.7

DARE-C

Table 9: Effect of the maximum exchange limit n for DARE-C on MuJoCo Locomotion.
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Figure 10: Training processes of DARE-C under different exchange caps n on locomotion tasks.

D.3 EFFECT OF THE MAXIMUM EXCHANGE CAP ON DARE-I

For DARE-I, we remove the cap consistently performed best across tasks. Capping at n = 32 does
not improve asymptotic returns. We therefore use n = oo for DARE-I in all main experiments.
Fig. [T1] presents the training curves under different n, where the uncapped setting reaches higher
performance.
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Figure 11: Training processes of DARE-I under different exchange caps n (we select n = co by default).
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E ADDITIONAL RESULTS FOR UPDATE-TO-DATA RATIOS

We extend Tab. 3] by adding the UTD = 1 results in Tab. At both UTD = 1 and UTD = 10,
DARE-I achieves the highest total after 0.1M online steps. In addition, the training curves for
UTD = 10 in Fig.[I2]show the same pattern.

Table 10: Performance of IQL-based methods under UTD = 1 and UTD = 10.

Dataset UTD =1 UTD =10
PEX EDIS-I DARE-I ‘ PEX EDIS-I DARE-I
HC-MR 51.6+1.5 45.1+04 47.6+1.5 | 58.4+2.8 45.0+09 49.7+0.5
H-MR 86.6+9.6  92.9+11.0 94.9+3.9 | 88.5+22.8 94.149.7 100.2+24
W2D-MR | 90.0+6.8 76.0+7.4  93.4+4.7 | 99.94+10.5 75.949.0 101.4+6.7
HC-M 60.9+19  48.8+0.2 59.0+1.1 | 76.1+1.6 48.840.2 66.3+1.4
H-M 68.3+17.3 61.1£53 97.6+7.9 | 84.6+21.4 60.8453 101.2+4.3
W2D-M 84.3+152 79.34£8.3  89.7+7.4 | 92.5+182 814455 99.1+1.6
total \ 442.2 403.2 482.2 \ 495.8 406.0 517.9
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F ADDITIONAL RESULTS FOR ABLATION STUDY

We present additional ablations to assess the contribution of the two key parts in DARE-C and
DARE-I: energy guidance in the diffusion model and the sample exchange mechanism. As shown

in Figs. [T3]and [T4] removing either part causes clear drops on MuJoCo Locomotion tasks.
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Figure 13: Ablation study for DARE-C.
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Figure 14: Ablation study for DARE-I.
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G CHOICE OF ONLINE LoOSS FOR IQL

We update IQL by applying SAC-style online losses on b., while keeping standard IQL losses on
big (full formulas in Sec. . This choice primarily targets the policy term.

For completeness, we also evaluate an alternative that keeps the same Q-target as in DARE-I (Eq. [T3))
while adjusts the value loss for online samples by using a higher expectile 7 = 0.99:

LUV) =Ega~p [ﬂ(s7a)eb'off LA(Q(s,a) = V(5)) + L(s.a)ctr Lir00(Qs5,0) - V(S))} :
(33)
We refer to this variant as DARE-IV. Tab. |11| shows that DARE-I yields higher returns and lower
variance. The same table also shows that our sample-level constraint release with batch exchange
is effective when exchanges are enabled (n = o00). Taken together, these results suggest that our
strategy adapts well and integrates with different forms of constraint release.

Table 11: Performance of DARE-IV and DARE-I on MuJoCo Locomotion tasks.

Dataset DARE-1IV DARE-1
n =00 n=~0 \ n = 00

HC-ME 91.942.8 92.042.1 93.54+1.0

H-ME 97.9+13.4 93.1£26.0 | 102.3+9.6

W2D-ME | 113.2+1.2 111.24+0.8 | 114.7+1.1
HC-MR 48.1+£1.3  455+13 | 49.4+1.0

H-MR 96.5+58 925460 | 97.8+3.0
W2D-MR | 96.3+65 862452 | 97.0+3.1
HC-M 60.0+2.5 542407 | 63.3+138
H-M 94.649.8  91.4+11.9 | 99.8+2.4
W2D-M | 925426  85.8+46 | 92.2+426
total | 7910 7519 | 810.0
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