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Abstract

Recent advances in implicit neural representations make it possible to reconstruct a
human-body model from a monocular self-rotation video. While previous works
present impressive results of human body reconstruction, the quality of recon-
structed face and hands are relatively low. The main reason is that the image region
occupied by these parts is very small compared to the body. To solve this problem,
we propose a new approach named TotalSelfScan, which reconstructs the full-body
model from several monocular self-rotation videos that focus on the face, hands, and
body, respectively. Compared to recording a single video, this setting has almost no
additional cost but provides more details of essential parts. To learn the full-body
model, instead of encoding the whole body in a single network, we propose a
multi-part representation to model separate parts and then fuse the part-specific
observations into a single unified human model. Once learned, the full-body model
enables rendering photorealistic free-viewpoint videos under novel human poses.
Experiments show that TotalSelfScan can significantly improve the reconstruction
and rendering quality on the face and hands compared to the existing methods. The
code is available at https://zju3dv.github.io/TotalSelfScan.

1 Introduction

3D human reconstruction and rendering can be ubiquitously applicable in promising areas such as
immersive viewing experiences and telepresence. In most applications for social communications,
high-quality face and hand models are essential components. While previous methods [24! 16} [52]]
demonstrate impressive results of full-body reconstruction, they usually require hundreds of calibrated
and synchronized cameras, which makes them impractical to create personalized avatars for general
users.

To make human avatar creation more accessible, many recent methods propose to reconstruct the
human body model from monocular RGB inputs. Some works [44} 45| 60] propose to reconstruct the
human geometry and appearance from a single image by learning pixel-aligned implicit functions.
However, relying on the paired 3D data and images for training, these methods have difficulty in
generalizing to the in-the-wild images. Some other works propose to reconstruct a person-specific
model from a monocular video that records a self-rotation performer holding a fixed pose. The
subjects can scan themselves only using a fixed camera without any assistance, which makes the
personalized avatar creation possible. For example, VideoAvatar [3]] relies on the statistical human
model and adds displacements to the vertices of the statistical model for modeling clothing. More
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Figure 1: Given several monocular videos of head, body and hands of a performer, our method is
able to reconstruct an animatable full-body avatar of the performer.

recently, SelfRecon [23]] proposes to combine the explicit mesh and implicit signed distance field to
improve the reconstruction. While these self-rotation video based methods achieve impressive results
for the human body, the accuracy of hands and face are relatively low. The main reason is that the
image regions occupied by the hands and face are very small in the input self-rotation videos which
cover the whole bodies.

In this paper, following the self-rotation video setting, we propose to use a fixed camera to record
several monocular videos that focus on the human body, head, and hands respectively, and the
performer rotates the part of concern in each video, as shown in Figure[I] Compared to recording a
single body video, this setting has almost no additional cost but provides abundant details of essential
parts. Given these monocular videos as input, our target is to recover the detailed full-body geometry
and appearance, which enables photorealistic rendering of free-viewpoint videos under novel human
poses. However, this new task brings many challenges. First, different parts have very different scales,
such as the hands and the body, which requires the human model to preserve the details at various
scales. Second, each video is part-centric and it is unclear how to seamlessly fuse these videos into a
single human model. Third, the appearance of the same part among videos may not be the same due
to different lighting. Finally, the self-rotation videos only cover very limited view directions, which
makes the rendering under both novel views and novel poses challenging.

To address these problems, we propose a novel multi-part representation to model the body, head, and
hands respectively, and fuse the part-specific observations into a single human model. Specifically,
we utilize multiple implicit signed distance fields (SDFs) and color fields [57] to represent different
human parts in the canonical space. To learn the representation, we propose the part deformation
fields to establish the correspondence between each observation space and the canonical space, and
the SDF-based volume rendering is utilized to train the model. Then, we propose to fuse the geometry
and appearance of adjacent parts to obtain a consistent full-body model. Finally, we extend the ray
transformation [S8] to the non-rigid case to improve the quality of rendered images under novel
human poses.

In summary, this work makes the following contributions:

* We introduce a new task of full-body avatar creation from multiple part-specific videos which
provide richer details on human parts than a single video.

* We propose a novel pipeline that reconstructs separate parts from each video and seamlessly
fuse them into a unified human model.

* We show that, compared to using a single video, the joint analysis of multiple part-specific
videos demonstrates significant reconstruction quality improvement on faces and hands.



2 Related work

Human reconstruction. Reconstrucing the underlying geometry and appearance of humans has
always been an open problem. Previous work can be roughly divided into explicit and implicit
representation-based methods. The explicit representation, e.g., a polygon mesh, is obtained in
advance in the form of statistical human models [32} 5,37, 54]] or pre-scanned personalized templates
[[13L 20]. Based on the statistical human model, most works [8}, 25, 126, 18, |17, |19] reconstruct the
naked body mesh from various inputs and some works further add surface deformation to capture
more details [63,127, 48] [11},161]]. Another line of works [56 211155 [22] utilize personalized templates
and deform them by dense non-rigid tracking to achieve performance capture.

The implicit function based methods are prevailing recently. PiFu based methods [44] 45| |60]]
learn a pixel-aligned implicit function efficiently for both geometry and texture from a single
image. However, high-quality 3D models are required for training, which limits their generalization
ability. Recently, optimizing a network to represent a person-specific model shows impressive
results [14] |46l 10} 41}, 139]. Here, we focus on the methods using images as input. Inspired by
NeRF [33], Neural Body [41]] optimizes the radiance field conditioned on the structured latent codes
with only images as supervision. Neural Actor [30] integrates the texture features to enhance the
rendering performance. MVP [31]] proposes a mixture of volumetric primitives that support efficient
rendering of avatars. Furthermore, in order to achieve better animatable effects, learning blend
weights automatically from data [39] and incorporating articulated structures [36] are explored. To
improve the geometry, [53 40] represent the human geometry as the signed distance field and use the
volume rendering to learn the representation from images. In addition, some works [3} 23] propose to
reconstruct the human model from monocular self-rotation videos.

Total body capture. Total body capture aims to reconstruct the whole body of the performer including
body, face, and hands. Most existing works [32] 142, 28] 9] [7] consider these parts separately. To
model the human as a whole, several approaches [24, 38] stitch the part-specific model together
and further parameterize the unified model via additional registration and regression. Based on the
parametric models, some works propose to optimize the parameters to fit the multi-view [24] or
single-view [38]51]] image evidence. To achieve faster inference, some approaches [43| [12] 162} 34]
directly regress the parameters of models with neural networks and then integrate or refine them
with observations from local regions. Different from the typical mesh representation, imGHUM [4]
proposes a generative human model represented by multiple signed distance functions and learns the
model from point clouds. A recent work [6] reconstructs full-body avatars based on a disentangled
latent space with variational autoencoders conditioned on driving signals, while [52] additionally
takes clothing modeling into consideration, which demonstrate impressive reconstruction quality
but require hundreds of synchronized high-resolution cameras. In contrast, we reconstruct full-body
avatars from monocular videos obtained by a single camera.

3 Method

We aim to reconstruct the detailed full-body geometry and appearance from several monocular
videos, which enables photorealistic rendering of novel views and novel human poses. Figure
shows the overview of the proposed pipeline. We represent the human body as multi-part networks
in the canonical space, modeling body, head, and hands, respectively (Section . To learn the
representation from part-specific videos, we first transform the sample points from each observation
space to the canonical space via part deformation fields (Section[3.2), and then combine parts into
a full-body model (Section [3.3). We train the model with volume rendering (Section [3.4). After
training, we adopt the non-rigid ray transformation for novel pose rendering (Section [3.5).

Given four monocular part-specific videos (body, head, and two hands) of the performer, we first
utilize the EasyMoCap [1} (16} [15] to estimate SMPL+H [42]] parameters for the body and hands
videos and utilize an adaptation of [49] to estimate the FLAME [28]] parameters for the face video.
Then, we adopt [29] to generate the human mask for each frame. In the following, we elaborate each
component.
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Figure 2: Overview of the proposed approach. Given sample points in each part-specific observation
space, we transform them to the unified canonical space using part deformations. For each points, the
corresponding part network is utilized to predict the signed distance and color and volume rendering
is used to synthesize images. To obtain the consistent human geometry, we introduce the geometry
composition loss in the training. At inference time, we first composite the appearance of adjacent
parts and then animate the canonical human model using input novel poses. To render high-quality
images, we adopt the non-rigid ray transformation to replace original view directions with global
ones.

3.1 Multi-part human model in the canonical space

Similar to [53}40], the human geometry and appearance are represented as signed distance fields
F; and color fields F. given by MLP networks. In contrast to previous methods that encode the full
human body in a single model, we decompose the human into separate parts (i.e., body, head, and
hands) and each part is represented as a single network. Specifically, for the part p, the models can be
written as follows:

s(x),z(x) = FP(x), (D

c(x) = F{(x,z(x),n(x),d, £), 2)
where s(x) and c(x) denote the signed distance and color to be decoded at a sampled position x,

d, z(x) and n(x) denote view direction, the geometry feature and normal in the canonical space,
respectively. £ denotes the latent code at video frame 1.

3.2 Part deformation

To learn the canonical human model, we need to establish the correspondences between each part-
specific observation space and the canonical space. Due to the different properties of each part, we
adopt part-specific deformation strategies.

Body and Hands. Since the body and hands own a similar articulated structure, we adopt the same
deformation strategy consisting of skinning transformation and non-rigid transformation. In particular,
for a point x in the observation space of part p at frame ¢, the corresponding canonical point x. can
be written as follows:

Xe = Tips(%, i) + T, (Tips (%, pi), @), (3)
where T}, is the standard inverse linear blend skinning algorithm with no learnable parameters and
p: is the human pose. Note that the blending weights of x are generated by retrieving the counterpart



of the closest vertex on the template mesh. TP is the part-specific non-rigid displacement field
implemented as an MLP network and ¢? is the latent code. Practically, we adopt the SMPL+H model
[42] for both body and hands.

Head. Different from the articulated structure of the human body, the head is closer to a rigid structure,
whose motion can be described as a rigid transformation solved by Structure from Motion [47]]. In
addition to the rigid transformation, we also introduce the non-rigid transformation similar to the
body and hands. Specifically, given a point x in the observation space at frame 7, the corresponding
point x’ in the head canonical space can be written as:

x' =Rix+T; + T (Rix+ T;, ¢Y), €]

where R,; and T; are the rotation and translation, respectively. To align the head canonical space and
the unified canonical space, we register the reconstructed head surfaces Xpead and Xnpody Obtained
from the head and body videos by solving the following optimization problem:

min min  |[(Rx+ T —x')-n'|, (5)
R, T x'€Xnbody
X€EXhead

where x and x’ denote the corresponding vertexes of two surfaces, and n’ denotes the normal of the
vertex x’. This problem can be solved using the iterative closest point (ICP) algorithm. However,
accurate registration requires a good initial alignment. Therefore, to obtain the initial alignment, we
first adopt [49] to reconstruct the FLAME model from the head video and then register the FLAME
model to the canonical SMPL+H model by solving the following optimization problem:

rlir{u'fli‘l HRLﬂame + T — LsmpthQv (6)

where Lgame and Lgmpin are the pre-defined corresponding landmarks on the FLAME model and
the SMPL+H model, respectively.

3.3 Part compositions

After warping points from each part-specific observation space to the canonical space, we need to
composite separate part models into a unified human model, which contains the compositions of
geometry and appearance. Specifically, we define a bounding box for each part in the canonical space
and there is overlap between two adjacent bounding boxes. In the bounding box B? of part p, the
corresponding models F? and FP? are activated. To generate a realistic unified model, we utilize the
following composition strategies in the intersection region of two bounding boxes.

Geometry composition. To ensure smooth surface transitions between two adjacent part networks,
we introduce the following loss function:

L= ) [Is7() = s" ()2 + D 57 ()], ()

XEXU XESj

where Aj; is the set of sample points in the intersection region between part ¢ and part j, and S; is the
set of sample points on the zero-level-set of part j in the intersection region. The first term enforces
the two signed distance fields to be consistent and the second term further enforces the consistency
on the reconstructed surface.

Appearance composition. Different from the consistent human geometry across part-specific videos,
the appearances of the same part in different videos are usually inconsistent due to uneven and varying
lighting conditions. As a result, the learned separate part models generate inconsistent appearances at
the same position. To solve this problem, we select the body model as the reference and optimize the
appearance code of other parts £° to achieve appearance consistency, which can be written as follows:

min |G (x, £2°7) — CP(x, 7))o, )
reR
where R denotes the set of rays of sampled intersection region, and C? (r, £P) denotes the rendered

pixel color of part p. After the appearance code optimization, the appearances between two parts
become similar but not exactly the same, which leads to an unwanted seam near the boundary.



To generate a realistic appearance transition, we further fuse the two adjacent color fields in the
overlapping region as follows:

dPi(x) oo @ (x)
) 4 e, ©)

where dPi (x) denotes the distance of x to part p; and d; denotes the depth of overlapping region.
Note that the appearance composition is performed after training.

c(x) =’ (x)(1 —

3.4 Training

To learn the signed distance filed s(x) and color filed c(x) from images, we leverage the SDF-based
volume rendering [57,150] to synthesize images and compare them with the input images.

For high-quality reconstruction, we introduce a two-stage training strategy. In the first stage, we train
each part model using the part-specific video separately and the loss functions are given as follows:

Lr = L gb + Lmdsk + /\1Lp + )\pLZT)Lrv (10)
Lhy =Y |C(x) = C(r)ll2, Lhu = Y BCE(sigmoid(—ps®), M(r)), (11)
reR reR
L= Z (IVEP(x)]l2 = 1)?, Z |TP.(x, &%) (12)
xeXe xEX¢©

The first term Ly, denotes the color loss. The second term Ly, denotes the mask loss, where p is

a gradually increasing hyper-parameter and M (r) is the ground-truth mask value. The third term
Lp denotes the Eikonal loss, where X¢ is the sampled points in the canonical space. The last term

LP  denotes the displacement regularization. The \; and A} are two predefined constants and A is
part-specific.

In the second stage, to obtain a consistent full-body model, we further add geometry composition
loss. Instead of training all part models jointly, we only optimize the body model while fixing the
other part models in the second stage. This strategy can fuse adjacent signed distance fields smoothly
while preserving the part details. The loss function is given as follows:

Lunion — Lbody 4 Lg~ (13)

3.5 Non-rigid ray transformation

After training, the canonical human model can be animated and rendered under novel human poses.
However, when the rays under novel human poses deviate from the training ray distribution, the color
field network F,. produces unexpected artifacts. Inspired by [58] that constructs a ray atlas for a rigid
object, we extend it to the non-rigid human. Specifically, we first transform each ray of training
frames from the observation space to the canonical space. Then, we extract the human mesh in the
canonical space and save all view directions d; of each vertex v on the human mesh. Based on the

saved view directions, we can compute a global view direction d,, as follows:
— 1
=24 (14)
n
where N is the number of transformed view directions related to the vertex. Finally, for image

synthesis under novel human poses, we replace original view directions related to vertex v with the
global one d,, for each ray.

4 Experiments

4.1 Datasets and metrics

Datasets. Since there is no existing dataset for our task, we create two new datasets for evaluation.
The first dataset ToralHuman consists of four subjects. For each person, we use a fixed camera



Table 1: Results of 3D reconstruction of each part on the SynTotalHuman dataset.

| Head | Hands | Total
| P2S| CDJ | P2S| CDJ | P2S| CDJ

NeuralBody [41] | 1.55 146 | 1.29 1.19 | 2.16 1.98
AniNeRF [39] 1.80 1.69 | 1.12 1.00 | 255 221
AniSDF [40] 076 091 | 079 075 | 1.90 197
Ours 059 082 | 055 052 | 1.84 1.89

e

Reference image  Ground-truth NeuralBody AniNeRF AniSDF Ours

Figure 3: 3D reconstruction on the SynTotalHuman and TotalHuman datasets.

to record four monocular videos focusing on the body, head, and two hands, respectively. For the
body video, the subject turns around while holding a T-pose. For the head video, the subject also
self-rotates but the camera focuses on the head. For the two hands, the subject holds a fixed hand
pose and moves the hand. We use this dataset for qualitative evaluation.

For quantitative evaluation, we create a synthetic dataset SynTotalHuman which contains four
animated 3D characters from Mixamo [2]]. For each character, similar to TotalHuman, we render four
monocular part-specific videos for training and render images under novel human poses for evaluation.
In addition, we also utilize this dataset to evaluate the accuracy of 3D surface reconstruction.

Metrics. For the evaluation of image synthesis, we adopt the following metrics: peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), and learned perceptual image patch similarity
(LPIPS) [39]]. For 3D reconstruction, we adopt the following two metrics: point-to-surface Euclidean
distance (P2S) and Chamfer distance (CD), whose units are both centimeters.

4.2 Comparison with the baselines

Since most previous methods only focus on body modeling, we extend the state-of-the-art methods
AniNeRF [39] and AniSDF [40] with hands to compare with our method. Since the neural feature
field of AniSDF can only converge on small images, we use the color field for image synthesis. We
also compare with NeuralBody [41]].

3D reconstruction. We first compare 3D surface reconstructions of our method and other baselines.
In addition to the full-body evaluation, we also compare the reconstruction of the head and hands
individually. The quantitative results on the SynTotalHuman dataset are shown in Table[I} Thanks to
the multi-part representation and the use of part-specific videos, our method outperforms the baselines
in all parts, especially the head and hands. We present the qualitative results in Figure[3]
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Figure 4: Image synthesis under novel human poses on the TotalHuman and SynTotalHuman datasets.
Note that for the TotalHuman dataset (first two rows), there are no ground-truth images under novel
poses and we put the training images for reference.
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Figure 5: Ablation studies for (a) multi-part networks and (b) non-rigid ray transformation .

Image synthesis. We evaluate the image synthesis quality on the ToralHuman and SynTotalHuman
datasets. Specifically, we compare the rendering results of novel human poses under novel views.
Similar to the 3D reconstruction, we compare the rendered images of each part. The quantitative
results on the SynTotalHuman dataset are given in Table 2] which show that our approach achieves
the best rendering quality. Figure {] shows the qualitative results on both datasets. As we can see,
the head and hands images rendered by our method significantly outperform the counterparts of the

baseline methods.



Table 2: Results of image synthesis under novel human poses of each part on SynTotalHuman.

| Head | Hands | Total
|PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS|

NeuralBody [41] | 18.94 0914 0.184 | 1851 0.893 0.240 | 19.97 0.855 0.239
AniNeRF [39] | 2092 0.928 0.153 | 20.60 0.907 0.179 | 23.71 0.889 0.185
AniSDF [40] 2191 0934 0.104 | 21.31 0930 0.111 | 25.57 0916 0.129
Ours 2223 0934 0.084 | 2249 0941 0.076 | 26.15 0921 0.114

Table 3: Ablation study on SynTotalHuman in reconstruction accuracy.

| Head | Hands | Total
| P2S| CDJ | P2S| CDy | P2S| CDJ
Single network ‘ 1.03 1.26 ‘ 1.25 1.22 ‘ 1.95 1.97

Ours 059 082 | 055 052 | 1.84 1.89

4.3 Ablation studies

We conduct the ablation studies to justify the algorithm designs in the proposed method.

Multi-part networks. We use multiple networks to represent the different human parts as described
in Section[3.1] An alternative is to represent the whole body using a single network which owns the
same number of parameters with the multi-part network. The quantitative results of 3D reconstruction
and image synthesis are presented in Table [3]and Table 4] respectively. The results show that our
multi-part networks outperform the single network by a large margin. We also show the qualitative
results in Figure 5] (a).

Head deformation. As described in Section [3.2] we first use FLAME-SMPLH registration to
initialize the rigid transformation and then refine it with the reconstructed surface alignment. Here,
we compare it with the initialized transformation obtained from the FLAME-SMPLH registration.
The qualitative results are shown in Figure[6](a). As we can see, the surface alignment significantly
improves the alignment between the head part and the body part.

Geometry composition. We introduce the L loss in Equation (7)) to ensure smooth surface transitions
between two adjacent parts. Here, we compare it to the results without this loss. Figure[6](b) presents
the qualitative results on the TotalHuman dataset. With the L, loss, the surface transition between
two parts is significantly improved.

Appearance composition. For recovering consistent appearance, we first optimize the latent code of
head and hand color networks and then fuse the color predictions. To evaluate the proposed method,
we compare it with: 1) w/o composition: neither latent code optimization nor color fields fusion is
used; 2) w/o color fusion: no color fusion is performed. The qualitative results are shown in Figure [6]
(c). As we can see, our method presents much better appearance consistency.

Table 4: Ablation study on the SynTotalHuman dataset in image synthesis quality.

| Head | Hands | Total
|PSNRT SSIM? LPIPS||PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS|

single network | 20.38 0.919 0.120 | 20.75 0.927 0.140 | 25.19 0907 0.144
w/o ray transform | 21.07 0.933  0.095 | 22.14 0939 0.085 | 2543 0916 0.123
Ours 2223 0934 0.084 | 2249 0941 0.076 | 26.15 0921 0.114
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Figure 6: (a) Ablation study for head deformation. The blue mesh is the target mesh reconstructed
from the body video. The orange mesh is the source mesh reconstructed from the face video. (b)
Ablation study for geometry composition. (c) Ablation study for appearance composition.

Non-rigid ray transformation. After training, we introduce the non-rigid ray transformation to
improve the novel view synthesis under novel human poses. To analyze its effect, we compare it with
the rendering without ray transformation. The quantitative and qualitative results are shown in Table
M) and Figure 5 (b), respectively. The results indicate that our ray transformation greatly improves the
rendering quality. Without the ray transformation, there will be severe artifacts on the head, hands,
and boundary of the body. The reason is that the self-rotating video covers very limited human poses,
and each point on the body is seen from a very limited range of view directions. Therefore, the color
field network has difficulty producing high-quality rendering under novel human poses. Replacing
the input view directions with global ones is a reasonable way to improve the generalization.

5 Limitations

The proposed method has the following limitations. First, the self-rotation human video provides very
limited human motions, which makes our method difficult to model pose-dependent deformations. It
would be interesting to leverage the existing multi-view human motion datasets to learn a generalizable
pose-dependent deformation regressor, which can be conditioned on the human pose and the canonical
geometry. Once learned, the generalizable regressor can be applied to new input data or can be further
finetuned on the input data to improve the results. Second, our method still needs a relatively long
time for training. Recent work [33] uses hash encoding to significantly reduce the training time of
implicit functions. Combining this technique into our method is left as future work.

6 Conclusion

In this paper, we introduce TotalSelfScan, a convenient approach to creating full-body avatars from
several monocular self-rotation videos that focus on the face, hands, and body, respectively. We
propose a multi-part network to represent the whole human in the canonical space and the part
deformation is utilized to establish the correspondences between the observation frames of each part
and the canonical space. We also propose a part composition method to obtain a consistent unified
human model. For rendering, we propose the non-rigid ray transformation to render photorealistic
free-viewpoint videos under novel human poses. Both quantitative and qualitative results demonstrate
the effectiveness of our method to reconstruct high-fidelity avatars from monocular videos. Lastly,
using the reconstructed avatars to synthesize unauthorized personal images may have negative societal
impact and we strongly discourage such applications.
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