Under review as a conference paper at ICLR 2026

RESEARCHGPT: BENCHMARKING AND TRAINING
LLMsS FOR END-TO-END COMPUTER SCIENCE RE-
SEARCH WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) advance, the ultimate vision for their role in
science is emerging: we could build an Al collaborator to effectively assist human
beings throughout the entire scientific research process. We refer to this envi-
sioned system as ResearchGPT. Given that scientific research progresses through
multiple interdependent phases, achieving this vision requires rigorous bench-
marks that evaluate the end-to-end workflow rather than isolated sub-tasks. To
this end, we contribute CS-54k, a high-quality corpus of scientific Q&A pairs in
computer science, built from 14k CC-licensed papers. It is constructed through a
scalable, paper-grounded pipeline that combines retrieval-augmented generation
(RAG) with multi-stage quality control to ensure factual grounding. From this
unified corpus, we derive two complementary subsets: CS-4Kk, a carefully curated
benchmark for evaluating AI’s ability to assist scientific research, and CS-50k, a
large-scale training dataset. Extensive experiments demonstrate that CS-4k strat-
ifies state-of-the-art LLMs into distinct capability tiers. Open models trained on
CS-50k with supervised training and reinforcement learning demonstrate substan-
tial improvements. Even 7B-scale models, when properly trained, outperform
many larger proprietary systems, suchas GPT-4.1,GPT-40,and Gemini 2.5
Pro. This indicates that making Al models better research assistants relies more
on domain-aligned training with high-quality data than on pretraining scale or
general benchmark performance. We release CS-4k and CS-50k in the hope of
fostering Al systems as reliable collaborators in CS research.

1 INTRODUCTION

With the rapid development of large language models (LLMs), their potential as research assistants
has become increasingly evident (Luo et al., 2025} Zhang et al., 2025b; |Eger et al., 2025)). Currently,
these systems mainly help with literature search or code generation, but their potential is not limited
to this. Instead, they could be developed to become general-purpose collaborators capable of as-
sisting the entire scientific workflow, from problem framing to method development and empirical
analysis. We refer to this paradigm as ResearchGPT. Realizing this vision relies on the availability
of robust benchmarks and training corpora that can faithfully measure and continuously improve
models’ ability to assist scientific research.

However, existing benchmarks for LLMs’ scientific capabilities remain fragmented, addressing only
isolated stages of the research workflow. Generally speaking, prior efforts can be divided into
two categories: evaluation-as-exam and evaluation-as-agent. The first line extends the exam-style
paradigm, framing evaluation as scientific question answering. For example, SuperGPQA (Du et al.,
20235) and Humanity’s Last Exam (HLE) (Phan et al., [2025)) provide expert- and graduate-level as-
sessments that combine multi-domain and multi-skill challenges approximating human competence.
The second line treats LLMs as autonomous research agents, emphasizing workflow automation and
task execution. Representative efforts include CSR-Bench (Xiao et al.,|[2025)), DataSciBench (Zhang
et al} |2025a), and DSBench (Jing et al.| 2024), which focus on data analysis and code deployment
tasks. As research is inherently multi-phase and interdependent, a research benchmark should eval-
uate the end-to-end workflow. Existing efforts fall short of this goal.
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Figure 1: Benchmarking Comparison on CS-4k. Left: Overall scores of selected models, illus-
trating clear performance differences. Right: A comparison of model size vs. score, where some
proprietary model sizes are estimates (Sakthi, 2025} [Mashoufl, 2025} |Abacha et al.| 2024)). The red
arrow highlights the substantial gain from training Qwen on CS-50k. The orange and purple dashed
lines indicate the scaling trends of instruction-tuned and reasoning-oriented models.

To address this gap, we introduce CS-54k, a high-quality corpus of scientific Q&A pairs in com-
puter science, together with a reproducible, paper-grounded pipeline to continuously build and ex-
tend such datasets. This pipeline harvests 14k CC-licensed papers from top-tier CS conferences
and integrates RAG with multi-stage quality control to ensure that all Q&A pairs are grounded in
an authentic scientific context rather than synthetic templates. Research questions are inherently
exploratory and should be answered in precise scientific language, requiring models to demonstrate
both scientific reasoning and clear expression. Therefore, we formulate the task as open-ended sci-
entific question answering, spanning multiple facets of the research workflow and grounded in the
paper context, enabling end-to-end evaluation of Al research assistants.

From this unified corpus, we derive two complementary subsets through careful sampling and cu-
ration. One is CS-4k, a benchmark for rigorous evaluation. It enables holistic and realistic assess-
ment of models’ ability to assist the full research workflow, as illustrated in Figure[l| The other is
CS-50k, a large-scale training dataset addressing the scarcity of domain-aligned data faithfully re-
flecting scientific workflows. Existing efforts (Liu et al., [2025) highlight LLMs’ potential but suffer
from insufficient domain-specific corpora, and CS-50k provides extensive and reliable supervision
for systematic fine-tuning on authentic research tasks. For models already trained for research, the
whole 54k corpus can also be used as a comprehensive evaluation.

Using CS-50k, we fine-tune Qwen?2.5-7B-Instruct (Yang et al.| 2024} Team, [2024) with su-
pervised fine-tuning (SFT) and reinforcement learning via GRPO(Shao et al.| 2024). Experiments
demonstrate substantial improvements over strong baselines, with dual-reward optimization further
mitigating reward hacking and enabling a 7B-scale model to match or surpass many proprietary
reasoning-oriented systems, such as GPT-4 .1, GPT-40, and Gemini 2.5 Pro. This suggests
that progress in building effective Al research assistants is driven more by domain-specific, high-
quality training than by pretraining scale (corpus size/model size) or general benchmark perfor-
mance. Our main contributions are summarized as follows:

* We introduce CS-4Kk, the first benchmark that systematically evaluates the end-to-end re-
search workflow in computer science through open-ended scientific question answering,
offering a rigorous yardstick to assess LLMs’ ability to assist scientific research.

* We develop a reproducible paper-grounded dataset pipeline that integrates RAG and multi-
stage quality control for authentic scientific grounding. It is scalable to larger corpora and
extendable to future multimodal scientific benchmarks.

* We demonstrate that, in the context of scientific workflows, domain-aligned high-quality
training could be more important than pretraining scale or general benchmark performance.
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2 RELATED WORK

2.1 BENCHMARKS FOR SCIENTIFIC Al

With the rapid development of large language models (LLMs), a wide range of benchmarks have
been proposed to evaluate their capabilities across different domains and tasks. Early benchmarks in
NLP were often built around relatively simple and domain-specific tasks, such as corpus annotation,
sentiment classification, relation extraction, or fact-based question answering (Kim et al.; |2003;
Li et al. 2016} [Luan et al., 2018 Jurgens et al., 2018; [Jin et al., 2019). As LLMs progressed,
benchmark design gradually shifted toward broader and more challenging evaluations, covering
both general-purpose reasoning and discipline-oriented examinations. General-purpose evaluations
such as BIG-Bench (Srivastava et al., |2023) and HELM (Liang et al.) provide broad coverage
across domains, while exam-style datasets including MMLU (Hendrycks et al.), GPQA (Rein et al.,
2024), SuperGPQA (Du et al.l 2025), and Humanity’s Last Exam (HLE) (Phan et al.| 2025) test
knowledge and reasoning at different academic levels. Scientific reasoning benchmarks such as
CURIE (Cui et al., 2025) and SFE (Zhou et al., [ 2025)) further emphasize multi-step problem solving
and multimodal understanding in scientific contexts. Recent initiatives like ResearchBench (Liu
et al.}|2025) and MOOSE-Chem?2 (Yang et al., 2025) examine hypothesis generation and fine-grained
scientific reasoning, while systems such as Agent Laboratory (Schmidgall et al., 2025) and the Al
Scientist (Lu et al.l 2024)) push toward autonomous end-to-end research workflows.

2.2 LLM ALIGNMENT

LLM alignment aims to ensure that model outputs align with human intentions.(Bai et al. 2022}
Rafailov et al., 2023; Dong et al., [2023). Early attempts relied on supervised fine-tuning (SFT)
on limited, human-annotated data, which improved instruction-following but was constrained by
the coverage and quality of the data (Wei et al.; [Wang et al., |2023). InstructGPT (Ouyang et al.,
2022)) then introduced the now-standard RLHF paradigm—combining SFT with a reward model
and PPO—to achieve stronger alignment. More recently, Generalized Reward Policy Optimization
(GRPO) (Shao et al., [2024) has emerged as a more efficient alternative, streamlining the RLHF
pipeline by eliminating the value model and stabilizing optimization. A persistent challenge in this
line of work is reward hacking (Gao et al., |2023a)), where models exploit imperfections in reward
models, leading to degraded true alignment. Mitigation strategies such as ensemble rewards and
constrained objectives have been proposed (Coste et al.; Moskovitz et al.). While prior alignment
efforts emphasized dialogue and safety, here we apply SFT and GRPO on our proposed CS-50k to
align models with end-to-end scientific research workflows.
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Figure 2: Dataset construction pipeline. Top: source papers from six CS conferences are con-
verted, chunked, and embedded. Bottom: question expansion, answer grounding, and multi-stage
quality control yield approximately 50k high-quality Q&A pairs.
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3 DATASET

To construct a high-quality dataset for evaluating and training LLMs in scientific research tasks,
we design a systematic pipeline that spans from large-scale paper collection to fine-grained ques-
tion—answer (Q&A) generation and quality filtering. The overall process is illustrated in Figure 2]

3.1 DATA COLLECTION

We begin by collecting approximately 66,000 papers from arXiyv, restricted to six premier computer
science conferences: ICML, ICLR, NeurIPS, ICCV, ECCYV, and CVPR. Among these, only papers
released under Creative Commons open-access licenses are retained, resulting in a final corpus of
14,474 papers and ensuring both legal compliance and reproducibility.

Each paper is converted from PDF format into Markdown using the MinerU (Wang et al., 2024;
He et al., 2024) toolkit. This conversion facilitates text-level operations such as segmentation and
semantic analysis. To preserve contextual integrity, we apply hierarchical chunking, dividing each
paper into semantically coherent segments.

We embed each chunk using the nomic-ai/nomic-embed-text-v1.5 (Nussbaum et al., [2024) model
and store the representations in a vector database. This enables efficient retrieval of relevant passages
during question generation and ensures that the dataset construction process remains grounded in
the original paper content. For each paper, we categorize the content into a set of eight topics that
capture the essential components of the scientific workflow, as summarized in Table[I]

Class Explanation

Research domain The field or area of study the research addresses

Previous methods Approaches or algorithms previously proposed in related work
Existing challenges Limitations, gaps, or open problems identified in prior research
Motivation The rationale or justification for conducting the research

Findings/Assumptions  Key observations or assumptions that guide the research

Methods Proposed approaches or frameworks designed to solve the identified problems

Experimental settings ~ Details of the experimental design, setup, data preparation, or parameter configu-
rations

Experimental results Outcomes and performance reported from experiments or evaluations

Table 1: Research categories used for topic annotation and their explanations.

3.2 DATA GENERATION

Following the segmentation and annotation of papers into topic categories, we proceed to generate
question-answer (Q&A) pairs. Instead of generating questions heuristically, we adopt a retrieval-
augmented generation (RAG) (Lewis et al., 20205 |Gao et al., [2023b; |Zhao et al., 2024} |Fan et al.,
2024) pipeline. This approach allows us to anchor both the questions and answers directly to the
original paper content, thereby minimizing hallucination and ensuring factual grounding.

For each topic class, we design a base question template to guide the question generation process.
The template is: “Generate {n} questions about the {topic}, i.e., {example}.” This template provides
controlled guidance on the type of questions expected within each category, ensuring consistency
and relevance across the dataset. Here, {topic} corresponds to the eight research categories in
Table|l} and {example} is instantiated using their explanations.

Based on these templates, question construction is conducted in two stages:

1. Question Expansion. First, we apply the QUESTION_AUG_PROMPT (Appendix
to expand the template into several diverse drafts. Then, each draft is grounded into a
fully specified question through a RAG process, using the QUESTION_GEN_PROMPT (Ap-
pendix together with relevant chunks from the vector database. This step ensures a
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variety of questions while maintaining alignment with the original paper content, and RAG
guarantees that all generated questions remain relevant and contextually grounded.

2. Answer Grounding. Each candidate question is paired with an answer generated through
the ANSWER_GEN_PROMP T(Appendix [A.T), where retrieved chunks of the paper serve as
contextual evidence. This guarantees that the answers are directly supported by the original
text, minimizing the risk of hallucination and ensuring factual correctness. RAG plays a
key role in ensuring that the generated answers are grounded in the paper’s content, aligning
both questions and answers in a cohesive manner.

Through this two-stage RAG-driven process, we obtain approximately 600,000 preliminary Q&A
pairs, covering a broad range of aspects from background knowledge to methodological details and
experimental findings.

3.3 QUALITY CONTROL

To ensure the reliability and usability of the dataset, we design a three-stage quality control pipeline
that aligns with our illustrative framework:

* Q&A Reasonability. We employ a model-based evaluation (DeepSeek-R1) to automati-
cally assess Q&A pairs and filter out unreasonable or low-quality samples. The evaluation
relies on a dedicated prompt (Appendix [A.2) that guides the model in checking seman-
tic coherence and factual consistency. This process reduces the dataset to around 100k
high-quality Q&A pairs, which are then standardized and reformatted for consistency.

* Model Performance. To further refine the dataset, we conduct evaluations using multiple
strong LLMs, including GPT-4-mini, google/gemini-2.5-flash-preview,
and claude-3-5-haiku-latest. For each Q&A pair, we compute the model re-
sponse score of these models’ responses, using a prompt (Appendix [A.2) that explicitly
queries model correctness. Questions that are consistently answered correctly by all models
(too trivial) or consistently answered incorrectly (too difficult or ambiguous) are removed.

* Difficulty Scoring. To characterize question complexity, we apply the LLMDifficulty
ScoreFilter(Appendix [A.2) module from the Data-Juicer (Chen et al 2024aljb)
library. This step assigns difficulty scores to each question and is used to ensure that the
train/test splits maintain a balanced distribution across difficulty levels.

3.4 DATA STATISTICS
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Figure 3: Overall dataset statistics for CS-4k/50k combined. (a) Category coverage across 8 research
workflow dimensions. (b) the distribution of difficulty scores estimated by an LLM-based scorer
(histogram with KDE fit). (c) Input length variation across categories.

To facilitate a robust evaluation of the models, we split the dataset into two parts: CS-50k (training
set) and CS-4k (test set). Approximately 4k samples are selected from the entire dataset for CS-
4k, with the remainder forming CS-50k. The split preserves the distribution of research categories,
difficulty levels, and input lengths, ensuring balanced coverage in both training and test sets, while
maintaining access to the full paper corpus. This section provides an overview of key statistics for
the constructed dataset, including its scale, category distribution, and difficulty composition.
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Table Q] reports the distribution of the initially collected  Table 2: Statistics of dataset sources.
66k papers across six premier computer science confer-
ences, covering machine learning, computer vision, and
artificial intelligence. After filtering for Creative Com-

Conference Count

mons open-access licenses, 14,474 papers are retained for NeurIPS 20,286
dataset construction. ICML 10,979
The overall dataset consists of approximately 54k high- ICLR 11,679
quality Q&A pairs spanning eight research workflow CVPR 11,842
categories: research domain, previous methods, exist- ICCV 5,369
ing challenges, motivation, findings/assumptions, meth- ECCV 6,166

ods, experimental settings, and experimental results (Fig-
ure[3a). Each question is assigned a continuous difficulty score estimated by an LLM-based asses-
sor, yielding a smooth spectrum from straightforward factual queries to challenging reasoning tasks
(Figure [3b). Input length distributions show moderate variation across categories without extreme
skew (Figure . Overall, the dataset is large-scale, diverse, and balanced, providing a reliable
benchmark for evaluating LLMs on scientific research workflows. Additional statistics for the train
(CS-50k) and test (CS-4k) splits are given in Appendix

4 EXPERIMENTS AND EVALUATIONS

In this section, we present experiments to evaluate the effectiveness of the proposed CS-4k dataset
and the performance of state-of-the-art large language models (LLMs) trained using our dataset.
Specifically, we aim to assess: (1)The ability of LLMs to handle end-to-end research workflows
across diverse scientific tasks. (2)The performance of fine-tuned models (SFT and GRPO) trained
on CS-50k compared to baselines evaluated on CS-4k.

4.1 EXPERIMENTAL SETUP

We conduct a comprehensive evaluation of the state-of-the-art LLMs on CS-4k. For reason-
ing models, we evaluate: DeepSeek-R1(Guo et al. 2025), GPT-5(OpenAl, [2025b), 03, o4-
mini(OpenAl,|2025¢), 03-mini(OpenAl,|2025d), o1-mini(OpenAl, 2024c), Gemini 2.5 Pro, Gemini
2.5 Flash(Team et al.|[2023)), Claude 4 Opus, Claude 4 Sonnet, Claude 3.7 Sonnet(Anthropic,|[2023),
Grok4, Grok3 mini fast, Grok3 mini(xAl, 2023), Qwen3-30B-A3B-Thinking-2507, Qwen3-235B-
A22B-Thinking-2507(Team,2025). For chat models, we evaluate: GPT-4.1, GPT-4.1-mini(OpenAl,
2025a), GPT-40(OpenAll 2024b), GPT-40-mini(OpenAl, 2024a)), Gemini 2.0 Flash(Team et al.,
2023), Claude 3.5 Haiku(Anthropicl 2023)), Grok3(xAl, 2023), Llama-3.3-70B-InstructAl@Meta,
2024, Qwen3-30B-A3B-Instruct-2507, Qwen3-235B-A22B-Instruct-2507(Team, 2025)

Training settings. We select Qwen2.5-7B-Instruct as the backbone model and train it on the pro-
posed CS-50k dataset. All experiments are conducted on 8 xXNVIDIA A100-80G GPUs. Detailed
hyperparameter configurations are provided in Appendix

For supervised fine-tuning (SFT), we employ the LLaMA-Factory framework (Zheng et al.,2024)),
training for three epochs and selecting the checkpoint with the lowest validation loss. For reinforce-
ment optimization (GRPO), we adopt the verl framework (Sheng et al., |2024), training for three
epochs on top of the SFT checkpoint. Based on this setup, we explore the following strategies:

* SFT only. Supervised fine-tuning on CS-50k to align outputs with ground-truth answers.

* SFT + GRPO (single-RM). GRPO optimization on top of SFT using Qwen2.5-7B-
Instruct as the single reward model (RM).

* SFT + GRPO (dual-RM). To mitigate reward hacking, GRPO employs two independent
reward models, Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct, whose scalar rewards
are averaged to form the final training signal.

Metrics. When benchmarking, we configure all models’ temperatures to O for reduced random-
ness and employ a unified zero-shot prompt template across all tasks. To assess answer quality,
we adopt an LLM-as-a-Judge paradigm, using gpt-4.1-2025-04~-14 as the evaluation model.
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The scoring prompt, provided in Appendix [A.2] instructs the judge to assign an integer score from
0 to 10 based on semantic and technical alignment with the reference answer. Each model predic-
tion is assessed along eight predefined research-oriented categories: Research domain, Previous
methods, Existing challenges, Motivation, Findings/Assumptions, Methods, Experimental set-
tings, and Experimental results. In addition, we report an Overall score that averages across all
categories to provide a comprehensive view of model performance.

4.2 RESULTS AND ANALYSIS

We evaluate the performance of diverse LLMs on the proposed CS-4k benchmark using the LLM-
as-a-Judge score as the evaluation metric. The results in Table [3|demonstrate that CS-4k effectively
reveals fine-grained differences in model capabilities.

Model Research Previous Existing Motivation Findings/ Methods  Experimental Experimental Overall
domain methods challenges Assumptions settings results
Reasoning Models
DeepSeek-R1 EalUs! 53.80 57.08 61.09 57.16 5591 48.04 54.42 54.66
GPT-5 59.08 58.54 66.75 65.05 60.79 63.19 40.10 51.39 55.83
03 71.66 71.05 78.83 71.56 75.71 74.40 59.57 72.07 71.35
o4-mini 65.04 64.36 69.34 72.38 68.84 67.61 54.25 65.68 64.90
03-mini 56.26 53.95 54.49 59.95 57.61 56.73 48.58 56.50 55.08
ol-mini 42.88 40.71 41.79 46.94 44.96 4432 34.33 43.54 41.93
Gemini 2.5 Pro 49.58 48.28 48.28 56.76 53.32 51.56 40.46 52.00 49.54
Gemini 2.5 Flash 45.67 42.68 45.40 51.74 47.16 4743 36.36 43.58 44.17
Claude 4 Opus 45.61 39.70 43.43 50.21 44.21 45.51 30.09 38.06 40.68
Claude 4 Sonnet 43.86 40.04 44.01 49.04 43.42 44.84 31.21 37.86 40.48
Claude 3.7 Sonnet 41.63 36.46 39.89 48.08 41.79 41.81 29.55 33.50 37.79
Grok 4 45.99 44.79 47.08 50.91 47.26 47.06 36.46 45.03 44.73
Grok 3 mini fast 44.45 4225 43.76 49.72 45.16 45.78 34.93 4245 4275
Grok 3 mini 4478 41.31 4321 49.66 44.56 44.90 38.02 42.15 42.96
Qwen3-30B-A3B-Thinking-2507 4332 4191 52.77 57.36 46.68 45.12 34.53 46.38 44.75
Qwen3-235B-A22B-Thinking-2507 51.63 4727 59.45 61.84 51.64 52.14 35.14 48.21 48.96
Chat Models
GPT-4.1 51.25 49.01 49.56 54.15 53.33 52.74 42.11 52.52 50.15
GPT-4.1-mini 49.73 4755 47.08 53.11 51.40 51.48 4220 50.78 48.85
GPT-40 4237 39.72 38.32 45.39 4277 4226 34.30 41.47 40.44
GPT-40-mini 40.95 38.28 37.45 43.42 40.63 40.78 32.97 41.25 39.13
Gemini 2.0 Flash 4033 37.79 39.67 44.15 40.50 42.18 28.03 34.96 37.29
Claude-3.5 28.81 25.19 30.77 23.70 20.53 28.05 16.77 16.10 22.12
Llama-3.3-70B-Instruct 39.41 36.39 35.36 41.84 39.20 39.09 30.75 37.86 37.03
Qwen3-30B-A3B-Instruct-2507 44.90 43.09 44.85 50.03 47.49 45.88 36.72 45.70 44.28
Qwen3-235B-A22B-Instruct-2507 46.50 43.80 45.88 53.21 46.94 46.44 37.99 43.93 44.76
Qwen2.5-7B-Instruct 38.87 35.71 35.55 41.66 37.71 38.56 30.21 33.86 35.78
Qwen2.5-7B-Instruct-sft 42.55 40.26 43.83 47.98 47.45 44.09 3522 46.31 43.11
Qwen2.5-7B-Instruct-GRPO 48.96 45.88 46.53 56.92 57.06 51.19 43.46 56.31 50.97
Qwen2.5-7B-Instruct-GRPO-2RMs 51.75 48.26 50.36 61.97 59.09 55.31 4294 57.63 53.15

Table 3: Dimension-wise evaluation results of all models on CS-4k, covering eight aspects of the
research workflow and the overall score. Higher values indicate better performance.

CS-4k cleanly separates capability tiers of SOTA LLMs in scientific research. On CS-4k, the
strongest recent models form a clear top tier—for example, 03(71.35) and 04-mini(64.90)—well
above mid-tier such as GPT-5 (55.83) and DeepSeek-R1 (54.66), while general chat variants cluster
lower (e.g., GPT-4.1 50.15; GPT-40 40.44; Gemini 2.0 Flash 37.29). This separation is consistent
across dimensions and highlights that the benchmark can resolve fine-grained capability gaps.

Beyond absolute tiers, CS-4k also reveals systematic differences within model families. A common
pattern is that reasoning-oriented variants consistently outperform their instruction-tuned counter-
parts—for instance, Qwen3 “Thinking” models surpass the corresponding “Instruct” versions at
both 30B and 235B scales. Figure 1| highlights two distinct scaling trajectories within the Qwen
family, contrasting reasoning-oriented and instruction-oriented variants.

(i) Instruct Path (orange dashed line) shows diminishing returns, with larger Qwen3-Instruct
models plateauing at nearly the same performance level, suggesting that pure instruction-
following quickly saturates.

(i) Thinking Path (purple dashed line), in contrast, continues to benefit from scale: even
medium-sized Qwen3-Thinking models already rival larger Instruct counterparts, and fur-
ther scaling widens this gap.
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Taken together, these results indicate that reasoning-focused training not only yields stronger models
at fixed scales but also scales more effectively, a trend that holds robustly in scientific research tasks.

CS-4k reveals clear performance differences across research dimensions. Although the
strongest models reach high overall scores, their performance is far from uniform across dimen-
sions of the research workflow. For example, 03 achieves the highest results on most dimensions
(78.83 on Existing Challenges and 77.56 on Motivation), indicating its strength in capturing con-
ceptual framing and problem formulation. However, its score on Experimental Settings drops to
59.57, reflecting consistent difficulties in reproducing fine-grained procedural details such as dataset
splits, hyperparameter schedules, and hardware specifications. This disparity is systematic: models
perform better on high-level reasoning (Existing Challenges, Motivation, Methods) but decline on
technical recall (Experimental Settings, Experimental Results).

These findings suggest that current LLMs are more adept at summarizing and reasoning about high-
level research narratives than at faithfully reconstructing the technical underpinnings of scientific
experiments. This has important implications for their use as research assistants: while they can
provide valuable insights in framing and conceptual reasoning, they remain unreliable for tasks
demanding precise reproduction of experimental protocols. We further analyze typical failure cases
of this type in our case study (Section [4.2)).

CS-50k training with SFT and GRPO significantly improves model research knowledge. Our
experiments on Qwen?2 .5-7B-Instruct highlight the effectiveness of the CS-50k training cor-
pus and the complementary roles of supervised and reinforcement learning. The base model achieves
an overall score of 35.78 on CS-4k, underscoring the limitations of open-source chat-style systems
when evaluated on research-oriented tasks. Fine-tuning with supervised learning (SFT) on CS-50k
lifts the score substantially to 43.11 (+7.33), as the model learns to align outputs with high-quality,
paper-grounded answers. This demonstrates that even relatively small models can acquire significant
research knowledge when trained on data faithfully reflecting the scientific workflow.

Building on this foundation, reinforcement optimization with GRPO further improves performance
to 50.97 (+7.86 over SFT). Reinforcement signals provide preference guidance that goes beyond
factual correctness, emphasizing methodological clarity and experimental rigor. At the category
level, the gains are especially notable in Motivation and Findings/Assumptions, where SFT already
enhances recall of research details but GRPO deepens reasoning and coherence, showing how pref-
erence optimization complements supervised learning.
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Figure 4: Training and evaluation statistics with single vs. dual reward models: output length curves,
evaluation reward curves, and CS-4k scores across research dimensions.

Mitigating reward hacking. To mitigate the challenge of reward hacking, we introduce a dual
reward model configuration, combining Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct as parallel
evaluators. This setting reduces bias from any single evaluator and encourages more generalizable
optimization. With this design, the model reaches 53.15 overall, establishing the strongest perfor-
mance among all chat models. Despite its modest 7B scale, the system not only closes the gap
with but even surpasses most proprietary reasoning-oriented counterparts, highlighting the practical
effectiveness of CS-50k training combined with robust reinforcement optimization.

Figure [] further illustrates the mechanism behind this improvement. While single-reward (1RM)
optimization yields higher in-training reward, it also drives a sharp increase in output length (left),
a hallmark of reward hacking. By contrast, dual-reward (2RM) training maintains lower but more
stable rewards(middle) and effectively controls output length. Crucially, these differences translate
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into better generalization at evaluation time: when tested on CS-4k with GPT-4.1 as an indepen-
dent reward model, the 2RM system consistently outperforms the 1RM counterpart (right), with the
largest gains in Motivation and Findings/Assumptions. This confirms that higher in-training reward
does not necessarily imply stronger alignment, and that dual-reward optimization provides a more

faithful and robust alignment signal.

Motivation
Question

‘What motivated the researchers to focus on developing the RIVAL10 dataset?

Ground Truth

Existing datasets lacked rich semantic attributes + localization annotations...

Researchers aimed to study foreground/background sensitivity for model
interpretability.

No public benchmark met the study’s needs ... Existing sets were too small /
homogeneous / restrictive ... They created RIVALIO to fill this gap with a
well-annotated dataset.

Motivation: build a large-scale, challenging benchmark .. Existing datasets
had bias + lack of complexity ... Aim: advance multimodal Al rescarch.

Experimental Settings

Question
‘What specific hardware was used for
evaluating models on INCLUDE-BASE?

Ground Truth
The models were evaluated using a single
A100 GPU with 80GB memory.

All INCLUDE-BASE evaluations were run on
a single NVIDIA A100 GPU.

The specific hardware used for evaluating
models on INCLUDE-BASE was an NVIDIA
A100 GPU.

Experimental Results
Question

What findings were derived from evaluating tool order
accuracy within the MTU-Eval framework?

Ground Truth

Findings show that model rankings by Tool Number
(TN) and Tool Order (TO) are highly consistent ...
shows a strong correlation between these capabilities.

The evaluation revealed:

GPT-4o accuracy 98.5%, Gemini 1.5 Pro 96.0%, Claude
3.5 Sonnet 76.5% ... Tool Call Accuracy (TCA)
unreliable, Tool Invocation Accuracy (TIA) limited ...

The framework identified correct tool sequences with
high accuracy ...Strongly correlated with the intended

order ...Consistent across different tool sets ... Superior
to other evaluation metrics ...

Overall: tool order accuracy demonstrates high
precision, correlation, and robustness ...

needed a p ive, diverse k ... Existing datasets
lacked complexity and variety ... RIVAL10 designed for VQA, captioning,
multimodal reasoning.

I'm not sure which paper/benchmark you're
referring to with “INCLUDE-BASE.” Could
you share the source or a link?

Figure 5: Case studies on CS-4k across different research workflow dimensions.

Case study. To better understand the behaviors revealed by CS-4k, we present illustrative exam-
ples across three representative dimensions.

Motivation. On the rationale for RIVAL10, o3 cited missing semantic attributes and localization
annotations. GPT-4.1 noted dataset complexity, while GPT-40 gave only a vague claim of a “com-
prehensive benchmark.” This indicates that reasoning-oriented models capture research motivations
more faithfully, while chat models fall back on generic narratives.

Experimental Settings. For questions on hardware configurations in the INCLUDE-BASE bench-
mark, 03 and GPT-4.1-mini both identified the use of a single NVIDIA A100 (80GB). GPT-5, how-
ever, failed to answer and instead asked for clarification. This highlights a common weakness: many
models struggle to ground responses in technical setups essential for reproducibility.

Experimental Results. For result-comparison questions, SFT-trained Qwen gives concise summaries
but often hallucinates—for example, fabricating numbers or misattributing baselines in the MTU-
Eval case. GRPO variants still make minor numerical errors but capture key findings such as tool
correlations and consistency across settings. This reveals a trade-off: SFT favors brevity but risks
distortion, while GRPO produces longer outputs that better preserve factual and logical alignment.

5 CONCLUSION AND DISCUSSION

We introduced CS-4Kk, the first benchmark for evaluating models’ ability to assist end-to-end com-
puter science research workflows, and CS-50k, a companion training dataset. Both are built through
a reproducible, paper-grounded pipeline that harvests 14k CC-licensed papers and integrates RAG
with multi-stage quality control, resulting in over 50k high-quality Q&A pairs. Experiments show
that CS-4k stratifies capability tiers of state-of-the-art models, while training on CS-50k with SFT
and GRPO substantially enhances open models. Together, they provide both a rigorous yardstick
and a practical resource for the advancing scientific Al

Looking ahead, the same pipeline naturally extends to multimodal scientific evaluation. Beyond
text, future work will incorporate figures and tables, enabling grounded Q&A generation through
VLM-RAG and supporting the assessment of VLM agents across tasks and modalities. These exten-
sions will allow models to reason over heterogeneous scientific evidence and handle more realistic
research scenarios. We envision this direction as a step toward building reliable multimodal Al
collaborators that can assist, accelerate, and eventually transform the process of scientific discovery.
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LLM USAGE

Large language models (LLMs) were used solely to polish the writing (e.g., grammar correction and
phrasing improvements). They did not contribute to research ideation.

A DATA CONSTRUCTION

Our dataset is constructed through two types of prompts: data generation prompts and quality
control prompts. Each prompt is designed to ensure and diversity in the generated data.

A.1 DATA GENERATION PROMPTS

We design three types of prompts to guide data generation.

O Question Augmentation Prompt

You are a skilled linguistic assistant specializing in query transformation. When presented with a user’s
query, your objective is to meticulously rephrase and enhance it by:

» Utilizing synonyms, alternative phrasings, and varied sentence structures

* Adjusting grammatical form (e.g., converting commands to questions) while preserving in-
tent

* Restructuring information flow without losing original components
* Improving clarity and natural fluency
* Maintaining all factual elements and nuanced meaning

Avoid adding new information or omitting key aspects. Prioritize conversational tone and logical
coherence in your revisions.

Format Requirements:
¢ Provide only the rewritten query

¢ No supplementary explanations or formatting

Example Transformation:

Original: Give me 5 reasons of sleeping early

Response: Can you list five advantages of maintaining an early bedtime schedule?
Now transform this query while adhering to all guidelines:

Original: {input}

Response:
. J

O Question Generation Prompt

Context information is below.

Objective: Provide self-contained questions using ONLY the given context. Formulate responses as
if explaining to someone UNAWARE of this context in a JSON list. When addressing domain-specific
concepts:

» Explicitly state the domain upfront
* Avoid all references to “context” or “provided information”

¢ Assume zero prior knowledge
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* Avoid vague or generalized references like “this research” or “your research area.” Instead,
directly address the specific subject matter or topic being discussed.

* For example, instead of asking “What is the motivation of this work?”, you might consider
framing the question more specifically, such as “What motivated the researchers to focus on
developing [specific subject]?” or “Why [specific subject] matters?”

Response Constraints:

LLINYS

* FORBIDDEN generalized phrases: [“provided context”, “given context”, “above informa-

[EIT3

tion”, “mentioned context”, ...]; replace them with specific subject matter
* For ambiguous terms (e.g., “xxx”):

— First establish domain context

— Then provide explanation

* Responses are required to be formatted as a JSON-parseable list: ["responsel",
"response2", ...]

* Maintain consistent JSON syntax without explanatory text
* Absolute prohibition of:

— JSON/text hybrids
— Context-existence references

* Ensure that the generated responses contain only a JSON list of several plain text questions
without including codes, markdowns, or anything else.

Example Response (MUST be formatted as a JSON-parseable list):
["Questionl", "Question2", "Question3", "Question4", "Question5"]

Query: {input}
Answer:
\ J

O Answer Generation Prompt

Context information is below.

Using STRICTLY the provided context text above, follow these prioritized rules to answer the query:

[PRIORITY 1: CONTENT PRESERVATION]
1. DIRECT QUOTATION PRINCIPLE:
* First attempt: Use VERBATIM SENTENCES from context that directly answer the
query
¢ When multiple relevant sentences exist:
a. Preserve original sequence unless illogical
b. Link using minimal transitional phrases (e.g., “Furthermore”, “This shows™)

c. Replace context-specific references (e.g., “this study”, “our method”) with
[PROPOSAL]

[PRIORITY 2: CONTEXTUAL SYNTHESIS]
2. If no single sentence fully answers but context contains relevant information:
a. Combine MULTIPLE context fragments using:
* Only coordinating conjunctions (and / but / or)
* Basic punctuation (commas, semicolons)
b. PRESERVE original wording from source material
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c. Remove non-essential modifiers (e.g., “interestingly”, “as shown in Table 1)

d. Maintain factual integrity without interpretation

[STRICT PROHIBITIONS]
* NEVER:

— Introduce information beyond context boundaries
— Add explanations not explicitly stated
— Paraphrase in ways that alter original meaning

Speculation beyond context

Include personal interpretations

[FALLBACK INSTRUCTIONS]

 If context contains partial but insufficient information: State existing relevant facts PRE-
CISELY using original wording

¢ Only output "The context does not contain relevant information"
when:

— Zero contextual connection exists

— All potential answers require speculation

[OUTPUT REQUIREMENTS]
* Maximum preservation of original lexical choices
* Grammatical coherence for standalone understanding

Query: {input}
Answer:

A.2 QUALITY CONTROL PROMPTS

To evaluate the quality of generated data, we use several prompts for correctness checking, difficulty
assessment, and answer scoring.

® LLM Answer Evaluation Prompt

You will be given a question and an answer. Judge whether the answer is reasonable for the question.

If the answer is relevant and correctly or appropriately answers the question, output 1. If the answer is
irrelevant, nonsensical, incorrect, or does not address the question, output 0. Only output O or 1, and
nothing else.

Now, judge the following:

Question: {question}
Answer: {answer}

Output:

& J
® LLM Difficulty Score Prompt

You are an expert pedagogical evaluator for LLM training data. Analyze each data sample through
multiple difficulty lenses and provide calibrated scores with detailed reasoning. Follow these guide-
lines:

1. Evaluation Dimensions Rate each dimension (1-5 scale: 1=Novice-friendly, 3=Intermediate,
5=Expert-level):

 Linguistic Complexity: Vocabulary sophistication & syntactic structures
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¢ Conceptual Depth: Abstraction level & theoretical requirements
* Prior Knowledge: Required domain-specific understanding

* Step Complexity: Problem-solving steps needed

¢ Ambiguity: Multiple valid interpretations

2. Output Format

json
{
"dimension_scores": {
"linguistic_complexity":
"conceptual_depth":
"prior_knowledge":
"step_complexity":
"ambiguity":
}I
"flags": ["multistep_reasoning", "cultural_context", ...],
"rationale": "Technical analysis of challenge sources"

3. Special Instructions
 Differentiate intrinsic vs. extrinsic difficulty factors
* Account for varying cultural/educational backgrounds
* Mark samples requiring cross-domain knowledge synthesis
 Consider temporal aspects for time-sensitive subjects
» Flag ambiguous samples needing difficulty bracketing
* Response a JSON dict

Example Response:

json
{

"dimension_scores": {

"linguistic_complexity": 3,
"conceptual_depth": 5,
"prior_knowledge": 4,

"step_complexity": 4,

"ambiguity": 5
}I
"flags": ["nonlinear_reasoning", "semantic_ambiguity"],
"rationale": "High conceptual difficulty due to multi-layered
metaphor interpretation requiring philosophy background.Moderate
linguistic complexity offset by implicit cultural references."

\ J/

® Prompt for evaluation

You are a grading expert. Judge whether the final answers given by the candidates below are consistent
with the reference answers, i.e., whether the candidates answered correctly. Provide a single integer
score from 0 to 10.

Scoring Guide:

9-10: Fully correct, detailed, and clearly structured. The prediction matches the reference not
only in meaning, but also in technical detail, terminology, and step-by-step structure. Only
assign this score if the answer is nearly indistinguishable from the reference.

17
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-
7-8: Covers all key points and includes all key technical details, but may have slight simplifica-
tions, structural looseness, or phrasing issues. The prediction is still technically sound and

semantically aligned.

5-6: Covers nearly all major technical points with acceptable clarity and structure. The prediction
may slightly oversimplify or omit minor supporting details, but the core reasoning is intact.

3—4: Incomplete or partially correct. Misses one or more core concepts or steps, or is expressed
in a vague, confusing, or disorganized way.

1-2: Weak or flawed answer. Contains major factual errors, misunderstands the question, or
mixes unrelated ideas. May reference a few relevant terms, but lacks meaningful explanation
or structure.

0: Fundamentally incorrect or completely off-topic. No meaningful alignment with the ref-
erence content, or content is nonsensical or missing.
Output Format:
* Respond with a single integer from 0 to 10.
* Do not include any explanation or additional text.
Special Instructions:
¢ The model prediction may contain the reasoning process; you should spot the final answer
from it.
* Do not re-answer the question yourself.
 Assign a high score only if the prediction matches the answer semantically and technically,
considering variations in format.
¢ Deduct points for missing key technical details or excessive generalizations. Even if the tone
is correct, factual or structural omissions should lead to a reduced score.
* Be strict with general or vague answers: If the prediction only provides a high-level overview
but omits key technical details, steps, or quantitative findings present in the reference, score
no higher than 6.
* Ignore minor differences in formatting, capitalization, or spacing.
Example Response: 7
Now start your task.
Question: {question}
Reference Answer: {answer}
Model Prediction: {prediction}
\

18




Under review as a conference paper at ICLR 2026

B ADDITIONAL DATASET STATISTICS

We report category, difficulty, and input length distributions for CS-50k (train) and CS-4k (test),
showing comparable coverage with the test set slightly skewed toward harder examples (Fig-

ures [6H3).

8.3% )
Sl 1569 Research domain (4167) 18.6% Research domain (337)
Previous methods (5756) Previous methods (466)
Existing challenges (3392) Existing challenges (274)
6.8%

6.8% Train Motivation (4768) Test Motivation (386)
Findings/Assumptions (585)
Methods (486)

Total: 50026 Findings/Assumptions (7226) Total: 4050
Methods (6004)
Experimental settings (9408) Experimental settings (762)
12.0% Experimental results (9305) 12.0% Experimental results (754)

(a) Category distribution (CS-50k / train) (b) Category distribution (CS-4k / test)

Figure 6: Category distributions for the training and test splits.
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Figure 7: Difficulty distributions for the training and test splits.
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Figure 8: Input length distributions for the training and test splits.

C TRAINING HYPERPARAMETERS

SFT We employ the LLaMA-Factory framework (Zheng et al.,[2024) for SFT, training the model
for three epochs and selecting the checkpoint with the lowest validation loss. A cosine learning rate
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schedule with a 10% warmup ratio is applied throughout training. Key hyperparameters, including
learning rate, batch size, and weight decay, are summarized in Table E}

Hyperparameter Value
Learning rate (LR) 1x107°
LR scheduler cosine
Warmup ratio 0.1

Batch size (per device) 4
Gradient accumulation steps 8

Epochs 3

Weight decay 0.01

Table 4: Hyperparameter settings for SFT training.

GRPO We adopt the VERL framework (Sheng et al., [2024) for GRPO training. The actor is
initialized from the SFT checkpoint, and rollouts are conducted using vVLLM with n = 6 sampled
responses per prompt. KL regularization is incorporated into the loss with a coefficient of fx; =
1073, Training is conducted for three epochs on a single node with 8 GPUs.

Table 5: Key hyperparameters for GRPO training using VERL.

Hyperparameter Value
Data Configuration

Max prompt length 1024
Max response length 4096
Algorithm Configuration

Advantage estimator grpo
KL coefficient (Skr) 1.0 x 1073
Seed 1
Worker: Actor Configuration

Global batch size 1024
Micro-batch (update, per device) 8
Mini-batch (per update) 16
Learning rate (actor) 1.0 x 107°
Optimizer Adam
LR warmup ratio 0.0
Worker: Rollout Configuration

Sampler backend vLLM
Rollout trajectories (n) 6
Temperature 1.0
Top-p 0.7
Tensor model parallel size 2
Trainer Configuration

Total epochs 3
Nodes 1
GPUs per node 8
Validation frequency (epochs) 5
Save frequency (epochs) 8
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