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Abstract

This paper introduces lateral thinking to implement System-2 reasoning capabilities
in AI systems, focusing on anticipatory and causal reasoning under uncertainty.
We present a framework for systematic generation and modeling of lateral thinking
queries and evaluation datasets. We introduce Streaming agentic Lateral Thinking
(SALT), a multi-agent framework designed to process complex, low-specificity
queries in streaming data environments. SALT implements lateral thinking-inspired
System-2 reasoning through a dynamic communication structure between special-
ized agents. Our key insight is that lateral information flow across long-distance
agent interactions, combined with fine-grained belief management, yields richer
information contexts and enhanced reasoning. Preliminary quantitative and qualita-
tive evaluations indicate SALT’s potential to outperform single-agent systems in
handling complex lateral reasoning tasks in a streaming environment.

1 Introduction

The rapid advancement of artificial intelligence (AI) has revolutionized our ability to process and
understand vast amounts of text and multi-modal content. State-of-the-art AI models now demonstrate
remarkable capabilities in answering complex hypothetical questions based on user-provided context,
exhibiting traits reminiscent of "System 1" thinking as described by Kahneman (2011).

A key component of human intelligence is the ability to reason under uncertainty and anticipate future
events. Many critical events in personal, financial, and security domains do not occur instantaneously
but are preceded by identifiable precursors. For instance, a user might be interested in monitoring risks
to a specific industry supply chain arising from emerging geopolitical events (Fig. 1). Recognizing
early signals and tracking their development over time enables proactive planning and appropriate
responses as events unfold.

These cognitive abilities require sophisticated reasoning about: 1) possible event chains under
uncertainty, 2) dynamic evaluation of event chain probabilities as new information emerges, and
3) intelligent aging and retrieval of information from long-term to short-term memory. Such traits
are hallmarks of "System 2" thinking, essential for advanced cognitive processes that distinguish
human-level intelligence (Kahneman (2011)).

Lateral thinking, introduced by Edward de Bono in the late 1960s (De Bono (1970)), involves solving
problems through indirect, creative reasoning that may not be immediately obvious. This approach is
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Figure 1: Conceptual overview of the SALT framework. This diagram illustrates the multi-agent
structure and dynamic communication flow in processing lateral reasoning queries, such as "monitor
the risk to the supply chain of American semiconductor companies". The right side shows a timeline
of events that gradually unfold in a datastream over time. The left side depicts the specialized agent
network, representing different topics in the problem space. This network structure is dynamically
generated to address the specific lateral reasoning query. Connecting lines between agents and events
indicate the reasoning criteria employed by each agent to interpret the temporal context.

particularly valuable in complex, dynamic environments where conventional methods fall short. We
posit that a multi-agent architecture Wu et al. (2023) presents a promising solution for continuously
processing a large volume of anticipatory questions. By leveraging specialized agents for distinct
domains, this system enables parallel processing of domain-specific data and facilitates cross-domain
connections. This distributed approach mirrors the non-linear pathways of lateral thinking, allowing
for the discovery of novel patterns that traditional, sequential reasoning methods would miss.

In this work, we introduce a systematic framework for generating and modeling lateral thinking
queries and associated evaluation datasets. This framework addresses the challenge of low-specificity
queries in real-world applications, where individuals can express interest in specific outcomes but
cannot describe every possible combination of event sequences leading to those outcomes. Building
on this framework, we present Streaming agentic Lateral Thinking (SALT), a multi-agent system
designed to simultaneously process multiple complex, low-specificity queries in streaming data
environments. SALT implements lateral thinking-inspired System-2 reasoning through a dynamic
communication structure between specialized agents.

SALT operates by monitoring evolving information around assigned topics, with agents exchanging
probabilistic observations (subsequently referred to as “belief statements") to form and temporally
maintain hypotheses about query-focused outcomes. Unlike static multi-agent systems, SALT’s agent
network’s communication structure continuously adapts based on the relevance of agent expertise
and the newly formed beliefs. This dynamic topology enables the system to find unconventional
pathways for information flow, addressing scenarios where information is continuously changing and
the immediate context rarely contains the full answer to a user query.

In summary, we make the following contributions:

1. A systematic framework for generating and modeling lateral thinking queries and evaluation
datasets, providing a foundation for research in anticipatory reasoning under uncertainty.

2. Streaming agentic Lateral Thinking (SALT): A novel multi-agent architecture (Fig. 1) that
implements lateral thinking-inspired System-2 reasoning for simultaneous processing of
multiple anticipatory queries in streaming data environments.
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2 Related Work

From an algorithmic perspective, a complex event can be decomposed into sub-events. See Fig.
4 and 3 for more illustrative examples. The process of robust prediction of such complex events
can generally be reduced to three steps: 1) accurate identification of its sub-events when or before
they occur, 2) the ability to connect these sub-events as they emerge over time through a single or
multiple data sources, and 3) maintenance of the combined or partially materialized event information
such that that memory complexity does not increase monotonically and lead to system failure. Each
of these steps has been extensively studied across various fields in computer science, including
databases, natural language processing, and symbolic or probabilistic reasoning methods. Drawing
strong inspiration from this prior literature, SALT introduces large-language model Achiam et al.
(2023); Ram et al. (2023)-based implementation of each of these steps.

Streaming query/reasoning Complex event processing has been studied extensively over the past
three decades, initially motivated by the advent of online financial markets and subsequently by the
growth of cyber data streams and social media. A common approach among these prior solutions
Chandrasekaran et al. (2003); Choudhury et al. (2015); Della Valle et al. (2009): 1) A query
decomposition approach where the complex query processing task is decomposed into a data-flow
graph, with nodes representing operators that process a stream through SQL, graph, or different
models, and 2) an event graph that guides how partial results are joined to produce a final answer.
Maintenance of materialized partial query results and their aging over time is a key performance issue
for such systems Barbieri et al. (2010); Ren and Pan (2011). As discussed in the next section, SALT
derives these decomposition graphs from user-specified queries, initiates an agent network structure
Wu et al. (2023), and pursues a dynamic inter-agent communication strategy for dataflow.

Induction and exploitation of Knowledge Schema Scaling up such methods on unstructured, noisy
data streams extracted from text and other modalities introduces new challenges, including query
event interpretation from text Lee et al. (2015), induction of unseen events Huang and Ji (2020), and
evolution of underlying knowledge schema Yu et al. (2021). In the current work, we do not restrict
SALT to any specific event or knowledge (graph) schema. This choice is primarily driven by the goal
to support multiple user queries drawn from a wide range of diverse but related domains. Recent
work Ghafarollahi and Buehler (2024) illustrates the benefits of grounding the beliefs generated in an
LLM-Agent network via a knowledge graph.

Probabilistic approach Probabilistic approaches to event detection have been studied in the past for
structured data streams, with “possible worlds" representing a probabilistic assignment of various
events occurring in the data stream Cormode and Garofalakis (2007). Formulation of query processing
operators in a Hidden Markov Model fashion and development of probabilistic stream algebra were
proposed by Ré et al. (2008). In the broader context beyond event detection, belief propagation
methods have been the cornerstone of probabilistic graphical models Murphy et al. (2013). More
recently, loopy belief propagation methods have been combined with graph neural networks to
propose neural message propagation with embeddings Satorras and Welling (2021), inspiring the
implementation of the message propagation and belief synthesis steps in our proposed algorithm.

3 Methods

Streaming agentic Lateral Thinking (SALT) is designed to process streaming information based
on a set of user-registered questions, continuously generating hypotheses about query matches by
synthesizing the evolving reasoning outputs produced by multiple specialized agents. The key
components and mechanisms of SALT are as follows:

3.1 System Architecture

The components of the SALT architecture are defined as follows.

• Agents: Each agent Ai in the network is associated with a set of topics Ti = {t1, t2, ..., tn}.
See Fig. 1 and the appendix for examples. In a multi-query setting, we compute an union of
all query specific topics and use the resultant set to initilize the network.
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• Network Topology: The agents are connected in a graph structure G(V,E), where vertices
V represent agents and edges E represent information flow pathways between agents. This
graph dynamically evolves based on the context of each batch in the stream.

• Belief Statements: Agents generate and maintain a set of belief statements Bi =
{b1, b2, ..., bm}. Each belief statement bj is characterized by a tuple (s, c, t, r), where
s is the statement text, c is a confidence score, t is a timestamp, and r is a list of relevant
reference ids. We provide an example of a belief statement in the next page.

PROBLEM DEFINITION Given the aforementioned setup, SALT aims to optimize the function
f(S,Q,A,G)→ H , where S = {s1, s2, ..., st, ...} is an incoming data stream, Q = {q1, q2, ..., qm}
is a set of user queries, A = {A1, A2, ..., An} is a set of specialized agents, and G(V,E) is a dynamic
graph representing inter-agent connections.

For each batch st, SALT updates G, generates and refines belief statements Bi(t) for each agent Ai,
and synthesizes these to produce a set of hypotheses H(t) = {h1, h2, ..., hk}. The objective is to
maximize

∑
i relevance(hi, Q) and

∑
i accuracy(hi) while minimizing computational complexity

C(f) and ensuring |Bi(t)| ≤M for some memory bound M , ∀i, t. This formulation encapsulates
SALT’s goal of continuously generating accurate, relevant hypotheses from streaming data using a
dynamically adapting multi-agent system, subject to real-time processing and memory constraints.

Question: What actions are American semiconductor companies likely to take in response to
these vulnerabilities and risks?
Context: [Query context can be initialized from a batch of articles or prior belief statements.]
Response: American semiconductor companies are likely to take several actions, including
diversifying their supply chains to reduce dependency on any single region, investing in increased
cybersecurity measures to protect against cyberattacks, and advocating for diplomatic solutions
to reduce geopolitical tensions. They might also increase collaboration with international
partners to bolster their supply chain resilience and seek governmental support for policies that
encourage domestic manufacturing capabilities.
Confidence: 0.9
Timestamp: 127
References: [article-103, article-104]We now proceed to describe three key steps in SALT: initialization of the agent network, initiation of

new belief statements and updating pre-computed beliefs, and sharing across the network topology
to synthesize new belief statements. The latter two steps are executed iteratively for each batch of
incoming streaming data.

Agent Initialization SALT is first initialized by translating the user-specified question set into a
set of topics. In Algorithm 1, the ExtractTopics function uses a pre-trained topic classification
model to identify relevant topics from the input questions. The CreateAgent function handles the
construction of simple RAG agents, and the BuildGraph function creates initial connections between
agents based on topic similarity. An example output from ExtractTopics is provided in section
A.1.

Algorithm 1: InitializeNetwork
Input: Set of questions Q
Output: Set of agents A, Graph G
T ← ExtractTopics(Q);
A← {};
foreach unique topic ti in T do

Ai ← CreateAgent(ti);
A← A ∪ {Ai};

end
G← BuildGraph(A);
return (A,G);

Stream Processing SALT processes streaming information in multiple steps. First, the input query
(that can be an article, image or a batch of them) assigns a relevance score relative to each expert
agent, and are processed only by agents with sufficiently high relevance. We use a cosine similarity
between the query and agent representation. Each agent constructs new beliefs based on assigned
articles Algorithm 2.

Belief Propagation and Synthesis Belief propagation and synthesis are key to SALT’s emergent
lateral thinking capabilities. Algorithm 3 shows how each agent within SALT takes in the most
relevant beliefs from its neighbors, and alters its own beliefs based on this information.
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Algorithm 2: ProcessInformation
Input: Information stream I , Set of agents A, Graph G
foreach information item i in I do

R← AssignRelevance(i, A);
foreach agent Aj in A where Rj > threshold do

Bnew ← Aj .ProcessItem(i);
Aj .B ← Aj .B ∪Bnew;
PropagateBeliefs(Aj , Bnew, G);

end
G← UpdateTopology(G,R);

end

Algorithm 3: PropagateBeliefs
Input: Source agent As, New beliefs Bnew, Graph G
foreach agent Ar connected to As in G do

R← ComputeRelevance(As, Ar, Bnew);
if R > threshold then

Bshared ← As.ShareBeliefs(Ar, Bnew);
Bsynthesized ← Ar.SynthesizeBeliefs(Bshared);
Ar.B ← Ar.B ∪Bsynthesized;

end
end

3.2 Dynamic Network Topology

While the multi-agent system described in prior subsections has a defined graph structure, all
connected agents do not necessarily communicate with each other for every query. Consider a
system which has two agents, one that specializes in the “weather events", and another specializes
in “agricultural commodities market". Assume these two agents are connected via the network, and
the purpose of such a multi-agent system is to predict how extreme weather events may affect the
farmimg industry in the Pacific Northwest. Given a set of articles that pertains only to weather, it
does not necessarily make sense to share those belief statements with our “commodities" agent.

Due to instances like the above, SALT’s network topology evolves based on the relevance and of
agent connections as seen in Equation 1 which follows.

wij = α · sim(Ti, Tj) (1)

Here wij is the connection weight between agents Ai and Aj , which handle topics Ti and Tj

respectively. sim(Ti, Tj) is the topic similarity and α is a coefficient which controls the relative
importance of this particular connection. This construction is important for avoiding simple diffusion-
like dynamics. If there were only a communication network structure without any further selective
behavior, the network of agents will eventually converge on a nearly static belief set.

4 Dataset

To rigorously evaluate SALT’s performance, we developed a comprehensive dataset of lateral thinking
questions and scenarios, accompanied by novel complexity metrics. This section details our data
generation process and benchmarking methodology.

Dataset Creation We generated a synthetic dataset comprising 30 lateral thinking queries using a
combination of state-of-the-art language models (Claude-3.5 and GPT-4o) and human expert curation.
Each query was crafted to investigate trends with potential cross-industry impacts such as “Monitor
extreme weather patterns for impacts on agricultural commodity prices". We also generated multiple
scenarios for each query, designed to emulate real-world situations typically reported in mainstream
news media. For example, the “Monitor extreme weather patterns for impacts" query can be mapped
to three scenarios: a) “Severe droughts in Brazil lead to surge in coffee futures prices", b) “Unexpected
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frost in Florida causes orange juice futures to spike" and c) “Extended heatwave in Europe results in
wheat shortage and price increase".

Article Generation For each scenario, we generated between 20 and 100 articles, each presenting
unique developments related to the specific scenario. To ensure diversity and realism in the corpus,
we parameterized the article generation process along several dimensions: a) perspective (e.g.,
conservative, liberal), b) length (ranging from 200 to 1000 words), c) temporal distribution (e.g.,
uniformly distributed over a 6-month period vs. clustered within a 2-week window).

4.1 Lateral Reasoning Complexity Metrics

To quantitatively model the workload complexity and ensure a balanced distribution, we propose
four novel metrics for each query-scenario pair. We’ll illustrate each metric using our Taiwan Strait
tensions scenario from Fig. 1:

1. Lateral Measure (L): Quantifies the number of intermediate causal steps between the
trigger event and the outcome. Range: 1-7. Example: L = 3 for our Taiwan scenario:
increased military presence→ disruption of global semiconductor supply chains→ stock
market volatility.

2. Time Lag Complexity (T ): Measures the temporal distance between the trigger event and
its final impact, in days. Range: 0-21 (for this rapid-evolving scenario). Example: T = 14
for our Taiwan scenario, where significant economic impacts manifest two weeks after the
initial spike in tensions.

3. Outcome Uncertainty Coefficient (U): Quantifies the unpredictability of the relationship
between the trigger and its effects on a normalized scale. Range: 0-1. Example: U = 0.9
for our Taiwan scenario, due to the highly volatile nature of geopolitical crises and their
potential for rapid escalation or de-escalation.

Diversity Assurance: To ensure a wide range of lateral thinking challenges, we categorized queries
into 10 broad domains (e.g., geopolitics, technology, climate change) and ensured balanced represen-
tation across these categories (Fig. 5). We also varied the complexity levels (based on our proposed
metrics) across the dataset. Fig. 2(a) illustrates the diversity of the queries via complexity metrics
discussed above. For illustration of a single query and it’s metrics see Fig. 6 in appendix.

5 Experiments

In this preliminary study, we focus on two primary research questions:

1. RQ1: How does multi-agentic lateral reasoning compare with single agent approaches?
2. RQ2: How does the system performance change as a function of query complexity?

5.1 Experimental Setup

We explore four model variants in our experiments as listed below. As the name suggests, SingleTem-
poralReasoningAgent is an agent that processes the batched data stream and executes as prompt on
a rolling window of historical articles. It runs each of the user-specified queries separately with no
information exchange between multiple query execution. See section B for implementation details.

• Temporal-Claude: SingleTemporalReasoningAgent with Claude-3.5-Sonnet
• Temporal-GPT4o: SingleTemporalReasoningAgent with GPT-4o
• SALT-Claude: SALT with Claude-3.5-Sonnet
• SALT-GPT4o: SALT with GPT-4o

For brevity, we refer to SingleTemporalReasoningAgent with Claude (or GPT-4o) as Temporal-
Claude (or Temporal-GPT4o) in subsequent discussions. We use our custom dataset of lateral
thinking queries, as described in Section 3. For this preliminary study, we selected a subset of 30
queries from the full dataset to evaluate our models. This relatively small set was chosen to ensure
we can manually verify the quality of generated articles and reasoning output from each target model.
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5.2 Evaluation Metrics

We propose two metrics to capture key aspects of lateral thinking:

Retrieval Performance RP measures the system’s ability to identify relevant information from
diverse sources. A high RP indicates effective navigation through a large corpus, pinpointing
pertinent articles even when connections are not immediately obvious—a crucial requirement for
lateral thinking.

RP =
Number of relevant article IDs cited

Total number of relevant articles
× 100% (2)

Hypothesis Quality HQ assesses the system’s capacity to synthesize information into meaningful
hypotheses. It evaluates the ability to connect disparate pieces of information, forming information
rich and specific conclusions.

HQ =
Number of correctly identified sub-events

Total number of sub-events
× 100% (3)

5.3 Results

Lateral context augmentation drives outperformance Results comparing SALT and SingleTem-
poralAgents are provided in Table 1. We observe that our agent network-based system achieves
significantly better performance across both hypothesis generation and citation retrieval compared to
the single agent based systems. SALT-Claude-Sonnet-3.5 outperforms its corresponding baseline
implementation by 39.77% and 29% in citation retrieval and hypothesis quality. Salt-GPT-4o out-
performs Temporal-GPT-4o by 60% and 87.63%. Overall, Claude-Sonnet-3.5 based agents perform
better than GPT-4o in retaining facts and generating overall hypotheses.

Key insight While our study is preliminary and larger-scale experiments are needed to conclusively
establish the superiority of lateral thinking, a consistent pattern emerges: SALT’s reasoning is driven
by a significantly larger and diverse context size as measured by the number of belief statements
and supporting article count. This suggests that the key to it’s success lies in its ability to perform
lateral thinking over related contexts, sometimes multiple hops away in the agent network. The
system’s capacity to ensure that relevant information from distant articles is communicated to the
appropriate agents appears to be crucial. However, further research is necessary to fully understand the
information flow within the agent network and to validate this hypothesis. This insight, if confirmed,
could represent a significant advancement in an AI system’s ability to reason across diverse and
seemingly unrelated information sources arriving at different points of time.

Qualitative Analysis Answers generated by SALT are more a) information-rich and b) characterized
by higher specificity. Below we present a brief case study analyzing results to the query: “Monitor if
any new economic activity develops as a result of changing climate patterns".

1. Comprehensiveness of assessment: SALT-GPT-4o and SALT-Claude provide more com-
prehensive assessments covering a broader range of economic activities. For example:

• SALT-GPT-4o mentions "innovations in maritime technologies, including advanced
ice-breaking capabilities and improved navigation systems" and "growing economic
activity in climate-adaptive technologies across various sectors."

• SALT-Claude discusses "innovation in sustainable technologies, including renewable
energy, water management systems, and climate-resilient agriculture."

In contrast, Temporal-GPT-4o and Temporal-Claude focus primarily on Arctic shipping
routes and resource exploration.

2. Depth of analysis on long-term implications: SALT versions offer deeper insights into
long-term economic consequences:

• SALT-GPT-4o states: "These developments are reshaping global trade patterns and
potentially shifting economic power towards nations with strong Arctic presences or
advanced maritime technologies."
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• SALT-Claude notes: "Overall, while climate change is creating new economic oppor-
tunities, it is also fundamentally altering global power dynamics, security concerns,
and governance structures, which will have long-term implications for international
trade and economic partnerships."

The Temporal-GPT-4o and Temporal-Claude outputs do not address these broader implica-
tions.

3. Balanced perspective on opportunities and challenges: SALT outputs provide a more
nuanced view of both opportunities and risks:

• SALT-GPT-4o mentions: "The exploitation of Arctic resources raises environmental
concerns and potential conflicts over territorial claims. Increased maritime activity in
the Arctic also brings risks of oil spills, noise pollution affecting marine life, and the
introduction of invasive species."

• SALT-Claude states: "These new economic activities come with significant challenges
and potential conflicts. The competition for resources in the Arctic is intensifying,
leading to increased militarization and the need for new governance structures to
manage conflicting claims."

In contrast, Temporal-GPT-4o and Temporal-Claude primarily focus on the opportunities
without thoroughly addressing associated challenges.

Model Retrieval Performance (%) Hypothesis Quality (%)
Temporal-Claude-Sonnet-3.5 45.46 26.88
Temporal-GPT 4o 35.83 18.28
SALT-Claude-Sonnet-3.5 63.54 34.68
SALT-GPT 4o 57.33 34.30

Table 1: Performance Comparison: Reasoning Algorithms and LLM Combinations.

(a) Query Complexity Distribution
(b) Reasoning accuracy drops for queries with in-
creased lateral measure

Figure 2: (a) Shows normalized lateral measure, time lag complexity, and uncertainty spread across
various anticipatory queries. (b) Shows an evaluate of SALT over a dataset with high time-lag
complexity and profiles performance as a function of query complexity.

6 Conclusions

This paper advances AI reasoning by introducing lateral thinking for agents to address low-specificity
anticipatory and causal questions in streaming setting. We present a framework for generating lateral
thinking queries and datasets, and introduce SALT, a multi-agent system implementing System-
2 reasoning. Preliminary studies reveal SALT’s superior performance over single-agent systems,
suggesting a novel phenomenon: lateral information flow across long-distance agent interactions,
combined with fine-grained belief management, yields richer information contexts and enhanced
reasoning. Rigorous testing of this hypothesis on large-scale datasets will be subject of future work.
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A Details of SALT Architecture

A.1 Agent network initialization

User: I want to know as soon as a geopolitical event between China and Taiwan that will affect
the supply chain for American semiconductor companies happens.

Prompt: Given the following query construct a numbered list of 4 areas of research that should
be focussed on to answer the query.

Master Agent: To address the query effectively, the following areas of research should be
focused on:

1. **Geopolitical Tensions and Policies**:

• Monitoring diplomatic relations and potential conflicts between China and Taiwan.
• Analysis of government policies, sanctions, and trade agreements affecting both na-

tions.
• Updates on military activities or significant political statements that could indicate

rising tensions.

2. **Supply Chain Dynamics**:

• Identification of critical semiconductor components and their origins in China and
Taiwan.

• Tracking of existing and potential supply chain disruptions within the semiconductor
industry.

• Assessing dependency of American semiconductor companies on Chinese and Tai-
wanese suppliers.

3. **International Trade and Economics**:

• Analysis of trade flows and economic interdependencies between China, Taiwan, and
the United States.

• Monitoring changes in import/export regulations that could affect semiconductor
industries.

• Studying economic indicators that might predict or result from geopolitical disruptions.

4. **Industry News and Developments**:

• Real-time tracking of news within the semiconductor industry, focusing on announce-
ments from key companies.

• Updates on corporate strategies and responses to geopolitical events by American
semiconductor companies.

• Following industry analyses and expert opinions on potential impacts of geopolitical
changes.

By focusing research on these areas, one can not only anticipate but also respond effectively
to any geopolitical event between China and Taiwan that might affect the supply chain for
American semiconductor companies.
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Figure 3: Illustration of a scenario where a drought in one part of the world can affect the energy
security in distant places.

Figure 4: Illustration of a scenario where a climate change induced event can lead to upheaval in an
industry.

B Benchmarking

B.1 Implementation

The SingleTemporalReasoningAgent processes streaming information and generates evolving hy-
potheses over time. Its core functionality involves maintaining a temporal context of past assessments
while continuously integrating new information. The agent processes articles in chronological batches,
capturing the progression of events and insights. For each user query, it generates hypotheses by
considering both the current batch of articles and, optionally, the previous hypothesis, implementing
a form of persistence in its reasoning process. This method enables the agent to build upon past
knowledge, refine its assessments, and provide updated insights as new information becomes available.
The agent employs a planner (or master agent) for hypothesis generation, adding adaptability to the
reasoning process. As detailed in Algorithm 1, the agent manages the flow of information by sorting
and filtering articles, generating hypotheses, and presenting results, creating a systematic process for
continuous reasoning over time-based data streams.
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Algorithm 4: SingleTemporalReasoningAgent
Input: User queries Q, Planner P , Articles A, Parameters params
Output: Temporal context of hypotheses H
Initialize H as empty dictionary;
Sort A chronologically;
A← FilterArticlesByDateRange(A, params.start_date, params.end_date);
while A is not empty do

batch← GetNextBatch(A);
foreach query q in Q do

prompt← GeneratePrompt(batch, q,H[q].last);
hypothesis← P.GenerateHypothesis(prompt);
H[q].append(hypothesis);
PresentHypothesis(hypothesis);

end
WaitForNewData();

end

The algorithm maintains a temporal context of hypotheses for each user query, updating them as
new batches of articles are processed. This allows the agent to incorporate past information while
generating new hypotheses, resulting in a continuous stream of updated assessments based on the
incoming information.

13



B.2 Query Configurations

Figure 5: Example lateral thinking queries.

Figure 6: Example query-scenario pairs with corresponding metrics. Note that the metrics are
obtained on the basis of the “query" field.
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