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ABSTRACT

Machine unlearning aims to eliminate the influence of a subset of training samples
(i.e., unlearning samples) from a trained model. Effectively and efficiently remov-
ing the unlearning samples without negatively impacting the overall model perfor-
mance is challenging. Existing works mainly exploit input and output space and
classification loss, which can result in ineffective unlearning or performance loss.
In addition, they utilize unlearning or remaining samples ineffectively, sacrificing
either unlearning efficacy or efficiency. Our main insight is that direct optimiza-
tion on the representation space utilizing both unlearning and remaining samples
can effectively remove influence of unlearning samples while maintaining repre-
sentations learned from remaining samples. We propose a contrastive unlearning
framework, leveraging the concept of representation learning for more effective
unlearning. It removes the influence of unlearning samples by contrasting their
embeddings against the remaining samples’ embeddings so that their embeddings
are closer to the embeddings of unseen samples. Experiments on a variety of
datasets and models on both class unlearning and sample unlearning showed that
contrastive unlearning achieves the best unlearning effects and efficiency with the
lowest performance loss compared with the state-of-the-art algorithms.

1 INTRODUCTION

Machine unlearning Cao & Yang (2015) aims to remove a subset of data (i.e., unlearning samples)
from a trained machine learning (ML) model without retraining the model from scratch and has
received increasing attention due to various privacy regulations. Notably, “the right to be forgotten”
from the General Data Protection Requirement (GDPR) gives individuals the right to request their
data to be removed from databases, which extends to models trained on such data (Mantelero, 2024).
Since models can remember training data within their parameters Arpit et al. (2017), it is necessary
to “unlearn” these data from a trained model. The goals and evaluation metrics for unlearning typi-
cally include: 1) unlearning efficacy, which measures how well the algorithm removes the influence
of unlearning samples. This can be assessed by the model’s performance on the unlearning sam-
ples, or by its robustness against membership inference attacks Shokri et al. (2017) using unlearning
samples; 2) model performance on its original tasks, which ensures that the unlearning does not
significantly degrade its overall accuracy; and 3) computational efficiency, which assesses the time
and resources required for the unlearning.

While many promising approaches are proposed, existing works present several limitations: 1) they
mainly exploit input and output space and classification loss. It produces significant shift in decision
boundaries. 2) They either focus on unlearning or remaining samples alone or use both but in an
ineffective way and hence either sacrifice the unlearning efficacy or efficiency. For example, Gradi-
ent Ascent Golatkar et al. (2020) only uses unlearning samples and attempts to reverse their impact
by applying gradient ascent using the classification loss. Finetune Golatkar et al. (2020) only uses
remaining samples to iteratively retrain the model to gradually remove the influence of unlearning
samples leveraging the catastrophic forgetting effect (Goodfellow et al., 2013). SCRUB Kurmanji
et al. (2023) uses both unlearning and remaining samples for unlearning, but requires multiple iter-
ations over the entire remaining samples, leading to excessive computations.

Our Contributions. To address these deficiencies, we present a novel contrastive approach for
machine unlearning, or contrastive unlearning. We rethink the problem of machine unlearning

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in the perspective of representation space. We re-purpose the idea of supervised contrastive learn-
ing Khosla et al. (2020), a widely used representation learning approach, for more effective un-
learning. Optimizing representation space is more effective because it allows direct adjustments
of unlearning samples without excessive transformation of decision boundaries. Simultaneously, it
is more efficient since it only optimizes embeddings of unlearning samples and small portion of
remaining samples.

A fully trained model perceives training and test samples differently. When test samples are given
to the model, most of their embeddings land within the correct decision boundary. However, since
the model was not optimized against the test (unseen) samples, their embeddings are located closer
to the decision boundary than those of the training samples. If the embeddings of the unlearning
samples become indistinguishable from the embeddings of the test samples, we can claim that the
model is no longer influenced by the unlearning samples. Thus, the goal of unlearning is to adjust
the model so it produces embeddings of the unlearning samples similar to the embeddings of the test
samples.

Based on the idea, given an unlearning sample, we contrast it with 1) Positive samples (remaining
samples from the same class as the unlearning sample) and push their embeddings apart from each
other, and 2) Negative samples (remaining samples from different classes as the unlearning sam-
ple) and pull their embeddings close to each other. This results in the unlearned embedding to be
geometrically distant from remaining samples and closer to the decision boundaries and test sam-
ples’ embeddings. It has two main insights. First, directly optimizing the embeddings of unlearning
samples, which captures the most important features of the samples being memorized, facilitates
more effective unlearning. Second, by contrasting unlearning and subset of remaining samples dur-
ing unlearning and using both positive and negative remaining samples as references for optimizing
the embedding of unlearning samples, it can effectively remove the influence of unlearning samples
while minimizing any change of the decision boundaries of remaining samples. Additionally we
introduce an auxiliary classification loss on the contrasted remaining samples to further maintain
model accuracy.

Figure 1: Visualization of Representation Spaces for Unlearning, Gradient Ascent, and Fine-Tuning

Figure 1 illustrates the intuition of contrastive unlearning in comparison to existing approaches in a
normalized representation space. Circles and squares are embeddings of the unlearning samples and
remaining samples. Triangles are embeddings of test samples. Colors represent different classes.
Dotted lines show decision boundaries. We assume the model has been trained, so that the embed-
dings of training samples are clustered to their respective classes Das & Chaudhuri (2024).

Given an embedding of unlearning sample zi, contrastive unlearning pushes zi away from its own
class (positive pairs) and pulls zi towards the samples with different classes (negative pairs). This
results in the unlearned embedding z′i to be distant from remaining samples and closer to the decision
boundaries, where test samples’ embeddings (triangles) are located. In comparison, Gradient ascent
Golatkar et al. (2020) attempts to reverse the impact of unlearning samples. It pushes zi away
in the representation space but is difficult to obtain a proper unlearn efficacy and performance. It
either applies insufficient change in the decision boundary of classes (ineffective unlearning), or it
may significantly affect embeddings of remaining samples of the same class (model utility loss).
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Finetune attempts to train the model only using remaining samples. In representation space, this
only indirectly pushes the unlearning samples away (ineffective unlearning) and is susceptible to
overfitting to the remaining samples (model utility loss).

Our contrastive unlearning is fundamentally different from contrastive learning since the goal of
contrastive learning is to distinguish different samples, while our goal is to modify embeddings
of particular unlearning samples and maintain model’s general classification performance. It fea-
tures several novel algorithm designs and new findings: 1) we construct contrasting pairs different
from conventional contrastive learning to serve the unlearning purpose and design new contrastive
unlearning losses for both sample unlearning (unlearning randomly selected training samples) and
single class unlearning (unlearning every sample of a class) tasks; 2) while it is common to add a
classification loss to maintain the performance of the unlearning model, through the new lens of
contrastive unlearning, we find that the classification loss helps keep the embeddings of the remain-
ing samples in place and reciprocally improves unlearning effectiveness, validated by our empirical
analysis followed by in-depth analysis. In addition, contrastive unlearning is highly scalable as it
can be implemented on top of various contrastive learning algorithms. While our analysis is based
on supervised contrastive learning Khosla et al. (2020), we show that contrastive unlearning can be
implemented with Momentum Contrast (MoCo) He et al. (2020). Also, contrastive unlearning is not
restricted to unlearning classification models. We show that it is capable of unlearning other models
such as vision-language models trained with contrastive loss.

We conduct comprehensive experiments on both class unlearning and sample unlearning to demon-
strate the effectiveness and versatility of our approach in comparison to state-of-the-art methods.
Experimental results show that contrastive unlearning achieves the most effective unlearning (low
model accuracy on unlearning samples comparable to the retrained model) while maintaining model
utility (high model accuracy on test samples), with high computation efficiency. In addition, we
conduct a membership inference attack (MIA) Shokri et al. (2017) for deeper verification of un-
learning. We assume a strong adversary who has full access to the unlearned model, simulating an
administrator who conducted unlearning and wants to verify the effectiveness of unlearning (Thudi
et al., 2022; Cotogni et al., 2023). Contrastive unlearning has the lowest member prediction rate on
unlearning samples compared to all baselines, indicating the most effective unlearning. To enhance
scalability of our model, we show experimental results of contrastive unlearning based on MoCo He
et al. (2020). Also we show the versatility and generalizability of contrastive unlearning by provid-
ing the results of removing a class from a few-shot image-language classifier Radford et al. (2021).

In summary, our contributions are as follows:

(1) We propose contrastive unlearning, an algorithm utilizing the concept of contrastive loss. We
achieve unlearning by modifying embeddings of unlearning samples to be similar to the embeddings
of test samples (unseen samples) without directly using them. With a contrastive approach, we
effectively and efficiently remove the influence of unlearning samples by adjusting their embeddings.

(2) We design a contrastive unlearning loss that effectively captures and removes the most important
features relevant for classification from the embeddings of the unlearning samples (achieving ef-
fective unlearning) while keeping the embeddings of remaining samples intact (maintaining model
utility). We design a contrastive loss for two tasks: single class unlearning and random sample
unlearning.

(3) We conduct comprehensive experiments comparing contrastive unlearning with various state-
of-the-art methods on two unlearning tasks, single class and sample unlearning, to demonstrate the
effectiveness and versatility of our approach. We also conduct a membership inference attack to
verify the unlearning efficacy. The results show that contrastive unlearning has the best efficacy
while maintaining model utility with high computational efficiency.

2 RELATED WORKS

Machine unlearning was introduced by Cao & Yang (2015) with two goals: completeness, suggest-
ing an unlearning algorithm should reverse the influence of unlearning samples and the unlearned
model should be consistent with a model retrained only from remaining samples; and timeliness,
requiring the running time of the unlearning algorithm to be faster than retraining. The unlearned
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model should maintain high performance after unlearning. Exact unlearning ensures the complete-
ness of unlearning. SISA is an exact unlearning framework that splits the dataset into partitions
and trains a model for each shard. Given an unlearning request, it retrains models whose shard has
the unlearning sample (Bourtoule et al., 2021). ARCANE uses a partitioning strategy by sample
classes (Yan et al., 2022). These frameworks require partitioned training and still expensive retrain-
ing computation, and model performance is highly dependent on partitioning strategy (Koch & Soll,
2023).

Approximate unlearning allows approximate completeness. Certified unlearning provides a mathe-
matical guarantee on the approximation. Guo et al. (2020) proposed unlearning using newton-type
hessian update with (ε, δ)-indistinguishability. Neel et al. (2024) proposes an algorithm based on
project gradient descent on the partitioned dataset with a probabilistic bound. Approximation guar-
antee is also useful for graph unlearning (Wu et al., 2023; Zhang, 2024). Gupta et al. (2021) further
studied correlation of unlearning requests proposed adaptive unlearning streams. Fisher unlearning
uses Fisher information matrix Golatkar et al. (2020) to identify optimal noise to remove the influ-
ence of unlearning samples. Drawbacks on certified unlearning algorithms are the difficulty to scale,
and most of them requires convexity is required for the mathematical guarantee. Moreover, Thudi
et al. Thudi et al. (2022), questioned validity of certified unlearning. Recently, some works tried
to resolve limitations of certified unlearning. Metha et al proposed LCODEC Mehta et al. (2022),
which reduced the computation cost by selectively generating Hessian matrices. Also, Zhang et al.
proposed certified unlearning for non-convex setting (Zhang et al., 2024). While both are promising,
however, their experimental results show suboptimal unlearn efficacy.

Another body of approximate unlearning shows the unlearning effect through empirical evalua-
tions. Usually, these works target class unlearning, which is to unlearn every sample of a class.
UNSIR Tarun et al. (2023) conducts noisy gradient updates using the unlearning class. Boundary
unlearning unlearns an entire class Chen et al. (2023) by changing decision boundaries. ERM-
KTP uses a special neural architecture known as an entanglement reduce mask (Lin et al., 2023).
SCRUB Kurmanji et al. (2023) is based on the teacher-student network, where the teacher or the
original model transfers knowledge to the unlearned model in every class except the unlearning
class. Recently, Cha et al. proposed an instance-wise unlearning using cross-entropy loss Cha et al.
(2024). Similar to our work, the authors provided analysis on decision boundaries. Our approach is
an approximate unlearning method for both sample and class unlearning. We compare it with both
types of methods, as well as empirical and certified methods, showing its superiority through empiri-
cal evaluations. We do not compare Cha et al. (2024) as its assumptions and goal of unlearning does
not align with our problem settings. The authors assume that remaining samples are unavailable,
and their unlearning goal of unlearning is to incorrectly classify all unlearning samples. However,
we assume that remaining samples are available and our goal of unlearning is to make the model to
perceive unlearning samples as unseen samples.

3 PROBLEM DEFINITION

We define a classification model F = H (Eθ (·)) where Eθ (·) is a neural network based encoder
parameterized by θ and H (·) is a classification head. Eθ produces embeddings z given a sample x.
H receives z and yields a prediction. Let F be trained using dataset Dtr = {(x1, y1) · · · (xn, yn)},
where each data point is a tuple (xi, yi) including feature set xi and label yi ∈ {0 · · ·C} where C is
the number of classes. We suppose F was trained with cross-entropy loss. Let Dts be a test dataset
sampled from an analogous distribution with Dtr, satisfying Dts ∩ Dtr = ∅.
Let Du

tr ⊆ Dtr be a set of samples to be forgotten (i.e., unlearning samples). The remaining set is
Dr

tr = Dtr \ Du
tr. Let a retrained model FR be trained only with Dr

tr. An unlearning algorithm M
receives Dr

tr,Du
tr, θ and produces θ′. An unlearned model F ′ = H (Eθ′) should resemble FR.

3.1 SINGLE CLASS UNLEARNING

For single class unlearning, Du
tr consists of all samples of an unlearning class c. The test set Dts

can be split into Du
ts and Dr

ts, where Du
ts includes all test samples of class c, and Dr

ts = Dts \ Du
ts

includes all test samples of remaining classes. A retrained modelFR will have zero accuracy onDu
tr

and Du
ts, the training and test samples of class c, since it was retrained without class c. So given an
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accuracy function Acc, the goal of single class unlearning is for the unlearned model F ′ to achieve
near-zero accuracy on both training and test samples of class c and similar accuracy as the retrained
model FR for remaining classes.

Acc
(
F ′,Du

tr

)
≈ 0, Acc

(
F ′,Du

ts

)
≈ 0, (1)

Acc
(
F ′,Dr

ts

)
≈ Acc

(
FR,Dr

ts

)
. (2)

Single-class unlearning can be implemented using simple rules. For example, the rule can assign
random labels to samples classified as target class. However, rule-based unlearning has significant
limitations for the following reasons: (1) Insufficient Unlearning: Learned patterns of samples from
the unlearning class remain embedded within the model’s weights. If the model’s weights are leaked,
an adversary can potentially recover knowledge of the unlearning class. (2) Model Utility: Rule-
based unlearning can potentially degrade the performance of all remaining classes.

3.2 SAMPLE UNLEARNING

For sample unlearning, the unlearning samples Du
tr can belong to different classes. A retrained

model FR will have similar accuracy on unlearning samples Du
tr and test samples Dts since un-

learning samples are not in the training set anymore. So the goal of sample unlearning is for the
unlearned model F ′ to achieve similar accuracy as the retrained model FR on both unlearning sam-
ples and test samples.

Acc
(
F ′,Du

tr

)
≈ Acc

(
FR,Dts

)
, (3)

Acc
(
F ′,Dts

)
≈ Acc

(
FR,Dts

)
. (4)

A more generalized model can easily achieve sample unlearning as it can easily achieve Equation 3.
While it can achieve certain level of unlearning, we deem that generalization is not sufficient as it
eventually allows model to obtain unique pattern of training samples Long et al. (2018).

4 CONTRASTIVE UNLEARNING

Contrastive unlearning utilizes geometric properties of representation space for unlearning purposes
and leverages the contrast between remaining and unlearning samples. If a sample x had been used
as a training example, information extracted from x by Eθ would be geometrically expressed in the
representation space. Specifically, we hypothesize that samples of a same class have similar embed-
dings and samples from different classes have dissimilar embeddings even when the model was not
explicitly trained with representation learning. This can be supported by existing literature, which
mathematically and empirically showed that a model optimized with cross-entropy loss produces
higher geometric similarity among embeddings of samples of the same class and lower similarity
among different classes (Das & Chaudhuri, 2024; Graf et al., 2021).

From this intuition, we modify characteristics of representation space of unlearning samples to be
similar to the representation of unseen samples. We aim to isolate embeddings of unlearning samples
away from remaining samples up to the point where the model perceives them as unseen samples.
To effectively achieve this, we contrast each unlearning sample with 1) remaining samples from the
same class (positive pairs) and push their representations apart from each other, and 2) remaining
samples from different classes (negative pairs) and pull their representations close to each other. To
this end, the embeddings of unlearning samples approach to the decision boundaries of the classes.
This has some relation with existing literature of contrastive learning, however, our approach is
fundamentally different as it contrasts pairs of unlearning and remaining samples while contrastive
learning contrasts samples simply by their classes.

Contrastive Unlearning Loss: Sample Unlearning. Contrastive unlearning uses a batched pro-
cess. In each round, an unlearning batch Xu = {xu

1 , · · ·xu
B} with size B is sampled from the

unlearning data Du
tr, and a remaining batch Xr = {xr

1 · · ·xr
B} is sampled from the remaining set
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Dr
tr. We denote xi as i-th sample of Xu as an anchor. Based on the anchor xi, positives and

negatives are chosen from Xr. Positives are Px (xi) = {xj |xj ∈ Xr, yj = yi}, or remaining
samples with the same class as xi; negatives are Nx (xi) = {xj |xj ∈ Xr, yj ̸= yi}, or remaining
samples with different class as xi. Correspondingly, let embeddings of positives and negatives be
Pz (xi) = {zj |zj = Eθ (xj) , xj ∈ Px (xi)} and Nz (xi) = {zj |zj = Eθ (xj) , xj ∈ Nx (xi)}.
The contrastive unlearning loss aims to minimize the similarity of positive pairs and maximizes the
similarity of negative pairs (the opposite of contrastive learning).

LUL =
∑

xi∈Xu

−1

|Nz (xi)|
∑

za∈Nz

log
exp (zi · za/τ)∑

zp∈Pz(xi)

exp (zi · zp/τ)
(5)

where τ ∈ R+ is a scalar temperature parameter. In our final algorithm, we contrast each Xu, with
ω randomly sampled Xr. Thus within a single unlearning round, our algorithm computes every
batch of Du

tr for ω times. Refer to appendix B for more details.

Contrastive Unlearning Loss: Single Class Unlearning. For single class unlearning, the unlearn-
ing setDu

tr = {(xi, yi) |yi = c} and remaining setDr
tr = {(xi, yi) |yi ̸= c}. This makes the positive

set Pz = ∅ as none of remaining samples belong to class c. In short, there are no positive remaining
samples to push away the unlearning samples. Thus we change equation 5 as follows.

LUL =
∑

xi∈Xu

−1

|Nz (xi)|
∑

za∈Nz

log
exp (zi · za/τ)

|Nz (xi)|
. (6)

We replaced the previous denominator to |Nz (xi)|. This is because equation 5 requires both di-
rections to push and pull unlearning samples. Lacking one of the directions increases the instability
of the loss. Since Pz = ∅, we replace the denominator to |Nz (xi)| to introduce damping effects
against excessively pulling unlearning samples to negative samples.

Classification Loss of Remaining Samples. A novel challenge of contrastive unlearning is to
preserve embeddings of remaining samples. Optimizing equation 5 not only alters embeddings of
the anchor unlearning sample but also reciprocally alters embeddings of all samples in Px and Nx.
All positive samples are slightly pushed away from and all negatives are slightly pulled toward the
anchor. A similar effect arises in contrastive learning, but it is not problematic as it reinforces the
consolidation of embeddings of the same class, which is a desired effect. However, for unlearning
purposes, embeddings of Xr have to be preserved, because: 1) not preserving them directly leads to
a loss in model performance, and 2) it also reciprocally affects unlearning effectiveness as magnitude
of pulling and pushing decreases. In short, embeddings of Xr are also modified as a byproduct of
optimization and it is necessary to restore them back. We utilize cross-entropy loss for restoring
embeddings of Xr, because it derives maximum likelihood independently to each sample Shore &
Johnson (1981). This ensures obtaining directions very close to the original embeddings no matter
how embeddings of remaining samples are modified. Combining the unlearning loss, the final loss
for our proposed contrastive unlearning is as follows,

L = λULLUL + λCELCE (F (Xr) , Y r) , (7)

where Xr and Y r are batched remaining samples and their corresponding labels. λCE and λUL are
hyperparamters to determine influence of two loss terms. The full algorithm is in the appendix B.

Termination Condition. The termination condition for the algorithm differs based on the task of
unlearning. We assume a small dataset Deval is available for evaluation. The algorithm evaluates F ′

withDeval and terminates if it satisfies unlearning criteria. For single class unlearning,Deval = Du
ts,

the test data of the unlearning class. The algorithm terminates when the accuracy of the unlearned
model F ′ on the unlearning class falls below a threshold where C is the total number of classes in
the training data and 1/C corresponds to the accuracy of a random guess.

Acc
(
F ′,Deval

)
≤ 1

C
. (8)

For sample unlearning, Deval = {Du
eval,Dts

eval} where Du
eval ⊆ Du

tr and Dts
eval ⊆ Dts. The

algorithm terminates when the accuracy of F ′ on the unlearning samples Du
eval drops below the

accuray on test samples Dts
eval.

Acc
(
F ′,Du

eval

)
≤ Acc

(
F ′,Dts

eval

)
. (9)

The termination conditions are proxy conditions that loosely satisfies problem definition of 3.1
and 3.2. In single class unlearning, retrained model provides zero accuracy on unlearning class. An
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unlearned model should behave identically on unlearning class. However, it can be challenging for
unlearning algorithms to achieve the zero accuracy. Thus we loose the condition and consider suf-
ficient amount of knowledge is removed once the model satisfies the inequality 8 (corresponding to
a random guess). In sample unlearning, it is not desired to terminate the algorithm before satisfying
the condition in 9 because it implies that the model still retains information regarding Du

tr. It is also
not desired to continue running the algorithm to further reduce accuracy on Du

tr much lower than
Dts because it does not align with definition of sample unlearning from section 3.2 as it is nega-
tively injecting information regarding Du

tr into θ′. This results in F ′ to deliberately make incorrect
classification on Du

tr, which is not aligned with the goal of sample unlearning.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets and Models. We use three benchmark datasets: CIFAR-10, SVHN, and Mini-
Imagenet Cao (2022), and employ ResNet(RN)-18, 34, 50, and 101 models He et al. (2016) and
ViT-small Dosovitskiy et al. (2021) in our experiments. Refer to the appendix for details on the
original models, implementations (code), SVHN and Mini-Imagenet experiments, unlearning few-
shot CLIP model Radford et al. (2021) and unlearning based on MOCO He et al. (2020) .

Comparison Methods. For class unlearning, we remove all samples belonging to class 5 by default.
For sample unlearning, we remove randomly selected 500 samples by default. We also evaluate class
unlearning on other classes and sample unlearning of varying number of samples. Please refer to the
appendix for results. To assure the robustness, we repeat sample unlearning with a random seed for
five times and report the average and standard deviation of the results. For both tasks, we provide
Retrain, a retrained model using the training data excluding the unlearning class or samples, as an
ideal reference for unlearning efficacy and model performance.

We include four state-of-the-art methods specifically designed for single class unlearning: 1)
Boundary Expansion Chen et al. (2023) trains the model using all unlearning samples as a tempo-
rary class and then discards the temporary class. 2) Boundary Shrink Chen et al. (2023) is similar
to Boundary Expansion but it modifies the decision boundary of unlearning class to prevent un-
learning samples from being classified into the unlearning class (unlearning samples are classified
as other classes). 3) SCRUB Kurmanji et al. (2023) is based on the teacher-student framework and
selectively transfers information from the original model to the unlearned model (all information
except that of the unlearning class). 4) UNSIR Tarun et al. (2023) uses an iterative process of im-
pairing and recovering and generates noise that maximizes error in the unlearning class and repairs
the classification performance for the other classes.

We include four state-of-the-art methods designed for sample unlearning: 1) Finetune Golatkar
et al. (2020) leverages catastrophic forgetting Goodfellow et al. (2013) and iteratively trains the orig-
inal model only using the remaining samples. 2) Gradient Ascent Golatkar et al. (2020) conducts
gradient ascent using unlearning samples. 3) Fisher Golatkar et al. (2020) is a certified unlearn-
ing algorithm using randomization techniques borrowed from differential privacy and leverages the
Fisher information matrix to design optimal noise for noisy gradient updates. 4) LCODEC Mehta
et al. (2022) is also a certified unlearning method that proposes a fast and effective way of obtaining
Hessian by selecting parameters by their importance.

We note that sample unlearning methods may be used for class unlearning. However, our class
unlearning baselines already demonstrated their superiority over the sample unlearning baeslines
including Finetune, Gradient Ascent, and Fisher, hence we do not include them in comparison.

Evaluation Metrics. Model performance is assessed by accuracy of the unlearned model on the
test data of remaining classes Dr

ts (class unlearning) and on the test data Dts (sample unlearning).
The accuracy should be similar to the retrained model. Unlearning efficacy is assessed by accuracy
of the unlearned model on the training and test data of unlearning class Du

tr and Du
ts (class unlearn-

ing) and the unlearning samples Du
tr (sample unlearning). A successful class unlearning should

achieve zero accuracy on train and test data of unlearning class. For sample unlearning, we provide
an additional metric of unlearn score, which is the absolute difference between the accuracy of test
samples and unlearn samples. A successful sample unlearning should achieve a low unlearn score
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which means the model perceives unlearning samples and test samples (unseen samples) similarly.
Efficiency is measured by the runtime of the unlearning algorithm. A shorter runtime indicates
better efficiency.

Unlearning Verification via MIA. We conduct a membership inference attack (MIA) Shokri et al.
(2017) to verify sample unlearning. We assume an adversary with full access to the unlearned model
and training data, simulating an administrator who conducted unlearning and uses MIA to verify
the effectiveness of unlearning (Thudi et al., 2022; Cotogni et al., 2023). Although more robust
MIA frameworks are available such as LiRA Carlini et al. (2022), we used the MIA framework
from Shokri et al. (2017) as our main goal is to fairly compare our contrastive unlearning and other
baseline unlearning algorithms and to obtain a generalizable comparison on unlearn efficacy.

To train the attack model, we sample DM from remaining samples Dr
tr (as members) and DN

from test samples Dts (as non-members). An attack model is trained with both members and non-
members using their output from the unlearned model {F ′ (x) |x ∈ DM∪DN} as features and labels
as {yi|yi = 1 ∀xi ∈ DM ,yi = 0 ∀xi ∈ DN}. We then test the attack model on the unlearning
samplesDu

tr and selected test member samples from remaining samplesDr
tr. We report the Member

prediction rate defined as number of positive (member) predictions by the MIA divided by total
number of tests. It can be considered as false positive rate (FPR) for unlearning samples (considering
them as non-members) and true positive rate (TPR) for members. An effective unlearning algorithm
should have a low member prediction rate on unlearning samples and high member prediction rate
on member samples. Our metric is consistent with existing literature Jia et al. (2023) utilizing true
negative rate (TNR) for unlearning samples and test non-member samples (considering both as non-
members), which essentially measures the opposite to ours, i.e., considering non-members rather
than members. We focus on predicting the members because MIA is designed to infer members.

5.2 RESULTS ON SINGLE CLASS UNLEARNING

Table 1: Performance evaluation for single class unlearning on CIFAR-10.

Model Evaluation Retrain
(reference) Contrastive Boundary

Shrink
Boundary
Expansion SCRUB UNSIR

RN18
Remain test↑ 86.96 85.79 83.62 82.34 83.91 57.36

Unlearn train↓ 0.00 0.00 4.54 0.00 35.42 0.00
Unlearn test↓ 0.00 0.00 4.62 6.51 9.30 0.00

RN34
Remain test↑ 88.01 86.59 84.70 83.19 82.22 47.02

Unlearn train↓ 0.00 0.00 2.46 0.00 3.18 0.00
Unlearn test↓ 0.00 0.00 4.60 6.81 0.80 0.00

RN50
Remain test↑ 87.78 87.98 85.52 83.39 84.44 37.41

Unlearn train↓ 0.00 0.00 2.74 0.00 7.16 0.00
Unlearn test↓ 0.00 0.00 5.90 8.22 1.51 0.00

RN101
Remain test↑ 87.94 88.69 83.91 82.48 85.03 42.40

Unlearn train↓ 0.00 0.00 4.91 0.00 13.46 0.00
Unlearn test↓ 0.00 0.00 7.25 8.50 4.55 0.00

ViT
Remain test↑ 75.56 70.63 69.36 40.36 68.26 24.43

Unlearn train↓ 0.00 0.00 0.00 0.00 0.00 0.00
Unlearn test↓ 0.00 0.00 0.00 0.00 0.00 0.00

Unlearning Efficacy and Model Performance. Table 1 depicts accuracy of different unlearned
models on remain test (test set of remaining classes), unlearn train (train set of unlearning class),
and unlearn test (test set of unlearning class) on CIFAR-10 for class 5. We experimented with all
classes and they show similar performances. Readers may refer to the appendix. The retrain model
shows the expected results with stable accuracy on remain test set (similar to the accuracy of original
models shown in the Appendix) and zero for both unlearn train and unlearn test sets since the class
has been removed from training. Among all methods, contrastive unlearning is the only one that
achieves zero accuracy on the unlearning class indicating complete unlearning while preserving
the accuracy on the remained classes. In fact, the unlearn test accuracy of contrastive unlearning
reached very fast to zero, and by the time the termination condition was first checked, the unlearn
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Table 2: Processing time of class unlearning algorithms on CIFAR-10 dataset (seconds).

Model Retrain Contrastive Boundary
Shrink

Boundary
Expansion SCRUB UNSIR

RN18 1566.36 48.90 105.22 112.87 150.40 59.98
RN34 2072.76 75.45 181.12 139.90 240.39 90.58
RN50 3820.62 105.41 315.69 240.44 435.49 169.89
RN101 7493.79 139.94 540.21 425.77 747.65 270.38

ViT 22888.08 256.12 2130.60 1950.72 1891.14 1525.92

Table 3: Performance evaluation on sample unlearning on CIFAR-10.

Model Evaluation Retrain
(reference) Contrastive Finetune Gradient

Ascent Fisher LCODEC

RN18
Test acc↑ 84.68±0.23 81.86±0.33 81.68±0.29 67.64±3.41 76.54±2.34 76.20±1.37

Unlearn acc 85.30±0.6 81.69±0.24 83.65±2.5 88.65±3.86 92.83±2.71 99.65±0.24
Unlearn score↓ 0.62 0.17 1.97 21.01 16.29 23.45

RN34
Test acc↑ 85.48±0.14 83.53±0.54 82.38±0.80 67.54±3.41 76.54±2.34 81.22±0.85

Unlearn acc 85.12±0.21 81.50±1.4 82.7±0.89 88.65±3.86 92.85±2.73 99.53±0.23
Unlearn score↓ 0.08 2.03 0.32 12.11 16.31 18.31

RN50
Test acc↑ 86.44±0.57 84.80±0.34 82.60±0.51 67.70±5.22 72.03±8.00 78.14±1.04

Unlearn acc 86.86±0.52 83.20±0.00 82.46±1.59 91.80±1.12 85.15±12.1 99.31±0.45
Unlearn score↓ 0.42 1.6 0.14 24.10 13.12 21.17

RN101
Test acc↑ 85.98±0.13 86.75±0.87 83.76±1.16 76.76±6.71 82.81±0.83 78.62±1.11

Unlearn acc 86.11±0.27 85.34±0.87 82.23±1.58 94.18±3.34 98.30±0.93 99.08±0.78
Unlearn score↓ 0.31 1.41 0.53 17.42 15.49 20.46

ViT
Test acc↑ 73.28±0.52 62.02±0.49 73.08±2.35 69.25±3.17 20.66±3.10 84.54±0.78

Unlearn acc 73.40±0.82 59.67±0.90 96.43±3.23 95.93±2.59 24.98±3.30 89.23±0.97
Unlearn score↓ 0.12 2.35 23.35 26.68 4.32 4.69

test accuracy had already dropped to zero. Readers may refer to Appendix D.3 for more details.
UNSIR is the only baseline achieving 0 accuracy in the unlearning class, however, it suffers from a
significant performance loss. All other methods fail to completely remove the influence while also
showing a performance loss in the remaining classes.

Efficiency. Table 2 shows the elapsed time for each unlearning algorithm. Contrastive unlearning
is the fastest among all baselines and across all models because it only requires running a single
iteration over unlearning samples. The speed of UNSIR is second fastest as it also runs for a single
iteration; however, extra time is consumed computing adequate noise to perturb parameters.

5.3 RESULTS ON SAMPLE UNLEARNING

Model Performance and Unlearning Efficacy. Table 3 shows accuracy on unlearning samples
and test samples on the CIFAR-10 dataset. Successful sample unlearning should achieve high test
accuracy (model utility) and an unlearn accuracy no higher than test accuracy with a low unlearn
score (unlearning efficacy). The retrain models, which are the reference for unlearning, prove this
point as they exhibit high test accuracy and unlearn score close to 0. Contrastive unlearning is
best performing among all methods, achieving the closest performance to the retrain model. While
finetune shows a smaller unlearn score than contrastive unlearning for some models, the difference is
negligible and it has lower test accuracy on these models. In addition, it completely fails to unlearn
on ViT (with an unlearn accuracy much higher than test accuracy).

Unlearning Efficacy via MIA. Table 4 shows the member prediction rate of the MIA on unlearning
samples and test member samples against each unlearned model. An ideal attack model against
the retrain model should have zero member prediction rate for unlearning samples and 100% for
member samples (since the unlearning samples are non-members). However, the attack model in
our experiment shows around 60% for unlearning samples on the retrain model, which is due to
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Table 4: Member prediction rate on unlearning samples (lower the better) and member-test samples
(memorized train samples) of MIA on CIFAR-10 dataset.

Model Evaluation Retrain
(reference) Contrastive Finetune Gradient

Ascent Fisher LCODEC

RN18 unlearning↓ 63.28±0.48 60.88±0.78 63.87±0.98 79.85±1.13 85.91±1.26 92.18±1.41
member-test 96.08±0.52 91.05±0.59 85.81±1.01 84.62±1.12 89.23±1.31 92.98±0.89

RN34 unlearning↓ 63.81±0.55 53.51±0.58 66.65±0.87 83.08±0.99 82.59±1.10 95.49±1.13
member-test 94.82±0.32 86.44±0.46 86.99±0.84 84.01±1.18 83.74±0.98 97.21±1.21

RN50 unlearning↓ 63.04±0.29 60.87±0.64 68.47±0.89 85.87±1.08 74.46±1.42 93.98±1.35
member-test 97.43±0.47 91.13±0.54 84.03±0.93 89.29±1.29 77.15±1.68 93.59±1.56

RN101 unlearning↓ 62.49±0.51 60.79±0.78 54.89±0.99 91.98±1.14 84.20±1.86 94.93±1.53
member-test 95.74±0.62 86.45±0.92 62.39±1.05 90.47±0.89 84.90±1.77 95.10±1.68

ViT unlearning↓ 53.57±0.38 55.49±0.74 84.97±1.04 56.58±1.23 56.18±1.59 83.99±1.48
member-test 89.29±0.76 72.87±0.69 85.92±1.18 57.49±1.44 59.86±0.88 87.12±1.43

Table 5: Processing time of algorithms conducting sample unlearning on CIFAR-10 (minutes)

Model Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18 43.05±2.18 2.68±0.64 16.93±2.24 4.89±0.82 72.31±1.52 34.87±1.87
RN34 73.22±3.44 3.64±0.72 31.51±2.21 7.52±1.21 115.51±1.98 55.50±1.15
RN50 134.42±4.72 8.46±0.98 42.93±3.52 14.16±1.46 219.49±1.95 152.28±1.64
RN101 215.84±4.57 12.63±1.02 103.74±3.05 20.21±1.41 398.87±1.66 449.11±1.31

ViT 402.15±3.73 3.10±0.45 79.24±3.61 35.65±1.19 218.93±1.48 1719.60±3.41

the attack power of the attack model. The high rate on member samples suggests it has reason-
able attack power in recognizing members. We expect stronger attack methods Carlini et al. (2022)
can better differentiate members and non-members but the comparison of the methods should stay
the same. An unlearning algorithm is more effective if it exhibits 1) lower member prediction rate
on unlearning samples, and 2) bigger difference in member prediction rate on unlearning samples
and member samples. For gradient ascent, Fisher, and LCODEC, the member prediction rate for
member samples and unlearning samples are similar, showing ineffective unlearning. For finetune
and contrastive unlearning, the member prediction rate for unlearning samples is lower than mem-
ber samples. However, the difference is significantly bigger in contrastive unlearning, suggesting
stronger discrimination between unlearning samples and member samples and more effective un-
learning.

Efficiency. Table 5 shows the runtime of different algorithms. It shows contrastive unlearning
is the fastest to reach the termination condition. On average, it needed less than 15 unlearning
rounds, which is computation equivalent to at most 15 × ω iterations on unlearning dataset. While
gradient ascent also iterates only on unlearning dataset, it requires more than 40 iterations to achieve
unlearning effects, and requires a smaller batch size for the better results. Finetune, Fisher, and
LCODEC need longer runtime since they iterate over the entire set of remaining samples. Fisher and
LCODEC suffer excessive computation with larger models because their mathematical computation
is proportional to model parameters and hardly parallelizable.

6 CONCLUSION

In this paper, we proposed a novel contrastive approach for machine unlearning. It achieves unlearn-
ing by re-configuring geometric properties of embedding space and contrasting unlearning samples
and remaining samples. Through extensive experiments, we demonstrated that it outperforms state-
of-the-art unlearning algorithms in model performance, unlearning efficacy, and efficiency. In future
work, we will examine the efficacy of contrastive unlearning in different model architectures and
different unlearning scenarios such as graph unlearning and correlated sequence unlearning.
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A APPENDIX / SUPPLEMENTAL MATERIAL

In this appendix, Section B illustrates full algorithm of our contrastive unlearning. Section C pro-
vides details on the implementation of our contrastive unlearning, a link to the implementation
(code), and a list of hyperparameters used for experiments. Section D provides the results of addi-
tional experiments on contrastive unlearning. We provide additional experiments on class unlearn-
ing, the efficiency and effectiveness of the unlearning SVHN and Mini-Imagenet dataset and an
ablation- study on hyperparameters.

B ALGORITHM

Algorithm 1 Contrastive Unlearning
Input: θ,H (·) , E (·) , Dr

tr, D
u
tr, Deval

Parameter: iter, λCL, λUL, ω
Output: θ′

1: while termination condition is not satisfied do
2: for each Xu ∈ Du

tr do
3: for 1, · · · , ω do
4: Sample (Xr, Y r) from Dr

tr
5: Determine Pz (xi) , Nz (xi) ∀xi ∈ Xu

6: ℓCE ← LCE (H (Eθ (Xr)) , Y r)
7: ℓUL ← λULLUL (Pz (xi) , Nz (xi)) ∀xi ∈ Xu

8: θ ← θ − η∇ (ℓCE + ℓUL)
9: end for

10: end for
11: θ′ ← θ
12: Evaluate, get termination condition θ′ with Deval

13: end while
14: return θ′

Complete Algorithm. Algorithm 1 shows step-wise overview of contrastive unlearning. It iterates
for all unlearning batches Xu in Du

tr. For each Xu, it computes unlearning loss by sampling a
random remaining batch Xr for contrasting purposes. For each Xu, sampling and loss derivation are
repeated ω times. Higher ω stabilizes the unlearning procedure by contrasting unlearning samples
against multiple sets of remaining samples. From the experiment, we set ω to be at most 4 to reduce
computational overhead and our algorithm showed stable unlearning performance.

C EXPERIMENTAL DETAILS

Our implementation is based on PyTorch Paszke et al. (2019). We used one Quadro RTX 8000 with
memory size of 48,600 MB. Our code is available on an anonymous git repository.

For ResNet and ViT models on CIFAR-10 and SVHN dataset, we used these hyperparamters. We
used stochastic gradient descent for training ResNet models and Adam optimizer for training ViT
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Table 6: Hyperparameters for the CIFAR-10 and SVHN datasets.

CIFAR-10 SVHN

Hyperparameter Sample Unlearn Class Unlearn Sample Unlearn Class Unlearn

Feature dimension 128 128 128 128
Batch size 128 64 128 64

λCE 1 1 2 1
λUL 3 3 3 3
ω 4 4 4 4
τ 0.7 0.7 0.7 0.7

Learning rate 1e−3 1e−3 1e−3 1e−3

Weight decay 5e−4 5e−4 5e−4 5e−4

Momentum 0.9 0.9 0.9 0.9

Table 7: Hyperparameters for Mini-Imagenet dataset. We used same hyperparameter settings for
both class and sample unlearning

Hyperparameter ResNet18 ResNet34 ResNet50 ResNet101

Feature dimension 256 256 512 512
Batch size 256 128 128 128

λCE 1 1 2 1
λUL 3 3 3 3
ω 4 4 4 4
τ 0.7 0.7 0.7 0.7

Learning rate 1e−3 1e−3 1e−4 1e−4

Weight decay 5e−4 5e−4 5e−4 5e−4

Momentum 0.9 0.9 0.9 0.9

D ADDITIONAL EXPERIMENTS

D.1 PERFORMANCE OF ORIGINAL MODELS

We use three standard benchmark datasets, CIFAR-10 Krizhevsky et al. (2009) and SVHN Netzer
et al. (2011) and Mini-imagenet Cao (2022). The original mini-imagenet is designed for few-shot
learning Vinyals et al. (2016) so its distribution makes training a model from scratch difficult. In-
stead, we used a modified version whose distribution is adjusted for image classification task Cao
(2022). For models, we used ResNet-18, 34, 50, and 101 models and ViT in our experiments.
We train each model with each dataset. For CIFAR-10 and SVHN, we trained the models with-
out any data augmentation except normalization. For Mini-Imagenet, we used image augmentation
techniques such as RandomRotation and RandomCrop. The performance of each original model is
shown in Table 8. We then apply unlearning algorithms to the trained models. We did not train ViT
against Mini-Imagenet dataset because training ViT with small dataset is difficult and often leads
poor performance Liu et al. (2021).

Table 8: Performance of original models.

Dataset RN18 RN34 RN50 RN101 ViT

CIFAR-10 Train 100.0 100.0 100.0 100.0 100.0
Test 85.81 86.62 87.5.0 86.69 72.72

SVHN Train 99.98 99.88 99.99 99.84 100.0
Test 95.32 95.86 95.94 96.14 87.81

Mini-Imagenet Train 96.07 96.07 97.03 97.03 -
Test 68.19 68.18 71.81 72.57 -
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Figure 2: Accuracy on unlearning class vs. number of batches on Du
tr.

D.2 UNLEARNING EACH CLASS

For single class unlearning, we reported results for unlearning class 5 from CIFAR-10 and SVHN
dataset. We also experimented with unlearning different classes which verified the effectiveness
of contrastive unlearning. Table 9 and 10 show accuracy of unlearned models on Dr

ts (test set of
remaining classes), Du

tr (train set of unlearning class), and Du
ts (test set of unlearning class) on

CIFAR-10 and SVHN respectively. The table clearly shows that contrastive unlearning is capable of
unlearning each class as accuracy of test set and train set of unlearning class are all zero, indicating
that each model is capable of removing influence completely. At the same time, the accuracy of test
set of remaining classes is preserved and similar to the original model.

Table 9: performance evaluation for unlearning
each class of CIFAR-10 dataset

Unlearning Class Dr
ts Du

tr Du
ts

0 84.97 0.00 0.00
1 84.62 0.00 0.00
2 85.18 0.00 0.00
3 86.38 0.00 0.00
4 84.73 0.00 0.00
5 85.79 0.00 0.00
6 83.07 0.00 0.00
7 83.71 0.00 0.00
8 83.92 0.00 0.00
9 85.03 0.00 0.00

Table 10: performance evaluation for unlearning
each class of SVHN dataset

Unlearning Class Dr
ts Du

tr Du
ts

0 93.98 0.00 0.00
1 94.31 0.00 0.00
2 94.20 0.00 0.00
3 94.57 0.00 0.00
4 94.11 0.00 0.00
5 93.81 0.00 0.00
6 94.09 0.00 0.00
7 94.12 0.00 0.00
8 93.93 0.00 0.00
9 93.91 0.00 0.00

D.3 EFFICIENCY OF CLASS UNLEARNING

Figure 2 shows the progress of the unlearning algorithms in terms of the accuracy on unlearning
class Du

tr vs. the number of batches in a single epoch. Both contrastive unlearning and other base-
lines are designed to run unlearning procedures multiple times for each batch. However, we fixed
the hyperparameters of each algorithm so that each batch of Du

tr is processed only once. Reaching
faster to zero accuracy indicates that the algorithm is more efficient, as it needs a smaller number
of batches to achieve unlearning. The figure shows that contrastive unlearning reaches zero approx-
imately at the 60th batch while boundary shrink and boundary expansion still show approximately
10% accuracy after the first epoch. UNSIR shows zero accuracy from the beginning. However,
it computes the proper level of noise by iterating through Du

tr before running actual optimization.
SCRUB, which is based on knowledge distillation, requires several passes through theDu

tr and hence
does not show any progress after one epoch. In summary, contrastive unlearning is most efficient as
it achieves unlearning by only requiring 60 batches to achieve unlearning.
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D.4 UNLEARNING LARGE NUMBER OF SAMPLES

For random sample unlearning, we compared the unlearn efficacy and performance of the model
from unlearning 500 randomly selected samples. We also experimented unlearning randomly se-
lected 250, 500, 1000 and 2000 samples to show the robustness of contrastive unlearning against the
baselines. Table 11 shows the result of unlearning various number of samples. It shows that both
contrastive unlearning and Fisher unlearning suffers utility loss as number of unlearning sample in-
creases. However, contrastive unlearning suffers smaller performance loss. With unlearning 2000
samples, it suffers about 8% of test accuracy. On the other hand, fisher unlearning suffers significant
performance loss. Its test accuracy becomes random guess on unlearning 2000 samples. This shows
that the contrastive unlearning is capable of unlearning larger number of samples.

Table 11: Random sample unlearning with various number of unlearning size

Retrain Contrastive Unlearning Fisher Unlearning

Unlearn Size Test acc ↑ Test acc↑ Unlearn Acc Test acc↑ Unlearn Acc

200 86.38 82.30 76.40 77.48 98.00
500 86.32 82.15 81.60 77.40 96.00

1000 85.71 82.15 81.66 40.78 50.00
2000 84.95 76,39 76.35 10.94 15.20

While contrastive unlearning is capable of removing influence of larger number of unlearning sam-
ples, it impairs the performance of the model. Therefore, the number of unlearning samples should
be limited by the maximum performance loss the system is able to tolerate.

D.5 EFFECT OF HYPERPARAMETER τ

For every experiment, we set τ = 0.7 to follow default setting of supervised contrastive learn-
ing Khosla et al. (2020). Hence in this section we report the effect of various τ . Table 12 shows the
unlearn efficacy and model performance on various τ . It shows that τ does not have a significant
impact on the unlearn and test accuracy. One thing we noticed is that the smaller τ slightly increases
the difference between test and unlearn accuracy.

Table 12: Test Accuracy, Unlearn Accuracy, and Time for various τ values

τ Test acc. Unlearn acc. Time (seconds)

0.007 82.20 79.40 134.57
0.07 82.12 80.20 121.66
0.7 82.15 81.60 109.32
7 82.15 81.60 111.61
70 82.15 81.60 115.86

D.6 UNLEARNING FEW-SHOT CLASSIFIER

Unlike other baseline algorithms, contrastive unlearning modifies embeddings of unlearning sam-
ples to achieve unlearning. It implies that contrastive unlearning is capable of unlearning models be-
yond the standard classification models such as vision language models learned through contrastive
learning. To verify this claim, we conduct an experiment on unlearning CLIP model Radford et al.
(2021). The CLIP is pretrained with large number of image and text pairs. Since the original data is
publicly unavailable, we first finetune the pretrained model with CIFAR-100 dataset for 10 epochs.
The finetuned model achieved top-1 accuracy of 82.3%. Then we attempted to unlearn a class from
the finetuned model. Similar to the class unlearning problem, we unlearned all samples of a tar-
get class until it reaches the accuracy of random guess. We do not compare the results with other
baselines except for Finetune and Gradient Ascent since these baselines are designed to only han-
dle standard classification models that provide prediction logits. Hence they are unable to unlearn
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CLIP. For Finetune, we further finetune the CLIP only with samples of remaining class to accelerate
catastrophic forgetting of the unlearning samples. For Gradient Ascent, we conduct gradient ascent
for the unlearning samples using the contrastive loss, and conduct gradeint descent for retaining
samples with the same loss.

Table 13: Performance evaluation on class unlearning on CLIP

Method Unlearn acc. Test acc

Contrastive 65.00 0.0
Gradient ascent 12.42 0.0

Finetune 79.87 87.00

Table 13 shows the result of unlearning class 1 of CIFAR-100 dataset from CLIP. It shows that
contrastive unlearning was capable of achieving good unlearning utility as the model exhibits clas-
sification accuracy below random guess for the target samples. While Gradient Ascent was able
to achieve similar unlearning effect, the performance loss is significant compared with contrastive
unlearning. While Finetune was able to preserve the model utility, the result shows that unlearn
efficacy is not good since its unlearn accuracy is significantly higher than random guess. The results
show that contrastive unlearning is able to achieve good unlearn efficacy with small performance
loss.

D.7 SCALABILITY: USING ADVANCED CONTRASTING TECHNIQUES FOR CONTRASTIVE
UNLEARNING

From section 4, we illustrate the concept of contrastive unlearning using supervised contrastive
learning Khosla et al. (2020). Within a batch, contrastive unlearning pulls unlearning samples’ em-
beddings towards the remaining samples with different class and pushes the unlearning samples’
embeddings away from the remaining samples with the same class. Since our default implementa-
tion is based on the supervised contrastive learning (SupCon), it inherits its weaknesses. A critical
problem of SupCon is that it requires extensive batch size. Since each sample in a batch is only con-
trasted with samples within the batch, having smaller batch size increases bias to directions where
each samples are optimized. To reduce bias and facilitate stable representation learning, SupCon re-
quires larger batch size. In our contrastive unlearning, we also experienced that unlearning becomes
very instable for smaller batch size and reported relevant explanation in Appendix D.10.

These problems can be effectively mitigated via adopting more stable contrastive learning algo-
rithms using the same contrastive unlearning principle. To empirically show this, we implemented
contrastive unlearning using Momentum Contrast (MoCo) He et al. (2020). From MoCo, the con-
trastive loss for embeddings of a sample z is defined as follows:

L = − log
exp (z · z+/τ)∑K
i exp (z · zi/τ)

(10)

The loss is pulling z towards a positive sample z+, and pushing z away from K negative samples.
In MoCo, these k negative samples are stored in a queue to mitigate introducing bias from the
batch size. Intuitively, it can be seen as a softmax-based classifier with K + 1 classes. By slightly
modifying the loss, we can achieve contrastive unlearning.

LUL = − log

∑J
i exp

(
z · z+i /τ

)∑K
i exp

(
z · z−i /τ

) (11)

where z+i are embeddings of remaining samples with different class, and z−i are the embeddings
of samples with same class. Similar to MoCo, z+i and z−i are stored within a queue. We conduct
sample unlearning from ResNet-18 model using MoCo based implementation.
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Table 14: Performance evaluation of Sample Unlearning using Momentum Contrastive algorithm

Unlearn acc. Test acc

76.45 71.80

Table 14 shows the result of MoCo based contrastive unlearning. It shows that our contrastive un-
learning framework is not confined to a particular contrastive learning technique and it can be effec-
tively implemented via more advanced contrastive learning techniques. We deem that effectiveness
of different contrastive learning technique depends on the structure and the size of the dataset. We
plan to provide further insight in future research.

D.8 SVHN DATASET

D.8.1 SINGLE CLASS UNLEARNING ON SVHN DATASET

Table 15: Performance evaluation for single class unlearning on SVHN.

Model Evaluation Retrain
(reference) Contrastive Boundary

Shrink
Boundary
Expansion SCRUB UNSIR

RN18
Remain test↑ 95.43 93.91 94.84 93.71 93.88 90.3
Unlearn train↓ 0.00 0.00 29.79 80.25 88.67 0.00
Unlearn test↓ 0.00 0.00 37.46 2.61 77.39 0.00

RN34
Remain test↑ 95.46 94.33 95.12 94.50 94.57 85.82
Unlearn train↓ 0.00 0.00 34.69 63.92 0.96 0.00
Unlearn test↓ 0.00 0.00 41.99 4.27 0.42 0.00

RN50
Remain test↑ 95.83 94.87 95.47 95.01 93.75 70.56
Unlearn train↓ 0.00 0.00 40.01 3.92 2.68 0.00
Unlearn test↓ 0.00 0.00 42.37 8.74 9.64 0.00

RN101
Remain test↑ 96.16 94.90 95.65 95.07 94.65 83.90
Unlearn train↓ 0.00 0.00 42.77 51.53 0.00 0.00
Unlearn test↓ 0.00 0.00 45.39 3.94 0.00 0.00

ViT
Remain test↑ 87.78 77.45 65.33 14.63 21.99 87.66
Unlearn train↓ 0.00 0.00 0.00 0.00 0.00 6.16
Unlearn test↓ 0.00 0.00 2.14 0.00 0.00 0.00

Table 15 illustrates accuracy of unlearned models on SVHN dataset. It shows a similar trend as the
CIFAR-10 dataset. UNSIR provides better performance on the SVHN dataset because features of
SVHN are easier to learn thus the model suffers less utility loss than CIFAR-10. However, it still
suffers a significantly higher utility loss than contrastive unlearning. All other baselines show a high
accuracy on the unlearning class in many cases, indicating they failed to remove the influence of the
unlearning class. Contrastive unlearning consistently removed all influence of unlearning class with
a negligibly small loss of performance.

D.8.2 SAMPLE UNLEARNING ON SVHN DATASET

Table 16 presents test and unlearning accuracy on the SVHN dataset. LCODEC and Fisher show
similar test accuracy with the retrain model on some models. However, their unlearning accuracy
is very high, at almost 100%, indicating a significant residual of the influence. Both Finetune and
gradient ascent show significant performance loss in test accuracy. Contrastive unlearning is more
consistent in achieving similar unlearning accuracy as the retrain model with a relatively small per-
formance loss in test accuracy.
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Table 16: Performance evaluation on sample unlearning on SVHN.

Model Evaluation Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18
Test acc↑ 94.89±0.21 91.67±0.29 91.66±0.35 67.80±16.8 88.76±1.64 93.49±1.09

Unlearn acc 94.20±0.13 90.35±0.57 90.85±0.1 96.9±2.14 97.55±2.04 99.63±0.49
Unlearn score↓ 0.69 0.82 0.81 29.1 8.79 6.14

RN34
Test acc↑ 95.39±0.32 93.01±0.15 92.52±0.58 84.03±7.91 91.25±0.59 94.95±1.19

Unlearn acc 94.12±0.14 91.50±0.60 90.90±0.90 97.65±1.45 97.00±0.84 99.48±0.49
Unlearn score↓ 1.27 1.51 1.60 12.72 5.75 4.53

RN50
Test acc↑ 95.86±0.25 93.50±0.25 93.01±0.81 71.47±20.8 91.46±0.05 94.46±0.71

Unlearn acc 95.12±0.47 92.75±0.41 92.00±1.12 96.73±3.66 97.80±0.00 99.48±0.53
Unlearn score↓ 0.74 0.75 1.01 25.26 6.34 5.02

RN101
Test acc↑ 95.88±0.22 92.89±0.46 91.98±0.39 78.35±8.23 94.25±0.81 82.42±1.03

Unlearn acc 93.45±0.78 91.29±0.87 91.00±0.1 97.30±5.27 99.80±0.00 92.87±0.66
Unlearn score↓ 2.21 1.60 0.98 18.95 5.55 10.45

ViT
Test acc↑ 86.45±0.18 73.28±0.39 86.23±0.79 21.42±8.24 6.29±0.52 86.28±0.97

Unlearn acc 85.35±0.62 72.20±0.72 98.92±0.58 68.12±6.28 8.87±0.13 99.82±0.42
Unlearn score↓ 1.10 1.08 12.69 46.7 2.58 13.54

D.8.3 EFFICIENCY OF CLASS UNLEARNING ON SVHN DATASET

We reported efficiency of class unlearning on CIFAR-10 dataset to show contrastive unlearning is
the most efficient framework. Similarly, here we provide efficiency analysis of class unlearning on
SVHN dataset. Table 17 shows the time required to unlearn each class using each framework. For
a smaller model, SCRUB and UNSIR require less time; however, the effectiveness and performance
of SCRUB and UNSIR are inferior to those of contrastive unlearning. With more complex models,
baseline unlearning frameworks show sluggish computation. For ResNet101, the fastest baseline is
UNSIR, which requires 990 seconds to run, while contrastive unlearning only requires 599 seconds.

Table 17: Processing time of class unlearning algorithms on SVHN dataset (in seconds).

Model Retrain Contrastive Boundary
Shrink

Boundary
Expansion SCRUB UNSIR

RN18 59007.60 519.44 1665.27 1620.27 480.39 407.28
RN34 55404.20 568.37 1710.33 1646.22 604.56 810.42
RN50 57276.10 597.95 1860.27 1665.30 900.42 901.02
RN101 56822.40 599.42 2090.16 1695.30 1372.14 990.48

ViT 12201.84 1348.92 1650.60 1244.4 1374.36 701.1

D.8.4 EFFICIENCY OF SAMPLE UNLEARNING ON SVHN DATASET

Table 18 shows the time required to unlearn randomly selected samples using each framework.
Contrastive unlearning requires the lowest computation time. Finetune is faster than contrastive
unlearning on ResNet34, and it is because of randomness within the algorithm. Fisher and LCODEC
require extensive computation. LCODEC, specifically, is even slower than retraining.
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Table 18: Processing time of sample unlearning algorithms on SVHN dataset (in minutes).

Model Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18 515.83±0.87 43.48±0.24 199.28±1.98 51.69±1.25 121.16±0.03 418.01±0.77
RN34 526.72±0.68 43.52±0.13 39.57±1.73 60.84±0.97 183.06±0.11 522.34±0.91
RN50 538.14±0.59 41.09±0.28 368.03±1.49 82.68±0.99 301.57±0.14 938.39±0.86
RN101 549.45±0.59 38.57±0.33 327.46±1.61 68.19±1.13 542.91±0.16 1918.87±0.91

ViT 192.54±0.34 2.05±0.41 35.03±0.99 4.08±1.18 203±0.14 1371.53±0.65

D.8.5 EFFECTIVENESS (MIA) OF SAMPLE UNLEARNING ON SVHN DATASET

Table 19 shows the member prediction rate of the MIA on unlearning samples and test member
samples. Contrast unlearning shows the lowest member prediction rate on unlearning samples and
the biggest difference between the member prediction rate on unlearning samples and test member
samples. While some baselines show a lower member prediction rate on unlearning samples, they
present a very small difference between two member prediction rates. Some baselines show a low
member prediction rate on test member samples. This does not directly indicate the corresponding
unlearning framework is effective in unlearning. Instead, this is due to the technical limitations
of the membership inference attack, and we aim to investigate more powerful MIA frameworks in
future work.

Model Evaluation Retrain Contrastive Finetune Gradient
Ascent Fisher LCODEC

RN18 unlearning↓ 76.29±0.24 56.01±0.48 64.12±0.98 69.05±1.13 52.28± 53.86±0.67
member-test 83.10±0.39 74.14±0.37 64.78±0.82 75.01±1.22 59.86± 59.43±0.86

RN34 unlearning↓ 57.82±0.33 60.85±0.72 63.39±1.01 74.23±0.87 64.25± 83.22±0.75
member-test 63.27±0.41 76.83±0.68 63.98±0.96 77.83±1.05 66.34± 81.71±0.88

RN50 unlearning↓ 55.98±0.48 51.97±0.66 59.98±1.07 60.67±0.87 59.24± 64.21±0.94
member-test 64.97±0.58 61.49±0.59 63.94±0.93 64.18±1.25 60.62± 68.49±0.98

RN101 unlearning↓ 52.04±0.37 58.24±0.45 54.22±1.11 59.51±0.97 58.31± 65.62±1.12
member-test 57.99±0.51 73.66±0.56 60.17±1.02 58.89±1.33 55.61± 64.72±1.33

Table 19: Member prediction rate on unlearning samples and member-test samples of MIA on
SVHN dataset.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.9 MINI-IMAGENET DATASET

D.9.1 SINGLE CLASS UNLEARNING ON MINI-IMAGENET DATASET

Model Evaluation Retrain
(reference) Contrastive Boundary

Shrink
Boundary
Expansion SCRUB UNSIR

RN18
Remain test↑ 65.62 60.69 10.17 51.26 50.20 17.05
Unlearn train↓ 0.00 0.00 0.00 0.00 0.00 0.00
Unlearn test↓ 0.00 0.00 0.00 0.95 0.00 0.00

RN34
Remain test↑ 67.64 57.61 14.88 26.89 26.57 12.32
Unlearn train↓ 0.00 0.00 0.00 0.00 0.00 0.00
Unlearn test↓ 0.00 0.00 0.00 0.00 0.00 0.00

RN50
Remain test↑ 70.57 58.81 - - 22.03 12.74
Unlearn train↓ 0.00 0.00 - - 0.00 0.00
Unlearn test↓ 0.00 0.00 - - 0.00 0.00

RN50
Remain test↑ 71.34 58.53 - - 12.63 8.75
Unlearn train↓ 0.00 0.00 - - 0.00 0.00
Unlearn test↓ 0.00 0.00 - - 0.00 0.00

Table 20: Performance evaluation for single class unlearning on Mini-Imagenet dataset.

Table 20 shows the accuracy of unlearned models on Mini-Imagenet dataset. Similar to experi-
ments on CIFAR-10 and SVHN dataset, re-trained model shows high test accuracy on remaining
test classes, and zero accuracy for both test-set and train-set of unlearning class. Contrastive un-
learning is most effective as it shows the highest classification accuracy on test-set of the remaining
class. Unlike CIFAR-10 and SVHN datasets, contrastive unlearning suffers significant utility loss.
We presume that it is due to the large number of classes. As mini-imagenet dataset has 100 classes,
representation space might have intricate decision boundaries. Conducting contrastive unlearning
could impair embeddings of remaining samples. We did not report experiments of Boundary Shrink
and Boundary Expansion for ResNet50 and ResNet101 because they required excessive computa-
tional resource and produced out-of-memory error.

D.9.2 SAMPLE UNLEARNING ON MINI-IMAGENET DATASET

Model Evaluation Retrain Contrastive Finetune Gradient
Ascent Fisher

RN18
Test acc↑ 66.17 54.40 69.53 45.61 11.67

Unlearn acc 65.40 51.20 96.20 86.60 10.00
Unlearn score↓ 1.87 3.2 26.67 40.99 1.67

RN34
Test acc↑ 68.93 38.37 69.83 42.61 10.61

Unlearn acc 66.60 37.20 96.20 86.60 18.00
Unlearn score↓ 2.33 1.17 26.37 43.99 7.39

RN50
Test acc↑ 71.26 55.71 72.69 52.05 11.67

Unlearn acc 68.20 55.80 97.00 83.60 18.00
Unlearn score↓ 3.06 0.09 24.31 31.55 6.33

RN101
Test acc↑ 71.57 54.49 74.85 59.62 11.67

Unlearn acc 68.20 56.00 97.00 85.40 18.00
Unlearn score↓ 3.37 1.51 22.15 25.78 6.33

Table 21: Performance evaluation on sample unlearning on Mini-Imagenet dataset.

Table 21 shows the results of sample unlearning on Mini-Imagenet dataset. We did not report results
of LCODEC because it requires excessive computation time. Goal of machine unlearning is to
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remove influence of unlearning samples efficiently than re-training the model. However, LCODEC
on Mini-imagenet requires at least two times of computational time than re-training the model.

Contrastive unlearning shows the low unlearn score, meaning it successfully altered embeddings
of unlearning samples similar to test samples. Finetune is ineffective as it failed to reduce unlearn
accuracy similar to the test accuracy. Gradient ascent has significant reduction in the test accu-
racy. Overall, contrastive unlearning is the only unlearning method that was able to properly reduce
influence of unlearning samples.

D.10 HYPERPARAMETER STUDY

We explore how batch size (B) and ω affect contrastive unlearning. Figure 3 and 4 show accuracy
on test set (test accuracy, solid line) and test accuracy on unlearning samples (unlearn accuracy,
dotted line) of random sample unlearning on CIFAR-10 dataset. Dots in each plot indicate where
the algorithm determined its stopping point. As each figure shows, running the unlearning algorithm
beyond the stopping point is not desired because it decreases model performance (low test accuracy),
and unlearning samples show very different behavior than test data (bad unlearning effectiveness).
The figures show that batch size heavily affects the performance of unlearning. This aligns with
Graf et al. (2021). Contrastive unlearning loss is a batched process, and directions to pull and push
are chosen based on the samples in the batch.

Figure 3 shows effects of different ω on unlearning process. ω is a hyperparameter that determines
the number of contrasts for each batch of unlearning samples against batches of retain samples.
Higher ω means each batch of unlearning samples is contrasted with many batches of retain samples.
Higher ω stabilizes the unlearning procedure, however, which is computationally inefficient. All
figures in figure 3 shows the algorithm achieves higher performance with a higher ω. This shows
higher ω stabilizes the unlearning process by reducing bias.
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(a) Batch size 16
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(b) Batch size 64
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(c) Batch size 256

Figure 3: Test accuracy (solid line) and unlearn accuracy (dotted line) of contrastive unlearning on
CIFAR-10 dataset from ResNet18. Each figure plots experiments on fixed batch size with different
ω.

Figure 4 shows the effects of different batch sizes on the unlearning process. A larger batch offers
better stabilization as it reduces bias. When batch size is small, each unlearning sample in a batch is
contrasted only with a small number of retain samples. On the other hand, if the batch size is larger,
each unlearning sample is contrasted with more retain samples; hence, the directions to pull and
push are less biased by retain samples. This leads to better model performance. However, a bigger
batch is not always better as it requires more computation. Figure 4a, 4b, and 4c show that a batch
size of 256 needs three times more iterations than a batch size of 64, while the test accuracy of two
models from each plot is not much different.
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(a) ω = 2
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(b) ω = 4
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(c) ω = 6

Figure 4: Test accuracy (solid line) and unlearn accuracy (dotted line) of contrastive unlearning on
CIFAR-10 dataset from ResNet18. Each figure plots experiments on a fixed ω and different batch
sizes.
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