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ABSTRACT

Graph Neural Networks (GNNs) are powerful convolutional architectures that have
shown remarkable performance in various node-level and graph-level tasks. Despite
their success, the common belief is that the expressive power of standard GNNs
is limited and that they are at most as discriminative as the Weisfeiler-Lehman
(WL) algorithm. In this paper we argue the opposite and show that standard GNNs,
with anonymous inputs, produce more discriminative representations than the
WL algorithm. In this direction, we derive an alternative analysis that employs
linear algebraic tools and characterize the representational power of GNNs with
respect to the eigenvalue decomposition of the graph operators. We prove that
GNNs are able to generate distinctive outputs from white uninformative inputs,
for, at least, all graphs that have different eigenvalues. We also show that simple
convolutional architectures with white inputs, produce features that count the closed
paths in the graph and are provably more expressive than the WL representations.
Thorough experimental analysis on graph isomorphism and graph classification
datasets corroborates our theoretical results and demonstrates the effectiveness of
the proposed approach.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged in the field of machine learning and artificial intel-
ligence as powerful tools that process network structures and network data. Their convolutional
architecture allows them to inherit all the favorable properties of convolutional neural networks
(CNNs), while they also exploit the graph structure. Despite their remarkable performance, the
success of GNNs is still to be demystified. A lot of research has been conducted to theoretically
support the experimental developments, focusing on understanding the functionality of GNNs and
analyzing their properties. In particular, permutation invariance-equivariance (Maron et al., 2018),
stability to perturbations (Gama et al., 2020) and transferability (Ruiz et al., 2020a; Levie et al., 2021)
are properties tantamount to the success of the GNNs.

Lately, the research focus has been shifted towards analyzing the expressive power of GNNs, since
their universality depends on their ability to produce different outputs for different graphs. The
common belief is that standard anonymous GNNs have limited expressive power (Xu et al., 2019) and
that it is upper bounded by the expressive power of the Weisfeiler-Lehman (WL) algorithm (Weisfeiler
& Leman, 1968). This induced increased research activity towards building more expressive GNNs
by either increasing their complexity, or employ independent graph algorithms to design expressive
inputs. In this work we argue the opposite. We prove that standard anonymous graph convolutional
structures are able to generate more expressive representations than the WL algorithm. Therefore,
resorting to handcrafted features or complex GNNs to break the WL limits is not necessary.

Our work is motivated by the following research problem:

Problem definition: Given a pair of different graphs G, Ĝ and anonymous inputs X, X̂; is there a
GNN ϕ with parameter tensor H such that ϕ (X;G,H) , ϕ

(
X̂; Ĝ,H

)
are nonisomorphic?

As anonymous inputs, we define inputs that are identity and structure agnostic, i.e., they cannot
distinguish graphs or nodes of the graph before processing. Why anonymous? Because if the inputs
are discriminative prior to processing, concrete conclusions on the discriminative power of GNNs,
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cannot be derived. Analyzing GNNs with powerful input features only indicates whether GNNs will
maintain or ignore valuable information, not if they can produce this information. This study does
not underestimate the importance of drawing powerful input features, which is crucial for most tasks.
However, it underscores the need for an alternative analysis.

This paper gives an affirmative answer to the above research question. Our analysis utilizes spectral
decomposition tools to show that the source of the WL test as a limit for the expressive power of
GNNs is the use of the all-one input. This is expected, since analyzing the representational capacity
of ϕ (X;G,H) by studying ϕ (1;G,H) cannot lead to definitive conclusions. For this reason we
study GNNs with white random inputs and show that they generate discriminative outputs, for at least
all graphs with different eigenvalues. In particular, we prove that ϕ (X;G,H), ϕ

(
X; Ĝ,H

)
belong

to nonisomorphic distributions, even though the input X is drawn from the same distribution. This
implies that standard anonymous GNNs are provably more expressive than the WL algorithm as they
produce discriminative representations for graphs that fail the WL test, yet have different eigenvalues.
In fact, having different eigenvalues is a very mild condition that is rarely not met in practice.

From a practical viewpoint, using white noise as an input to a GNN may be computationally
intractable. We show, however, that there are two alternative architectures that are equivalent to a
GNN with white random inputs: (i) A GNN that operates on graph representations without requiring
any input. (ii) A GNN in which input features are the number of closed paths each node participates.
Note that these features can be viewed as the output of the first GNN layer, i.e., they can be generated
from a GNN. These results also imply that ϕ (X;G,H) is more powerful than the WL algorithm
even if we restrict out attention to countable inputs X . Our numerical results show that our proposed
GNNs are better anonymous discriminators in some graph classification problems.

Our contribution is summarized as follows:

(C1) We provide a meaningful definition to characterize the representational power of GNNs and
develop spectral decomposition tools to study their expressivity.

(C2) We explain that the WL algorithm is not the real limit on the expressive power of anonymous
GNNs, but it is associated with the all-one vector as an input.

(C3) We study standard GNNs with white random inputs and show that they can produce discrim-
inative representations for any pair of graphs with different eigenvalues. This implies that
standard anonymous GNNs are provably more expressive than the WL algorithm.

(C4) We prove that standard GNNs with white random inputs can count the number of closed paths
of each node, which enables the design of equivalent architectures that circumvent the use of
random input features.

(C5) We demonstrate the effectiveness of using GNNs with white random inputs, or the proposed
alternatives, vs all-one inputs in graph isomorphism and graph classification datasets.

Related work: The first work to study the approximation properties of the GNNs was by (Scarselli
et al., 2008a). Along the same lines (Maron et al., 2019b; Keriven & Peyré, 2019) discuss the
universality of GNNs for permutation invariant or equivariant functions. Then the scientific attention
focused on the ability of GNNs to distinguish between nonisomorphic graphs. The works of (Morris
et al., 2019; Xu et al., 2019) place the expressive power of GNNs with respect to that of the WL
algorithm and prompted various follow-up works in the area. Specifically, (Abboud et al., 2021;
Sato et al., 2021) use random features to increase the separation capabilities of GNNs, whereas
(Tahmasebi et al., 2020; You et al., 2021; Bouritsas et al., 2022) compute features related to the
subgraph information. (Ishiguro et al., 2020) uses label features in WL settings and (Corso et al.,
2020; Beaini et al., 2021) use multiple and directional aggregators, respectively, to increase the GNN
expressivity. GNNs that use k-tuple and k-subgraph information have been designed by (Maron
et al., 2019a; Murphy et al., 2019; Azizian et al., 2020; Morris et al., 2020; Geerts & Reutter, 2021;
Giusti et al., 2022). These works use a tensor framework, and employ more expressive structures
compared to simple GNNs. However, they are usually computationally heavier to implement and
also prone to overfitting. Moreover, (Balcilar et al., 2021) design convolutions in the spectral domain
to produce powerful GNNs, whereas (Loukas, 2019) studies the learning capabilities of a GNN with
respect to its width and depth. Finally, (Chen et al., 2019) reveal a connection between the universal
approximation and the capacity capabilities of GNNs.

2



2 ON THE EXPRESSIVE POWER OF GNNS

One of the most influential works in GNN expressivity by (Xu et al., 2019), compares the representa-
tional capabilities of GNNs with those of the WL algorithm (color refinement algorithm). The claim
is that GNNs are at most as powerful as the WL algorithm in distinguishing between different graphs.
This is indeed true when the input to the GNN is the constant (all-one) vector.

A question that naturally arises is ‘Why limit attention to input features x = 1?’. The constant vector
might be an obvious choice to study anonymous GNNs, however it represents only a small subset of
GNN inputs. As we show in the next session, it is also associated with certain spectral limitations,
that prohibit a rigorous examination of the GNN representational power. The need for further analysis
with general input signals is therefore clear.

To this end, consider graphs G, Ĝ with graph operators S, Ŝ ∈ {0, 1}N×N . In this paper we
focus on graph adjacencies, but any graph operators can be used instead. We assume that S, Ŝ

are both symmetric and thus admit eigenvalue decompositions S = UΛUT , Ŝ = ÛΛ̂ÛT , where
U , Û are orthogonal matrices containing the eigenvectors, and Λ, Λ̂ are the diagonal matrices of
corresponding eigenvalues. G, Ĝ are nonisomorphic if and only if there is no permutation matrix Π

such that S = ΠŜΠT .

A broad class of nonisomorphic graphs have different eigenvalues. To be more precise, let S , Ŝ be the
set containing the unique eigenvalues of S and Ŝ with multiplicities denoted by mλ, m̂λ respectively.
The following assumption is heavily used in the main part of this paper:

Assumption 2.1 S, Ŝ have different eigenvalues, i.e., there exists λ ∈ S, such that λ /∈ Ŝ or
mλ ̸= m̂λ.

When Assumption 2.1 holds, G, Ĝ are always nonisomorphic. Assumption 2.1 is not restrictive. Real
nonisomorphic graphs have different eigenvalues with very high probability (Haemers & Spence,
2004). Corner cases where Assumption 2.1 doesn’t hold are studied in Appendix H. First, we consider
GNNs that are constructed by the following modules, corresponding to the neurons of a typical
(non-graph) neural network:

Y = σ

(
K−1∑
k=0

SkXHk

)
. (1)

The module in (1) is composed by a graph filter of length K followed by a nonlinearity σ(·). Hk

represents the filter parameters and can be a matrix, a vector, or a scalar. In order to characterize the
representational power of GNNs with general input X ∈ RN×D, we provide the following theorem:

Theorem 2.2 Let G, Ĝ be nonisomorphic graphs with graph signals X, X̂ . Also let Vλ, V̂λ be the
eigenspaces corresponding to λ in S, Ŝ respectivelly. There exist a GNN ϕ (X;G,H) that produces
nonisomorphic representations for G and Ĝ if:

1. There does not exist permutation matrix Π such that X = ΠX̂ , or

2. There exists λ ∈ S, such that λ /∈ Ŝ and XTVλ ̸= 0, or

3. There exists λ ∈ S, Ŝ, such that mλ ̸= m̂λ and XT
(
Vλ ⊕ V̂λ

)
̸= 0.1

Theorem 2.2 highlights the importance of the input X in the representational capabilities of a GNN.
For problems in which inputs are given, it states that a GNN can distinguish between nonisomorphic
graphs if they have different graph signals or their signals are not orthogonal to the eigenspace
associated with the eigenvalue that differentiates them. In problems where inputs are not available,
Theorem 2.2 provides guidelines on how to design input X from the graph.

Theorem 2.2 also indicates that the limitations of GNNs discussed in (Xu et al., 2019) are not due to
the architecture but they are limitations associated with the input. In particular, x = 1 fails to satisfy
condition 1, while it is also prone to fail condition 2 and 3, since the majority of real graphs have
eigenvectors that are orthogonal to 1. This observation is the impetus to study GNNs with white

1We define Vλ ⊕ V̂λ := {u+w | u ∈ Vλ;w ∈ V̂λ;u,w /∈ Vλ

⋂
V̂λ} as the exclusive sum of subspaces
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random inputs. White inputs are unonymous (they carry no information on the graphs), they model a
large set of GNN inputs and always satisfy the conditions of Theorem 2.2. Furthermore, as we show
in section 5, GNNs with random inputs can generate deterministic, countable features:

X =
[
diag

(
S0
)
, diag

(
S1
)
, diag

(
S2
)
, . . . , diag

(
SD−1

)]
∈ NN×D

0 , (2)
that satisfy the conditions of Theorem 2.2. A nice interpretation of this result, given in section 5,
connects X in (2) with high-order subgraphs and shows that GNNs can count closed paths.

3 LIMITATIONS OF GNNS WITH x = 1 INPUT AND THE WL ALGORITHM

Using Theorem 2.2 we can explain why feeding a GNN with x = 1 is limiting. The limitations
associated with input x = 1 are also highly related to the limitations of the WL algorithm. The
problem appears in graphs that admit spectral decompositions with eigenvectors that are orthogonal
to 1 (they sum up to zero). According to Theorem 2.2, if two graphs are the same except eigenvalues
corresponding to eigenvectors that sum up to zero, GNNs with constant inputs are likely to produce
isomorphic representations for the two graphs. To see this consider the graphs G, Ĝ with spectral
decompositions:

S = UΛUT = λ1u1u
T
1 + λ2u2u

T
2 + λ3u3u

T
3 , (3)

Ŝ = ÛΛ̂ÛT = λ1u1u
T
1 + λ2u2u

T
2 + λ̂3u3u

T
3 , (4)

where λ3 ̸= λ̂3. If u3 is orthogonal to 1 then:

Sk1 = UΛkUT1 = λk
1u1u

T
1 1+ λk

2u2u
T
2 1+ λk

3u3u
T
3 1 = λk

1

(
uT
1 1
)
u1 + λk

2

(
uT
2 1
)
u2 (5)

Ŝk1 = ÛΛ̂kÛT1 = λk
1u1u

T
1 1+ λk

2u2u
T
2 1+ λ̂k

3u3u
T
3 1 = λk

1

(
uT
1 1
)
u1 + λk

2

(
uT
2 1
)
u2 (6)

The diffused information in GNNs with this naive input is related to Sk1 and therefore in the above
example the decisive information that differentiates the two graphs is highly likely to be omitted.

Graphs with eigenvectors orthogonal to 1 can also affect the performance of the WL algorithm. In the
absence of features the WL algorithm is initialized with x = S1, which is propagated through the
nodes iteratively. In graphs with eigenvectors orthogonal to 1, the propagated degrees have suffered
critical information loss in the initialization, which in certain graph structures is impossible to recover,
as WL iterations progress. Further analysis on this subject can be found in Appendix C.
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Figure 1: WL indistinguishable graphs.

Classic examples of graphs with different
eigenvalues, that the WL algorithm and
GNNs with x = 1 input cannot tell apart,
are presented in Figs. 1, 2. In particular,
these approaches decide that G and Ĝ in
Fig. 1 and G and Ĝ in Fig. 2 are the same.
This is due to the fact that these graphs con-
tain eigenvectors that are orthogonal to 1.
The case of Fig. 1 is straightforward. All
the nodes of G and Ĝ have the same degree, i.e., x = 1 is an eigenvector in both graphs and thus
orthogonal to all the remaining eigenvectors. As a result, the node degrees (which are the same for
both graphs) are the only information that the WL algorithm and GNNs with 1 input are able to
process. The case of Fig. 2 is more complicated; x = 1 is not an eigenvector in any of the graphs,
but it is orthogonal to the eigenvectors corresponding to the eigenvalues that differentiate the two
graphs. Consequently, the operation S1 negates vital information and the two approaches fail.
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Figure 2: WL indistinguishable graphs

Detailed information about the eigenvalues
and eigenvectors of the graphs in Figs. 1, 2
can be found in Tables 8, 9 of Appendix
K. This information corroborates the issues
discussed in the previous paragraph. As
noted earlier and will be explained in more
detail in the upcoming sections, GNNs are
discriminative enough to overcome these
issues and provide nonisomorphic repre-
sentation for G and Ĝ in both Figs. 1, 2.
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Stochastic GNN block

x z =

K−1∑
k=0

hk S
k
x y = E

[
z
2
]

(a) Stochastic GNN module

Diagonal GNN block

Z =

2K−2∑
k=0

hk S
k y =diag

[
Z

]

(b) equivalent model

Figure 3: GNN with random Gaussian input

4 FEEDING THE GNN WITH RANDOM INPUT

In this section we study the representational power of GNNs, by feeding them with random white
inputs. Our analysis overcomes the GNN limitations associated with x = 1 and derives rigorous
conclusions. Consider the GNN module in (1) where Hk is a scalar, i.e., y = σ

(∑K−1
k=0 hkS

kx
)

.
Before choosing an appropriate nonlinearity, let us focus on the linear convolutional graph filter of
length K:

z =
K−1∑
k=0

hkS
kx, (7)

which we load with white random input x ∈ RN , i.e., E [x] = 0, E
[
xxT

]
= σ2I . Since x is

a zero-mean random vector, z is also a random vector with E [z] = 0. Thus, the expected value
provides no information about the network. Measuring the covariance, on the other hand, yields:

cov [z] = E
[
zzT

]
= E

[
K−1∑
k=0

hkS
kxxT

K−1∑
m=0

hmSmT

]
=

K−1∑
k=0

hkS
kE
[
xxT

]K−1∑
m=0

hmSm

= σ2
K−1∑
k=0

hkS
k
K−1∑
m=0

hmSm = σ2
K−1∑
k=0

K−1∑
m=0

hkhmSkSm =

2K−2∑
k=0

h′
kS

k, (8)

where h′
k = σ2

∑
m,l hmhl, such that m + l = k. The results of equation (8) are noteworthy. We

have shown that the covariance of a graph filter with random white input corresponds to a different
graph filter with no input. Furthermore, the resulting filter has length 2K − 1, whereas the original
filter has length K. In other words the nonlinearity introduced by the covariance computation enables
the filter to gather information from a broader neighborhood compared to the initial filter. However,
there is a caveat that the degrees of freedom for h′ are K and not 2K − 1. Further discussion on the
subject can be found in Appendix D.

In practice we want to associate the output of a GNN with a feature for each node that is permutation
equivariant. This is not the case with the rows or columns of the covariance matrix in (8). Therefore
we choose σ(·) to be the variance of each node i.e.,

y = σ (z) = var [z] = E
[
z2
]
= diag (cov [z]) = diag

(
2K−2∑
k=0

h′
kS

k

)
=

2K−2∑
k=0

h′
kdiag

(
Sk
)
. (9)

The stochastic GNN module, defined by the linear filter in (7) and the variance operator is illustrated
in Fig. 3a. Regarding its expressive power, we present the following theorem:

Theorem 4.1 Let G, Ĝ be nonisomorphic graphs. If Assumption 2.1 holds, there exists a GNN with
modules as in Fig. 3a that produces nonisomorphic representations for the two graphs.

The implications of Theorem 4.1 are noteworthy. A GNN ϕ (X;G,H) with white input produces
outputs that are drawn from different distributions for all graphs with different eigenvalues. Further-
more, measuring the variance produces equivariant node representations that can separate all graphs
with different eigenvalues.

Proposition 4.1 The GNN module in Fig. 3a with white random input is equivalent to the GNN
module in Fig. 3b with no input up to degrees of freedom (dependencies) in the filter parameters.

5



The proof of Proposition 4.1 is by the definition (equation (9)) of the GNN module in Fig. 3b. The
claim is eminent. It proves equivalence of two GNN architectures; a standard graph filter with white
input followed by a variance operator with a deterministic graph filter followed by a diagonal operator.
Depending on the problem and the variance of the system one has the option to choose either of them.
Further discussion on the stochastic approach can be found in Appendix D.

5 THE DIAGONAL MODULE

Proposition 4.1 proved the equivalence of the two GNN modules in Fig. 3. In this section we focus
on the module in 3b and analyze its unique properties. To be more precise, we study the following
diagonal GNN module:

y = σ

(
K−1∑
k=0

hkdiag
(
Sk
))

, (10)

Note that the module in (10) is not exactly the same as the one in Fig. 3b, since a nonlineatity is
added and the filter is of length K. As an example, we test the proposed diagonal module on the
graphs of Figs. 1, 2, and present the output y of (10) with parameters (h0, h1, h2, h3, h4, h5) =
(10, 1,− 1

2 ,
1
3 ,−

1
4 ,

1
5 ) and ReLU nonlinearity, in Table 1.

Table 1: Outputs y of G and ŷ of Ĝ of the proposed diagonal module for the graphs in Figs. 1, 2.

GRAPH
NODE

A B C D E F G H I J

FIG. 1 y 10.42 10.42 10.42 10.42 10.42 10.42 - - - -
ŷ 1.75 1.75 1.75 1.75 1.75 1.75 - - - -

FIG. 2 y 7.5 7.5 7.25 7.25 5.25 5.25 7.25 7.25 7.5 7.5
ŷ 7.9 7.9 7.65 7.65 5.65 5.65 7.65 7.65 7.9 7.9

We observe that the output (10) of the proposed diagonal module produces embeddings that are
different for the nodes of G and Ĝ in both Figs. 1, 2. Therefore, there does not exist permutation
matrix Π such that y = Πŷ and the proposed architecture is able to tell G and Ĝ apart in both Figs.
1, 2. This is in stark contrast to GNNs with x = 1 input and the WL algorithm that fail to distinguish
between these graphs (as discussed in section 3). We now study the diagonal module in the frequency
domain to analyse the representational capabilities of standard GNNs:

y = σ

(
K−1∑
k=0

hkdiag

(
N∑

n=1

λn
kunu

T
n

))
= σ

(
K−1∑
k=0

N∑
n=1

hkλ
k
n|un|2

)
= σ

(
N∑

n=1

h̃ (λn) |un|2
)
,

(11)

where h̃ (λn) =
∑K−1

k=0 hkλ
k
n is the frequency response of the graph filter in (7) at λn. In simple

words, the frequency representation of the proposed diagonal module, or standard GNNs with white
input, depends on the absolute values of the graph adjacency eigenvectors. On the contrary, standard
GNNs with constant inputs admit a different frequency representation:

y1 = σ

(
K−1∑
k=0

hkS
k1

)
= σ

(
K−1∑
k=0

N∑
n=1

hkλn
kunu

T
n1

)
= σ

(
N∑

n=1

h̃ (λn)u
T
n1un

)
, (12)

As we can see both outputs y, y1 are functions of the graph eigenvectors. The question that arises
is which function, |un| or

(
uT
n1
)
un, results in more expressive GNNs. The naive answer is that

depending on the graph, there is a trade-off between the information loss caused by |un| or
(
uT
n1
)
un.

However, after adding a second layer, GNNs with white inputs are always more powerful than GNNs
initialized by 1. This will be explained in more detail in the next section.

A closer look at equations (10) and (11), reveals further insights regarding standard GNNs with
anonymous inputs. In particular,
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Type-1 GNN block

Z =

K−1∑
k=0

hk S
k y = σ

[
diag

[
Z

] ]

(a) Type-1 GNN module

Type-2 GNN block

X Z =

K−1∑
k=0

S
k
XHk Y = σ

[
Z

]

(b) Type-2 GNN module

Figure 4: Proposed GNN modules

Theorem 5.1 A standard GNN ϕ (X;G,H) as defined in (1) can count all the closed paths each
node participates, if initialized with white input.

The proof is the combination of Theorem 4.1 and equation (10). In particular, a standard anonymous
GNN can compute the following vector representations:

dk = diag
(
Sk
)
=

N∑
n=1

λk
n|un|2, (13)

that count the number of k− length closed paths of each node. For instance, when k = 2, dk indicates
the degree of each node, whereas for k = 3, it counts the number of triangles each node is involved
in, multiplied by a constant factor. For k = 4, dk holds information about the degrees of 1−hop and
2−hop neighbors as well as the 4−th order cycles. Similar observations are derived by considering
larger values of k. Graph adjacency diagonals are not only associated with k−hop neighbor degrees
but also with motifs that are present in the graph. This observation becomes even more valuable,
if we consider the significance of subgraph mining in graph theory (Kuramochi & Karypis, 2001;
Danisch et al., 2018). Our final observation is that, the k−th order closed paths are associated with the
absolute values of the adjacency eigenvectors |un|, whereas degrees are connected with

(
uT
n1
)
un.

The following theorem characterizes the expressive power of GNNs with modules as in (10):

Theorem 5.2 Let G, Ĝ be nonisomorphic graphs. If Assumption 2.1 holds, there exists a GNN with
diagonal modules as in (10) that produces distinct representations for G, Ĝ.

6 DESIGNING POWERFUL GNN ARCHITECTURES

After analyzing GNNs with white inputs and introducing the GNN module in (10), it is time to build
practical powerful architectures. The modules we employ to build the proposed GNN architecture are
presented in Fig. 4. Regarding their functionality we provide the following result:

Proposition 6.1 A GNN designed with the diagonal modules of Fig. 4a (eq. (10)) in the input layer
is equivalent to a standard GNN designed with the modules of Fig. 4b in the input layer, if the input
to the modules of Fig. 4b (eq. (1)) is designed according to:

X =
[
diag

(
S0
)
, diag

(
S1
)
, diag

(
S2
)
, . . . , diag

(
SD−1

)]
. (14)

The claim of Proposition 6.1 is fundamental and relates a standard GNN with white input to a
standard GNN with countable input defined by (31). Specifically, combining propositions 4.1 and
6.1 yields a direct connection between the three considered architectures; standard GNNs with white
input and variance nonlinearity, GNNs with no input and diagonal operator, and standard GNNs
with input as in (14). Guided by these findings we design the GNN architectures presented in Fig.
5. The architecture on the left uses one type of GNN blocks (type-2) and the input is designed by
equation (14). Furthermore, it is a symmetric architecture and admits all the favorable properties of
symmetric designs. On the other hand, the architecture on the right uses a combination of type-1 and
type-2 GNN blocks and designing an input is not necessary. Although the design is not symmetric,
it offers reduced number of trainable parameters and reuse of first layer features, which has been
observed to benefit convolutional architectures. The expressive power of the proposed architectures
is demonstrated in the following theorem:
Theorem 6.1 Let G, Ĝ be nonisomorphic graphs with graph signals X, X̂ designed according to
(14). If Assumption 2.1 holds, then the proposed GNNs in Fig. 5 can tell the two graphs apart.
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(a) Type-2 architecture (b) Type-1 and type-2 architecture

Figure 5: Proposed GNN architectures

Corollary 6.2 The proposed architectures in Fig. 5 are strictly more expressive compared to GNNs
with x = 1 or x = S1 inputs.

Corollary 6.2 follows from Theorem 6.1 and the fact that both diag
(
S0
)
= 1, diag

(
S2
)
= S1 are

included in the proposed input X , defined in (14).

Overall, our proposed analysis proves that standard GNNs ϕ (X;G,H) are more powerful than the
WL algorithm for both countable and continuous inputs.

7 SIMULATIONS

In this section we test the effect of using anonymous all-one inputs vs anonymous random inputs
on the expressivity of GNNs. The task of interest is graph classification. In particular, we use graph
isomorphism and graph classification datasets and train the standard convolutional GNN in (1) and
GIN (Xu et al., 2019). GIN initialized with x = 1 is denoted as GIN1 and GIN with random input
is denoted as GINplus. For the standard GNN model we only test random inputs. To avoid practical
issues associated with random inputs we use the equivalent model of section 6 instead, i.e., we
intialize both standard convolutional GNN and GIN according to equation (14).

7.1 THE CSL DATASET

Our first experiment involves the Circular Skip Link (CSL) dataset, which was introduced in (Mur-
phy et al., 2019) to test the expressiveness of GNNs; it is the golden standard when it comes to
benchmarking GNNs for isomorphism (Dwivedi et al., 2020). CSL is a symmetric graph dataset. It
contains 150 4-regular graphs, where the edges form a cycle and contain skip-links between nodes. A
schematic representation of the CSL graphs can be found in Appendix K. Each graph consists of 41
nodes and 164 edges and belongs to one of 10 classes. All the nodes have degree 4 and thus x = 1 is
an eigenvector of every graph and orthogonal to all the remaining eigenvectors. As a result the degree
vector is uninformative and so is any message passing operation of the degree.

GNNs initialized with x = 1 and the WL algorithm fail to provide any essential information
for this set of graphs and the classification task is completely random, as shown in Table 4. The
proposed GNN architectures, on the other hand, have no issue in dealing with this dataset. In
particular a single diagonal GNN module with parameters (h0, h1, h2, h3, h4, h5, h6, h7, h8, h9) =
(0, 1,− 1

2 ,
1
3 ,−

1
4 ,

1
5 ,−

1
6 ,

1
7 ,−

1
8 ,

1
9 ) and σ(·) being the linear function, is able to classify these graphs

with 100% accuracy. To see this, we present in Table 2 the output 1Ty for every class, where y is
defined in (10) with the aforementioned parameters. The output is the same for each graph in the
same class but different for graphs that belong to different classes. Therefore, perfect classification
accuracy is achieved by passing the GNN output to a simple linear classifier or even a linear
assignment algorithm.

Table 2: GNN output y for every class of the CSL graphs.

CLASS
0 1 2 3 4 5 6 7 8 9

73616 -45968 1059 -30593 -25345 -26001 -17555 -28543 16065 -21163
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7.2 SOCIAL AND BIOLOGICAL NETWORKS

Next, we test the performance of the proposed architecture with standard social, chemical and
bioinformatics graph classification datasets (Errica et al., 2019). The details of each dataset can be
found in Table 3. To perform the graph classification task, we train a GNN with 4 layers, each layer
consisting of the same number of neurons. The input to each GNN is designed by equation (14) with
K = 10 and we also pass the k−th degree vector. Apart from feeding the output of each layer to
the next layer, we also apply a readout function that performs graph pooling. The graph pooling
layer generates a global graph embedding from the node representations and passes it to a linear
classifier. The nonlinearity is chosen to be the ReLU. An illustration of the used architecture, as well
as a detailed description of the experiments, is presented in Appendix K.

To test the performance of the anonymous architectures we divide each dataset into 50− 50 training-
testing splits and perform 10-fold cross validation. We measure the micro F1 and macro F1 score for
each epoch and present the epoch with the best average result among the 10 folds. The mean and
standard deviation of the testing results over 10 shuffles are presented in Table 4. In Table 4 we ob-

Table 3: Datasets

Dataset # Graphs Average # Vertices Average # Edges # Classes Network Type

CSL 150 41 164 10 Circulant
IMDBBINARY 1,000 20 193 2 Social
IMDBMULTI 1,500 13 132 3 Social

REDDITBINNARY 2000 430 498 2 Social
REDDITMULTI 5000 509 595 5 Social

PTC 344 26 52 3 Bioinformatic
PROTEINS 1,113 39 146 2 Bioinformatic
MUTAG 188 18 20 2 Chemical
NCI1 4110 39 73 2 Chemical

Table 4: Average testing score and standard deviation over 10 shuffles

Proposed GIN GINplus (proposed+GIN)
Dataset micro F1 macro F1 micro F1 macro F1 micro F1 macro F1

CSL 100± 0 100± 0 10± 3.3 1.8± 0.6 100± 0 100± 0
IMDBBINARY 71.7± 2.5 71.3± 2.7 74.7± 3.2 74.6± 3.2 71.6± 3.4 71± 3.8
IMDBMULTI 46.1± 2.8 44.2± 3.2 50.3± 2.8 48± 3.4 48.6± 2.9 46.1± 4.2

REDDITBINARY 87.2± 4.1 87.1± 4.3 81.6± 5.6 81.5± 5.7 89.8± 2.3 89.7± 2.3
REDDITMULTI 54± 2.2 52.4± 2.1 52.4± 2.4 50.9± 2.4 55± 1.5 53.6± 1.7

PTC 63.6± 4.9 61.4± 6.9 65.7± 8.8 65.1± 9.1 62.5± 5.1 61.4± 5.5
PROTEINS 74.2± 4.2 73± 4 74± 4.6 72.3± 4.5 74.3± 4.8 73.1± 4.5
MUTAG 89.3± 7.3 87.2± 9.3 89.8± 7.6 88.6± 8.8 89.8± 8 88.7± 8.6
NCI1 74.5± 2.1 74.3± 2.1 77.2± 1.9 77.2± 1.9 76.3± 3.7 76.2± 3.8

serve that the proposed architecture and GINplus markedly outperform GIN1 in the REDDITBINARY
dataset, and also show notable improvement in the REDDITMULTI dataset. GIN1, on the other hand,
has a 3% advantage in the IMDBBINARY dataset, whereas in the remaining datasets the performances
of the competing algorithms are statistically similar. The latter can be explained, since the vital
classification components, of these datasets, are not orthogonal to x = 1 and GIN1 is not undergoing
critical information loss. Overall, we conclude that properly designed GNNs, as the proposed and
GINplus can not only demonstrate remarkable performance in graph classification tasks, but can
also handle pathological datasets such as the CSL. This is an indicator on the importance of the
representational properties. However, what is equally important is generalization capability, data
handling and optimization, which we do not study in this paper.

8 CONCLUSION

In this paper we studied the expressive power of GNNs with spectral decomposition tools. We showed
that, contrary to common belief, the WL algorithm is not the real limit and proved that anonymous
GNNs can distinguish between any graphs with different eigenvalues. Furthermore, we explained
the limitations of GNNs with all-one inputs and designed GNN architectures that overcome these
limitations. Experiments with graph isomorphism and graph classification datasets demonstrated
the validity of the proposed approach. With this work we move one step closer to understanding the
properties of GNNs and analyzing their functionality.
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A PRELIMINARIES

Networks are naturally represented by graphs G := (V, E), where V = {1, . . . , N} is the set of
vertices (nodes) and E = {(v, u)} are the edges between pairs of nodes. The 1-hop neighborhood
N (v) of node v is the set of nodes u ∈ V that satisfy (u, v) ∈ E . A graph can also be modeled by
a Graph Shift Operator (GSO) S ∈ RN×N , where S(i, j) quantifies the relation between node i
and node j and N = |V|. Popular choices of the GSO is the graph adjacency, the graph Laplacian
or weighted versions of them. The nodes of the graph are often associated with graphs signals
X ∈ RN×D, also known as node attributes, where D is the dimension of each graph signal (feature
dimension).
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A.1 GRAPH NEURAL NETWORKS (GNNS)

A graph convolution is defined as:

z =

K−1∑
k=0

hkS
kx, (15)

where H (S) =
∑K−1

k=0 hkS
k is a linear filter of length K and x, z ∈ RN are the input and output

of the filter respectively. Let S = UΛUT , be the eigenvalue decomposition of S. Then:

z =

K−1∑
k=0

hkUΛkUTx (16)

UTz =

K−1∑
k=0

hkΛ
kUTx (17)

z̃ =

K−1∑
k=0

hkΛ
kx̃, (18)

where x̃, z̃ are the frequency representations of x, z respectively. The frequency representation of
the graph filter is H̃ (Λ) =

∑K−1
k=0 hkΛ

k and can also be written as:

H̃ (λi) =

K−1∑
k=0

hkλ
k
i . (19)

H̃ (λi) is a polynomial on λi and z̃i = H̃ (λi) x̃i. The simplest form of a Graph Neural Network
(GNN) is an array of graph filters followed by point-wise nonlinearities. The l-th layer of the GNN is
a graph perceptron, which is described by:

X(l+1) = σ

(
K−1∑
k=0

h
(l)
k SkX(l)

)
. (20)

Note that here we are using a recursive equation, whereas in the main paper we used X for input and
Y for output, to make things simple. Common choices of σ(·) are the Rectified Linear Unit (ReLU)
activation function, the Leaky ReLU or the hyperbolic tangent function.

A.2 MULTIPLE FEATURE GNNS

As mentioned earlier, the nodes of the graph are usually associated with a graph signal, which is
multidimensional, i.e., D > 1 and X(l) is a matrix. Although the architecture in (20) can also handle
multidimensional graph signals, multiple feature GNNs are commonly used, which are described by
the following recursion formula:

X(l+1) = σ

(
K−1∑
k=0

SkX(l)H
(l)
k

)
, (21)

where H
(l)
k ∈ RF×G represents a set of F ×G graph filters. Compared to the architecture in (20),

the MIMO GNN employs multiple filters instead of one, and the outputs of the filters are combined
to produce a layer output X(l+1) that has feature dimension equal to G.

A.3 NOTATION

Our notation is summarized in Table 5.

B RELATION TO OTHER ARCHITECTURES

GNNs have attracted significant attention and numerous architectures have been proposed. The first
GNNs of (Scarselli et al., 2008b; Kipf & Welling, 2016; Battaglia et al., 2016; Defferrard et al., 2016)
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Table 5: Overview of notation.

G ≜ Graph
V ≜ Set of nodes
E ≜ Set of edges
S ≜ N ×N graph operator
X ≜ GNN input; represents the N × D matrix of

node attributes (graph signal)
x ≜ GNN input; represents the vector of node at-

tributes (graph signal)
Z ≜ matrix output of a linear filter
z ≜ vector output of a linear filter
Y ≜ matrix output of a GNN module; Y = σ (Z)

y ≜ vector output of a GNN module; y = σ (z)

a ≜ scalar
a ≜ vector
A ≜ matrix

AT ≜ transpose of matrix A

Ak ≜ A[k, :]T , k-th row of matrix A

ak ≜ A[:, k], k-th column of matrix A

U ≜ eigenvector matrix
U [k, :] ≜ k-th row of U (row vector)
U [:, k] ≜ k-th column of U

uk ≜ k-th eigenvector, k-th column of U
I ≜ Identity matrix
1 ≜ vector of ones
0 ≜ vector or matrix of zeros

| · | ≜ point-wise absolute value(
m
n

)
≜ binomial coefficient

used simple convolutions in static data and graphs, whereas more sophisticated architectures utilize
a variety of attention mechanisms (Hamilton et al., 2017; Veličković et al., 2018; Liu et al., 2021).
Graph convolutional architectures have also been designed for time-varying graphs and signals. Some
of them exploit both the graph and the time structure (Hajiramezanali et al., 2019; Wang et al., 2021;
Hadou et al., 2021), while others employ recurrent architectures (Li et al., 2016; Seo et al., 2018;
Nicolicioiu et al., 2019; Ruiz et al., 2020b).

It is often the case that GNNs are presented in the literature using different definitions. The GNN by
(Kipf & Welling, 2016) for example is written as:

X(l+1) = σ
(
D−1/2 (S + I)D−1/2X(l)H(l)

)
= σ

(
D−1/2SD−1/2X(l)H(l) +D−1X(l)H(l)

)
,

(22)

where S ∈ {0, 1}N×N represents the graph adjacency, D is a diagonal matrix, with D[i, i] being the
degree of node i. The matrix D−1/2 (S + I)D−1/2 is also a GSO S′ and the formula in (22) can
be written as:

X(l+1) = σ
(
S′X(l)H(l)

)
, (23)

which is a special case of the MIMO GNN in (21), for K = 2. Another way that GNNs are
represented in the literature is via the following equations:

A(l)
v = AGGREGATE

({
X(l)

u : u ∈ N (v)
})

(24)

B(l)
v = COMBINE

(
X(l)

v ,A(l)
v

)
(25)

X(l+1)
v = σ

(
H(l)B(l)

v

)
(26)
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where X
(l)
v is the signal of node v in layer l and the v-th row of the feature matrix X(l), i.e.,

X(l) =


X

(l)T

1
...

X
(l)T

N

. Equivalently, A
(l)
v ,B

(l)
v are rows of matrices A(l), B(l) respectively and

represent signals associated with node v. The majority of the architectures based on the equations
(24)-(26) can be written as combinations of the GNN modules in (21). Different architectures employ
different functions for AGGREGATE and COMBINE. Popular choices of AGGREGATE functions
include the mean, the sum, pooling functions or LSTM functions. The COMBINE routine, on the
other hand, usually utilizes the concatanation or summation function. The settings that are mainly
used are summation function for AGGREGATE and concatenation for COMBINE. This is due to the
fact that summation-concatenation preserves the more information compared to other options Xu
et al. (2019). It is then easy to see that:

A(l) = SX(l) (27)

B(l) =
[
A(l),X(l)

]
(28)

X(l+1) = σ
(
B(l)H(l)

)
= σ

(
SX(l)H

(l)
1 +X(l)H

(l)
0

)
= σ

(
1∑

k=0

SkX(l)H
(l)
k

)
, (29)

where S is the graph adjacency and H(l) =

[
H

(l)
1

H
(l)
0

]
. Therefore, the GNN defined in (29) is a special

case of the GNN in (21), for K = 2.

Now consider the GNN defined in (29) that consists of K layers and σ(·) is the linear function for
the hidden layers and a nonlinear activation function in the output layer, i.e.,

X(l+1) = SX(l)H(l) +X(l)H(l) = (S + I)X(l)H(l), for l = {0, . . . ,K − 2} (30)

X(l+1) = σ
(
SX(l)H(l) +X(l)H(l)

)
, for l = K − 1 (31)

Then it holds that:

X(l+1) = (S + I)
l+1

X(0)H(1) · · ·H(l), for l = {0, . . . ,K − 2} (32)

X(l+1) = σ
(
SX(l)H(l) +X(l)H(l)

)
, for l = K − 1 (33)

As a result:

X(K) = σ
(
(S + I)

K
X(0)H(K−1) · · ·H(0)

)
= σ

(
K∑
l=0

SlX(0)H ′
l

)
, (34)

which again corresponds to the GNN in (21). The last equality holds since

(X + I)
K

=

K∑
l=0

(
K

l

)
SK−l, (35)

where
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient. Overall there is a direct connection between the
GNNs defined by the equations (24)-(26) and the GNNs defined by (21). Furthermore, apropriate
selection of GSO and nonlinearities in (21) with respect to the AGGREGATE and COMBINE functions
in (24)-(26) makes the described architectures equivalent.

C ASSOCIATING THE WL ALGORITHM WITH THE SPECTRAL DECOMPOSITION
OF A GRAPH

In section 3 we observed a connection between the limitations of the WL algorithm and graphs with
eigenvectors orthogonal to 1. The WL algorithm is initialized with either x = 1 or x = S1 and in
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the remaining iterations this information is propagated (diffused) through the nodes. In particular, at
iteration k of the WL algorithm, node i receives a multiset defined as:

T k
i :

{
xj ∈ T k

i |xj =
∑
n

λn

(
uT
n1
)
un(j), j ∈ N k

i

}
, (36)

where N k
i denotes the k−th neighborhood of node i. If there is one-to-one correspondence between

T k
i and Sk1(i) for all nodes i then the WL algorithm can be analyzed by building and comparing the

following features for each node:

X =
[
S1,S21, . . . ,SK1

]
(37)

In other words, if the summation operation is a proper hash function for a specific graph, the WL
algorithm is equivalent to the feature generation of (37). In that case, we can use the spectral
decomposition of S and the analysis of section 3 to characterize the limitations of the WL algorithm.
Then the WL algorithm admits the same limitations as the GNNs with x = 1 input and it omits the
information associated with eigenvectors that are orthogonal to 1 .

D THE STOCHASTIC GNN MODULE

In this section we elaborate more on the proposed stochastic GNN module in Fig. 3a. In order
to implement it, we can either use the equivalent model in Fig. 3b or we can design an empirical
variance model. In practice, the input to the empirical model is a matrix X ∈ RN×M where each
element is independently drawn from a Gaussian distribution with zero mean and unit variance and
M is the total number of samples. The output of the filter is Z =

∑
k hkS

kX ∈ RN×M and the
maximum likelihood estimate of the empirical covariance of Z takes the form:

Q =
1

M
ZZT . (38)

Then the GNN output can be written as:

y =diag (Q) =
1

M
diag

(
ZZT

)
=

1

M
Z21 (39)

The GNN module of the empirical variance model is illustrated in Fig. 6.

Empirical GNN block

X Z =

K−1∑
k=0

hk S
k

y = Z
2
1

Figure 6: Empirical variance GNN module

D.1 THE EFFECT OF SQUARE NONLINEARITY

Now we discuss the effect of square nonlinearity in the representation of nodes, introduced by the
variance operator. As mentioned in section 4 the nonlinearity added by the variance computation
allows the proposed GNN to gather information from farther neighborhoods compared to a linear
filter or the WL algorithm. To make things more concrete, consider the graph in Fig. 6 and let
K − 1 = 2, which corresponds to running the WL algorithm for 2 iterations and graph filters that
process S and S2.

In Table 7 we present the representations produced by the stochastic GNN and the WL algorithm for
each node of the graph in Fig. 6. In particular, we present two iterations of the WL algorithm and the
value that y in (39) converges to, for filter values (h0, h1, h2) = (3, 5, 7). We observe that the WL
algorithm represents nodes A and D with the same value, whereas the output of the stochastic GNN
is capable of separating these two nodes. Overall, the the nonlinearity in the variance operator allows
acquiring global information, which can be vital in the resulting node representation of the graph.
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F

D

B

C

E

A

Table 6: graph

Table 7: GNN vs WL algorithm on the graph in
Fig. 6 for K = 3.

NODE WL ALGORITHM GNN

A 2, 3 3 675
B 3, 2 2 3 1085
C 3, 2 3 3 1134
D 2, 3 3 633
E 1, 3 223
F 3, 1 2 3 896

D.2 COMPUTING THE COVARIANCE RECURSIVELY

In the main core of the paper we presented 3 almost eguivalent GNN modules; the stochastic module
with random Gaussian input, the diagonal module with no input and the standard GNN module with
input designed by (14). On the basis of the requirements and constraints of each task, we can employ
either of them in a GNN architecture. For instance, in applications where computing the adjacency
power diagonals is computationally prohibitive, we can use the empirical module in Fig. 6. The
drawback is that for systems with high variance, a significant number of samples will be required
for the output to converge. This can be mitigated by computing the output in (39) recursively. To be
more precise, let zm be the m−th column of the filter output Z and Q(M), y(M) be the empirical
covariance and output after obtaining M samples. Then the recursive equations can be written as:

Q(M) =
1

M

M∑
m=1

zmzT
m =

1

M

M−1∑
m=1

zmzT
m +

1

M
zMzT

M =
M − 1

M
Q(M−1) +

1

M
zMzT

M (40)

y(M) = diag
(
Q(M)

)
=

M − 1

M
diag

(
Q(M−1)

)
+

1

M
diag

(
zMzT

M

)
=

M − 1

M
y(M−1) +

1

M
|zM |2

(41)

Therefore, using y(M) =
M−1
M y(M−1) +

1
M |zM |2, allows for online computations and reduces the

required memory complexity.

E PROOF OF THEOREM 2.2

To prove Theorem 2.2, consider the GNN module in (1), where Hk is a scalar, that is,

Y = σ

(
K−1∑
k=0

hkS
kX

)
(42)

E.1 CASE 1: THERE DOES NOT EXIST PERMUTATION MATRIX Π SUCH THAT X = ΠX̂ .

Consider an 1− layer GNN with 2 neurons defined by h0 = 1, hi = 0, i ̸= 0 and h0 = −1, hi =
0, i ̸= 0, i.e.,

Y1 = σ (X) , Y2 = σ (−X) (43)
Summing up the output of the 2 neurons to produce the final GNN output yields Y = Y1 + Y2 = X
when the σ(·) =ReLU(·). As a result, the output of the GNN is the graph signal and since there does
not exist permutation matrix Π such that X = ΠX̂ , this GNN decides that G and Ĝ are different.

E.2 CASE 2: THERE EXISTS λ ∈ S , SUCH THAT λ /∈ Ŝ AND XTVλ ̸= 0.

Let S = {λ1, . . . , λp} be the set containing the unique (non-repeated) eigenvalues of S and Ŝ =

{λ̂1, . . . , λ̂r} be the set containing the unique eigenvalues of Ŝ. Note that the eigenvalues of S, Ŝ
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are not required to be distinct. Also, let {µ1, . . . , µq} be the set of all distinct eigenvalues of S and
Ŝ, i.e., µi ∈ S

⋃
Ŝ and µi ̸= µj , ∀ i ̸= j. Suppose that S, Ŝ have at least one different eigenvalue,

i.e., there exists λ ∈ S such that λ /∈ Ŝ.

Recall from Appendix A that a graph filter can be represented in the frequency domain by:

H̃ (λi) =

K−1∑
k=0

hkλ
k
i , (44)

Then: 
H̃ (µ1)

H̃ (µ2)
...

H̃ (µq)

 =


1 µ1 µ

2
1 . . . µ

K−1
1

1 µ2 µ
2
2 . . . µ

K−1
2

...
1 µq µ

2
q . . . µ

K−1
q




h0

h1

...
hK−1

 = Wh (45)

W is a Vandermonde matrix and when K = q the determinant of W takes the form:

det (W ) = Π1≤i<j≤q (µi − µj) (46)

Since the values µi are distinct, W has full column rank and there exists a graph filter H (·) with
unique parameters h that passes only the λ eigenvalue, i.e.,

H̃ (µi) =

{
1, if µi = λ
0, if µi ̸= λ

(47)

Under this parametrization, the filter H (·) takes the form H (S) = VλV
T
λ , where Vλ is the

eigenspace (orthogonal space of the eigenvectors) corresponding to λ, and H
(
Ŝ
)
= 0. Then the

output of the GNN, for the two graphs, takes the form:

Y = σ (H (S)X) = σ
(
VλV

T
λ X

)
(48)

Ŷ = σ
(
H
(
Ŝ
)
X̂
)
= 0 (49)

Under the assumption that XTVλ ̸= 0, we also have VλV
T
λ X ̸= 0. As a result σ

(
VλV

T
λ X

)
̸= 0,

there does not exist a permutation Π such that Y = ΠŶ and the proposed GNN decides that the two
graphs are different. Note σ

(
VλV

T
λ X

)
̸= 0 always holds when, for example, leaky ReLU is used

that allows both positive and negative values to pass. In the case where σ(·) =ReLU(·) the proof is
still valid as long as there is at least one positive value in VλV

T
λ X . In case VλV

T
λ X ≤ 0 we can

without loss of generality consider the filter:

H̃ (µi) =

{
−1, if µi = λ
0, if µi ̸= λ

(50)

that results in σ
(
−VλV

T
λ X

)
̸= 0.

E.3 CASE 3: THERE EXISTS λ ∈ S, Ŝ , SUCH THAT mλ ̸= m̂λ AND XT
(
Vλ ⊕ V̂λ

)
̸= 0.

Let S = {λ1, . . . , λp} be the set containing the unique (non-repeated) eigenvalues of S with
multiplicities {mλ1

, . . . ,mλp
} and Ŝ = {λ̂1, . . . , λ̂r} be the set containing the unique eigenvalues

of Ŝ with multiplicities {m̂λ̂1
, . . . , m̂λ̂r

}. Note that the eigenvalues of S, Ŝ are not required to be
distinct. Also, let {µ1, . . . , µq} be the set of all distinct eigenvalues of S and Ŝ, i.e., µi ∈ S

⋃
Ŝ

and µi ̸= µj , ∀ i ̸= j. Suppose that S, Ŝ have at least one common eigenvalue but with different
multiplicity, i.e., there exists λ ∈ S, Ŝ, such that mλ ̸= m̂λ.

Under the parametrization of (47), H (S) = VλV
T
λ , where Vλ ∈ RN×mλ is the eigenspace

of S corresponding to λ, and H
(
Ŝ
)

= V̂λV̂
T
λ , where V̂λ ∈ RN×m̂λ is the eigenspace of Ŝ
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corresponding to λ. Then the output of the GNN, for the two graphs, takes the form:

Y = σ (H (S)X) = σ
(
VλV

T
λ X

)
(51)

Ŷ = σ
(
H
(
Ŝ
)
X̂
)
= σ

(
V̂λV̂

T
λ X

)
(52)

The subspaces Vλ, V̂λ can be written as:

Vλ = [Qc,Qn]W , V̂λ =
[
Qc, Q̂n

]
Ŵ , (53)

where Qc ∈ RN×c is the common subspace between Vλ and V̂λ and Qn ∈ RN×(mλ−c), Q̂n ∈
RN×(m̂λ−c) are subspaces of Vλ and V̂λ such that Qn

⋂
Q̂n = {0}. Since mλ ̸= m̂λ, Qn + Q̂n ̸=

{0}, where + denotes here the sum between subspaces. Furthemore W ∈ Rmλ×mλ , Ŵ ∈ Rm̂λ×m̂λ

are square orthogonal matrices.

As a result

Y = σ
(
VλV

T
λ X

)
= σ

(
[Qc,Qn]WW T [Qc,Qn]

T
X
)
= σ

(
QcQ

T
c X +QnQ

T
nX

)
(54)

Ŷ = σ
(
V̂λV̂

T
λ X

)
= σ

([
Qc, Q̂n

]
ŴŴ T

[
Qc, Q̂n

]T
X

)
= σ

(
QcQ

T
c X + Q̂nQ̂

T
nX

)
(55)

We define:
Vλ ⊕ V̂λ := {u+w | u ∈ Vλ;w ∈ V̂λ;u,w /∈ Vλ

⋂
V̂λ}, (56)

as the exclusive sum of subspace. If XT
(
Vλ ⊕ V̂λ

)
̸= 0 then either QT

nX ̸= 0 or Q̂T
nX ̸= 0.

Therefore, there is no permutation Π such that VλV
T
λ X = ΠV̂λV̂

T
λ X since there is no permutation

that makes these vectors collinear. Our previous analysis shows that suitable nonlinearities will also
guarantee that there is no permutation Π such that Y = ΠŶ .

F PROOF OF THEOREMS 4.1, 5.2, 6.1:

The proof of Theorems 5.2, 6.1 is equivalent and very similar to the proof of Theorem 4.1. We begin
by proving Theorem 5.2. To prove Theorem 5.2 let us consider again the GNN module in (10).

y = σ

(
K−1∑
k=0

hkdiag
(
Sk
))

. (57)

For simplicity we assume that σ (·) is a linear function. In eq. (43) we show how to produce the linear
function from ReLU. If Assumption 2.1 holds, there exists λ ∈ S, such that λ /∈ Ŝ or mλ ̸= m̂λ.
We use the proof of Theorem 2.2 and conclude that there exists a graph filter H (·) with unique
parameters h that passes only the λ eigenvalue, i.e.,

H̃ (µi) =

{
1, if µi = λ
0, if µi ̸= λ

(58)

First we study the case where λ ∈ S, but λ /∈ Ŝ. Then H (S) = VλV
T
λ , where Vλ ∈ RN×mλ is

the eigenspace of S corresponding to λ, and H
(
Ŝ
)
= 0. The output y of (57), for the two graphs,

takes the form:

y = diag (H (S)) = |Vλ[:, 1]|2 + · · ·+ |Vλ[:,m]|2 =

m∑
i=1

|Vλ[:, i]|2 (59)

ŷ = diag
(
H
(
Ŝ
))

= 0 (60)
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where Vλ[:, i] is the i−th column of Vλ. Since Vλ ̸= 0 by definition, there does not exist a
permutation Π such that y = Πŷ and the proposed GNN can tell the two graphs apart.

Next we study the case where λ ∈ S, Ŝ, but mλ ̸= m̂λ. Then H (S) = VλV
T
λ and H

(
Ŝ
)
=

V̂λV̂
T
λ , where V̂λ ∈ RN×m̂λ is the eigenspace of Ŝ corresponding to λ. The output y of (57), for

the two graphs, takes the form:

y = diag (H (S)) =

m∑
i=1

|Vλ[:, i]|2 (61)

ŷ = diag
(
H
(
Ŝ
))

=

m∑
i=1

|V̂λ[:, i]|2 (62)

We observe that:

1Ty = 1T diag (H (S)) = Trace
(
VλV

T
λ

)
= mλ (63)

1T ŷ = 1T diag
(
H
(
Ŝ
))

= Trace
(
V̂λV̂

T
λ

)
= m̂λ (64)

Since mλ ̸= m̂λ, there is no permutation Π such that y = Πŷ and the proposed GNN can tell the
two graphs apart. This concludes the proof for Theorem 5.2. Using Proposition 6.1 we prove the
equivalence of Theorems 5.2 and 6.1 and therefore the proof is the same.

To prove Theorem 4.1 we need one more extra step. In particular, we plug the filter, with parametriza-
tion as in (58), in equation (8), for S, Ŝ, i.e.,

cov [z;S] =
K−1∑
k=0

hkS
k
K−1∑
m=0

hmSm = VλV
T
λ VλV

T
λ = VλV

T
λ (65)

cov
[
z; Ŝ

]
=

K−1∑
k=0

hkŜ
k
K−1∑
m=0

hmŜm = V̂λV̂
T
λ V̂λV̂

T
λ = V̂λV̂

T
λ , (66)

where the last equality in (65) holds, since Vλ, V̂λ are orthogonal. Then the output y of (9), for the
two graphs, can be written as:

y = var [z;S] = diag (cov [z;S]) = |Vλ[:, 1]|2 + · · ·+ |Vλ[:,m]|2 =

m∑
i=1

|Vλ[:, i]|2 (67)

ŷ = var [z;S] = diag (cov [z;S]) = |V̂λ[:, 1]|2 + · · ·+ |V̂λ[:,m]|2 =

m∑
i=1

|V̂λ[:, i]|2 (68)

If λ ∈ S but λ /∈ Ŝ, ŷ = 0. If λ ∈ S, Ŝ, but mλ ̸= m̂λ, 1Ty ̸= 1T ŷ. In any case, there does not
exist a permutation Π such that y = Πŷ and the proposed stochastic GNN can separate the two
graphs.

G PROOF OF PROPOSITION 6.1

The output of type-1 module can be cast as:

y = σ

(
K−1∑
k=0

hkdiag
(
Sk
))

= σ (Xh) , (69)

when X is designed as in (14) and h =

 h0

...
hK−1

 is the vector of filter parameters. The same output

can be produced by the type-2 module when Hk is a vector and K = 1. On the other hand, a set of
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K type-1 modules in the input layer can produce the X in (14). To see this, consider the following
type-1 GNN modules.

yi = σ

(
K−1∑
k=0

h
(i)
k diag

(
Sk
))

, i = 0, . . . ,K − 1, (70)

where

h
(i)
k =

{
1, if i = k
0, if i ̸= k

(71)

Concatenating the outputs yi into W = [y0, . . . ,yK−1] results in the X in (14) which we can apply
to a type-2 module and produce the same output as a type-2 GNN module with input as in (14). □

H NONISOMORPHIC GRAPHS WITH THE SAME SET OF EIGENVALUES

In the core of this paper, we discuss the ability of GNNs to distinguish between nonisomorphic graphs
that have different eigenvalues. This analysis covers the majority of real graphs, since real graphs
almost never share the same eigenvalues. However, there exist interesting cases of graphs with the
same set of eigenvalues that GNNs can also distinguish. In this section, we study these cases and
provide interesting results.

H.1 GRAPHS WITH THE SAME DISTINCT EIGENVALUES

We consider the case where S, Ŝ have distinct eigenvalues which are the same, i.e., Λ = Λ̂.
Formally:

Assumption H.1 S, Ŝ have the same distinct eigenvalues, i.e., S ⊆ Ŝ and Ŝ ⊆ S, with λi ̸= λj

for all i, j.

Lemma H.2 characterizes nonisomorphic graphs with distinct eigenvalues.

Lemma H.2 When S, Ŝ have the same distinct eigenvalues, G, Ĝ are nonisomorphic if and only if
there is no permutation matrix Π and diagonal ±1 matrix D such that:

U = ΠÛD

Proof: Let S = UΛUT , Ŝ = ÛΛ̂ÛT . Since S, Ŝ have the same distinct eigenvalues, we have
Λ = Λ̂. To prove the ‘forward’ statement assume that G, Ĝ are nonisomorphic, i.e., there does not
exist permutation matrix Π such that S = ΠŜΠT . If there exist permutation matrix Π and ±1

diagonal matrix D such that U = ΠÛD, then:

S = UΛUT = ΠÛDΛDÛTΠT = ΠÛΛ̂ÛTΠT = ΠŜΠT .

By contradiction when S, Ŝ have the same distinct eigenvalues, G, Ĝ are nonisomorphic if there do
not exist a permutation matrix Π and a diagonal ±1 matrix D such that U = ΠÛD.

To prove the ‘backward’ statement assume that there do not exist permutation matrix Π and diagonal
±1 matrix D such that U = ΠÛD. If G, Ĝ are isomorphic, i.e., there exists permutation matrix Π

such that S = ΠŜΠT , then:
UΛUT = ΠÛΛÛTΠT ,

which implies that un = ±Πûn for all n, where un, ûn refer to the columns of U , Û respectively.
As a result, U = ΠÛD and by contradiction we prove the ‘backward’ statement which concludes
the proof. □

In a nutshell, Lemma H.2 states that in order for G, Ĝ to be nonisomorphic, while Assumption H.1
holds, the two graphs need to admit different eigenvectors that correspond to the same eigenvalues.
As a side note, we mention that S, Ŝ can still span the same columnspace, under row permutation.
However, the power on each eigendirection has to be different for them to be nonisomorphic.

We can now extend the results of Theorem 2.2 to the following:
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Theorem H.3 Let G, Ĝ be nonisomorphic graphs with graph signals X, X̂ . There exists a GNN
that tells G and Ĝ apart if:

1. There does not exist permutation matrix Π such that X = ΠX̂ , or

2. Assumption 2.1 holds and V T
λ X ̸= 0, or

3. Assumption H.1 holds and XTun ̸= 0 for all eigenvectors un or X̂T ûn ̸= 0 for all
eigenvectors ûn.

Proof: The proof for cases 1 and 2 can be found in Appendix E. Case 3 includes Assumption H.1,
i.e., both S, Ŝ have N distinct eigenvalues, where N is the number of nodes in each graph, and also
S, Ŝ share the same eigenvalues. To prove this last part of Theorem 2.2 we consider an 1−layer
GNN with N neurons. Each neuron consists of a graph filter that isolates one eigenvalue and sets it
to one, as in Appendix E. Then, each neuron is described by the following set of equations:

Yn = σ (Hn (S)X) , n = 1, . . . , N (72)

H̃n (λi) =

{
1, if i = n
0, if i ̸= n

, n = 1, . . . , N (73)

For the rest of the proof, we will assume that σ(·) is the linear function. This is without loss of
generality since if we double the number of neurons in the layer and set σ(·) =ReLU(·) we can
produce the same output as the linear function by using the same trick as in Appendix E.1. In
particular, N of the graph filters will follow the equations in (73) and the remaining N filters will
follow the same equation with −1 instead, as in (50). Then for each eigenvalue we have a pair of
filters, one with +1 and one with −1 in the filter equations. Summing up the outputs of these neuron
pairs will produce an output that is the same as if σ(·) was the linear function.

The output of the GNN for the two graphs takes the form

Yn = Hn (S)X = unu
T
nX, n = 1, . . . , N (74)

Ŷn = Hn

(
Ŝ
)
X̂ = ûnû

T
nX̂, n = 1, . . . , N (75)

Yn = un

[
uT
nx1, . . . ,u

T
nxD

]
, n = 1, . . . , N (76)

Ŷn = ûn

[
ûT
n x̂1, . . . , û

T
n x̂D

]
, n = 1, . . . , N (77)

Now we assume that XTun ̸= 0 for all eigenvectors un, n = 1, . . . , N . As a result, there exist at
least one column in each Yn that is not equal to the zero column. We can then collect one nonzero
column from each Yn and form a matrix M as:

M =
[
u1

(
uT
1 xi

)
, . . . ,uN

(
uT
Nxj

)]
= [u1α1, . . . ,uNαN ] = U


α1, 0, . . . , 0
0, α2, . . . , 0

...
0, 0, . . . , αN

 = UA, (78)

where xi, xj are columns of X such that uT
1 xi ̸= 0, uT

Nxj ̸= 0, A is a diagonal matrix and αn ̸= 0

for all n. If we also collect the corresponding columns for each Ŷn we can form:

M̂ =
[
û1

(
ûT
1 x̂i

)
, . . . , ûN

(
ûT
N x̂j

)]
= [û1α̂1, . . . , ûN α̂N ] = Û


α̂1, 0, . . . , 0
0, α̂2, . . . , 0

...
0, 0, . . . , αN

 = ÛÂ, (79)

23



Figure 7: GNN architecture

where Â is a diagonal matrix but α̂n are not necessarily nonzero, as ûT
1 x̂i, û

T
N are not necessarily

nonzero. Since G, Ĝ are nonisomorphic and Assumption H.1 holds, we can use Lemma H.2.
Consequently, there are no permutation matrix Π and diagonal ±1 matrix D such that U = ΠÛD.
This implies that there does not exist a permutation matrix Π such that M = ΠM̂ . To complete the
proof, we consider the output of the considered GNN to be the concatenation of Yn, n = 1, . . . , N .
In particular, the outputs for G, Ĝ are:

Y = [Y1,Y2, . . . ,YN ] (80)

Ŷ =
[
Ŷ1, Ŷ2, . . . , ŶN

]
. (81)

The columns of M , M̂ are also columns of Y , Ŷ . Since there does not exist a permutation matrix
Π such that M = ΠM̂ , there does not exist Π such that Y = ΠŶ and the GNN decides that G, Ĝ
are nonisomorphic. Note that the same analysis is applicable if we assume that X̂T ûn ̸= 0 for all
eigenvectors ûn, n = 1, . . . , N and is therefore omitted. Now our proof is complete. □

We also extend the results of Theorems 4.1, 5.2, 6.1 to incorporate the cases where the eigenvalues of
the two graphs are the same.

Theorem H.4 Let G, Ĝ be nonisomorphic graphs. Then there exists a GNN with modules as in Fig.
3 or as in Fig.4 that tells the two graphs apart if:

1. Assumption 2.1 holds or

2. Assumption H.1 holds and

(a) There is no permutation matrix Π such that |U | = Π|Û |, or
(b) |UT |un ̸= 0 for all eigenvectors un or |ÛT |ûn ̸= 0 for all eigenvectors ûn.

Proof: The proof of Case 1 can be found in Appendix F. In order to prove case 2 of Theorem H.4 we
use the architecture illustrated in Fig. 7. This GNN is designed with 2 layers, each of them consisting
of N neurons. Recall from the previous proofs that there exists a graph filter H (S) with unique
parameters h that isolates one eigenvalue (the n-th eigenvalue) and sets it to one, i.e.,

H̃ (λi) =

{
1, if i = n
0, if i ̸= k

(82)

Since the considered graphs have N distinct eigenvalues, we can build the first layer of Fig. 7 with N
neurons described by the following set of equations:

yn = σ
(

diag
(
H(1)

n (S)
))

, n = 1, . . . , N (83)

H̃(1)
n (λi) =

{
1, if i = n
0, if i ̸= n

, n = 1, . . . , N (84)
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Under the above parametrization, the filter H(1)
n (S) takes the form H

(1)
n (S) = unu

T
n , where un is

the eigenvector corresponding to the n−th eigenvalue of S. Then the output of the first layer for the
two graphs takes the form:

yn = σ
(
diag

(
unu

T
n

))
= |un|2, n = 1, . . . , N (85a)

ŷn = σ
(
diag

(
ûnû

T
n

))
= |ûn|2, n = 1, . . . , N (85b)

Since both S, Ŝ have distinct eigenvalues, we can concatenate the output of each neuron and result
in layer-1 outputs as:

Y (1) = |U |, Ŷ (1) = |Û | (86)

If there does not exist a permutation matrix Π such that |U | = Π|Û |, one layer is sufficient and the
proposed GNN can tell the two graphs apart.

For the second layer of the GNN in Fig. 7 we consider the following parametrization:

Yn =
(
H(2)

n (S)X
)
, n = 1, . . . , N (87)

H̃(2)
n (λi) =

{
1, if i = n
0, if i ̸= n

, n = 1, . . . , N, (88)

where X = Y (1) = |U | is the output of the first layer. Then the final output of the GNN for the two
graphs can be written as:

Yn = H(2)
n (S)X = unu

T
n |U |, n = 1, . . . , N (89)

Ŷn = H(2)
n

(
Ŝ
)
X̂ = ûnû

T
n |Û |, n = 1, . . . , N (90)

Yn = un

[
uT
n |u1|, . . . ,uT

n |uN |
]
, n = 1, . . . , N (91)

Ŷn = ûn

[
ûT
n |û1|, . . . , ûT

n |ûN |
]
, n = 1, . . . , N (92)

If we assume that |UT |un ̸= 0 for all eigenvectors un, or |ÛT |ûn ̸= 0 for all eigenvectors ûn, we
can use the same steps as in the proof of Theorem H.3 and show that the proposed GNN decides that
the two graphs are different. Note that in layer 1 we can use the stochastic modules in Fig. 3a and the
proof still holds, since the filter with parameters as in (84) yields:

cov [z;S] =
K−1∑
k=0

hkS
k
K−1∑
m=0

hmSm = unu
T
nunu

T
n = unu

T
n , (93)

and the same output as in (86) can be produced. Also, by using Proposition 6.1 we can substitute the
modules in the first layer with the modules in Fig. 4b and the proof still holds. □

H.2 GRAPHS WITH THE SAME EIGENVALUES WHICH ARE NOT DISTINCT.

The last case appears when the graph adjacencies have the same eigenvalues, which are not distinct
and have the same multiplicities. This case is more complicated, since the two graphs can be
nonisomorphic even if there exist a permutation matrix Π and a diagonal matrix D such that
U = ΠÛD (the condition in Lemma H.2 does not hold). Analysis and results for this case are left
for future work.

I GNNS AND ISOMORPHIC GRAPHS

The core of this paper studies the ability of GNNs to distinguish between nonisomorphic graphs.
Another important question is whether a GNN can tell if two graphs are isomorphic. The answer
is affirmative. GNNs are permutation equivariant architectures and can always detect isomorphic
graphs. To make things concrete, we present the following proposition:
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Proposition I.1 . Let G, Ĝ be two isomorphic graphs, i.e., S = ΠŜΠT . Also let X, X̂ be the
graph signals associated with G, Ĝ that satisfy X = ΠX̂ . Then any GNN with modules as in (1)
decides the two graphs are the same.

Proof: To prove this proposition, it suffices to show that the output Y in (1) is permutation equivariant.
To see this, consider the graph adjacencies S and Ŝ such that Ŝ = ΠSΠT , where Π is a permutation
matrix. Then equation (1) gives:

Ŷ = σ

(
K−1∑
k=0

ŜkX̂Hk

)
(1)
= σ

(
K−1∑
k=0

hk

(
ΠSkΠT

)
ΠXHk

)
(2)
= σ

(
K−1∑
k=0

hkΠSkXHk

)
(94)

= σ

(
Π

K−1∑
k=0

hkS
kXHk

)
= ΠY , (95)

where equality (1) holds because
(
ΠSΠT

)k
= ΠSkΠT and equality (2) comes from the fact that

ΠTΠ = I . Therefore, Y is equivariant in permutation. Overall GNNs with modules as in (1)
produce permutation equavariant outputs for isomorphic graphs.

Proposition I.2 . Let G, Ĝ be two isomorphic graphs. Then any GNN with modules as in Fig. 3 or
Fig. 4 decides that the two graphs are the same.

Proof: To prove this proposition, it suffices to show that the output in (10) is permutation equivariant.
To see this, consider two graph adjacencies S and Ŝ such that Ŝ = ΠSΠT , where Π is a permutation
matrix. Then Equation (10) gives:

ŷ = σ

(
K−1∑
k=0

hkdiag
(
Ŝk
))

(1)
= σ

(
K−1∑
k=0

hkdiag
(
ΠSkΠT

)) (2)
= σ

(
K−1∑
k=0

hkΠdiag
(
Sk
))

(96)

= σ

(
Π

K−1∑
k=0

hkdiag
(
Sk
))

= Πy, (97)

where equality (1) holds because
(
ΠSΠT

)k
= ΠSkΠT and equality (2) comes from the fact that

diag
(
ΠSΠT

)
= Πdiag (S). The output y is permutation equivariant and we can conclude that the

proposed architectures produce permutation equivariant outputs for isomorphic graphs.

J GNNS VS SPECTRAL DECOMPOSITION

In this paper, we discuss the ability of GNNs to distinguish between different graphs. Our analysis
uses spectral decomposition tools and provides conditions under which a GNN can tell two graphs
apart. These conditions are related to the eigenvalues and eigenvectors of the graph operators.
Therefore, it is natural to study the similarities and differences of GNNs and spectral decomposition
algorithms.

J.1 THE TWO GRAPHS HAVE DIFFERENT EIGENVALUES

As explained in the main part of the paper, there always exists a GNN that can distinguish between a
pair of graphs with different eigenvalues. Furthermore, computing the eigenvalues of the two graphs
can also attest that the two graphs are nonisomorphic. Therefore, the two approaches are equally
powerful. The difference lies in the fact that a GNN needs to be trained to perform the isomorphism
test, whereas the spectral decomposition is unsupervised. On the other hand, computing the spectral
decomposition for real graphs can be computationally very challenging.

J.2 THE TWO GRAPHS HAVE THE SAME SET OF EIGENVALUES THAT ARE DISTINCT

This case is a bit more complicated. Since the eigenvalues are the same, one must resort to the
eigenvectors to distinguish between the graphs. When the eigenvalues are distinct, the eigenvectors
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of the graph are unique up to a sign for each eigenvector. To be more precise, let G, Ĝ be isomorphic
graphs with eigenvectors U , Û respectively. Then we have the following:

U = ΠÛD, (98)

where Π is a permutation matrix and D is a diagonal matrix with elements ±1. We observe the
following:

Remark J.1 When Assumption H.1 holds, the eigenvectors of isomorphic graphs are not permutation
equivariant, since there exists a sign ambiguity for each eigenvector. On the contrary, the produced
GNN node embeddings are always permutation equivariant, according to Propositions I.2 and I.1. In
other words, GNNs always produce equivariant node embeddings for isomorphic graphs, which is
not the case for the spectral decomposition.

If G, Ĝ are nonisomorphic the story is different. According to Lemma H.2, there does not exist
permutation matrix Π such that U = ΠÛD and the GNNs detect nonisomorphic graphs under
Theorem H.3, or Theorem H.4. Let us focus on the conditions of Theorem H.4 i.e.,

(a) There does not exist permutation matrix Π such that |U | = Π|Û |,

(b) |UT |un ̸= 0 for all eigenvectors un or |ÛT |ûn ̸= 0 for all eigenvectors ûn.

We see that these conditions involve the eigenvectors of the graphs and therefore we can construct
an eigen-based algorithm with the same guarantees. Note that these guarantees are only sufficient
and there might be cases where the GNNs can distinguish between nonisomorphic graphs, whereas
an algorithm based on the above conditions might fail. Furthermore, calculating the complete set of
eigenvectors of a real graph might be computationally prohibitive.

J.3 THE TWO GRAPHS HAVE THE SAME MULTISET OF EIGENVALUES THAT ARE NOT DISTINCT

Scenario 1: The graphs are isomorphic. GNNs will always produce equivariant embeddings for
isomorphic graphs. On the contrary, eigenvectors are not unique and they will not provide equivariant
representations (up to scaling) for isomorphic graphs.

Scenario 2: The graphs are nonisomorphic. The GNN analysis for this case is relegated for future
work. Regarding the spectral decomposition, we need to resort to eigenvectors, which are not unique.
Therefore, detecting nonisomorphic graphs is challenging.

J.4 STABILITY AND DISCRIMINABILITY OF GNNS

From our discussion so far, we have observed similarities and differences between the functionality
of GNNs and the spectral decomposition of the graph. There is one more fundamental difference
that has not yet been discussed and involves the stability and discriminability properties of GNNs
(Gama et al., 2020). In particular, a GNN is stable under small perturbations of the graph operator,
i.e., the output of a GNN is similar for ‘similar’ graphs. On the other hand, small perturbations of
the graph can result in essential changes in the eigenvalues and eigenvectors of the graph operator,
which makes the spectral decomposition more unstable. Therefore, there seems to be a stability vs.
discriminability trade-off between GNNs and spectral decomposition. However, the architectural
nonlinearities allow GNNs to be both stable and discriminative.

To recap, the conditions of this paper involve the eigenvalues and eigenvectors of the graph operator.
Compared to eigen-based algorithms, there is an advantage of GNNs when the eigenvalues are exactly
the same with the same multiplicities. This is due to the fact that the eigenvectors of a graph operator
are not unique and therefore isomorphic graphs do not admit permutation equivariant eigenvectors,
whereas GNNs always produce permutation equivariant node embeddings for isomorphic graphs.
On the other hand, when the eigenvalues are different, GNNs and spectral decomposition are
equally powerful. Furthermore, GNNs are robust to small changes of the graph, which is not the
case for spectral decomposition. Finally, the spectral decomposition is computationally heavy and
unsupervised, but GNNs are lighter to execute and require training.
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Figure 8: CSL graphs

K EXPERIMENTAL DETAILS

In this appendix we provide further details on the experiments presented in the main paper.

K.1 EXPERIMENTS ASSOCIATED WITH THE GRAPHS IN FIGS. 1 AND 2

In Tables 8, 9 we present the eigenvalues and the sum of the corresponding eigenvectors of the graphs
in Figs. 1, 2 respectively.

Table 8: Eigenvalue and eigenvector information for the graphs in Fig. 1.

GRAPH
n

1 2 3 4 5 6

G λn 3 1 -2 -2 0 0
uT

n1 -2.45 0 0 0 0 0

Ĝ λ̂n 3 -3 0 0 0 0
ûn1 -2.45 0 0 0 0 0

Table 9: Eigenvalue and eigenvector information for the graphs in Fig. 2.

GRAPH
n

1 2 3 4 5 6 7 8 9 10

G λn 2.303 1.618 1.303 1 0.618 -2.303 -1.618 -0.618 -1 -1.303
uT

n1 3.048 0 0 -0.816 0 0 0 0 0 -0.210

Ĝ λ̂n 2.303 1.861 1 0.618 0.618 0.254 -1.303 -1.618 -1.618 -2.115
ûn1 3.048 0 -0.816 0 0 0 -0.210 0 0

We observe that G and Ĝ in both figures admit a different set of eigenvalues. However, the eigenvectors
that correspond to the eigenvalues that differentiate them are orthogonal to the vector of all-ones (they
sum up to zero). Therefore, the WL algorithm and GNNs with x = 1 input fail to tell them apart.

K.2 DETAILS ON THE EXPERIMENTS OF SECTION 7

In Fig. 8 we present a paradigm of two graphs in the CSL dataset that belong to different classes. It is
clear from the figure that the two graphs consist of nodes that all have degrees equal to 4. Therefore,
x = 1 is an eigenvector of both graphs and orthogonal to the remaining eigenvectors. Any valuable
information that separates the two graphs is lost when we run the WL algorithm or feed a GNN with
x = 1.

Next, we present the details on the experiments of section 7.2. For the most part, we use the
specifications suggested in (Xu et al., 2019). In particular, we train a 4-layer graph neural network
where the output of each layer and the input are passed through a graph pooling layer and then a
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Figure 9: GNN architecture

linear classifier. A schematic representation of the considered architecture is presented in Fig. 9.
The nonlinearity used in our experiments is the ReLU and the readout function that performs graph
pooling is 1TX(l) for l = 0, . . . , 5. X(l) represents the output of layer l with X(0) = X . For each
type-2 GNN block, we only use 1 tap for k = 1. This is due to the fact that we pass the output of
every layer to the final classifier, so additional taps might be redundant.

To train the proposed architecture, we use Adam optimizer with a learning rate equal to 10−2, batch
size equal to 128 and a dropout ratio equal to 0.5. Training is carried out over 200 epochs with 50
iterations per epoch. To assess the performance of the proposed architecture, we divide each dataset
into 50− 50 training-testing splits and apply 10-fold cross-validation. The only parameter we tune is
the hidden dimension for each layer. In particular, the number of modules for each layer is the same
and we tune over {8, 16, 32, 64, 128, 256} modules.

We also compare our proposed architecture with GIN (Xu et al., 2019) initialized with x = 1 and
GIN initialized according to equation (14). We use the publicly available code2 provided by the
authors. We use the exact same specification for fair comparisons and tune the hidden layer over
{8, 16, 32, 64, 128, 256} dimensions.

All experiments are conducted on a Linux server with NVIDIA RTX 3080 GPU. The data13 are
publicly available, and the code of the proposed architectures with all the experiments can be found
in this repository4.

2https://github.com/weihua916/powerful-gnns
3https://pytorch-geometric.readthedocs.io/en/latest/
4https://github.com/tempcode100/gnns-are-powerful
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