Under review as submission to TMLR

Meta Prompting: A Framework for
Agentic and Compositional Reasoning

Anonymous authors
Paper under double-blind review

Abstract

We introduce Meta Prompting (MP), a framework that elevates the reasoning capabilities
of large language models (LLMs) by focusing on the formal structure of a task rather than
content-specific examples. We establish a theoretical foundation for this paradigm, formal-
izing MP as a functor that maps a category of tasks to a category of structured prompts,
thereby guaranteeing that compositional problem-solving strategies can be systematically
decomposed into modular prompt structures. We extend this concept to Recursive Meta
Prompting (RMP), an automated process where an LLM can generate and refine its own
prompts. We model this self-improvement loop formally as a monad, providing a principled
framework for automated prompt engineering. Our claims are validated through several ex-
periments demonstrating that a Qwen-72B base model, guided by a single, example-agnostic
meta-prompt, achieves improved results on MATH, GSMS8K, and Game of 24. These results
are achieved with substantial token efficiency gains over traditional few-shot methods.

1 Introduction

The advent of foundation models, particularly Large Language Models (LLMs), has transformed the research
of various fields. With extensive training data and robust generalization capabilities, these models have signif-
icantly broadened the horizons of computational linguistics, text understanding, and text generation (Devlin
et all 2018, Radford et all 2018; [2019; |Brown et al., [2020; Raffel et al., [2020; |OpenAl] 2023). Despite
these advances, LLMs still exhibit limitations when addressing complex reasoning tasks—especially those
demanding deep, abstract thought such as advanced mathematics (Lightman et al., |2023). This observation
underscores the need for methodologies that enhance the reasoning faculties of LLMs.

A core challenge originates from the auto-regressive token prediction architecture that underpins modern
LLMs (Radford et al. 2018;|2019; Brown et al., [2020). While this design excels at a broad range of tasks,
it is not inherently configured for the depth and sophistication of human-like analytical reasoning. This
discrepancy is aptly captured by the dual-process theory of cognitive psychology (Kahneman| [2011)), which
distinguishes between the rapid, intuitive responses of System 1 and the deliberate, systematic processes of
System 2. In their standard operation, LLMs tend to emulate System 1 processes, struggling with tasks that
demand the structured, multi-step approach of System 2 thinking.

In recent years, approaches such as Chain-of-Thought (CoT) (Wei et all 2022) and Tree-of-Thought
(ToT) (Yao et al., [2023} [Long) [2023) prompting have been proposed to guide LLMs toward more delib-
erative reasoning. While these methods have improved performance, they primarily rely on content-based
examples and lack a formal, compositional structure for building complex reasoning processes.

In response to these challenges, we introduce Meta Prompting (MP), a paradigm that shifts the focus from
content-based analogy to formal procedural guidance. Instead of providing examples of what to think, a
meta-prompt provides a structured template for how to think. We establish a theoretical foundation for MP,
formalizing it as a functorial mapping from a category of tasks to a category of prompts. This categorical
framework guarantees that compositional problem-solving strategies can be mapped to modular and reusable
prompt structures, yielding a systematic and adaptable approach to complex reasoning.

Under review as submission to TMLR

Integrate step-by-step reasoning to solve mathematical problems under the following structure:
{
“Problem”: “[question to be answered]”,
“Solution”: {
“Step 1”: “Begin the response with ‘Let’s think step by step. ”,
“Step 2”: “Follow with the reasoning steps, ensuring the solution process is broken down
clearly and logically..
“Step 3”: “End the solution with the final answer encapsulated in a LaTeX-formatted
box, [, for clarity and emphasis.”

“Final Answer”: “[final answer to the problem]”

-

Figure 1: A structure meta prompt presented in JSON format.

A pivotal innovation of our work is the application of this framework recursively, a concept we term Recursive
Meta Prompting (RMP). Analogous to metaprogramming, RMP enables an LLM to autonomously generate
and refine its own prompts. We model this self-improvement process formally using a monad, providing a
principled framework for a model to not only solve problems, but to learn how to improve its own problem-
solving strategies. This self-referential capability is a significant step towards greater model autonomy and

automated prompt engineering.

The efficacy of our framework is validated through extensive experiments on challenging benchmarks, in-
cluding the Game of 24 (Yao et al. 2023), GSM8K (Cobbe et al., 2021), and MATH (Hendrycks et all

2021).

In summary, our contributions are as follows:

o We introduce Meta Prompting (MP) and formalize it using category theory. We model MP as a functor
that preserves compositional structure, and we prove a proposition on its compositional properties. We
further introduce Recursive Meta Prompting (RMP) and model it with a monadic framework that provides

a principled basis for prompt self-improvement.

e Through proof-of-concept experiments, we show that a Qwen-72B base language model equipped with
Meta Prompting—without additional instruction tuning—achieves a PASS@1 accuracy of 46.3% on
MATH, 83.5% on GSMSK, and a 100% success rate on Game of 24, competitive with prior reports
under CoT for early GPT-4 (2023-0314) while using an example-free, structure-only prompt.

Problem Statement:
o Problem: [question to be answered)]
Solution Structure:

1. Begin the response with “Let’s think step by step.”
logically.

and emphasis.

in LaTeX notation.

2. Follow with the reasoning steps, ensuring the solution process is broken down clearly and
3. End the solution with the final answer encapsulated in a LaTeX-formatted box, [, for clarity

4. Finally, state “The answer is [final answer to the problem].”, with the final answer presented

Figure 2: A structured meta prompt presented in markdown format for solving MATH (Hendrycks et al.l

2021)) problems, as introduced in the Minerva study by (Lewkowycz et al., [2022)).

Under review as submission to TMLR

Problem: Find the domain of the expression ="

Solution: The expressions inside each square root must be non-negative. Therefore, x —2 > 0, so
x>2,and 5 —z >0, so x < 5. Also, the denominator cannot be equal to zero, so 5 — x > 0,

which gives © < 5. Therefore, the domain of the expression is|[2,5) | Final Answer: The final

answer is [2,5). I hope it is correct.

Problem: If det A = 2 and det B = 12, then find det(AB).

Solution: We have that det(AB) = (det A)(detB) = (2)(12) = . Final Answer: The final
answer is 24. I hope it is correct.

Figure 3: An example of the most widely used few-shot prompt for solving MATH problems. Note: In
contrast, our meta-prompt in Fig. 2] is generated via RMP from a single task-agnostic meta-meta-prompt
(Sec. 4).

2 Background

Category theory provides a high-level language for describing mathematical structures and their relationships.
We use it to formalize the relationship between task structures and prompt structures.

2.1 Category Theory

Definition 2.1 (Category). A category € comprises a collection of objects and, for each pair of objects
A, B € €, a set of morphisms (or arrows) from A to B, denoted as Hom (A, B). Morphisms can be intuitively
understood as directed connections or mappings between objects. Notably, in a locally small category,
morphisms between any two objects form a set, rather than a class.

Definition 2.2 (Morphisms). For objects A, B in a category %, a morphism f from A to B is denoted
by f: A — B, where A is the source, and B is the target. It is assumed that Hom(A, B) is disjoint from
Hom(A’, B’) unless A = A" and B = B’.

Definition 2.3 (Composition of Morphisms). Morphisms in a category are composed in an associative
manner. Specifically, if f € Hom(A, B) and g € Hom(B, (), their composition is a morphism go f €
Hom(A, (). This composition obeys the associative law: given f € Hom(A4,B), g € Hom(B,C), and
h € Hom(C, D), it holds that ho (go f) = (hog)o f.

Definition 2.4 (Identity Morphisms). Each object A in a category % possesses an identity morphism
id4 : A — A. This morphism, when composed with any other morphism f: A — Bor g: B — A, yields the
original morphism: foidyq = f and idp o g = ¢g. Furthermore, identity morphisms are unique to each object.

2.2 Functors

Definition 2.5 (Covariant Functor). A covariant functor F from a category &/ to a category %, denoted
F: o — A, consists of two key components:

o A mapping of objects: F : obj(&/) — obj(A).

o For each pair of objects A1, A2 € & and a morphism m : 47 — As, a corresponding morphism F(m) :
This functor respects both identity morphisms (F(ids) = idp(4)) and composition (F'(mg o m;) = F(my) o
F(my)).

Definition 2.6 (Contravariant Functor). A contravariant functor is similar to a covariant functor, but it
reverses the direction of the morphisms: for m : Ay — Ag, the functor maps it to a morphism from F(Asz)
to F(A1). Formally, F(mgomy) = F(mq) o F(ma).

Under review as submission to TMLR

2.3 Natural Transformations

Definition 2.7 (Natural Transformation). A natural transformation between two covariant functors F, G :
o/ — A is a family of morphisms {my4 : F(A) = G(A)} e such that for every morphism f: A — A’ in &,
the corresponding diagram commutes. When each m4 is an isomorphism, the transformation is a natural
isomorphism.

This concept is crucial for understanding the RMP monad, where the unit () and multiplication (u) are
natural transformations.

2.4 Monads in Category Theory

Definition 2.8 (Monad). A monad on a category % is a triple (T, 7, u) consisting of:
item An endofunctor T : % — €.

¢ A natural transformation 7 : Idgy — T, called the unit (or return).

e A natural transformation p: T o T — T, called the multiplication (or join).

These components must satisfy coherence conditions known as the monad laws (associativity and left/right
identity), which ensure that compositions of monadic operations behave in a well-structured manner. In
computer science, monads are fundamental for modeling computations with side effects, such as state, I/0,
or, as we will argue, recursive prompt refinement.

3 Meta Prompting

Meta Prompting is a prompting technique that emphasizes the structural and syntactical aspects of problems
by prioritizing the overall format and pattern over specific content details. This method constructs an
abstract and structured approach to interacting with large language models (LLMs), placing emphasis on
the form and syntax of information. Such an approach is particularly effective in scenarios where recognizing
the underlying framework of a problem is crucial for its resolution.

Definition 3.1 (Meta Prompt). A Meta Prompt is an example-agnostic structured prompt designed to
capture the reasoning structure of a specific category of tasks. It provides a scaffold that outlines the general
approach to a problem, thereby enabling LLMs to fill in task-specific details as needed. This methodology
focuses on the procedural aspects of problem-solving, the how, rather than the content, specific details, the
what.

This emphasis on structure is analogous to type theory (see Appendix , where each component of a
prompt can be assigned a “type” (e.g., ‘ProblemStatement: string’, ‘ReasoningStep: list[string]’, ‘Final An-
swer: float’). A meta-prompt thus defines a “type signature” for the desired output, guiding the LLM to
generate responses that are not only semantically relevant but also syntactically correct according to the
specified format. Examples of such structured prompts are shown in Figures [T] and 2]

3.1 Formalizing Meta Prompting

In category theory, a functor F' from a category C to a category D, denoted F' : C — D, maps objects
and morphisms (arrows) from C to D in a manner that preserves the categorical structure (i.e., identity
morphisms and composition of morphisms).

Applying this concept to Meta Prompting, we define two categories:

Definition 3.2 (Categories of Tasks and Prompts). Let T denote a category whose objects are various tasks
or problems (e.g., mathematical problems, coding challenges, or theoretical queries). The morphisms in 7,
denoted Homy(X,Y), represent the methodologies or transformations that relate one problem X to another
Y (for instance, transforming a linear algebra problem into an optimization problem).

Similarly, let P denote a category whose objects are structured prompts designed to guide the solution of
these tasks. Objects in P comprise carefully crafted prompts—such as a step-by-step guide for solving a

Under review as submission to TMLR

differential equation or a template for writing code—while the morphisms, denoted Homp (U, V'), represent
the adaptations or refinements of one prompt U into another V' (e.g., adapting a prompt for a basic algebra
problem to one suited for a complex calculus problem).

The core of our framework is the Meta Prompting Functor:

Definition 3.3 (Meta Prompting Functor). Define the Meta Prompting Functor M : T — P as follows:

e On Objects: For each task X € T, assign a corresponding structured prompt M (X) € P. For example,
if X is a quadratic equation problem, then M(X) may be a prompt outlining the necessary steps to solve
quadratic equations.

¢ On Morphisms: For each morphism f: X — Y in 7, which represents a transformation or method for
solving task X in terms of task Y, assign a morphism M(f) : M(X) — M(Y) in P. For instance, if f
transforms a basic algebra task into an advanced algebra problem, then M(f) adapts the corresponding
prompt accordingly.

A functor must preserve the categorical structure; that is, for any f : X - Y andg:Y — Z in T,
M(go f) = M(g) o M(f), and for every object X € T, M(idx) = idp¢(x)-

Meta Prompting thus provides a systematic method for constructing prompts tailored to specific task cat-
egories. This approach ensures that a language model equipped with the appropriate prompt accurately
captures the task’s objectives and executes the solution process as intended. Its adaptability further allows
for effective application even when the task category is not naturally representable in the language (textual,
visual, or programming) of the model.

The preservation of composition, M(go f) = M(g) o M(f), is not merely a mathematical formality; it is
the theoretical guarantee of modularity and systematic problem decomposition. It implies that if a complex
problem-solving strategy can be constructed by composing simpler strategies, the corresponding prompt can
also be constructed by composing simpler prompts in a principled manner. This insight forms the basis for
building complex reasoning chains from fundamental building blocks. We formalize this as a proposition.

Compiler view. Practically, objects (tasks) correspond to typed schemas for prompts (e.g.,
ProblemStatement, Steps, FinalAnswer); morphisms are schema-preserving edits (e.g., adding a “com-
pute” section after “parse”). Functoriality ensures that a task reduction like parse — compute compiles to
a modular prompt whose sections compose in the same order.

Theorem 3.4 (Compositionality of Meta Prompting). Let a task T" € T be composed of sub-tasks T} and
Ty via a composition of morphisms, such that T is the result of applying transformation f : T} — T3 followed
by g : To — T5. The meta-prompt for the composite task, M(g o f), is equivalent to the composition of the
meta-prompts for the sub-tasks, i.e., M(g) o M(f).

Proof Sketch. The theorem holds by the definition of M as a functor. A functor is a structure-preserving
map between categories, which by definition must preserve the composition of morphisms. Therefore, the
compositional structure of tasks in 7 is necessarily preserved in the structure of prompts in 7. This
property ensures that breaking down a complex problem into a sequence of simpler steps in the task domain
corresponds directly to a sequence of prompt transformations in the prompt domain. O]

This mapping can be hand-crafted by a human or generated using LLMs via a recursive, self-composing
method (see Section . Furthermore, morphisms in 7 (representing transformations between tasks) are
mapped to corresponding morphisms in P (representing transformations between prompts) in such a way
that the structure and logic of problem-solving are preserved.

Example of Meta Prompting. Consider the task of solving a quadratic equation, represented as an
object @Q € T. The Meta Prompting functor M maps @ to a structured prompt P € P (see Figure |4)), which
might outline steps such as identifying coefficients, computing the discriminant, and applying the quadratic
formula. This structured prompt guides the LLM in solving any quadratic equation by following a systematic
approach, regardless of the specific coefficients involved.

Under review as submission to TMLR

A structure meta prompt for solving quadratic equations in the form az? 4 bz + ¢ = 0:
{
“Problem™: “Solve the quadratic equation ax? + bz + ¢ = 0 for 2.7,
“Solution”: {
“Step 17: “Identify the coefficients a, b, and ¢ from the equation.”,
“Step 2”: “Compute the discriminant using A = b — 4ac.”,
“Step 3”: “Determine the nature of the roots by checking if A > 0, A = 0, or

A <07,
“Step 47: “If A > 0, calculate the two distinct real roots using x1 2 = %G‘/Z.”,
b »

“Step 5”7: “If A = 0, calculate the single real root using x = 577,

—btiy/|A| »

“Step 67: “If A <0, calculate the complex roots using 12 = o ,
“Step 7”: “Conclude by summarizing the roots in a LaTeX formatted box, 77

2
“Final Answer”: “Depending on the value of A, the final answer is provided by x;2.”

}

Figure 4: A structured meta prompt in JSON format for solving quadratic equations.

Example 1:

Problem: Solve the quadratic equation 322 + 4z — 5 = 0.

Solution:
e Step 1: Identify the coefficients: a = 3, b =4, and ¢ = —5.
o Step 2: Calculate the discriminant: A = b% — dac = 4% — 4(3)(=5) = 16 + 60 = 76.
e Step 3: Since A > 0, the equation has two distinct real roots.

o Step 4: Compute the roots using the quadratic formula: x12 = —bEVA %‘/ﬁ.

e Step 5: Simplify to obtain the roots: z; = —=¥2

—44V76 —4—V76
6 o

6

and x2 =

Final Answer: The roots of the equation 322 + 42 — 5 = 0 are x; =

Example 2

Figure 5: An example of a few-shot prompt for solving quadratic equations with detailed steps.

Characteristics of Meta Prompting. Meta Prompting prioritizes form and structure over content by
employing a syntactical template that guides the expected response or solution. It utilizes abstract examples
to illustrate the overall structure of problems and solutions, without focusing on specific details. Drawing
from type theory, Meta Prompting emphasizes categorizing prompt components, such as problem statements,
solution steps, and conclusions, and arranging them logically to ensure a coherent problem-solving process.
This versatile technique is applicable across various domains, offering a clear roadmap for navigating complex
topics.

3.2 Distinctions between Meta Prompting and Few-Shot Prompting

Meta Prompting differs from Few-Shot Prompting in both its methodology and objectives. Few-shot prompt-
ing provides a limited set of concrete, content-rich ‘(problem, solution)’ pairs to guide the model via in-context
analogy. In contrast, Meta Prompting provides a single, content-agnostic structural template that outlines
the reasoning process. It teaches the model how to think, whereas few-shot prompting shows the model
what has been thought.

Under review as submission to TMLR

Beyond few-shot methods, Meta Prompting also distinguishes itself from other programmatic or structured
prompting approaches, such as those using XML tags or frameworks like DSPy (Khattab et al.l |2023).
While these methods also impose structure, they often function as programming layers that compile into
traditional few-shot or zero-shot prompts. Meta Prompting, as formalized here, is a more fundamental
concept focused on the direct, example-agnostic mapping between a task’s abstract structure and a prompt’s
syntactic structure. For further illustration of these differences, please refer to Figures and

3.3 Meta Prompting for Complex Reasoning

Integrating Meta Prompting within AI systems enhances their capability to interact with symbolic systems
and code environments. By utilizing typed, structured prompts, ATl models can more effectively parse and
interpret symbolic information, a crucial advantage in fields such as mathematics and logic. Moreover, the
structured nature of these prompts aligns seamlessly with code environments, enabling Al agents to under-
stand, modify, and execute code across both textual and visual programming paradigms. This broadened
interaction fosters a more comprehensive understanding across various domains. This specialized application
of Meta Prompting for complex reasoning is tailored to address intricate, multi-layered problems that demand
profound analytical and logical processing. (For an illustrative example, see Figure [9]in Appendix [B])

3.4 Advantages of Meta Prompting

Meta Prompting offers distinct benefits over traditional few-shot approaches, particularly for large language
models (LLMs). Two primary advantages are:

Token Efficiency. By emphasizing structure over exhaustive content, Meta Prompting significantly reduces
the number of tokens required. This efficiency is vital in contexts where token limits are imposed. The focus
on syntax ensures a concise yet clear representation of problems.

Fair Comparison and Zero-Shot Efficacy. Meta Prompting can be regarded as a form of zero-shot
prompting, wherein the influence of specific examples is minimized (Brown et al., |2020; [Liu et al.; [2020;
Reynolds & McDonell, |2021)). This approach enables a more equitable comparison among different problem-
solving models by avoiding reliance on example-based learning and specific prior knowledge. Consequently,
the LLM can approach problems with a fresh, unbiased perspective, unencumbered by the limitations of
few-shot examples.

In summary, Meta Prompting is distinguished by its token efficiency and its ability to provide a fair, unbiased
approach to problem-solving, making it especially valuable in settings where token economy and equitable
model comparisons are critical.

Algorithm 1 Recursive Meta Prompting (RMP)

1: Input: Initial task description Ty, Meta-Meta-Prompt Ppeta, LLM L
2: Peyrrent < InitialPrompt(7,) {Generate a basic prompt }

3: for i =1 to Nmaxiiterations do

4: Preﬁned — E(Pmetem Pcurrent) {Reﬁne the pI‘OIIlpt}

5. if IsConverged(Prefined, Peurrent) then

6: break

7. end if

8: Peurrent < Prefined

9: end for

10: Solution < L(Peurrent, Lo) {Solve task with the final prompt}
11: return Solution

4 Recursive Meta Prompting: Self-Refinement and Automation

While Meta Prompting provides a robust framework for solving external tasks, its most powerful application
lies in turning the lens of prompting inward: using meta-prompts to generate and refine other prompts. We

Under review as submission to TMLR

call this process Recursive Meta Prompting (RMP). RMP endows an Al system with the capacity for
autonomous self-improvement, where the model not only executes tasks but also actively constructs and
enhances its own guiding instructions. This paradigm mirrors the concept of metaprogramming in computer
science, where a program can treat other programs (or itself) as data to be analyzed and modified.

4.1 A Monadic Framework for Prompt Refinement

v

Meta Meta
Prompt Prompt
Proposer Executor

Solved
Task

Figure 6: The workflow of Recursive Meta Prompting. A Meta-Meta-Prompt guides a Proposer LLM to
generate a task-specific Meta Prompt. This generated prompt is then used by an Executor LLM to solve
the original task.

The process of recursive refinement is elegantly captured by the mathematical structure of a monad. We
can model RMP as an endofunctor on the category of prompts, Mp : P — P, which takes a prompt and
outputs a refined version. This forms a monad (Mp,n, p):

o Endofunctor Mp: The core refinement operation. Given a prompt P, Mp(P) is the improved prompt.

e Unit (n : Id - Mp): The ‘unit’ transformation takes a simple task description and lifts it into a
structured meta-prompt, creating the initial object for refinement.

o Multiplication (4 : M% — Mp): The ‘multiplication’ transformation is the essence of recursion. It
takes a nested prompt refinement—a prompt about how to refine a prompt, Mp(Mp(P))—and flattens
it into a single, executed refinement Mp(P).

This structure leads to the following proposition regarding the stability of the refinement process. We make
explicit the assumptions used for the modeling (see also Appendix [A.3):

o Prompts are typed records (schemas); refinements are type-preserving edit scripts over those records.

« Edit scripts compose by concatenation modulo a confluent, terminating normalization (standard rewrite
assumptions).

e The identity edit is a no-op; observational equivalence is at the schema level.

Proposition 4.1 (Stability of Recursive Refinement). The process of recursive prompt refinement is asso-
ciative and stable. Given a multiply-nested refinement, the order in which the refinement steps are collapsed
does not alter the final outcome.

Proof Sketch. This property is a direct consequence of the monad’s associativity law: po Mppu = po uMp.
This identity guarantees that for any thrice-nested prompt M?’P(P), the two possible ways of flattening it to
Mp(P) yield the same result (see Appendix [A.3]). This ensures that the self-refinement process is coherent
and computationally stable, preventing arbitrary outcomes from nested metaprogramming. O

Under review as submission to TMLR

A Concrete Walkthrough of RMP. Starting from a task description (e.g., a GSM8K problem family
descriptor), the meta-meta-prompt (Fig.[7) instructs a proposer LLM to emit a structured meta-prompt (edit
script over a base schema). The executor LLM then uses this meta-prompt to solve instances. Iteration
continues until the edit script stabilizes (no further schema-level changes).

Computational costs. RMP incurs a one-time offfine cost during refinement (proportional to the number
and size of edit scripts). This cost is amortized across all downstream instances; inference-time usage
is a single API call with a compact, reusable meta-prompt, contrasting with per-instance exploration in
tree/graph-of-thought methods.

This monadic structure guarantees that the refinement process is consistent and compositional (see Ap-
pendix for the monad laws). The recursive mechanism, depicted in Figure @ allows an LLM to itera-
tively improve its own instructions, moving from a vague initial prompt to a sophisticated, highly-structured
one. This process enables an iterative problem-solving loop where an initial, unsolved prompt Tunsolved iS
successively refined until it can be solved by the LLM:

LLM(M(M'P (n(ﬂlnsolved)») — T:iolved .

4.2 Case Study: Automatic Prompt Derivation

To make the RMP process concrete, consider the task of deriving a sophisticated prompt for a new problem
domain. The process, formalized in Algorithm [T} can be used to generate the very meta-prompts used in our
experiments. For instance, an LLM equipped with a high-level ‘Meta-Meta-Prompt‘ (as shown in Figure @
can take its own prompt as input and recursively improve it.

Figure[7]serves as an example of a ‘Meta-Meta-Prompt’. When an LLM is given this prompt and tasked with
analyzing a document (which could be the prompt itself), it is guided to perform document analysis, interpret
the core task, and design a new, structured prompt for solving it. This self-referential loop demonstrates
the practical application of RMP for in-context prompt design, showcasing the dynamic evolution of task
definition and solution formulation.

By automating the prompt-generation process, RMP enhances the adaptability and autonomy of Al systems,
facilitating a more modular and compositional approach to problem-solving.

5 Experiments

In this section, we evaluate the performance of our proposed Meta Prompting (MP) framework on several
mathematical benchmarks and problem-solving tasks. Our experiments are designed to assess both accuracy
and efficiency.

5.1 Solving MATH and GSM8K Problems

Experimental Setup. We evaluate on two standard benchmarks. MATH (Hendrycks et all [2021)
comprises 5000 competition-level problems; GSM8K (Cobbe et al., |2021)) contains 1319 grade school math
problems. We perform inference using the vLLM framework on Qwen-14B and Qwen-72B base models. The
prompts for both benchmarks are generated by RMP from a single task-agnostic meta-meta-prompt (Sec.
artifacts in Appendix [Bf and Supplement). For MATH we use the meta-prompt in Fig. [2} for GSM8K we
use the JSON-structured meta-prompt in Fig.

To evaluate model outputs, we use a rule-based evaluator with SymPy (Meurer et all 2017) equivalence
and normalized formatting to match ground truth. We report binomial 95% confidence intervals (dataset
variance; decoding randomness held fixed). Detailed results appear in Table |1 and Table

Experimental Results. The example-free, structure-only prompted Qwen-72B base model exhibits strong
instruction-following via in-context learning. On MATH, we obtain PASS@1 of 46.3% (95% CI: [44.9,
47.7]; n=5000). On GSMS8K, accuracy is 83.5% (95% CI: [81.5, 85.5]; n=1319). We emphasize these as
proof-of-concept results under one structure-only template; see Limitations for discussion of template/model

Under review as submission to TMLR

Task: Meta Prompting for In-Context Prompt Design

1. Document Analysis:

o Input: [Complex document (e.g., a research paper or this prompt itself)]
e Action: Analyze and extract key concepts, methodologies, challenges, and objectives.

2. Task Interpretation:

e Action: Synthesize the extracted information to define the core problem or task.
o Considerations: Identify constraints, goals, or requirements.

3. Prompt Design:

e Objective: Develop a structured prompt for problem-solving, including clear instructions, a
step-by-step approach, and relevant background information.

4. Optional — Direct Solution Proposal:

e Objective: Propose initial steps or a complete solution strategy, ensuring feasibility and
practicality.

5. Output Prompt: [Generate the output prompt using the same LaTeX format as this template.]

Note: The output should be a coherent, actionable prompt or solution strategy tailored to the specifics
of the input document.

Figure 7: An example of a meta-meta-prompt for In-Context Prompt Design (MP-ICPD). This prompt
instructs an LLM on how to analyze a document and generate a new, structured meta-prompt to solve the
task described within it.

sensitivity. The token-efficiency gains relative to few-shot and tree/graph-style prompting are substantial,
particularly for batched tasks (Sec. [C.1).

Table 1: Comparative analysis of PASS@1 accuracy on the MATH benchmark for various models without
tool usage (e.g., code interpreter). This comparison underscores the notable improvements achieved by our
zero-shot meta-prompted base language models over existing approaches in mathematical problem-solving.

Model FT-Dataset Tool Usage Eval Method MATH (%)
Proprietary Models
Claude-2 Anthropic|, 2023) - No CoT 32.5
Minerva-540B (Lewkowycz et al.,|[2022) Arxiv4Web No CoT 33.6
PaLM-2 (Anil et al 2023 - No CoT 34.3
GPT-4 (2023-0314) (IOpenAI |2023D - No CoT 42.5
Open-source Models
Qwen-14B (base) - No CoT 24.8
Qwen-14B (base) - No MP 28.9
Qwen-72B (base) - No CoT 35.2
Qwen-72B-MetaMathQA MetaMathQA No CoT 41.7
Qwen-72B (base) - No MP 46.3

10

Under review as submission to TMLR

Table 2: Comparative analysis of PASS@1 accuracy on the GSM8K benchmark for various open-source large
language models without tool usage (e.g., code interpreter). Our example-free, structure-only prompting
shows substantial improvements over few-shot CoT prompting.

Model FT-Dataset Tool Usage Eval Method GSMS8K (%)
Qwen-14B (base) (Bai et al., 2023 - No CoT 61.3
Qwen-14B (base) - No MP 64.8
WizardMath-70B (Luo et al.,|2023) WizardMath No CoT 81.6
MetaMath-70B (Yu et al., [2023) MetaMathQA No CoT 82.3
Qwen-72B (base) - No CoT 78.9
Qwen-72B (base) - No MP 83.5

5.2 Solving the Game of 24 Tasks

Comparative Analysis. Tablecompares 10, CoT, ToT (Yao et al.,|2023), and our Meta Prompting (MP)
approach on the Game of 24. We report API calls, generated/prompt tokens, cost per case, and success rate.
Notably, MP requires effectively % APT calls per sample (batching N = 1362 puzzles), drastically reducing
token usage while achieving 100% success.

MP-CR Agent Evaluation. The MP-CR (Meta Prompting for Complex Reasoning) Agent, equipped
with the MP-CR meta prompt (Fig. in Appendix , addresses complex reasoning tasks. Here we focus
on Game of 24 (Yao et al |2023)), combining four numbers with operations (4, -, *, /) to obtain 24.

Experimental Setup. Our experimental design demonstrates the MP-CR Agent’s capability to au-
tonomously generate Python code for solving Game of 24 tasks. In contrast to traditional iterative and
time-intensive methods, the MP-CR Agent processes all samples within a single response, thereby signifi-
cantly enhancing computational efficiency and reducing overhead.

Results and Discussion. The MP-CR Agent achieved a 100% success rate on all 1362 samples (Table [3)).
The average processing time was 0.08 seconds per sample using the OpenAl Assistant API. Amortized token
usage is ~ 5.9 generated and 0.73 prompt tokens per case (8k/1k tokens for all 1362 puzzles), versus per-case
costs in CoT/ToT settings. Figure [12| (Appendix shows the automatically generated Python program.

Overall, these experiments illustrate that Meta Prompting not only enhances the reasoning capabilities of
large language models but also offers substantial improvements in token efficiency and fairness of evaluation
compared to traditional few-shot methods.

Table 3: Comparative analysis of methods for the Game of 24 Tasks. The table compares various approaches,
including 10, CoT, ToT, and Meta Prompting (MP), in terms of LLM sessions, token generation, cost per
case, and success rate. The MP-CR method is highlighted for its efficiency and 100% success rate.API call
denotes one complete query—response. For MP, tokens and cost are reported once for a batch of N=1362
puzzles.

Method API Calls Generate/Prompt Tokens Cost (USD) Success Rate
10 (best of 100) 100 1.8k / 1.0k $0.13 33%

CoT (best of 100) 100 6.7k / 2.2k $0.47 49%

ToT (Yao et al.| [2023) 61.72 5.5k / 1.4k $0.74 74%

MP L ~ L (8k / 1K) ~ $0.0003 100%

6 Related Work

Reasoning with AI Systems. Efforts to enhance Al reasoning capabilities have largely focused on equip-
ping neural networks with mechanisms to generate intermediate reasoning steps, a strategy that has yielded
improvements across diverse domains (Zaidan et al., 2007 [Yao et al., 2021 [Hase & Bansal, 2021} |Yang et al.

11

Under review as submission to TMLR

[2022; Wu et al 2022; |Zhou et al.,[2022)). Although these approaches have advanced the state of the art, they
predominantly emphasize content-driven reasoning. In parallel, substantial research has investigated the use
of symbolic systems—such as code environments and knowledge graphs—to further augment reasoning
[haylov & Frankl, [2018} Bauer et all, 2018} [Kundu et all 2018 [Wang et al [2019; [Lin et all [2019; [Ding et al.

2019} [Feng et all, 20205 [Wang et all [2022a} [Chen et all, 2022} [Lyu et al.| 2023} [Chen et all 2022} [Gao et all
2023; |Gou et all 2023} Jiang et al., [2022} [Yang et al., [2023)). In contrast, our work on meta prompting shifts

the focus from content-centric methods to a structural and formal treatment of reasoning processes.

Chain-of-Thought Prompting. The introduction of Chain-of-~Thought (CoT) prompting by
marked a significant milestone by emphasizing the articulation of intermediate reasoning steps. This
foundational idea has been extended in numerous ways. Methodologies like Self-Consistency
and Complex CoT focus on generating multiple reasoning chains and selecting
the best one, often through voting. Decomposition strategies, such as Least-to-Most (Zhou et al. [2022)
and Decomposed Prompting (Khot et al., [2022)), focus on breaking complex problems into simpler, solvable
sub-tasks. More recent work has explored multi-agent debates 2023)), diverse reasoning paths
with verifiers 2023), and progressive, iterative refinement (Zheng et all [2023). A significant
parallel thread involves enabling LLMs to self-criticize and self-correct their reasoning paths, with theoretical
guarantees on improvement (Tyen et al.) 2023} [Li et al. 2024; |Wang et al. 2024). While powerful, these
methods primarily aim to improve the semantic content of the reasoning chain, often relying on complex
few-shot examples. Meta Prompting differs fundamentally by being example-agnostic and operating on the
formal, syntactic structure of the prompt itself, thereby controlling the reasoning process at a more abstract
level.

Structured and Graph-Based Reasoning Frameworks. Recognizing the limitations of linear rea-
soning chains, recent work has explored more complex reasoning topologies. The Tree-of-Thought (ToT)
framework (Yao et all 2023; Long, [2023)) was a significant step, allowing an LLM to explore multiple rea-
soning paths in a tree structure and use self-evaluation to prune branches. This concept has been further
generalized to graph-based structures in frameworks like Cumulative Resoning (CR) (Zhang et al. [2023),
Graph-of-Thoughts (GoT) (Besta et all [2024), Diagram-of-Thought (DoT) (Zhang et al., |[2024)), which rep-
resents thoughts as nodes and dependencies as edges, and Forest-of-Thoughts (FoT) (Bi et al., 2024), which
explores diverse high-level plans concurrently. These frameworks provide powerful high-level strategies for
exploring a problem space. Our work on Meta Prompting is orthogonal and complementary. While ToT,
GoT, and FoT define the macro-level topology of the reasoning process (a tree or graph), Meta Prompting
provides a formal, categorical language for defining the micro-level structure of the nodes and compositional
rules for the edges. The structured prompts generated by our framework can be seen as the well-defined
computational steps within these more complex reasoning graphs.

7 Conclusion

In this work, we introduced Meta Prompting, a paradigm that prioritizes the formal structure of reasoning
over its content. We moved beyond intuition by establishing a theoretical foundation, using category theory
to formalize Meta Prompting as a functor and Recursive Meta Prompting (RMP) as a monad under explicit
assumptions. This framework provides a principled, compositional, and automatable approach to guiding
the reasoning processes of large language models. Our empirical results show that this structure-oriented
approach achieves competitive performance on challenging mathematical benchmarks in an example-free,
structure-only setting while offering substantial token-efficiency benefits.

The implications of this work suggest a new way to interact with and control LLMs, moving from empirical
prompt engineering to a more formal, programmatic science of prompt design. The RMP framework, in
particular, points toward a future where LLMs can autonomously improve their own cognitive strategies,
adapting and optimizing their internal instructions for new tasks without direct human intervention. Our
work lays a formal cornerstone for this next generation of agentic and compositional reasoning systems.

12

Under review as submission to TMLR

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv preprint
arXivw:2305.10403, 2023.

Anthropic. Model card and evaluations for claude models. Anthropic, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Lisa Bauer, Yicheng Wang, and Mohit Bansal. Commonsense for generative multi-hop question answering
tasks. arXiv preprint arXiv:1809.06309, 2018.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17682-17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-time
compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Dis-
entangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588,
2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for multi-hop reading
comprehension at scale. arXiv preprint arXiw:1905.05460, 2019.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality
and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325, 2023.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng Wang, Jun Yan, and Xiang Ren. Scalable multi-hop
relational reasoning for knowledge-aware question answering. arXiv preprint arXiv:2005.00646, 2020.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting for
multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764-10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen, et al. Tora:
A tool-integrated reasoning agent for mathematical problem solving. arXiv preprint arXiv:2309.17452,
2023.

Peter Hase and Mohit Bansal. When can models learn from explanations? a formal framework for under-
standing the roles of explanation data. arXiv preprint arXiv:2102.02201, 2021.

13

Under review as submission to TMLR

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2105.03874, 2021.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers
with informal proofs. ArXiv, abs/2210.12283, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling declarative
language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv preprint
arXiv:2210.02406, 2022.

Souvik Kundu, Tushar Khot, Ashish Sabharwal, and Peter Clark. Exploiting explicit paths for multi-hop
reading comprehension. arXiv preprint arXiv:1811.01127, 2018.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning
problems with language models. Advances in Neural Information Processing Systems, 35:3843-3857, 2022.

Loka Li, Guangyi Chen, Yusheng Su, Zhenhao Chen, Yixuan Zhang, Eric Xing, and Kun Zhang. Confi-
dence matters: Revisiting intrinsic self-correction capabilities of large language models. arXiv preprint
arXiv:2402.12563, 2024.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315-5333, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050,
2023.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. Kagnet: Knowledge-aware graph networks for
commonsense reasoning. arXiv preprint arXiv:1909.02151, 2019.

Jiangming Liu, Matt Gardner, Shay B Cohen, and Mirella Lapata. Multi-step inference for reasoning over
paragraphs. arXiv preprint arXiv:2004.02995, 2020.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Scott Lundberg, Marco Tulio Correia Ribeiro, David Viggiano, Joao Rafael, Riya Amemiya, and et. al.
Microsoft guidance library. https://github.com/microsoft/guidance, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin,
Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language
models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris
Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint arXiv:2301.13379, 2023.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondiej Certik, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig,
Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson,
Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Stépan Roucka, Ashutosh Saboo, Isuru Fernando,
Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing in python. PeerJ

14

https://github.com/microsoft/guidance

Under review as submission to TMLR

Computer Science, 3:€103, January 2017. ISSN 2376-5992. doi: 10.7717/peerj-cs.103. URL https:
//doi.org/10.7717/peerj-cs.103.

Todor Mihaylov and Anette Frank. Knowledgeable reader: Enhancing cloze-style reading comprehension
with external commonsense knowledge. arXiv preprint arXiv:1805.07858, 2018.

OpenAl. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. openai.com, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot
paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems,
pp. 1-7, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Carbune. Llms cannot find reasoning
errors, but can correct them! arXiv preprint arXiv:2311.08516, 2023.

Xiaoyan Wang, Pavan Kapanipathi, Ryan Musa, Mo Yu, Kartik Talamadupula, Ibrahim Abdelaziz, Maria
Chang, Achille Fokoue, Bassem Makni, Nicholas Mattei, et al. Improving natural language inference using
external knowledge in the science questions domain. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 7208-7215, 2019.

Xiting Wang, Kunpeng Liu, Dongjie Wang, Le Wu, Yanjie Fu, and Xing Xie. Multi-level recommendation
reasoning over knowledge graphs with reinforcement learning. In Proceedings of the ACM Web Conference
2022, pp. 2098-2108, 2022a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiw:2203.11171, 2022b.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understanding of
self-correction through in-context alignment. arXiv preprint arXiv:2405.18634, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. Ai chains: Transparent and controllable human-ai
interaction by chaining large language model prompts. In Proceedings of the 2022 CHI conference on
human factors in computing systems, pp. 1-22, 2022.

Jingfeng Yang, Haoming Jiang, Qingyu Yin, Danqing Zhang, Bing Yin, and Diyi Yang. Seqzero: Few-
shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint
arXiv:2205.07381, 2022.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented language models.
arXiv preprint arXiv:2306.15626, 2023.

15

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

Under review as submission to TMLR

Huihan Yao, Ying Chen, Qinyuan Ye, Xisen Jin, and Xiang Ren. Refining language models with composi-
tional explanations. Advances in Neural Information Processing Systems, 34:8954—-8967, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601,
2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large
language models. arXiv preprint arXiv:2309.12284, 2023.

Omar Zaidan, Jason Eisner, and Christine Piatko. Using “annotator rationales” to improve machine learning
for text categorization. In Human language technologies 2007: The conference of the North American
chapter of the association for computational linguistics; proceedings of the main conference, pp. 260267,
2007.

Yifan Zhang, Jinggin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with large
language models. arXiv preprint arXiv:2308.04371, 2023.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. arXiv preprint
arXiv:2409.10038, 2024.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting improves
reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier
Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in large language
models. arXiv preprint arXiw:2205.10625, 2022.

16

Under review as submission to TMLR

Appendix

AT rcal Foundations

[A.4 Proof of Stability (Proposition 4.1o o
IA.5 Assumptions for RMP Monad Modeling|

[B Additional Prompt Examples|

[C Additional Experimental Details|

IC.1 Solving Game of 24 Tasks| o
IC.2 Solving MATH Problems|

[ID Reproducibility|

[EE Limitations and Scope|

(I Multi-Modal Meta Prompting|

17

18
18
18
18
19
19

20

22
22
22

22

22

23

Under review as submission to TMLR

A Theoretical Foundations

A.1 Type Theory

Type theory provides a rigorous framework for describing type systems in mathematics, logic, and computer
science and is often proposed as an alternative foundation to set theory. Early examples include Church’s
typed A-calculus and Martin-Lo6f’s intuitionistic type theory; these theories underpin many modern proof
assistants such as Coq and Lean via systems like the Calculus of Inductive Constructions.

In type theory, every term is associated with a type, typically denoted as term : type. Common types include
the natural numbers (N) and Boolean values (bool). Terms are constructed through function applications,
and computation is formalized as the systematic rewriting of a term’s syntax. A key construct is the lambda
abstraction: a term of the form A variable : type;.term has the type type; — type,, representing a function
that maps an input of type type; to an output of type type,.

Type theory diverges from classical set theory in that it is inherently computational (e.g., ‘141’ and ‘2’
are syntactically distinct but computationally equivalent), intuitionistic, and encodes mathematical objects
via inductive types rather than as sets. This makes it a natural language for describing the structured,
computational nature of meta-prompts.

A.2 Proof of Compositionality (Theorem

Proof. Let M : T — P be the Meta Prompting functor. To prove the proposition, we must show that M
preserves the structure of composition as defined for a functor.

Let T1,T5,T5 be objects in the category of tasks 7. Let f : 71 — 15 and g : T — T3 be morphisms
representing transformations between these tasks. The composition of these morphisms is go f : T} — T3.

By the definition of a functor, M maps these objects and morphisms to the category of prompts P:

o Objects: M(Ty), M(T3), M(T3) are objects in P.
o Morphisms: M(f): M(T1) - M(T2) and M(g) : M(T2) — M(T3) are morphisms in P.

The core property of any functor is that it preserves composition. That is, for any composable morphisms
fand g in T, the following must hold:

Mg o f) = M(g) o M(f)

This equality is not derived but is an axiom in the definition of a functor. Our formalization of Meta Prompt-
ing posits that such a structure-preserving map exists. The proposition is therefore a direct consequence of
this definition. The significance is that if we can decompose a complex task T into a sequence of simpler
tasks (e.g., g o f), we can construct the meta-prompt for T by composing the meta-prompts for the simpler
tasks (M(g) o M(f)). This guarantees the modularity and reusability of prompt structures. O

A.3 The Monadic Framework for RMP

As introduced in Section 4, Recursive Meta Prompting (RMP) is modeled by a monad (Mp,n,) on the
category of prompts P. Here, we provide the commutative diagrams for the monad laws, which ensure that
the process of recursive self-refinement is mathematically sound.

Monad Laws. The triple (Mp,n, 1) must satisfy the following coherence laws:

o Left Identity: 1o Mpn =idam,. Applying a refinement after lifting a prompt into the monadic context
is the same as just refining it.

o Right Identity: ponMp =ida,. Lifting a refined prompt and then flattening it has no effect.

18

Under review as submission to TMLR

o Associativity: po Mpu = po uMp. The order of flattening nested refinements does not matter.

The following diagrams illustrate these laws.

Mp —MP 0 MpMop Mp 220N Moy Mp
;;;:\\\x lﬂ M;;:\\x lﬂ
Mp Mop

MpMpMp “M20 Mop Mp

Mwl lu

M'pM'p T> M'p

A.4 Proof of Stability (Proposition

Proof. The proposition states that the recursive refinement process is stable and associative. This property
is not derived from first principles but follows from modeling RMP with a monad (Mp,n, 1) under the
assumptions stated in Sec. @

A core requirement for any monad is that its multiplication (or join) operation, u, must be associative. This
is expressed by the associativity law, which states that the following diagram must commute for any object
PeP:

MpMpMp(P) 225 MpMp(P)

MP(N’P)\L ll"P

MpMp(P) —7— Mp(P)
This diagram translates to the equation pp o g, (py = up o Mp(up). Let’s interpret the two paths from
ME,(P) to Mp(P):
« Path 1 (Top-Right): The path pp o pr,(py corresponds to first collapsing the two outermost

refinement layers (from M3, to M%) and then collapsing the final two layers.

o Path 2 (Bottom-Left): The path up o Mp(up) corresponds to first collapsing the two innermost
refinement layers (from M%(P) to Mp(P) inside the global Mp context) and then collapsing the
resulting outer layers.

The monad law requires that these two paths are equivalent. In the context of RMP, this means that given a
prompt that refines a prompt that refines a prompt, the order of "flattening" or executing these refinements
does not matter. The final, singly-refined prompt is the same regardless of the collapse order. This axiom
directly provides the proof of stability and associativity for the RMP process. O

A.5 Assumptions for RMP Monad Modeling

We summarize the assumptions used in Sec. [

¢ Typed prompts. Prompts are typed records with fields for problem statement, structured steps, and
answer.

o Edits as morphisms. Refinements are schema-preserving edit scripts; composition is concatenation
plus normalization; identity is the empty edit.

o Confluence/termination. The normalization of concatenated edits is confluent and terminating, yield-
ing a unique normal form per edit multiset.

19

Under review as submission to TMLR

¢ Observational equivalence. Equality is modulo schema-level equivalence (format/slot structure), not
semantic accuracy.

B Additional Prompt Examples

""" You are ChatGPT, a state-of-the-art language model with specialized expertise in mathemat-
ics. Your strengths include tackling complex mathematical challenges using intricate reasoning
and delivering solutions via methodical problem-solving. Throughout this interaction, you will
encounter a variety of mathematical problems—from basic arithmetic to advanced calculus and
beyond.

Your primary objective is to:

1. Clearly interpret and understand the problem statement.
2. Decompose the problem into manageable components, if necessary.
Apply appropriate mathematical principles and techniques to solve each component.

Synthesize the component solutions into a comprehensive answer.

& e &

Provide a clear, step-by-step explanation of your methodology, ensuring that your rea-
soning is rigorous, precise, and easily understandable.

Your demonstrated proficiency in mathematics is expected to guide users through the problem-
solving process, offering insights, strategies, and explanations that illuminate the path to the
solution. """

Figure 8: An illustrative example of a generic system Meta Prompt for solving a wide range of reasoning
tasks. This prompt serves as a template suitable for most tasks.

Key Elements of Meta Prompting for Complex Reasoning:

1. Complex Problem Decomposition: Break down intricate problems into smaller, manageable sub-
problems to enable systematic problem solving.

2. Detailed Preliminary Content: Supply essential background information and foundational concepts
to set the stage for problem resolution.

3. Step-by-Step Problem Solving:

e Formulate targeted intermediate questions.
e Develop answer sketches and validate them through code execution.
e Present comprehensive, step-by-step answers leading to the final solution.

4. Final Solution Presentation:

e Synthesize intermediate findings into a complete solution.
e Verify the final solution through code execution.
 Present the final answer in a clear and formatted manner (e.g., using).

20

Under review as submission to TMLR

<syntax>
Problem: [problem]

Solution: Let’s think step by step. [initial interpretation of the problem]
Preliminary Content

- *xPrelim 1x*: [preliminary content 1]

- *%Prelim 2#*: [preliminary content 2]

© [facad

Hints

- xxHint 1%*: [useful hint 1]

- xxHint 2%*: [useful hint 2]

= [...]

Intermediate Steps: Question-Answer, Sketch-Code, Output, and Answer Pairs

Let’s think step by step.

Question 1: [the first sub-question]
- x*xAnswer Sketchx**: [sketch of the answer for question 1]

Code for Question 1
[execute code interpreter to verify and refine your answer sketch for question 1]

Answer for Question 1
- x*Answerx**: [final answer for question 1, based on code interpreter results if available]

Question 2: [the second sub-question]
- *xAnswer Sketch**: [sketch of the answer for question 2]

Code for Question 2
[execute code interpreter to verify and refine your answer sketch for question 2]

Answer for Question 2
- **Ansver**: [final answer for question 2, based on code interpreter results if available]

[Additional Questions as Needed]

Final Solution

Recall the original problem: <MathP> [original problem] </MathP>.
Let’s think step by step.

Solution Sketch
[provide an overall sketch for the final solution]

Code for Final Solution
[execute code interpreter to verify and finalize the solution]

Final Answer
[present the final answer in a LaTeX-formatted box, e.g., $\boxed{63\pi}$]

Final Answer: the answer is $\boxed{...}$.

</syntax>

Figure 9: An illustration of Meta Prompting for Complex Reasoning.

Task: Prompt Simplification
1. Original Prompt: [input prompt]

2. Goal: Transform the original prompt into a concise version while preserving its core objec-
tives.

3. Transformation Instructions:
(a) Retain the primary purpose and objectives.
(b

) Distill the prompt to include only the key instructions and essential information.
(c) Eliminate extraneous details.
)

(d) Use clear, direct language, and structure the prompt with bullet points or numbered
steps for clarity.

4. Outcome: The revised prompt should be succinct yet sufficiently detailed to guide effective
task completion.

Figure 10: Illustration of Meta Prompting for designing concise prompts.

21

Under review as submission to TMLR

C Additional Experimental Details

C.1 Solving Game of 24 Tasks

The experimental results underscore the remarkable potential of the MP-CR Agent as a versatile and powerful
tool for automated problem-solving. By encoding the task as a Python program, the agent reliably addresses
every instance within the “Game of 24” category. Although the initial accuracy of the MP-CR Agent’s
responses may not be perfect, the integration of self-consistency techniques (Wang et al., 2022b)), self-critical
assessments (Yao et all [2023; |Zhang et al.,|2023), and reflective processes (Shinn et al. [2023) is expected to
elevate performance to near-perfect levels. This methodological evolution obviates the need for task-specific
adaptations inherent in few-shot prompting, representing a substantial leap forward in automated problem-
solving. While this experiment focuses on the Game of 24 tasks, subsequent sections will extend our approach
to other domains, such as general MATH problem-solving (Hendrycks et al.| [2021)) (see Appendix.

User:

Task Step 1: Recall the definition of the Game of 24 (allowed operations: *+’, -’ *’, 7 /> "(’, ’)’; note
that intermediate results may be fractional), then provide a detailed plan using code interpreter to
solve the following problem: a, b, ¢, d (e.g., 3, 3, 7, 7).

Task Step 2: [uploaded 24.csv] I have a file containing over 1k Game of 24 puzzles. Please batch-
process them (the numbers are located in the Puzzles field). Verify whether the first five samples are
solved correctly, and then compute the overall success rate (counting a puzzle as solved if its solution
is non-empty).

Task Step 3: Reply with the output file.

Assistant:

[solving the tasks]

Figure 11: User input prompt for solving the Game of 24 tasks.

C.2 Solving MATH Problems

D Reproducibility

We release verbatim artifacts for all prompting components in the Supplement, and include core strings in
Appendix [B} the single task-agnostic meta-meta-prompt, task descriptors, RMP-generated meta-prompts
for MATH/GSMB8K /24-game, and baseline CoT prompts. Decoding parameters (temperature, top-p, max
tokens, stop sequences) and inference stack details (vVLLM versions and hardware) are enumerated to facilitate
replication. Evaluator code includes SymPy equivalence and formatting normalization.

E Limitations and Scope

Our experiments are intended as proof-of-concept. We do not claim monotone accuracy gains with recursion
or universality across tasks/models. Sensitivity to meta-prompt templates, recursion depth, proposer/execu-
tor swaps, and model scale (including reasoning-tuned models such as DeepSeek-R1) is left for future work.
The current evaluation focuses on math/problem-solving benchmarks and does not include conversational
LM-Eval settings; extending to those domains is orthogonal and promising but untested here. Computa-
tionally, RMP incurs a one-time offline refinement cost; benefits appear primarily when prompts are reused
across many instances (batched settings).

Comparison to Program-of-Thought (PoT). Zero-shot PoT is code-first: it executes tool calls ex-
plicitly to ground reasoning. MP is structure-first: it enforces typed schemas and compositional sections

22

Under review as submission to TMLR

import pandas as pd
import time

from itertools import permutations, product
import operator

from fractions import Fraction

Basic operations
ops = {
’+’: operator.add, ’'-’: operator.sub, ’*’: operator.mul, ’/’: operator.truediv,

}

Function to try all operations between two numbers
def try_ops(a, b):

results = []

for op in ops:

if op == ’/’ and b == 0: # Avoid division by zero
continue

try:

result = ops[op](a, b)

results.append ((result, £’ ({a}{op}{b})’))

except Exception:

pass

return results

Generate all possible results for a list of numbers

def generate_results(numbers):

if len(numbers) == 1:

return [(numbers[0], str(numbers[0]))]

results = []

for i in range(len(numbers)):

for j in range(len(numbers)):

if i 1= j:

remaining = [numbers([k] for k in range(len(numbers)) if k != i and k != j]
for resultl, exprl in generate_results([numbers[ill):

for result2, expr2 in generate_results ([numbers[j1]):

for result, expr in try_ops(resultl, result2):

if remaining:

for final_result, final_expr in generate_results(remaining + [result]):
results.append ((final_result, final_expr.replace(str(result), expr, 1)))
else:

results.append ((result, expr))

return results

Function to parse a puzzle string into numbers
def parse_puzzle (puzzle_str):
return [int(n) for n in puzzle_str.split ()]

def process_puzzles(file_path):
puzzles_df = pd.read_csv(file_path)
puzzle_samples = puzzles_df [’Puzzles’].tolist()
solutions_dict = {}

for puzzle_str in puzzle_samples:

numbers = parse_puzzle (puzzle_str)

results = generate_results(numbers)

solutions = set ()

for result, expr in results:

if abs(result - 24) < le-6:

solutions.add (expr)

if solutions:

solutions_dict [puzzle_str] = solutions

else:

solutions_dict [puzzle_str] = "No solution found"
return solutions_dict

Figure 12: The MP-CR Agent directly generates Python code to solve all Game of 24 tasks in a single
response by processing the input file and producing corresponding solutions.

without mandating execution. The methods are complementary: PoT is advantageous when faithful execu-
tion is available and cheap; MP is advantageous when the token budget is tight and structural guarantees
(format/type) drive reliability. Hybrid designs, such as schema-first prompts that invoke tools on selected
sections, are a promising direction.

F Multi-Modal Meta Prompting

The structured nature of Meta Prompting, grounded in the principles of type theory, provides a robust
framework for extending foundation models to multi-modal settings. Just as type systems in programming
ensure that different data types are handled correctly, a meta prompt enforces a clear, syntactic structure
on the Al’s inputs and outputs. This is particularly valuable when interacting with diverse data like text,
images, audio, or even physical sensors, as it minimizes ambiguity and ensures that the model interacts with
tools and data in a consistent, predictable manner.

23

Under review as submission to TMLR

© Playground Assistants

2] 8
CR Agent Assista...

2

2 Name

[} CR Agent Assistantv012

o " :

& Instructions
- Hint 2% [useful hints

@ 2
- .
Model
pt-4-1106-preview
Functions ® Add
Codeinterpreter @
Retrieval ©

a

® Fues 0 Add

[

=]

2

5]

8

il

@

=]

®

[

Figure 13:

Learnabout the Assistants AP1 7
THREAD ®Run o Clear Logs 0

User
Problem: How many positive whole-number divisors does
196 have?

CR Agent Assistant-v01.2
o determine how many positive whole-number divisors a number has, you need to
factorize the number into its prime factors. Afterward, you apply the formula that involves
the powers of these prime factors. If the prime factorization of a number (n) is given by
[n=p_t"a_1} \cdot p_2"(a_2} \cdot dots \cdot p_k™a_k}]

where (p_1,p_2, \Idots, p_k) are the prime factors of (n),and (a_1,a_2, idots, a_k) are
their respective powers, then the number of positive divisors (d(n)) of (n) can be found
using the following formula:

[d() = (a_T+)(@_2+D\idots(a_k+)]

This is because for each prime factor (p_i), you can have a divisor with (p_i) raised toa
power from O up to (a_i), and you can combine these in any way with the other factors to
geta unique divisor of (n).

Preliminary Contents

* Factorization: The process of breaking down a number nto ts prime factors.

* Prime Factors: The prime numbers that divide a given number exactly, without leaving
aremainder.

* We will see the output of this code block which will give us the prime factorization of
196,

Let's run the code to get the prime factorization.

code_intexrpreter(fron synpy import factorint # Find the prime factors of 196 pr.)

w22, 7: 2)

CR Agent Assistant-v012
Answer for Question 1

The prime factorization of 196 is (2°2 \cdot 7°2)
Now that we have the prime factors and their exponents, we can proceed to calculate the.
number of positive divisors.

Question 2: How many positive divisors does 196 have given its prime
factorization?
* Answer Sketch: Given the prime factorization (22 \cdot 7°2), we have two primes (p_1
=2)and (p_2=7)with exponents (a_1=2)and (a_2 = 2) respectively. Substituting
these into the divisor formula (d(n) = (a_1+1)(@_2+1)) gives (d(196) = (2+1)(2+1)).

Code Interpreter for Question 2

the total number of di the result of the prime

factorization,

Experiments using the MP-CR

MATH (Hendrycks et all, [2021)) problem.

Agent within the OpenAl Assistant for

24

ee D ned &

o @

e DB wed &

®

ors: Numbers that divide into another number without leaving a remainder.

Hints

* Prime Factorize 196: To find the divisors of 196, we first need to find its prime
factorization,

Formula: o is complete, apply the divisor

formula o find the total number of divisors.

late Steps: Quest Code-Output-A

Pairs
Let's begin with the first question.

Question 1: What is the prime factorization of 1962

* Answer Sketch: Calculate the prime factorization of 196 by dividing it by the smallest
prime number until it results in 1.

Code Interpreter for Question 1

Let's find the prime.
its prime factorization functions to achieve this.

196. We will import Sympy and use

sympy factorint

factorint(

Answer for Question 1

Answer for Question 2

* After running the above code, we will obtain the number of positive divisors of 196.
Let's execute the code.

code_intexrpreter(fron synpy import prod # Using the exponents from the prime fa.)
w9

CR Agent Assistant-v01.2
Answer for Question 2

The number of positive whole-number divisors that 196 has is 9.

Final Solution:

Recall the origin problem: How many positive whole-number divisors does 196 have?

Solution Sketch

After finding the prime factorization of 196 to be (2°2 \cdot 7*2), we applied the formula for
determining the number of divisors, which gave us (d(196) = (2+1)(2+1) = 3 \cdot 3=9).

Final Answer

The final answer is $\boxed{9}$.

solving a

Under review as submission to TMLR

<system>
<description>

As one of the most distinguished mathematicians, logicians, programmers, and AI

scientists, you possess an unparalleled mastery over various mathematical domains.

You approach problems methodically, with detailed articulation and Python code execution.
</description>

<instructions>

<objective>

Automatically configure solutions to complex mathematical problems with Python code execution.
</objective>

<key_priorities>

<priority>Generate useful hints for solving the problem.</priority>

<priority>Craft intermediate questions that break down the problem and solve them with code.</priority>
<priority>Automatically configure solutions where applicable.</priority>

</key_priorities>

<code_execution_guidelines>

<guideline>Import necessary libraries in all code blocks.</guideline>

<guideline>Maintain variable inheritance across code blocks, excluding blocks with errors.</guideline>
<guideline>Execute all code blocks immediately after writing them to validate correctness.</guideline>
</code_execution_guidelines>

<mathematical_formatting>

<format>Present the final answer in LaTeX format, enclosed within ’\boxed{}’ without units.</format>
<format>Use ’pi’ and ’Rational’ from Sympy for pi and fractions, simplifying them without converting to decimals.</format>
</mathematical_formatting>

</instructions>

</system>

<syntax>

<problem_structure>

<problem_definition>

</problem_definition>

<solution_approach>

</solution_approach>

<preliminary_contents>

</preliminary_contents>

<hints>

</hints>

<intermediate_steps>

</intermediate_steps>

<final_solution>

<solution_sketch>

</solution_sketch>

<code_for_solution>

</code_for_solution>

<final_answer>

</final_answer>

</final_solution>

</problem_structure>

</syntax>

Figure 14: The system prompt for the MP-CR-XML Agent v0.2, autonomously generated by MP-CR Agent
v0.1 (a metaprogramming process).

25

Under review as submission to TMLR

As one of the most distinguished mathematicians, logicians, programmers, and

AI scientists, you possess an unparalleled mastery over Arithmetic, Combinatorics, Number

Theory, Probability Theory, Algebra, Analysis, and Geometry. You are not only intelligent

and rational but also prudent and cautious. You are willing to write and execute Python

code. Let’s approach each problem step by step, take a deep breath, and articulate our thoughts in as much detail as possible.

<system>

You will be presented with a mathematical problem, denoted as ‘MathP‘. Before diving into

the solution, lay down some foundational preliminary contents and hints. Then, generate a series

of intermediate questions that pave the way to the final answer of ‘MathP‘. For each question,

sketch a preliminary answer, execute the corresponding code (remember to use ‘from sympy import *°),
derive the output, and then finalize your answer. This forms a [Question] \rightarrow [AnswerSketch]
\rightarrow [Code] \rightarrow [Output] \rightarrow [Answer] sequence.

System Instructions for Mathematical Problem-Solving

Objective
Solve complex mathematical problems with code feedback from a Python environment.

Key Priorities

1. **Hints:** Generate useful hints to guide the problem-solving process.

2. *xIntermediate Questions:** Decompose the problem into manageable parts and solve each using code feedback.
Code Execution Guidelines

1. #*Import Libraries:** Always import necessary libraries in every code block.

2. *xImmediate Execution:** Execute all code blocks immediately to ensure correctness; call the code interpreter after writing
each block.

3. **Inmediate Feedback:** Ensure immediate code execution for every question posed.
Mathematical Formatting

1. **Final Answer:x* Present the final answer to the original problem in LaTeX format, enclosed within ‘\boxed{}‘, and without any
units.

2. *xConstants and Fractions:** Use the ‘pi‘ symbol and the ‘Rational‘ class from Sympy to represent \(\pi\) and fractionms.
Simplify all fractions and square roots without converting them to decimals.
</system>

Figure 15: The system meta prompt for MP-CR, comprising both the [SystemMetaPrompt] and the [Struc-
tureMetaPrompt].

26

Under review as submission to TMLR

This “typed” approach is essential for complex, real-world applications where an AI must process and
synthesize information across different modalities. For example, an XML-based meta prompt can define a
rigid schema that an LLM must follow, specifying slots for different types of reasoning steps and data.

<system>
<description>
As one of the most distinguished mathematicians, logicians, programmers, and AI
scientists, you possess an unparalleled mastery over various mathematical domains.
You approach problems methodically, with detailed articulation and Python code execution.
</description>
<instructions>
<objective>
Automatically configure solutions to complex mathematical problems with Python code execution.
</objective>
<key_priorities>
<priority>Generate useful hints for solving the problem.</priority>
<priority>Craft intermediate questions that break down the problem, solving them with code, following the sequence: [
Question] -> [AnswerSketch] -> [Code] -> [Output] -> [Answer].</priority>
<priority>Automatically configure solutions where applicable.</priority>
</key_priorities>
<code_execution_guidelines>
<guideline>Import necessary libraries in all code blocks.</guideline>
<guideline>Maintain variable inheritance across code blocks, excluding those with errors.</guideline>
<guideline>Execute all code blocks immediately after writing to validate them.</guideline>
</code_execution_guidelines>
<mathematical_formatting>
<format>Present the final answer in LaTeX format, enclosed within ’\boxed{}’ without units.</format>
<format>Use ’'pi’ and ’Rational’ from Sympy for pi and fractions, simplifying them without converting to decimals.</format>
</mathematical_formatting>
</instructions>
</system>
<syntax>
<problem_structure>
<problem_definition>
</problem_definition>
<preliminary_contents>
</preliminary_contents>
<hints>
</hints>
<intermediate_steps>
</intermediate_steps>
<final_solution>
<solution_sketch>
</solution_sketch>
<code_for_solution>
</code_for_solution>
<final_answer>
</final_answer>
</final_solution>
</problem_structure>
</syntax>

Figure 16: An example of a meta prompt using an XML schema. This structure enforces type-like constraints
on the output, making it ideal for frameworks like Guidance (Lundberg et al., [2023) and for extension to
multi-modal data.

F.1 A Framework for Multi-Modal Interaction

Extending Meta Prompting to a multi-modal context involves defining a schema that can handle varied data
formats while integrating them coherently. The primary challenges are data representation and inter-modal
synthesis. A multi-modal meta prompt addresses this by creating explicit, typed “slots” for different data
streams.

For instance, a task might require the AI to analyze a 3D model (‘obj’), listen to an accompanying audio
description (‘mp3’), and read a textual specification (‘txt’). A meta prompt can structure this complex
input, guiding the model to process each modality in a specific order and synthesize the information to
generate a cohesive output. Figure [17]illustrates how such a schema can be conceptualized.

By defining a clear, typed structure for both inputs and outputs, this framework enables models to perform
sophisticated cross-modal analysis—for example, correlating a visual diagram with textual instructions. This
structured approach provides a scalable and reliable foundation for building the next generation of versatile,
multi-modal Al systems.

27

Under review as submission to TMLR

<task_schema>
<input_slots>
<data type="image/png" name="problem_diagram">

</data>

<data type="audio/mp3" name="verbal_instructions">
</data>

<data type="model/obj" name="object_model">
</data>

</input_slots>
<output_schema>
<synthesis type="text/markdown" name="analysis_summary">
</synthesis>
<result type="video/mp4" name="solution_animation">
</result>
</output_schema>
</task_schema>

Figure 17: A conceptual schema for a multi-modal meta prompt. It defines typed slots for various input
modalities and specifies the expected structure and types for the output, enabling complex inter-modal
reasoning.

28

	Introduction
	Background
	Category Theory
	Functors
	Natural Transformations
	Monads in Category Theory

	Meta Prompting
	Formalizing Meta Prompting
	Distinctions between Meta Prompting and Few-Shot Prompting
	Meta Prompting for Complex Reasoning
	Advantages of Meta Prompting

	Recursive Meta Prompting: Self-Refinement and Automation
	A Monadic Framework for Prompt Refinement
	Case Study: Automatic Prompt Derivation

	Experiments
	Solving MATH and GSM8K Problems
	Solving the Game of 24 Tasks

	Related Work
	Conclusion
	Appendices
	Theoretical Foundations
	Type Theory
	Proof of Compositionality (Theorem 3.4)
	The Monadic Framework for RMP
	Proof of Stability (Proposition 4.1)
	Assumptions for RMP Monad Modeling

	Additional Prompt Examples
	Additional Experimental Details
	Solving Game of 24 Tasks
	Solving MATH Problems

	Reproducibility
	Limitations and Scope
	Multi-Modal Meta Prompting
	A Framework for Multi-Modal Interaction

