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Abstract

In recent years, large language models have demonstrated remarkable performance across
diverse tasks. However, their task effectiveness is heavily dependent on the prompting
strategy used to elicit output, which can vary widely in both performance and token usage.
While task performance is often used to determine prompting strategy success, we argue that
efficiency—balancing performance and token usage—can be a more practical metric for real-
world utility. To enable this, we propose Big-Otok, a theoretical framework for describing
the token usage growth of prompting strategies, and analyze Token Cost, an empirical
measure of tokens per performance. We apply these to several common prompting strategies
to demonstrate their utility and observe that increased token usage leads to drastically
diminishing performance returns. Our results validate the Big-Otok and Token Cost analyses
and reinforce the need for efficiency-aware evaluations.

1 Introduction

Large language models (LLMs) are primarily interacted with through natural language prompts. The com-
position of a prompt exercises significant, often unexpected, influence over the generated output. This has
sparked research into "prompt engineering," the study of prompt design to extract maximum performance
from LLMs (White et al., 2023). There are many ways to approach prompt engineering; in this paper, we
focus on formalized prompting strategies, the overarching paradigms of prompt design (e.g., providing
examples of question-answer pairs (Brown et al., 2020)).

As prompting strategies have developed alongside LLMs, benchmark accuracy has emerged as the primary
metric for success. New prompting strategies are often tested alongside prior ones on a selection of bench-
marks and LLMs, using the gain in accuracy over existing strategies as validation of the new approach. Token
usage, if included, is often analyzed post hoc, indicating that it was only a secondary consideration during
development. Optimization for performance without regard for token usage can lead to inefficient prompting
strategies. Our purpose in this work is to demonstrate another, more holistic approach to prompting strat-
egy evaluation and analysis by (1) proposing Big-Otok, a framework for comparing theoretical token usage
between distinct prompting strategies and (2) introducing Token Cost (TC), a simple empirical metric to
quantify prompting strategy efficiency.

To achieve these goals, we approach prompting strategy efficiency on two fronts: theoretical and empirical.
For our theoretical analysis, we derive Big-Otok token complexities for a selection of prompting strategies,
similar to time complexity analyses common in software engineering. We substantiate our Big-Otok analyses
by evaluating our selection of prompting strategies against common benchmarks using multiple models. We
analyze the results of those experiments in terms of TC, to compare how performance and token usage
interact. For our experiments, we observe that, while there is performance improvement to be gained from
more complex, token-hungry prompting strategies, increasing token usage results in drastically diminishing
performance returns.
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2 Related Work

Although LLM efficiency has been an active area of research for years (see Wan et al. (2024)), underwhelming
emphasis has been placed on the efficiency of prompting strategies. Techniques have emerged to reduce token
usage, such as frameworks that dynamically manage token usage at inference time—e.g., FrugalGPT (Chen
et al., 2023) and LLMLingua (Jiang et al., 2023)—and prompt compression—e.g., Mu et al. (2023). These
approaches seek to enable efficient LLM usage in spite of inefficient prompting strategies, whereas this work
promotes a focus on prompting strategy efficiency.

Some work, such as Sivarajkumar et al. (2024); Kim et al. (2023); Chu et al. (2024), has been done to evaluate
prompting strategies in specific domains, but token usage statistics are often not included. Prompting
strategy evaluation is largely left to new prompting strategy proposals (e.g., CoT (Wei et al., 2022)) or
benchmarks (e.g., BBH (Suzgun et al., 2023)). These evaluations tend to prioritize benchmark accuracy
without significant consideration of token usage. In this work, we demonstrate the relevance of an increased
focus on token efficiency and how to proactively incorporate it into prompting strategy analysis.

Some metrics pertaining to cost and efficiency have emerged but tend to be tailored to specific use cases.
Wang et al. (2024) proposes a budget-limited evaluation framework to compare prompting strategies and
explores why certain prompting strategies may not scale performance with increased compute budget, using
raw token and query counts as cost metrics. Wan et al. (2025) uses the weighted average of piecewise
accuracy and cost functions to quantify efficiency specifically for self-consistent methods. We propose TC as
a simple, independent metric of prompting strategy efficiency and Big-Otok as an analysis that can be used
to compare arbitrary prompting strategies without execution.

Some recent prompting strategies, such as Constrained-CoT (Nayab et al., 2024), Concise-CoT (Renze
& Guven, 2024), and Algorithm-of-Thoughts (Sel et al., 2024), are designed as optimizations over extant
strategies with token usage reduction as a primary motivation. Our hope for this work is that it will enable
future prompting strategy development and analysis that similarly prioritizes efficiency.

3 Methodology

We explore the importance of token usage both theoretically and empirically. Due to the popularity of LLMs,
there exists an infeasible number of possible evaluation combinations1. To focus the scope of this paper on
token usage, we restrict the number of prompting strategies, benchmarks, and models we use. We discuss
our selection processes in Sections 3.1 and 3.2.

3.1 Theoretical Analysis

Table 1: Big-Otok token complexities for each prompting strategy.

Prompting Strategy Big-Otok Variables
Vanilla IO O(1)

Zeroshot CoT (Kojima et al., 2022) O(1)
Vanilla Fewshot (Brown et al., 2020) O(k) k: k-shot exemplars

Fewshot CoT (Wei et al., 2022) O(k) k: k-shot exemplars
CoT-SC (Wang et al., 2023b) O(pk) k: k-shot exemplars; p: sampled chains

We categorize prompting strategies into three broad groups: (1) linguistic prompt engineering, which
relies on specific phrasing techniques—e.g., Plan-and-Solve (Wang et al., 2023a) or Zeroshot CoT (Kojima
et al., 2022); (2) in-context learning, which consists of providing examples of task-response pairs before
providing the task to the LLM—e.g., Vanilla Fewshot (Brown et al., 2020) or Fewshot CoT (Wei et al.,
2022); and (3) multi-hop, which is characterized by multiple LLM calls—e.g., Least-To-Most (Zhou et al.,

1Prompting strategies: 40+ (Vatsal & Dubey, 2024; Chu et al., 2024); Benchmarks: 130+ (Gao et al., 2023); Open-source,
benchmarked LLMs: 3200+, as of January, 2025 (Fourrier et al., 2024).
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2023), Tree-of-Thought (Yao et al., 2023), or CoT Self-Consistency2 (Wang et al., 2023b). These three
prompting strategy categories roughly correspond to the following Big-Otok complexity classes, respectively:
(1) constant—e.g., the consistent overhead of "Think step by step" (Wei et al., 2022); (2) linear—e.g., the
number of fewshot exemplars; and (3) polynomial or higher—e.g., the number of multi-hop steps times the
number of exemplars. These Big-Otok complexity classes are reflected in Table 1.

To ensure our investigation represents all three categorizations, we select prompting strategies from each.
Namely, we choose Vanilla IO (i.e., simply providing the benchmark question) as a baseline; Zeroshot CoT
to represent (1); Vanilla Fewshot and Fewshot CoT for (2); and CoT-SC for (3). These strategies are
widely adopted, tend to build on each other without significant changes to prompt design, and demonstrate
an organic evolution of prompting strategies over several years (Chu et al., 2024).

The purpose of Big-Otok is to provide an objective representation of the theoretical token usage growth rate
of a given prompting strategy, enabling direct comparison with the Big-Otok of other prompting strategies.
Big-Otok is based on Big-O notation (Knuth, 1976) and thus we rely on the terminology and definitions
associated with it.

Big-Otok describes the asymptotic growth of token usage as a function of variables3 in the prompting strategy
(e.g., the number of fewshot examples). It is derived analogously to Big-O time complexity: by considering
how token usage increases as prompting strategy variables approach infinity. The variables with the highest
growth rate dominate the other terms (e.g., constants, lower-order variables, and scalars), which can then be
omitted. Big-Otok token complexity can often be derived from a natural language description of a prompting
strategy. We provide sample derivations for the Big-Otok functions from Table 1 in Appendix A.

3.2 Empirical Analysis

We test our selection of prompting strategies against three common benchmarks using three LLMs. To
perform the empirical evaluations, we leverage LM Evaluation Harness (Biderman et al., 2024; Gao et al.,
2023), a framework aimed at increasing the reproducibility of LLM evaluations.

We base our selection of models on recency, popularity, and size. We do not use commercial models due
to budget constraints4. We select Llama 3.1 8B Instruct (Dubey et al., 2024), Qwen 2.5 14B Instruct, and
Qwen 2.5 32B Instruct (Qwen et al., 2025). This selection provides coverage of various sizes of smaller models
(each approximately doubling the parameter count of the prior) and diversity of origin, to ensure multiple
approaches to data collection, training, and alignment are represented5.

For benchmarks, we select BBH (Suzgun et al., 2023), GSM8K (Cobbe et al., 2021), and MMLU (Hendrycks
et al., 2021). This represents a diverse group of general-purpose benchmarks based on typical accuracy
ranges6 and response type7. For fewshot prompting strategies, we use 3 exemplars for BBH, 8 for GSM8K,
and 4 for MMLU8.

4 Results

4.1 Big-Otok

To substantiate our Big-Otok analyses, we use the observed token usages from our experiments to calculate
the relative token usage ratios between prompting strategies. We derive theoretical estimates of those ratios
from our Big-Otok functions by substituting in the values from our experiments for the variables in Big-Otok

2Abbreviated as CoT-SCn, where n is the number of sampled chains.
3We treat the initial input that the prompting strategy modifies (e.g., a benchmark question) to be constant and exclude

it for simplicity. Similarly, we treat additive adjustments to the input or output (e.g., CoT’s "Think step by step" (Wei et al.,
2022)) as constants.

4See Appendix C.3 for cost estimates for commercial APIs.
5We choose two Qwen 2.5 models to facilitate a comparison between model size, found in Appendix D.2.
6GSM8K: 80-95%; BBH: 50-87%; MMLU: 70-92% (Fourrier et al., 2024; Dubey et al., 2024; Qwen et al., 2025).
7GSM8K: free response number; BBH: free response text; MMLU: multiple choice.
8These numbers are based on the availability of CoT examples in LM Evaluation Harness and closely reflect the number of

examples suggested in CoT-SC (Wang et al., 2023b).
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Table 2: Theoretical and observed token usage ratios between prompting strategies, averaged over the
three benchmarks. Values are formatted as <theoretical>; <observed> and derived by num tokens2

num tokens1
, where

num tokens2 > num tokens1.

Column: Higher Token
Usage (Numerator)
Row: Lower Token Us-
age (Denominator) C

oT
-S

C
10

C
oT

-S
C

5

Fe
w

sh
ot

C
oT

Va
ni

lla
Fe

w
sh

ot

Ze
ro

sh
ot

C
oT

Vanilla IO 50; 29.3 25; 14.6 5; 3.0 5; 2.2 1; 1.3
Zeroshot CoT 50; 23.4 25; 11.7 5; 2.4 5; 1.7
Vanilla Fewshot 10; 13.5 5; 6.8 1; 1.4
Fewshot CoT 10; 9.9 5; 5.0
CoT-SC5 2; 2.0

(e.g., p = 5 and k̄ = 5 for CoT-SC5). The results of that comparison are found in Table 2. We expect
noise in the observed token usage due to: inherent token usage (e.g., chat templates); the relatively low
values of prompting strategy variables (e.g., k = 3 fewshot exemplars for BBH); and the unpredictability
of LLM output. However, while the observed and theoretical factors are not perfect matches, our findings
do correctly align with the Big-Otok token complexity classes discussed in Section 3.1 (constant, linear, and
polynomial). In other words,

TOtok(1),b,m() < TOtok(k),b,m(k) < TOtok(pk),b,m(p, k)

where TOtok,b,m(x) is the observed token usage for each prompting strategy in the Otok complexity class,
benchmark b, model m, and variable x in our experiments.

4.2 Token Cost

To quantify token efficiency, we discuss the results from our experiments in terms of Token Cost (TC). We
define TC as the number of tokens9 per percentage point of accuracy (expressed as t

p ). The inverse of TC
can be thought of as token efficiency; thus, relatively high TC is less efficient while lower TC is more efficient.
We use this metric, t

p , rather than the inverse, p
t , because we find it to be more intuitive in the context

of prompting strategies. We include an expanded discussion on interpreting TC, including edge cases, in
Appendix B.

The results of the experiments outlined in Section 3.2 are found in Figure 1. Across all benchmarks and
models, our empirical results follow consistent trend lines (of the form y = log(log(x))), reflecting the
diminishing accuracy returns from increased token usage. In other words, it requires significantly more
tokens to realize accuracy gains as token usage increases. To discuss this trend in terms of TC, we explore
both average and marginal TC10. Average TC is simply the token usage divided by the accuracy for a given
prompting strategy ( num tokensobs

accuracyobs
). Marginal TC is the change in token usage to realize the change in

accuracy between two prompting strategies. In other words, for num tokens2 >= num tokens1,

num tokens2 − num tokens1

accuracy2 − accuracy1

Both average and marginal TC can be thought of as the slope between two points (one being the origin, for
average TC), which represents the expected cost, in tokens, of adding one point of accuracy.

Across all experiments, the average TC for the prompting strategy with the lowest accuracy is 5.0 t
p , while

that of the highest performing prompting strategy is 119.4 t
p , a more than 20x increase in average TC and,

9Token counts are estimated by num characters
4 .

10We use the average of ratios when discussing each to give equal weighting to every observation.
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(A) BBH (B) GSM8K

(C) MMLU

Figure 1: Accuracy vs. token usage plots with standard error bars for various prompting strategies, models,
and benchmarks. The trend lines reflect the rapid growth of TC for these strategies.

inversely, 20x decrease in efficiency. This is reflected in the plots in Figure 1 in that even the worst performing
prompting strategies still attain relatively high accuracy and more complex ones make only small gains over
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that for vastly more token usage. Using accuracy as the sole metric ignores the drastic decrease in efficiency
that can result from increased token usage.

In Figure 1, we observe an initially steep curve, indicating that tokens are traded relatively efficiently for
accuracy, followed by a plateau, where tokens are traded more inefficiently for accuracy. To compare the
marginal TC along this curve, we select Vanilla IO, Fewshot CoT, and CoT-SC10 which tend to lie on the
extremes of the trend lines. Across all experiments, the marginal TC between Vanilla IO and Fewshot CoT is
65.3 t

p while the marginal TC between Fewshot CoT and CoT-SC is 6701.8 t
p , a decrease in efficiency of more

than two orders of magnitude. In a high-stakes scenario where accuracy is paramount, pursuing performance
gains at a rate of 6701.8 t

p may be an acceptable cost. For many real-world scenarios, increasing accuracy at
a rate of 65.3 t

p might be more reasonable. TC provides an intuitive way to compare the tradeoff between
token usage and performance and allows for more informed prompting strategy and variable selection.

We perform an ablation study, found in Appendix D.1, on the number of fewshot exemplars. We observe
that incrementally increasing the number of fewshot examples follows a similar trend of diminishing returns
as token usage increases.

All information for reproducing our results, as well as our verbatim results, are detailed in Appendices C.4
and C.5.

5 Conclusion

Token usage represents a significant, yet often underrepresented, component of prompting strategy evalua-
tion. To facilitate the comparison of token usage between distinct prompting strategies, we present Big-Otok
token complexity and substantiate it empirically by comparing predicted token usages to those derived from
our experiments. We analyze our experiments in terms of Token Cost and use it to demonstrate the tradeoffs
between token usage and performance. Our analyses demonstrate the importance of including token usage
in prompting strategy evaluation and validate Big-Otok and Token Cost as viable means of doing so.

Limitations

To focus the contribution of this work, we make a number of thoughtful concessions, such as the models,
benchmarks, and prompting strategies we use. We explicitly justify the most relevant limitations in the main
text above–such as in Sections 3.1 and 3.2–and note other minor limitations here to further demonstrate
the purpose and scope of this work. Despite the limitations, we maintain that the core premise of this
work–demonstrating how to incorporate token usage into prompting strategy evaluation–remains broadly
applicable beyond our experiments.

Prompting Strategies. In Section 1, we narrow the scope of this work to a subset of the broader prompt
engineering landscape: formalized prompting strategies. As detailed throughout the Appendix, we strive to
control for factors extraneous to the minimal instantiation of each prompting strategy. We do so to isolate
the effects of token usage dictated by the prompting strategies and the resultant benchmark performance to
demonstrate how a significant area of research has become prone to inefficiencies due to a lack of relevant
metrics. Although we focus on formalized prompting strategies, Big-Otok and TC are useful metrics for other
aspects of prompt engineering as well, such as linguistic and language choices.

As noted in Sections 1 and 2, the focus of this work is on incorporating token usage into prompting strategy
evaluation and analysis. We do not aim to solve issues of prompting strategy efficiency but instead provide
methods for quantifying it, both for researchers and practitioners. To maintain that scope, we do not explore
nor propose specific methods of optimizing prompts and instead focus on introducing insightful metrics and
demonstrating their utility in practice.

To do so, we approximate tokens as num characters
4 . The reason we use this approximation instead of the

actual token counts is because tokenizer- and model-specific idiosyncrasies can result in numerous valid
tokenizations of the same text. For our general-purpose benchmarks in English, it is a well-established
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approximation11. However, we recognize that this approximation may not apply to all models, languages,
and domains.

The results we present here represent a single thread of prompting strategy evolution; we expect the results
to follow a predictable pattern (e.g., diminishing accuracy returns) because there are no drastic changes
to the principles underlying our selection of prompting strategies. It is likely that fundamentally different
prompting strategies, such as Least-to-Most (Zhou et al., 2023) or Algorithm of Thoughts (Sel et al., 2024),
would not follow our observed trend lines and thus we do not make any generalized claims based on our
observations.

Models. Depending on the data collection and processing methods used by LLM creators, benchmark data
leakage could influence our empirical results, as demonstrated by Mirzadeh et al. (2025). LLMs that were
trained on data that included BBH question-answer pairs, for example, could be influenced by prompting
strategies to a lesser degree than those that were not. We use models from multiple sources in conjunction
with multiple benchmarks to mitigate the potential effects of data leakage.

In this work, we exclusively consider autoregressive, text-to-text ("traditional") LLMs because most prompt-
ing strategies are optimized for them. We recognize, however, that multimodal and, more recently, reasoning
LLMs have become increasingly relevant (DeepSeek-AI et al., 2025; Yin et al., 2024; Caffagni et al., 2024).
We exclude them from our investigation here for a number of reasons: (1) prompt engineering specific to
such models is a nascent field and distinct from prompt engineering for traditional LLMs12 Wu et al. (2024);
(2) due to the recency of reasoning models, there are very few (especially open-source) models available; and
(3) the inclusion of multimodal benchmarks and the use of reasoning models would drastically increase the
compute required to undertake a similar study. Nevertheless, we maintain that the efficiency-aware metrics
explored here remain relevant to such models since they function simply on tokenized inputs and outputs. We
see prompting strategies designed for multimodal and, particularly, reasoning LLMs as a significant avenue
for future research and are hopeful that Big-Otok and TC will be incorporated into their development.

While we believe it a fair comparison that lends itself to real-world deployment, we recognize that running
our selection of prompting strategies with relatively small LLMs on a subset of benchmarks does not fully
reflect the performance of the strategies under all conditions. It is very likely, for example, that the CoT
prompting strategy (Wei et al., 2022) would be leveraged better by Llama 3.1 405B than by Llama 3.1 8B,
due to the former exhibiting superior reasoning capabilities (Dubey et al., 2024). The strength of an LLM
may magnify the disparity between a specific prompting strategy and others.

Benchmarks. Similarly, while we attempt to cover a breadth of domains in our selection of benchmarks,
this selection may fail to highlight the strengths of some prompting strategies over others in certain domains.
Our purpose is not to rank prompting strategies but to analytically explore the tradeoffs between token usage
and benchmark accuracy. We recognize, however, that our selection of benchmarks may fail to cover the
strength of a particular prompting strategy entirely, which may paint it in a worse light than it deserves.
To mitigate this point, we focus on generalist prompting strategies and benchmarks and detail our selection
processes in Sections 3.1 and 3.2.

A common issue in LLM benchmarking is reliable answer extraction. Often, regular expressions are used,
which are not robust to the unpredictable output formats an LLM may generate. We rely largely on the
extraction methods from LM Evaluation Harness but observe certain inaccuracies in answer extraction.
This is an open problem in LLM research (Yu et al., 2025). For this project, we rely on consistency in
answer extraction methods between experiments but recognize that certain correct answers may be marked
incorrectly.

11Common commercial LLM providers also suggest this estimate despite models trained in different years, across mul-
tiple languages, and on diverse domains (e.g., Google: https://ai.google.dev/gemini-api/docs/tokens; OpenAI: https:
//platform.openai.com/tokenizer).

12For reasoning models, some commercial providers even advise against the use of established prompting strategies (see
https://platform.openai.com/docs/guides/reasoning-best-practices).
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Big-Otok. A minor limitation of Big-Otok is a lack of differentiation between input and output tokens. It
is inherently more expensive for an LLM to generate output tokens than to process input tokens due to its
autoregressive nature, a fact that is reflected in the pricing structure of common commercial APIs13. We
considered that differentiating between input and output tokens would have introduced excessive complexity
to Big-Otok, particularly since it does not serve as a precise measure. We instead consider combined token
usage (input and output) to provide a holistic view of token consumption.

Another limitation of Big-Otok is the decreased range of values for prompting strategy variables. While
variables in traditional Big-O analyses often span many orders of magnitude, variables in prompting strategies
tend to be lower (typically <= 100) (Brown et al., 2020; Wang et al., 2023b). As noted in Section 4,
the relatively low values for those variables could result in extraneous factors (e.g., chat templates, model
idiosyncrasies, etc.) limiting their impact on overall token usage. However, we observe that, even for
extremely low values (e.g., k = 3 fewshot examples for BBH), the token usages from each experiment align
with the expected Big-Otok token complexity classes. Although not a precise measure, Big-Otok can still
provide useful insights for expected prompting strategy token usage, even for small values.

Broader Impact Statement

LLM usage incurs real-world monetary and environmental costs (Schwartz et al., 2020; Dhar, 2020; Wu
et al., 2022). This work promotes the consideration of token usage in prompting strategy development and
evaluation to increase the long-term efficiency of LLM inference.
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Table 3: The theoretical token complexities for various prompting strategies. Greek letters represent the
overhead associated with an IO pair (assumed constant per prompting strategy) and Roman letters represent
variables.

Prompting
Strategy

Big-Otok Token Complex-
ity

Variables Values†

MVIO O(1) 1
Vanilla IO O(1) 1 + ψ
Zeroshot CoT
(Kojima et al., 2022)

O(1) 1 + α

Vanilla Fewshot
(Brown et al., 2020)

O(k) 1 + k k: k-shot exemplars k = 0, 1, 10 − 100

Fewshot CoT
(Wei et al., 2022)

O(k) 1 + α+ k + kα k: k-shot exemplars k = 8

CoT-SC
(Wang et al., 2023b)

O(pk) p(1 + α+ k + kα) k: k-shot exemplars; p: sam-
pled chains

k = 4 − 8; p = 40

† Values suggested in the papers that originally introduced the prompting strategy.

Table 4: The token usage growth rate over MVIO per prompting strategy, derived from Table 1 using the
variables used in our experiments.

Prompting Strategy Token Usage Growth Rate
BBH GSM8K MMLU

Vanilla IO 1 1 1
CoT Zeroshot 1 1 1

Vanilla Fewshot 3 8 4
Fewshot CoT 3 8 4

CoT-SC5 15 40 20
CoT-SC10 30 80 40

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal
large language models. National Science Review, 11(12):nwae403, 11 2024. ISSN 2095-5138. doi: 10.1093/
nsr/nwae403. URL https://doi.org/10.1093/nsr/nwae403.

Qingchen Yu, Zifan Zheng, Shichao Song, Zhiyu Li, Feiyu Xiong, Bo Tang, and Ding Chen. xfinder: Large
language models as automated evaluators for reliable evaluation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=7UqQJUKaLM.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=WZH7099tgfM.

A Big-Otok Analysis

We provide an expanded token complexity analysis for each prompting strategy examined in the main text
in Table 3. We define the minimally viable IO pair (MVIO) for a given benchmark question to be the full
text of the question and the minimum amount of text to convey the answer (e.g., Question: "How many
days are there in a week?"; Answer: "7"). All other prompting strategies that incur additive adjustments to
the input or output (e.g., the natural language thinking induced by CoT’s "Think step by step" (Wei et al.,
2022)) are treated as constant overheads on top of the MVIO, which are represented by Greek letters.

Table 4 shows theoretical token usage ratios based on Big-Otok. The expected token usage ratios used in
Table 2 are based on these, averaged across the three benchmarks.
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We include examples of Big-Otok derivations for each prompting strategy examined in the main text in
Figure 2.

B Interpreting Token Cost

Although we include a thorough example of using TC for prompting strategy analysis, we seek to provide
an expanded discussion on its interpretation here. For brevity, in the main text we state that, generally, low
TC can be thought of as more efficient and high TC as less efficient. In most instances, this will hold true;
however, there are some plausible edge cases that deserve consideration.

B.1 Average TC

One such edge case is exploiting extremely low token usages to achieve low average TC. For example, consider
a multiple-choice benchmark with four options: (A), (B), (C), and (D). Assuming uniform distribution
across the possible answers, a prompting strategy that would yield 25% accuracy (assuming the LLM could
consistently produce the correct output) might be: "Output (B)." At approximately 4 combined input and
outputs tokens, such a prompting strategy would achieve an average TC of 0.16 t

p , a value much lower
than any of our observed values in Table 6. This demonstrates the need to test prompting strategies for
generalizability.

B.2 Marginal TC

For marginal TC, there are additional edge cases to consider. The formula for calculating marginal TC,

num tokens2 − num tokens1

accuracy2 − accuracy1

where num tokens2 >= num tokens1, allows for negative values. Despite being "low," a negative marginal
TC value indicates extreme inefficiency since the prompting strategy will have consumed more tokens to
achieve lower accuracy.

In the unlikely event that num tokens2 == num tokens1, marginal TC will not provide useful information.
The more efficient prompting strategy would, in that case, be the one that attained higher accuracy. Similarly,
if accuracy2 == accuracy1, marginal TC cannot be calculated, but the prompting strategy that consumed
fewer tokens can be considered more efficient.

C Empirical Evaluation Details

C.1 Detailed Results

We provide detailed results from our experiments in Table 6. Note that the results presented for each
prompting strategy, model, and benchmark combination are from a single execution with the number of
samples noted in Table 9.

We removed empty outputs and outputs more than four standard deviations from the mean (e.g., instances
where the LLM generated a looping output) from our token usage statistics. Such erroneous outputs were
surprisingly common for Llama 3.1 8B Instruct. Details of the number of outputs removed from consideration
are detailed in Table 5.

C.2 Additional Observations

While our experiments were simple, we made a number of interesting observations that may warrant further
analysis in future work.

The initial motivation behind fewshot prompting strategies was to define a pattern that the LLM would then
follow in its answer (Brown et al., 2020; Wei et al., 2022). For Fewshot CoT, this pattern included a reasoning

16
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(A) MVIO (B) Vanilla IO

(C) Zeroshot CoT (D) Vanilla Fewshot

(E) Fewshot CoT (F) CoT-SC

Figure 2: Sample derivations of Big-Otok. The textual descriptions in each figure are drawn from the following
sources: (C) Kojima et al. (2022); (D) Brown et al. (2020); (E) Wei et al. (2022); (F) Wang et al. (2023b).
Note that for (D), the fewshot examples are equivalent to the MVIO and we make the assumption that the
LLM follows that pattern.
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Table 5: The percentage of total IO pairs removed from token usage statistics. Pairs were removed if the
output was empty or the length of the output was more than 4 standard deviations from the mean.

Model Benchmark Percentage of Total IO Pairs Excluded

Va
ni

lla
IO

Va
ni

lla
Fe

w
sh

ot

Ze
ro

sh
ot

C
oT

Fe
w

sh
ot

C
oT

C
oT

-S
C

5

C
oT

-S
C

10

Llama 3.1 8B Instruct
BBH 2.53 8.59 2.90 5.04 4.09 4.00

GSM8K 0.68 1.14 0.76 0.91 1.27 1.28
MMLU 1.18 1.76 1.89 2.35 1.89 1.93

Qwen 2.5 14B Instruct
BBH 0.29 0.12 0.23 0.49 0.24 0.19

GSM8K 0.30 0.45 0.23 0.23 0.36 0.09
MMLU 0.07 0.65 0.20 0.46 0.20 0.38

Qwen 2.5 32B Instruct
BBH 0.22 0.09 0.26 0.29 0.16 0.10

GSM8K 0.00 0.00 0.08 0.38 0.18 0.13
MMLU 0.20 0.46 0.07 0.07 0.10 0.11

chain that led to the right answer (Wei et al., 2022). Now that LLMs are more capable and often aligned
with human preferences after training, their default response to a question is to explain their reasoning
before providing a response. This results in high output token usage even for Vanilla IO and Zeroshot
CoT. Interestingly, the reasoning chains (averaged, per benchmark) that the LLMs produced for
Zeroshot CoT were longer in every instance than the ones produced for Fewshot CoT, in some
cases more than twice as long. Nonetheless, Fewshot CoT yielded accuracy improvements for nearly every
benchmark. This supports the idea that the in-context learning of correct reasoning chains does positively
influence the correctness of the generated reasoning chain, even if the LLM’s default output is constrained.

That trend does not apply to Vanilla IO and Vanilla Fewshot, however. While Vanilla Fewshot outperforms
Vanilla IO in almost every benchmark, the output token usage is less in most instances. This is likely caused
by the pattern that is matched during Vanilla Fewshot, where the example outputs are the minimum number
of tokens to convey the answer (e.g., for multiple-choice: "(A)").

We also observed how the quality of the fewshot reasoning chains provided as a part of Fewshot CoT affected
performance. While Fewshot CoT yielded modest accuracy gains over Zeroshot CoT for BBH (4.6%) and
GSM8K (6.3%), it actually registered a 0.9% accuracy loss on MMLU. This prompted an investigation into
the CoT fewshot exemplars included in LM Evaluation Harness (Gao et al., 2023). The reasoning chains
were significantly shorter than for the other two benchmarks. Interestingly, recent work on using concise
reasoning chains, such as Constrained-CoT (Nayab et al., 2024) and Concise-CoT (Renze & Guven, 2024),
has demonstrated performance improvements from shorter chains of thought. A potentially insightful future
work could explore how the form and content of intentionally concise chains of thought influence LLM
performance to explain this discrepancy.

C.3 Cost Estimates for Commercial Models

The cost estimates found in Table 7 are derived from the pricing pages for Anthropic14 and OpenAI15,
accessed on January 31, 2025. We do not include the effects of prompt caching.

14https://anthropic.com/pricing#anthropic-api
15https://openai.com/api/pricing/
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Strategy Avg. Tokens Acc.∗ Std. Error Average TCIn Out Total

Ll
am

a
3.

1
8B

In
st

ru
ct

B
B

H

Vanilla IO 172 221 393 51.1 0.56 7.70
Vanilla 3-shot 420 226 646 35.4 0.54 18.28
Zeroshot CoT 178 351 530 63.2 0.55 8.38

3-shot CoT 876 335 1212 70.5 0.51 17.20
CoT-SC5 4378 1089 5468 72.7 0.50 75.19
CoT-SC10 8758 2177 10935 73.1 0.50 149.58

G
SM

8K

Vanilla IO 122 162 284 77.3 1.15 3.68
Vanilla 8-shot 639 147 787 79.3 1.12 9.93
Zeroshot CoT 126 203 330 75.5 1.18 4.37

8-shot CoT 654 145 800 83.4 1.02 9.60
CoT-SC5 3275 751 4026 85.7 0.96 46.96
CoT-SC10 6550 1499 8050 89.0 0.86 90.44

M
M

LU

Vanilla IO 201 201 402 51.1 1.24 7.88
Vanilla 4-shot 711 208 920 58.8 1.19 15.65
Zeroshot CoT 207 342 550 69.4 1.13 7.93

4-shot CoT 1008 182 1191 65.7 1.16 18.13
CoT-SC5 5037 955 5993 66.9 1.16 89.53
CoT-SC10 10076 1929 12006 69.5 1.12 172.76

Q
w

en
2.

5
14

B
In

st
ru

ct

B
B

H

Vanilla IO 134 197 332 63.5 0.51 5.24
Vanilla 3-shot 379 143 523 62.0 0.55 8.44
Zeroshot CoT 140 254 395 79.7 0.42 4.96

3-shot CoT 830 195 1026 81.2 0.43 12.64
CoT-SC5 4155 1011 5166 82.8 0.41 62.37
CoT-SC10 8310 2028 10339 83.7 0.40 123.52

G
SM

8K

Vanilla IO 101 180 281 81.2 1.08 3.47
Vanilla 8-shot 618 150 768 83.5 1.02 9.21
Zeroshot CoT 104 194 299 81.9 1.06 3.65

8-shot CoT 633 125 759 87.6 0.91 8.67
CoT-SC5 3168 602 3770 88.7 0.87 42.51
CoT-SC10 6337 1221 7559 89.7 0.84 84.28

M
M

LU

Vanilla IO 162 162 325 76.4 1.05 4.26
Vanilla 4-shot 673 130 804 78.4 1.03 10.25
Zeroshot CoT 169 347 516 81.4 0.97 6.35

4-shot CoT 965 163 1129 81.8 0.96 13.81
CoT-SC5 4829 883 5713 82.5 0.95 69.26
CoT-SC10 9650 1743 11394 82.9 0.94 137.47

Q
w

en
2.

5
32

B
In

st
ru

ct

B
B

H

Vanilla IO 134 201 336 63.4 0.50 5.30
Vanilla 3-shot 379 144 523 71.2 0.49 7.36
Zeroshot CoT 141 242 383 82.3 0.39 4.66

3-shot CoT 830 182 1012 87.2 0.37 11.62
CoT-SC5 4153 938 5092 88.5 0.36 57.56
CoT-SC10 8308 1883 10191 88.8 0.35 114.75

G
SM

8K

Vanilla IO 101 197 298 83.4 1.02 3.58
Vanilla 8-shot 618 192 810 85.2 0.98 9.51
Zeroshot CoT 104 199 304 84.1 1.01 3.62

8-shot CoT 633 135 769 89.4 0.85 8.60
CoT-SC5 3168 687 3856 89.8 0.83 42.96
CoT-SC10 6337 1373 7711 89.8 0.83 85.90

M
M

LU

Vanilla IO 162 249 412 65.3 1.18 6.32
Vanilla 4-shot 671 194 865 77.3 1.05 11.21
Zeroshot CoT 169 357 526 84.5 0.89 6.23

4-shot CoT 966 186 1153 85.2 0.87 13.53
CoT-SC5 4827 1013 5840 85.4 0.87 68.37
CoT-SC10 9652 2030 11682 86.1 0.86 135.70

∗ Accuracy as a percentage.

Table 6: Detailed results from the empirical evaluation described in Section 3.2.
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Model Priceinput
∗ Priceoutput

∗ Cost† (US$)
BBH GSM8K MMLU

GPT-4o 2.5 10.0 488.25 72.53 121.57
GPT-4o-mini 0.15 0.6 29.29 4.35 7.29

Claude 3.5 Sonnet 3.0 15.0 662.89 97.81 163.16
Claude 3.5 Haiku 0.8 4.0 176.77 26.08 43.51

∗ Prices are in US$
1M Tokens .

† Cost to run all prompting strategies on the given benchmark.

Table 7: Cost estimates for recreating the empirical evaluation with common commercial models.

Model∗ Max Context Length Max Gen. Tokens Temperature
meta-llama/Llama-3.1-8B-Instruct 128000 16384 0.0 (0.5 for CoT-SC)

Qwen/Qwen2.5-14B-Instruct 128000 8192 0.0 (0.5 for CoT-SC)
Qwen/Qwen2.5-32B-Instruct 128000 8192 0.0 (0.5 for CoT-SC)

∗ Models were sourced from https://huggingface.co/models.

Table 8: Model configurations used for the empirical evaluation. Additional hyperparameters are found in
the accompanying Supplementary Materials.

C.4 Reproducibility

All results16, as produced by LM Evaluation Harness, (e.g., LLM inputs and outputs, hyperparameters, run-
times, model configurations, etc.) are found at the following URL: [Link redacted; samples in Supplementary
Materials].

All code used to run the evaluations for this paper is found at the following GitHub repository: [Link
redacted; code in Supplementary Materials]. Although we used LM Evaluation Harness, we link our fork17

as significant bug fixes had to be made to get the framework to function as expected. Despite the bugs we
encountered, we encourage others to support this open-source project that promotes reproducible results for
LLM projects.

C.5 Configurations

C.5.1 Models

We include details of model configurations in Table 8. All models were sourced from Hugging Face18. Where
required, the authors complied with the necessary terms and conditions for gated models.

C.5.2 Benchmarks

We include the benchmark configurations used for our experiments in Table 9. The underlying datasets for
BBH, GSM8K, and MMLU were sourced from Hugging Face19. While the fewshot examples for BBH were
drawn from the same split used for evaluation, care was taken to ensure that the fewshot examples did not
overlap with the target question.

We note in the main text that we selected general-purpose LLM benchmarks for our experiments but rec-
ognize that GSM8K could be seen as targeted towards the math domain. While it is true that GSM8K
is composed of questions that require basic math, the reasoning capabilities and basic world knowledge it
probes are generally applicable. The focus of the benchmark is "properly interpreting a question and rea-
soning through the steps to solve it" (Cobbe et al., 2021), not to evaluate advanced math skills. We believe
this justifies GSM8K’s inclusion as a general-purpose benchmark.

16Provided under the CC-BY-4.0 license.
17Under the same MIT license as LM Evaluation Harness.
18https://huggingface.co/models
19https://huggingface.co/datasets
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Table 9: Benchmark configurations used for the empirical evaluation.

Benchmark Split Fewshot Split # Samples
BBH test test∗ 6511

GSM8K test train 1319
MMLU validation dev 1531

∗ Sampled fewshot examples did not overlap with the current benchmark question.

We rely on the steps taken by the authors in creating BBH (Suzgun et al., 2023; Srivastava et al., 2023),
GSM8K (Cobbe et al., 2021), and MMLU (Hendrycks et al., 2021) to ensure ethical dataset creation, in-
cluding the mitigation of bias, offensive content, and personally identifying information. We refer readers
to those papers for additional information on the breadth of representation in those benchmarks, such as
demographic groups.

C.5.3 Prompts

To limit the inadvertent effects of linguistic prompt engineering (see Salinas & Morstatter (2024)), we
avoided making adjustments to the prompts as they were constructed by default in LM Evaluation Harness,
for consistency. As such, we did not include output formatting instructions and used the default prompt
template for each model. We excluded output formatting instructions for two reasons: (1) to not interfere
with the LLM’s natural output for the benchmark question and (2) to allow the benefits of implicit formatting
for fewshot strategies. We include an example of a raw text input and output pair for Qwen 2.5 14B on
MMLU using Zeroshot CoT below:

Input

<| im_start |>system\nThe f o l l o w i n g are mu l t ip l e cho i c e que s t i on s ( with answers )
about high schoo l psychology . \ n\n<|im_end|>\n<| im_start |> user \ nQuestion :

Why are psychoana lys t s sometimes i n t e r e s t e d in t a l k i n g with a pa t i en t
about dreams ?\n(A) Psychoanalysts d i s cove r ed that neurot ransmi t t e r
abnorma l i t i e s sometimes cause dream d i s tu rbance s . ; (B) S ince a l l people
are s t r i v i n g f o r s e l f −a c t u a l i z a t i o n , psychoana lys t s look at the c o g n i t i v e
o b s t a c l e s in dreams . ; (C) Nonproductive count e r cond i t i on ing behav ior s are
sometimes r evea l ed in dreams . ; (D) Some psychoana lys t s b e l i e v e that dream
symbols r ep r e s en t unconsc ious c o n f l i c t s . \ nAnswer : Let ’ s th ink step by step
. <| im_end|>\n<| im_start |> a s s i s t a n t \n

Output

To determine the c o r r e c t answer , l e t ’ s ana lyze each opt ion in the context o f
p sychoana ly t i c theory : \ n\n(A) Psychoanalysts d i s cove r ed that
neurot ransmi t t e r abnorma l i t i e s sometimes cause dream d i s tu rbance s . \ n− This

statement i s more a l i gned with b i o l o g i c a l psychology ra the r than
psychoana ly s i s . Psychoana lys i s does not f o cus on neuro t ransmi t t e r s or
b i o l o g i c a l abno rma l i t i e s as the primary cause o f dream d i s tu rbance s . \ n\n(B
) S ince a l l people are s t r i v i n g f o r s e l f −a c t u a l i z a t i o n , psychoana lys t s
look at the c o g n i t i v e o b s t a c l e s in dreams . \ n− This statement a l i g n s more
with humanist ic psychology , p a r t i c u l a r l y the work o f Carl Rogers and
Abraham Maslow , who emphasized s e l f −a c t u a l i z a t i o n . Psychoanalys i s , as
developed by Freud , does not f o cus on s e l f −a c t u a l i z a t i o n or c o g n i t i v e
o b s t a c l e s in dreams . \ n\n(C) Nonproductive count e r cond i t i on ing behav ior s
are sometimes r evea l ed in dreams . \ n− This statement i s more a l i gned with
behavior i sm and the concept o f counte r cond i t i on ing , which i s not a primary

focus o f p sychoana ly s i s . Psychoana lys i s does not t y p i c a l l y d i s c u s s
count e r cond i t i on ing in the context o f dreams . \ n\n(D) Some psychoana lys t s
b e l i e v e that dream symbols r ep r e s en t unconsc ious c o n f l i c t s . \ n− This
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Table 10: Licenses for the artifacts used in this work.

Artifact License Notes
Llama 3.1 8B Instruct Llama 3.1 Community License Copyright © Meta Platforms, Inc.
Qwen 2.5 14B Instruct Qwen LICENSE AGREEMENT Version: September 19, 2024
Qwen 2.5 32B Instruct Qwen LICENSE AGREEMENT Version: September 19, 2024
LM Evaluation Harness MIT License Copyright (c) 2020 EleutherAI

BBH MIT License Copyright (c) 2022 suzgunmirac
GSM8K MIT License Copyright (c) 2021 OpenAI
MMLU MIT License Copyright (c) 2020 Dan Hendrycks

Table 11: Average marginal TCs ( ∆tokens
∆accuracy ) calculated between 0 and 3 exemplars and 3 and 8 exemplars

for the ablation study on the number of fewshot exemplars.

Fewshot Range Marginal TC ( t
p )

Vanilla Fewshot Fewshot CoT
0-3 117.2 30.5
3-8 1621.5 553.8

statement a l i g n s with the psychoana ly t i c pe r spec t i v e , p a r t i c u l a r l y Freud ’ s
theory o f dreams . Freud b e l i e v e d that dreams are a man i f e s ta t i on o f

unconsc ious d e s i r e s and c o n f l i c t s , o f t en symbol ized in dream content . \ n\
nGiven t h i s ana ly s i s , the c o r r e c t answer i s : \ n\n(D) Some psychoana lys t s
b e l i e v e that dream symbols r ep r e s en t unconsc ious c o n f l i c t s .

C.5.4 Compute

Experiments were run on A100 40GB, A100 80GB, and H100 GPUs, as availability permitted. Configurations
were limited to 1 or 2 GPUs per experiment. The experiments were run in tensor parallel or data parallel
configurations, depending on the size of the model and the number of GPUs used. The exact configurations
per experiment, as well as exact wall times, are detailed in the reproducibility materials referenced in Section
C.4. The approximate number of GPU hours across all GPUs was 95.

C.6 Licensing

We use a number of open-source artifacts in this work. We list the licenses for each in Table 10. We verify
that our usage was in accordance with the projects’ licenses.

D Additional Studies

D.1 Ablation Study on the Number of Fewshot Exemplars

We present the results from our ablation study on the number of fewshot examples in Figure 3, with detailed
results in Table 12. For this experiment, we used the Vanilla Fewshot and Fewshot CoT prompting strategies
with the number of exemplars ranging from 0 to 8. As can be seen in Figure 3, the results are noisier but
there is a clear trend of diminishing returns as the number of fewshot exemplars increases. To demonstrate
this in a way that mitigates the noise, we examine the results piecewise, comparing the average marginal
TC between 0 and 3 exemplars and 3 and 8 exemplars. Those values are found in Table 11, for concision.
The marginal TC between 0 and 3 fewshot exemplars is, for both Vanilla Fewshot and Fewshot CoT, over
an order of magnitude less than between 3 and 8. This indicates a significant decrease in efficiency as token
usage increases, which corroborates our observations in Section 4.
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Table 12: Detailed results from the ablation study on the number of fewshot exemplars. Token counts
represent the total token usage (input and output).

# Exemplars Llama 3.1 8B Instruct Qwen 2.5 14B Instruct Qwen 2.5 32B Instruct
Tokens Acc.∗ SE† Tokens Acc.∗ SE† Tokens Acc.∗ SE†

Va
ni

lla
Fe

w
sh

ot

0 283.8 77.6 1.15 283.0 81.7 1.06 299.4 83.7 1.02
1 344.5 77.0 1.16 321.1 83.2 1.03 349.6 85.5 0.97
2 401.6 77.1 1.16 386.6 83.4 1.02 418.0 85.2 0.98
3 463.4 78.1 1.14 447.1 84.2 1.00 483.1 85.1 0.98
4 526.3 76.6 1.17 508.8 82.7 1.04 547.9 84.4 1.00
5 607.9 78.0 1.14 574.9 83.5 1.02 613.2 84.8 0.99
6 668.8 77.6 1.15 635.1 84.2 1.01 680.4 85.0 0.98
7 722.6 76.8 1.16 700.9 83.5 1.02 743.7 84.7 0.99
8 787.3 79.2 1.12 768.9 83.9 1.01 810.1 84.9 0.99

Fe
w

sh
ot

C
oT

0 273.2 78.5 1.13 281.7 81.2 1.08 294.2 83.2 1.03
1 351.3 82.2 1.05 334.1 84.5 1.00 353.7 84.3 1.00
2 398.1 82.6 1.04 370.5 86.5 0.94 397.7 85.7 0.97
3 462.6 82.5 1.05 418.9 88.8 0.87 443.1 87.4 0.91
4 524.8 82.0 1.06 479.6 88.4 0.88 514.2 86.8 0.93
5 584.3 82.3 1.05 537.4 89.3 0.85 567.8 87.3 0.92
6 664.6 81.3 1.07 615.6 88.9 0.87 638.9 88.1 0.89
7 739.2 81.4 1.07 691.0 88.9 0.87 711.0 88.4 0.88
8 801.3 82.4 1.05 751.9 88.9 0.87 768.3 89.2 0.85

∗ Accuracy as a percentage.
† Standard error.

(A) Vanilla Fewshot (B) Fewshot CoT

Figure 3: Accuracy and total token usage for the ablation study on the number of fewshot exemplars on the
GSM8K benchmark. Standard error bars are included.
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(A) BBH (B) GSM8K

(C) MMLU

Figure 4: Accuracy and total token usage information for Qwen 2.5 14B and Qwen 2.5 32B from the empirical
evaluation. The trend lines reflect the rapid growth of TC for these prompting strategies.
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D.2 Model Size

We included two models from the Qwen 2.5 family to facilitate a discussion on the impact of model size
on our observed trends. Selecting two models from the same family ensures that potentially confounding
variables, such as differences in training, data collection, and alignment, are presumably kept the same. We
present the results from our experiments in Figure 420.

We observe that the trend towards diminishing accuracy returns for increased token usage is consistent
between the 14B and 32B models. As expected, the 32B model generally outperforms the 14B model.
However, we note some instances for prompting strategies that consume fewer tokens, such as Vanilla IO
and Fewshot, where the 14B model outperforms the larger one. This suggests that larger models may be
able to use additional tokens more effectively, as reflected in the consistently higher accuracy for Fewshot
CoT and CoT-SC, but struggle to perform better than smaller models when fewer tokens are provided as
context. This provides a promising route for future work.

E Use of AI

There was limited use of AI in the research and writing of this work. For writing, ChatGPT21 was used to
rephrase several sentences (<5) and to help debug LaTeX and Kubernetes errors. GitHub Copilot22 was used
to help generate some of the plots. Some grammatical suggestions from Writefull’s Overleaf integration23

were considered and included. All AI outputs were thoroughly reviewed by the authors prior to inclusion.

20These plots are identical to those from Figure 1 but with Llama 3.1 8B excluded, for ease of comparison.
21https://chatgpt.com/
22https://github.com/features/copilot
23https://www.overleaf.com/learn/how-to/Writefull_integration
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