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ABSTRACT

Active Learning (AL) aims to reduce labeling costs by iteratively querying in-
stances. Existing AL methods typically query instances based on either informa-
tiveness or representativeness. Only considering informativeness leads to sample
bias. Only considering representativeness leads to query amount of instances be-
fore the optimal decision boundary is found. It is essential to consider both when
querying instances. However, current hybrid methods are also time-consuming.
To query instance efficiently while considering both informativeness and represen-
tativeness, we propose an efficient active query strategy based on optimal trans-
port called Active Query by Optimal Transport (AQOT). Optimal Transport (OT)
enables us to measure the difference between two distributions efficiently, allow-
ing us considering the distribution of instances easily. Via entropy regularization,
we can solve OT efficiently. Specifically, we make use of the sparseness of the
solution of OT to querying the most informative instance while considering rep-
resentativeness. Additionally, we introduce a dynamic adjustment to AQOT. By
concatenating AQOT to multiple classification models, we show AQOT is a broad-
spectrum active query strategy. Experimental results demonstrate that our method
surpasses state-of-the-art active learning methods and shows high efficiency.

1 INTRODUCTION

Many machine learning methods require a large number of labeled instances to train the model.
Typically, these labels are assigned by human annotators, resulting in high labeling costs. In some
domains of expertise like medical image recognition, data labeling is extremely expensive. Active
learning is one of the main approaches to reduce the labeling cost (Settles, 2009). It continuously
selects the most helpful instances to query from the oracles (e.g., human annotators) and aims to
query as few instances as possible to improve the model most.

Due to the increasing demands of labeling data to train more complex models like deep neural
network, active learning has received broad attention (Liu et al., 2022). Based on how we get
unlabeled instances, active learning can be categorized into three scenarios (Settles, 2009). The
first scenario is pool-based active learning, where all unlabeled instances are collected in a pool.
We select query instances from the pool based on their utility (Lewis & Catlett, 1994). Pool-based
active learning is a well-motivated scenario used in many machine learning tasks (Settles et al.,
2008; Beluch et al., 2018). The second scenario is stream-based active learning (Zhu et al., 2007),
where unlabeled instances are obtained from data stream. We must decide whether to query the
instance once we get it. The last scenario is membership query synthesis, where query instances
are generated based on the hypothesis model rather than being selected from existing unlabeled
instances (Angluin, 1988; Tran et al., 2019). In this paper, we follow the pool-based active learning
scenario.

When evaluating the utility of instances, most existing active learning strategies can be categorized
into two main approaches: assessing informativeness and assessing representativeness. The for-
mer selects instances with the highest informativeness based on the assessment strategy, including
entropy, distance and confidence (Guo & Schuurmans, 2007; Guo & Greiner, 2007; Bondu et al.,
2010; Yang & Loog, 2016; Gal et al., 2017). Ning et al. (2022) proposed an active query method
for open-set annotation based on uncertainty. Yan & Huang (2018) proposed an informative mea-
surement for multi-labeling active learning, enhancing the adaptability of active learning methods.
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Additionally, Yoo & Kweon (2019) proposed a target-agnostic loss prediction method to select sam-
ples that tasks are most uncertain. Furthermore, Konyushkova et al. (2017) introduced an approach
centered on training a regressor that predicts the expected error reduction for candidate samples. Li
& Guo (2013a) introduced a multi-label active learning strategy based on max-margin. However,
the common issue of them is ignoring the distribution of all instances, which leads to sample bias
when querying instances. The latter selects instances that represent the overall unlabeled instances.
Two typical means to explore the representativeness are clustering methods and optimal experimen-
tal design methods (Brinker, 2003; Wu et al., 2006; Fu et al., 2013; Reitmaier et al., 2015; Ye &
Guo, 2017). Wang & Ye (2015) proposed a batch-mode active learning strategy under empirical risk
minimization principle, introducing techniques to select samples that enhance the overall represen-
tation. Sener & Savarese (2018) proposed a strategy to query diversity samples, particularly relevant
in the context of convolutional networks. However, focusing on representativeness usually queries a
lot of instances before we get close to the true decision boundary, which leads to large labeling cost.

It is essential to query instances taking both informativeness and representativeness into considera-
tion. Many hybrid methods have been proposed (Huang et al., 2014; Li & Guo, 2013b). Sinha et al.
(2019) proposed a hybrid method using a variational autoencoder and an adversarial network. Du
et al. (2017) proposed a general active learning framework to fuse informativeness and representa-
tiveness. However, it is still time-consuming for current hybrid method to explore the representa-
tiveness of instances.

This paper proposes an efficient hybrid Active Query strategy by Optimal Transport called AQOT.
Specifically, we establish two Optimal Transport (OT) models from unlabeled instances to positive
instances and negative instances respectively. We design the active query strategy by examining
the differences in the distributions of coefficient vectors between these two models. Furthermore,
noticing that the quality of the solution is influenced by the initially labeled instances, we propose
a dynamic adjustment to AQOT to encourage early exploration. AQOT outperforms state-of-the-
art active learning methods with high efficiency. Besides, we empirically concatenate AQOT with
mainstream classification models and verify it is a broad-spectrum strategy.

The rest of the paper is organized as follows. We introduce preliminaries in Section 2. Then we
describe our approach in Section 3. Section 4 reports the experiments, followed by the conclusion
in Section 5.

2 PRELIMINARY

Throughout the paper, we denote scalars by normal letters (e.g., y). We denote vectors and matrices
by boldface lower and upper case letters respectively (e.g., x for vector and X for matrix). We
denote by diag(a) the diagonal matrix with main diagonal equal to a. We denote the i-th row and
j-th column of X by Xi: and X:j respectively. We denote sets by upper case letters with mathbb
fonts (e.g., X). For X,Y ∈ Rm×n, We denote by ⟨X,Y ⟩ =

∑
ij XijYij . For positive integer d,

we denote by 1d and ∆d the d-dimensional all-one vector and d-dimensional simplex respectively.
For positive integer n, we denote by [n] = {1, . . . , n}.

2.1 OPTIMAL TRANSPORT

We transform an probability distribution into another distribution in OT problem. The goal is to
minimize the total cost of the transform (Torres et al., 2021). By establishing OT model between
two distributions, we can intuitively see their connections. We can easily take instance distribution
into consideration when querying instances via OT.

We illustrate how OT works using a toy data set as an example. In this demonstration, we establish
two OT models: one from the unlabeled instances to the positive instances and another from the
unlabeled instances to the negative instances, just as we do in the following experiment. We treat
each instance equally, i.e., assigning a probability value 1/u to each unlabeled instance, 1/p to each
positive instance and 1/n to each negative instance. During the transporting process, unlabeled
instances tend to transport to the nearest instance. The data set and coefficient matrix are shown in
figure 1.
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Figure 1: (a) The plot of a toy data set. Six labeled instances are marked from A to F and four
example unlabeled instances are numbered from I to IV. The dashed line represents the decision
boundary. (b) The coefficient matrix. The size of the circle represents the mass of unlabeled in-
stances transported to labeled instances. I, II are positive instances indeed and III, IV are negative
instances.

We denote by u ∈ ∆u and l ∈ ∆l two probability distributions respectively. The set of all admissi-
ble couplings T (u, l) is:

T (u, l) = {T ∈ Ru×l
+ |T1l = u,T⊤1u = l}, (1)

where T is the coefficient matrix of this problem. Tij is the amount of mass transported from ui

to lj . We denote by C ∈ Ru×l the cost matrix. Cij is the cost of transporting unit mass from the
position of xi to the position of xj . We take Euclidean distance between two instances as the cost,
which is Cij = ∥xi − xj∥2. The goal of OT is to minimize the total transport cost from u to l:

min
T∈T (u,l)

⟨C,T ⟩ = min
T∈T (u,l)

∑
i∈[u]

∑
j∈[l]

CijTij . (2)

Though equation (2) can be solved by any linear programming algorithm (Kantorovitch, 1958), the
computational cost to precisely solve it in large scale problem is unacceptable. To address this,
entropy regularization has been introduced (Cuturi, 2013), enabling faster and satisfying solutions
to the entropy regularized OT problem:

OT(u, l) = min
T∈T (u,l)

⟨C,T ⟩ − λ ·H(T ), (3)

where H(T ) = −
∑

ij Tij(log Tij − 1) and λ is regularization parameter. A larger λ encourages a
uniform coefficient distribution.

3 APPROACH

In this section, we describe the approach. Specifically, we first solve the entropy regularized OT
problem by Sinkhorn-Knopp algorithm (Cuturi, 2013). We use the standard deviation of coefficient
vectors to reflect the certainty in unlabeled instances. Then we propose our active query strategy via
it. Finally, we propose the improvement of the active query strategy with dynamic adjustment.

We denote by D the data set with n examples, which includes a labeled set L =
{(x1, y1), (x2, y2), · · · , (xnl

, ynl
)} with nl labeled instances and an unlabeled set U =

{xnl+1, xnl+2, · · · , xnl+nu
} with nu unlabeled instances, where n = nl + nu. Besides, yi ∈

{0, 1} =: Y is the ground-truth label and xi ∈ Rd (i ∈ [n]). L = P ∪ N, where P and N denote the
positive set with np positive instances and negative set with nn negative instances respectively.

Active learning iteratively selects the most useful instance from U to query its label from the oracle.
According the ground-truth label of the query instances, we add it to P or N. Then we train the
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classifier Fθ(x) : Rd → Y parameterized by θ with the updated L. The classifier is expected to
achieve better performance with the update of L.

3.1 SOLVE OT

As mentioned before, we establish two OT models from U to P and N respectively in our experiment.
We introduce entropy regularization into original OT problem and use Sinkhorn-Knopp algorithm
to solve the entropy regularization OT problem. The Lagrangian of equation (3) with dual variables
γ ∈ Rnu , ζ ∈ Rnl is:

L(T ,γ, ζ) =
∑

j∈[nu]

∑
i∈[nl]

(TijCij + λTij(log Tij − 1)) + γ⊤(T1nl
− 1nu

nu
) + ζ⊤(T⊤1nu

− 1nl

nl
).

(4)

By setting the partial derivative to zero, we can get the solution T = diag(a)Kdiag(b), where
a = exp(γ/λ),K = exp(−C/λ) and b = exp(ζ/λ) are the element-wise exponential of
γ/λ,−C/λ, ζ/λ. Considering the row and column marginals of T are equals to their target values,
we have:

a⊙ (Kb) = nu, b⊙ (K⊤a) = nl,

where ⊙ is Hadamard product.

The heat maps of the OT coefficient matrix of stock are shown in figure 2. It is evident that the
coefficient vector is sparse when transporting unlabeled instance to instances with same label, while
more uniform when transporting to instances with different label. Based on this observation, we can
use the coefficient matrix to assess the informativeness of an unlabeled instance and incorporate it
into our active query strategy.
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Figure 2: The heat maps of the OT coefficient matrix of stock. The OT models are established
from 50 unlabeled instances to 50 positive instances and 50 negatives instances respectively from
stock. Each row represents the coefficient vector of an unlabeled instance. The first half are positive
instances and the second half are negative instances. It is evident that the coefficient vector is sparse
when transporting to instances with same label.

3.2 QUERY STRATEGY

After establishing and solving the entropy regularization OT model, we obtain coefficient matrices
T P ∈ Rnu×np ,TN ∈ Rnu×nn for transporting unlabeled instances to positive and negative in-
stances respectively. We can select the query instance with these two matrices. The dynamic query
score for selecting query instance is:

dyscore(xi) = (1− η) · (α · confi + (1− α) · 1
pi
) + η · di, (5)

which consists of three terms: confi, 1/pi and di. We detail them respectively.
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The first term represents our confidence in xi. For an unlabeled instance xi ∈ U, its coefficient
vectors are T P

i: and TN
i: respectively. TP

ij represents the mass transporting from xi to xj ∈ P and
TN
ik represents the mass transporting from xi to xk ∈ N. As previously introduced, the sparseness

degree of the coefficient vector is related to the the label of source instance and target instance. The
sparser the coefficient vector is, the more likely the source instance and the target instance share the
same label. Standard deviation is a good method to reflect the the sparseness degree of instances.
We define sample confidence of xi by the standard deviation of coefficient vector:

confi =

∣∣∣∣ std(T P
i: )

max(T P
i: )
− std(TN

i: )

max(TN
i: )

∣∣∣∣ . (6)

Normalizing the standard deviation helps eliminate the influence of specific coefficients. When
sample confidence is high, it is more likely that one coefficient vector is sparse while the other is
uniform and we are more certain about the label of the instance. High confidence indicates certainty,
which is a significant aspect of informativeness. Importantly, with the introduction of OT, this
certainty takes the entire distribution of labeled instances into account. However, querying instances
based solely on certainty is not sufficient. In addition to certainty, uncertainty is also a crucial factor
in assessing the informativeness of instances. That is why we introduce the second term.

The second term represents the uncertainty degree of xi. In binary classification problems, pi =
|p(y = 1|xi) − p(y = 0|xi)|. In multi-class classification problems, pi = |p(y = ŷ1|xi) − p(y =
ŷ2|xi)|, where ŷ1 and ŷ2 represents the two labels with highest posterior probability. p(y|x) can be
computed with function predict proba() in sklearn. Obviously, the smaller pi is, the more uncertain
we are about the label of instance, making pi a good method to measure uncertainty. Ideally, we aim
to query instances with both high uncertainty and high certainty. And we define query score based
on uncertainty and certainty of the instance:

score(xi) = α · confi + (1− α) · 1
pi
, (7)

where α is the parameter to weigh uncertainty and certainty. In initial experiment, we simply set
α = 0.5, where certainty and uncertainty carry equal weight. Instances with high query scores have
both high certainty and uncertainty, which is helpful to improve our classifier.

Based on the specific setup, active learning begins with a few labeled instances. If initial labeled
instances are far away from the true decision boundary, it might take many iterations to get reach to
the boundary. In some cases, querying instances near the wrong boundary reinforces the incorrect
decision boundary. Encouraging exploration beyond the labeled instances leads to a quicker adjust-
ment of the decision boundary, which is beneficial for achieving a potentially better boundary. So
we propose a dynamic adjustment di =

∑
x∈L |xi − x| to the initial query score.

After adding the dynamic adjustment term, we get equation (5), where η = 1/(δ + log(t)), t is
current iteration, δ is the smooth parameter. At the beginning of training, η is set close to 1, which
encourages querying instances that are far from the labeled instances. This leads to rapid changes
in the decision boundary, which might potentially get closer to the ground truth. In the worst case,
it might result in a waste of the first few turns. However, η decreases as training progresses and
the query score of xi is favored for querying instances. We prefer to querying instances with both
certainty and uncertainty rather than outliers. In conclusion, in active query strategy with dynamic
adjustment, we will query instance with the highest dynamic query score:

xquery = max
x∈U

dyscore(x). (8)

The first term controls certainty. The second term controls uncertainty. The last term encourages
exploration in the beginning of the training process. It is important to note that the computation of
the score is independent of the specific classifier, allowing us to concatenate the query score with
any classifiers. The algorithm is detailed in algorithm 1.

4 EXPERIMENTS

In this section, we concatenate AQOT strategy with three classification classifiers, i.e., SVM, GBDT
and NN. We will begin by describing 6 real-world data sets, 6 compared methods, and experimental
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Algorithm 1 AQOT
Input: Initial U,P,N, max query iteration T, δ
Output: Fθ(x)

1: t← 1
2: η ← 1/δ
3: while t < T do
4: Train a new classifier by P and N.
5: Establish OT models from U to P and N and compute the solution of the entropy-regularized

OT problem by Sinkhorn-Knopp algorithm.
6: for i← 1 to nu do
7: T P

i: ← the coefficients vector of xi ∈ U transporting to P
8: TN

i: ← the coefficients vector of xi ∈ U transporting to N
9: pi ← |p(y = 1|xi)− p(y = 0|xi)|

10: end for
11: Query xquery according to equation (8).
12: Add xquery to P or N according to its label and remove it from U.
13: t← t+ 1
14: η ← 1/(δ + log(t))
15: end while

settings. Subsequently, we will assess the algorithm is not sensitive to entropy regularization pa-
rameter. In addition to comparing with the state-of-the-art active learning methods, we compare run
time and AQOT shows high efficiency compared to other hybrid methods. Moreover, we conduct
ablation experiments to show the effectiveness of AQOT.

4.1 EXPERIMENT SETTING

We utilize six data sets from the UCI Machine Learning Repository, including monks-problem-
1, qsar-biodeg, balance-scale, phoneme, stock and breast. We compare the following query
strategies in our work:

• AQOT: The proposed method of this paper, which queries the instance with high certainty
and uncertainty as well as encourages exploring at the start of training.

• FULL: We train a classifier using all labeled instances as a reference baseline.

• RANDOM: This method queries instance randomly.

• UNCERTAINTY (Settles & Craven, 2008): This method is based on informativeness.
Specifically, it queries the instance with most uncertainty. The uncertainty is measured
by prediction confidence.

• ENTROPY (Lewis & Catlett, 1994): This method is based on informativeness. Specifically,
it queries the instance with the highest entropy.

• CORESET (Sener & Savarese, 2018): This method is based on representativeness. Specif-
ically, it queries the instance minimize the core-set loss.

• QUIRE (Huang et al., 2014): This method is a hybrid method, which queries the instance
with informativeness and representativeness.

• WMOCUAL (Zhao et al., 2021): This method is a hybrid method, which queries the in-
stance based on the weighted form of MOCU.

In our experiment, we use QUIRE and CORESET in (Tang et al., 2019). For each data set, we
randomly choose 20% of instances for testing. We randomly choose 5 positive instances and 5
negative instances as initial labeled instances. In each iteration, we query one instance from U and
add it to L. For data sets with instances less than 1000, we query 100 instances in total. For data
sets with instances less than 5000, we query 300 instances in total. For data sets with instances more
than 5000, we query 500 instances in total.
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4.2 PERFORMANCE

We initially concatenate AQOT with SVM rather than with all three classifiers to demonstrate the
results. Figure 3 shows the performance of eight methods on six data sets in terms of accuracy. In
phoneme, QUIRE needs more than 2 hours to get the result, so there is no result of QUIRE in the
corresponding figure.
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Figure 3: Results on six data sets in terms of accuracy. QUIRE spends too much time (over 2 hours),
so its result is not shown in the corresponding figure.

It can be seen from the result that on all data sets AQOT outperforms most of the baselines and
achieves the best performance in all cases.

4.3 PARAMETER ANALYSIS

As introduced above, λ has influence on the solution of the OT problem. If λ is too small, the clas-
sifier degenerates to the original OT. Conversely, if λ is too large, the coefficient vector becomes al-
most uniformly distributed. From the experimental point of view, a reasonable range of λ is between
0.1 and 1. We concatenate AQOT with three classifiers and consider values of λ ∈ {0.1, 0.5, 1}.
Table 1 summarizes the performance of the nine methods on six data sets in terms of F1 score based
on ten trials. The win/tie/loss counts are summarized in the last three rows.

It can be seen from the result that AQOT methods outperform most of the baselines regardless of the
value of λ, and the performance is related to the classifier. Observing the results, we can also find
that under the appropriate regularization parameter, AQOT is not sensitive to λ.

Another parameter α controls the weight of certainty and uncertainty. If α equals to
0, the term of certainty disappears. Conversely, if α equals to 1, the term of uncer-
tainty disappears. We concatenate AQOT with three classifiers and consider values of α ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.Figure 4 shows the performance of three AQOT meth-
ods on six data sets in terms of F1 score.

It can be seen from the result that a too small α or too big α will decrease the performance of AQOT
method. A suitable range for α falls between 0.4 and 0.6 based on the data set, which means the
importance of certainty and uncertainty is similar in most of the cases.

4.4 RUN TIME COMPARISON

We compare the running time to show AQOT is efficient. All algorithms are implemented in Python
3.7 on a personal computer with Intel i5-12500 2.5 GHz CPU and 16G RAM. Table 2 shows the
result. It can be seen from the result that compared to two hybrid methods: QUIRE and WMOCU,
our AQOT methods shows higher efficiency.
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Table 1: Results on six data sets in terms of F1 score over 10 trials. The best result on each data set
is indicated in bold. The win/tie/loss counts are summarized in the last three rows. (A wins B means
A is significantly better than B based on a pair-wise t-test at a 0.05 significance level)

Dataset λ RAN UN EN CORE QUIRE WMOCU AQSVM AQGBDT AQNN

monks1
0.1 .856±.010 .868±.014 .904±.012 .868±.016 .880±.025 .902±.012 .927±.014 .973±.026 .982±.013
0.5 .856±.010 .868±.014 .904±.012 .868±.016 .880±.025 .902±.012 .936±.034 .980±.010 .972±.015
1 .856±.010 .868±.014 .904±.012 .868±.016 .880±.025 .902±.012 .958±.034 .990±.010 .975±.018

qsar
0.1 .831±.033 .818±.039 .827±.031 .815±.023 .811±.028 .852±.012 .861±.020 .874±.015 .895±.032
0.5 .831±.033 .818±.039 .827±.031 .815±.023 .811±.028 .852±.012 .885±.014 .897±.019 .885±.037
1 .831±.033 .818±.039 .827±.031 .815±.023 .811±.028 .852±.012 .881±.025 .883±.035 .894±.034

balance
0.1 .945±.012 .933±.030 .933±.012 .942±.013 .923±.022 .942±.006 .976±.014 .955±.007 .958±.008
0.5 .945±.012 .933±.030 .933±.012 .942±.013 .923±.022 .942±.006 .980±.011 .952±.012 .957±.010
1 .945±.012 .933±.030 .933±.012 .942±.013 .923±.022 .942±.006 .960±.028 .956±.012 .957±.013

stock
0.1 .859±.020 .856±.033 .868±.019 .874±.019 .735±.024 .877±.022 .903±.034 .957±.028 .948±.017
0.5 .859±.020 .856±.033 .868±.019 .874±.019 .735±.024 .877±.022 .917±.029 .945±.031 .952±.024
1 .859±.020 .856±.033 .868±.019 .874±.019 .735±.024 .877±.022 .943±.022 .962±.022 .945±.013

breast
0.1 .961±.012 .960±.011 .969±.008 .959±.016 .962±.012 .955±.020 .979±.012 .978±.007 .977±.012
0.5 .961±.012 .960±.011 .969±.008 .959±.016 .962±.012 .955±.020 .976±.011 .975±.005 .979±.017
1 .961±.012 .960±.011 .969±.008 .959±.016 .962±.012 .955±.020 .978±.010 .978±.006 .975±.011

phoneme
0.1 .773±.014 .788±.010 .784±.037 .765±.015 N/A .768±.013 .803±.012 .863±.019 .804±.014
0.5 .773±.014 .788±.010 .784±.037 .765±.015 N/A .768±.013 .820±.038 .858±.021 .802±.011
1 .773±.014 .788±.010 .784±.037 .765±.015 N/A .768±.013 .815±.027 .863±.017 .805±.012

AQSVM: w/t/l 18/0/0 17/1/0 18/0/0 17/1/0 18/0/0 16/2/0
AQGBDT: w/t/l 15/3/0 18/0/0 18/0/0 17/1/0 18/0/0 18/0/0
AQNN: w/t/l 15/3/0 17/1/0 18/0/0 17/1/0 18/0/0 18/0/0
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Figure 4: Parameter analysis on six data sets. We adjust the value of α to show the influence of α.

4.5 ABLATION EXPERIMENTS

As introduced above, our dynamic query score consists of three terms: certainty, uncertainty and
dynamic adjustment term. We compare our AQOT method with methods lacking each of these three
terms respectively. Table 3 presents the results. From the table, we can see that the method with
dynamic adjustment surpasses the performance of the method regardless of lacking which term.

5 CONCLUSION

In this paper, we proposed an efficient active query strategy AQOT. We establish two OT models
from unlabeled instances to positive and negative instances respectively. We evaluate certainty of
instances by the standard deviation of coefficient vector and evaluate uncertainty by the difference
of two highest posterior probabilities. We query instances by weighing certainty and uncertainty
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Table 2: Results on six data sets in terms of running time (in seconds).

Data set RAN UN EN CORE QUIRE WMOCU AQSVM AQGBDT AQNN

monks1 0.107 .0.257 1.187 0.160 286 173 0.708 3.63 7.53
qsar 0.722 2.78 9.87 1.69 628 546 5.67 38.7 48.3
balance 0.106 0.302 1.62 0.171 45.1 175 0.745 4.352 11.9
stock 0.109 0.334 1.90 0.209 417 212 0.977 4.60 11.0
breast 0.102 0.208 1.41 0.164 69.3 59.8 0.755 3.47 5.97
phoneme 4.83 32.2 192 0.171 N/A 1250 88.3 127 138

Table 3: F1 score of AQOT method and methods without three terms respectively over 10 trials.
Method-1 denotes by the method lacking the certainty term. Method-2 denotes by the method
lacking the uncertainty term. Method-3 denotes by the method lacking the dynamic adjustment term.
• indicates the performance of AQOT is significantly better than the compared method (pairwise t-
test at 0.05 significance level).

(a) results on SVM

Data set AQSVM AQSVM-1 AQSVM-2 AQSVM-3

monks1 .958±.034 .880±.021• .877±.012• .921 ±.021•
qsar .881±.025 .815±.021• .821±.012• .860±.011
balance .960±.028 .925±.027• .932±.014• .945±.022
stock .943±.022 .855±.012• .848±.021• .839±.014•
breast .978±.010 .941±.014• .928±.007• .960±.016
phoneme .815±.027 .763±.021• .775±.026• .800±.015•

(b) results on GBDT

Data set AQGBDT AQGBDT-1 AQGBDT-2 AQGBDT-3

monks1 .990±.010 .942±.017• .925±.023• .933±.008•
qsar .883±.035 .853±.010• .832±.025• .812±.021•
balance .956±.012 .862±.011• .843±.053• .887±.012•
stock .962±.022 .924±.035• .915±.014• .903±.021•
breast .978±.006 .932±.025• .924±.012• .922±.015•
phoneme .863±.017 .822±.029• .827±.018• .842±.015•

(c) results on NN

Data set AQNN AQNN-1 AQNN-2 AQNN-3

monks1 .975±.018 .940±.015• .942±.012• .947±.023•
qsar .894±.034 .834±.022• .824±.012• .852±.017•
balance .957±.013 .904±.008• .915±.012• .914±.028•
stock .945±.013 .865±.016• .904±.011• .896±.008•
breast .975±.011 .921±.021• .935±.022• .955±.010•
phoneme .805±.012 .733±.017• .727±.023• .725±.019•

with encouraging early exploration with taking instance distribution into account. Moreover, AQOT
shows high efficiency compared to other hybrid methods. We concatenate it with multiple classifiers
to show it is a broad-spectrum strategy.

REFERENCES

Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of ensembles
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