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Abstract

Recovering the underlying clustering of a set U of n points by asking pair-wise
same-cluster queries has garnered significant interest in the last decade. Given a
query S ⊂ U , |S| = 2, the oracle returns yes if the points are in the same cluster
and no otherwise. We study a natural generalization of this problem to subset
queries for |S| > 2, where the oracle returns the number of clusters intersecting
S. Our aim is to determine the minimum number of queries needed for exactly
recovering an arbitrary k-clustering. We focus on non-adaptive schemes, where all
the queries are asked in one round, thus allowing for the querying process to be
parallelized, which is a highly desirable property.
For adaptive algorithms with pair-wise queries, the complexity is known to be
Θ(nk), where k is the number of clusters. In contrast, non-adaptive pair-wise query
algorithms are extremely limited: even for k = 3, such algorithms require Ω(n2)
queries, which matches the trivial O(n2) upper bound attained by querying every
pair of points. Allowing for subset queries of unbounded size, O(n) queries is
possible with an adaptive scheme. However, the realm of non-adaptive algorithms
remains completely unknown. Is it possible to attain algorithms that are non-
adaptive while still making a near-linear number of queries?
In this paper, we give the first non-adaptive algorithms for clustering with subset
queries. We provide, (i) a non-adaptive algorithm making O(n log2 n log k) queries
which improves to O(n log k) when the cluster sizes are within any constant factor
of each other, (ii) for constant k, a non-adaptive algorithm making O(n log log n)
queries. In addition to non-adaptivity, we take into account other practical con-
siderations, such as enforcing a bound on query size. For constant k, we give an
algorithm making Õ(n2/s2) queries on subsets of size at most s ≤

√
n, which is

optimal among all non-adaptive algorithms within a log n-factor. For arbitrary k,
the dependence varies as Õ(n2/s).

1 Introduction

Clustering is one of the most fundamental problems in unsupervised machine learning, and permeates
beyond the boundaries of statistics and computer science to social sciences, economics and so on. The
goal of clustering is to partition items so that similar items are in the same group. The applications
of clustering are manifold. However, finding the underlying clusters is sometimes hard for an
automated process due to data being noisy, incomplete, but easily discernible by humans. Motivated
by this scenario, in order to improve the quality of clustering, early works have studied the so-called
clustering under “limited supervision” (e.g.,[1, 2]). Balcan and Blum initiated the study of clustering
under active feedback [3] where given the current clustering solution, the users can provide feedback
whether a cluster needs to be merged or split. Perhaps a simpler query model would be where users
only need to answer the number of clusters, and that too only on a subset of points without requiring
to analyze the entire clustering. This scenario is common in unsupervised learning problems, where a
centralized algorithm aims to compute a clustering by crowdsourcing. The crowd-workers play the
role of an oracle here, and are able to answer simple queries that involve a small subset of the universe.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Mazumdar and Saha [4, 5, 6], and in independent works Mitzenmacher and Tsourakis [7], as well as
Asthani, Kushagra and Ben-David [8] initiated a theoretical study of clustering with pair-wise aka
same-cluster queries. Given any pair of points u, v, the oracle returns whether u and v belong to the
same cluster or not. Such queries are easy to answer and lend itself to simple implementations [9].
This has been subsequently extremely well-studied in the literature, e.g. [10, 11, 4, 12, 13]. In fact,
triangle-queries have also been studied, e.g. [14]. Moreover, clustering with pair-wise queries is
intimately related to several well-studied problems such as correlation clustering [15, 16, 17, 10, 18],
edge-sign prediction problem [19, 7], stochastic block model [20, 21] etc.

Depending on whether there is an interaction between the learner/algorithm and the oracle, the
querying algorithms can be classified as adaptive and non-adaptive [5]. In adaptive querying, the
learner can decide the next query based on the answers to the previous queries. An algorithm is
called non-adaptive if all of its queries can be specified in one-round. Non-adaptive algorithms can
parallelize the querying process as they decide the entire set of queries apriori. This may greatly
speed up the algorithm in practice, significantly reducing the time to acquire answers [22]. Thus,
in a crowdsourcing setting being non-adaptive is a highly desirable property. On the flip side, this
makes non-adaptive algorithms significantly harder to design. In fact, when adaptivity is allowed,
nk pair-wise queries are both necessary and sufficient to recover the entire clustering, where n is
the number of points in the ground set to be clustered and k (unknown) is the number of clusters.
However as shown in [5] and our Theorem C.1, even for k = 3, even randomized non-adaptive
algorithms can do no better than the trivial O(n2) upper bound attained by querying all pairs.

We study a generalization of pair-wise queries to subset queries, where given any subset of points,
the oracle returns the number of clusters in it. We consider the problem of recovering an unknown
k-clustering (a partition) on a universe U of n points via black-box access to a subset query oracle.
More precisely, we assume that there exists a groundtruth partitioning of U =

⊔k
i=1 Ci, and upon

querying with a subset S ⊆ U , the oracle returns q(S) = |{i : Ci ∩ S ̸= ∅}|, the number of clusters
intersecting S. Considering the limitations of pair-wise queries for non-adaptive schemes, we ask the
question if it is possible to use subset queries to design significantly better non-adaptive algorithms.

In addition to being a natural model for interactive clustering, this problem also falls into the growing
body of work known as combinatorial search [23, 24] where the goal is to reconstruct a hidden object
by viewing it through the lens of some indirect query model (such as group testing [25, 26, 24, 27, 28]).
The problem is also intimately connected to coin weighing where given a hidden vector x ∈ {0, 1}n,
the goal is to reconstruct x using queries of the form q(S) :=

∑
i∈S xi for S ⊆ [n]. It is known that

Θ(n/ log n) is the optimal number of queries [29, 30, 31], which can be obtained by a non-adaptive
algorithm. There are improvements for the case when ∥x∥1 = d for d≪ n [32, 33, 34]. Moreover,
there has been significant work on graph reconstruction where the task is to reconstruct a hidden
graph G = (V,E) from queries of the form q(S, T ) := |{(u, v) ∈ E : u ∈ S, v ∈ T}| for subsets
S, T ⊆ V . [35, 36, 37, 38]. There are also algorithms that perform certain tasks more efficiently than
learning the whole graph (sometimes using different types of queries) [39, 40, 41, 42, 43, 44, 45, 46],
and quantum algorithms that use fewer queries than classical algorithms [47].

It is not too difficult to show that an algorithm making O(n log k) queries (Appendix H) is possible
for k-clustering, while Ω(n) queries is an obvious information theoretic lower bound since each query
returns log k bits of information and the number of possible k-clusterings is kn = 2n log k. In fact, it
is possible to have an algorithm with O(n) query complexity (personal communication, Chakrabarty
and Liao). However, both of these algorithms are adaptive, ruling them out for the non-adaptive
setting. So far, the non-adaptive setting of this problem remained unexplored.

1.1 Results

Our main results showcase the significant strength of using subset queries in the non-adaptive setting.
We give randomized algorithms that recover the exact clustering with probability 1 − δ, for any
arbitrary constant δ > 0 using only near-linear number of subset queries.

Theorem 1.1. (Theorem 2.5, simplified) There is a randomized, non-adaptive k-clustering algorithm
making O(n log2 n log k) subset queries.

For constant k, this dependency can be further improved.
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Theorem 1.2. (Theorem 2.2, simplified) There is a randomized, non-adaptive k-clustering algorithm
making O(n log log n) subset queries when k is any constant.

Note that the algorithm of Theorem 1.2 works for any value of k, but its dependence on this parameter
is inferior to that of Theorem 1.1 (see the formal version Theorem 2.2 for the exact dependence on k).
Thus, we state the theorem above for constant k to emphasize the much improved dependence on n.

Our algorithms also run in polynomial time, and generalizes to work with queries of bounded size.

Bounding query size: Another practical consideration is query size, s. Depending on the scenarios,
and capabilities of the oracle, it may be easier to handle queries on small subsets. An extreme case is
pair-wise queries (s = 2), where O(nk) pair queries are enough with adaptivity but any non-adaptive
algorithm has to use Ω(n2) queries even for k = 3. Since a subset query on S can be simulated by(|S|

2

)
pair queries, we immediately get the following theorem.

Theorem 1.3. (Corollary C.2, restated) Any non-adaptive k-clustering algorithm that is only allowed
to query subsets of size at most s must make at least Ω(min(n

2

s2 , n)) queries.

Theorems 1.1 and 1.2 above show that this can be bypassed by allowing larger subset queries.
However, some of these queries are of size Ω(n), and this raises the question, is there a near-linear
non-adaptive algorithm which only queries subsets of size at most O(

√
n)? We answer this in the

affirmative, implying that our lower bound is tight in terms of s.
Theorem 1.4 (Theorem A.1, informal). There is a non-adaptive k-clustering algorithm making
O(n log n log log n) subset queries of size at most O(

√
n) when k is any constant. For all sufficiently

small s = o(
√
n), the algorithm makes O(n

2

s2 log n) subset queries of size at most s.

The result also extends to arbitrary k with slightly worse dependency on s (Theorem 2.5). Our
algorithm for bounded queries from Theorem 1.4 has the additional desirable property of being
sample-based meaning that each of its queries is a set formed by independent, uniform samples. I.e.
the algorithm specifies a query size t ≤ s, and then receives (S, q(S)) where S is formed by t i.i.d.
uniform samples from U . Being sample-based enables the algorithm to leave the task of curating
each query up to the individual answering the query. The algorithm needs only to specify the query
sizes, and then recover the clustering once the queries have been curated and answered.

The "roughly balanced" case: Next, we consider the natural special case of recovering a k-clustering
when the cluster sizes are within a constant factor of one another. Informally, let us call such a
clustering "roughly balanced".
Theorem 1.5 (Theorems B.1 and E.1, informal). There are non-adaptive algorithms for recovering a
roughly balanced k-clustering which make (a) O(n log k) subset queries when k ≤ O( n

log3 n
), and

(b) O(n log2 k) subset queries for any k ≤ n.

Allowing two rounds of adaptivity Finally, we show if we allow an extra round of adaptivity, then
that helps to improve the dependency on the logarithmic factors further. Specifically, we prove the
following theorems.
Theorem 1.6 (Theorems F.1 and F.3, informal). There is a 2-round deterministic k-clustering
algorithm making O(n log k) subset queries. There is a randomized 2-round algorithm for recovering
a roughly-balanced k-clustering making O(n log log k) subset queries.

Organization: The remainder of the paper is organized as follows. In Section 2, we give our main
results developing non-adaptive algorithms with near-linear query complexity Theorems 1.1 and 1.2.
Our results for sample-based, bounded query algorithms are given in Appendix A. Finally, we prove
our results for the balanced setting in Appendix B, our lower bounds in Appendix C, and our results
for two-round algorithms in Appendix F.

2 Algorithms with Nearly Linear Query Complexity

In this section we describe the algorithms behind our main results, Theorems 1.1 and 1.2, and give
formal proofs of their correctness. In Section 2.1 we describe an algorithm making O(n log log n)
subset queries when the number of clusters k is assumed to be a constant. In general, the dependence
on the number of clusters is O(k log k). In Section 2.2, we give an alternative algorithm with Õ(n)
query complexity for any k ≤ n.
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2.1 An O(n log log n) Algorithm for Constant k

Warm Up. When there are only 2 clusters, there is a trivial non-adaptive algorithm making O(n)
pair queries: Choose an arbitrary x ∈ U and query {x, y} for every y ∈ U . The set of points y
where q({x, y}) = 1 form one cluster, and the second cluster is the complement. If we allow one
more round of adaptivity, then for 3-clustering we could repeat this one more time and again get an
O(n) query algorithm. However, for non-adaptive 3-clustering it is impossible to do better than the
trivial O(n2) algorithm (see Theorem C.1). Essentially, this is because in order to distinguish the
clusterings ({x}, {y}, U \ {x, y}) and ({x, y}, ∅, U \ {x, y}) the algorithm must query {x, y} and
their are

(
n
2

)
ways to hide this pair. Overcoming this barrier using subset queries require significant

new ideas.

Our main ideas are best communicated by focusing on the case of 3-clustering. It suffices to correctly
reconstruct the two largest clusters, since the third cluster is just the complement of their union. Let
A,B denote the largest, and second largest clusters, respectively. Since |A| ≥ n/3, it is easy to find:
sample a random x ∈ U and query {x, y} for every y ∈ U . The cluster containing x is precisely
{y ∈ U : q({x, y}) = 1}. With probability at least 1/3, we have x ∈ A and so repeating this a
constant number of times will always recover A. On the other hand, B may be arbitrarily small
and in this case the procedure clearly fails to recover it. The first observation is that once we know
A, we can exploit larger subset queries to explore U \ A since q(S \ A) = q(S) − 1(S ∩ A ̸= ∅).
Importantly, the algorithm is non-adaptive and so the choice of S cannot depend on A, but we are
still able to exploit this trick with the following two strategies. Let δn = |B| denote the size of B and
note that this implies |A| ≥ (1− 2δ)n since the third cluster is of size at most B.

Strategy 1: Suppose a query S contains exactly one point outside of A, i.e. S \A = {x} . Then, for
y /∈ A, q(S ∪ {y}) = q(S) iff x, y belong to the same cluster. Thus, we can query S ∪ {y} for every
y ∈ U to learn the cluster containing x. If S is a random set of size t ≈ 1/δ, then the probability
that |S \A| = 1 is at least t · δ · (1− 2δ)t−1 = Ω(1). Of course, we do not know δ, but we can try
t = 2p for every p ≤ log n and one of these choices will be within a factor of 2 from 1/δ. This gives
us an O(n log n) query algorithm since we make n queries per iteration.

Strategy 2: Suppose S intersects A and contains exactly two points outside of A, i.e. S \A = {x, y}.
Then, q({x, y}) = q(S) − 1 which tells us whether or not x, y belong to the same cluster. If x, y
belong to same cluster, add it to a set E, and let G(U \A,E) denote a graph on the remaining points
with this set of edges. By transitivity, a connected component in this graph corresponds to a subset of
one of the remaining two clusters. In particular, if the induced subgraph, G[B], is connected, then we
recover B. Moreover, if S is a random set of size t ≈ 1/δ, then the probability that two points land
in B and the rest land in A is at least

(
t
2

)
· δ2 · (1− 2δ)t−2 = Ω(1). A basic fact from random graph

theory says that after ≈ |B| ln |B| ≤ δn lnn occurrences of this, G[B] becomes connected with high
probability and so querying Ω(δn lnn) random S of size ≈ 1/δ will suffice. Again, we try t = 2p

for every p ≤ log n, resulting in a total of ≈ n lnn
∑

p 2
−p = O(n log n) queries.

Finally, we can combine strategies (1) and (2) as follows to obtain our O(n log log n) query algorithm.
The main observation is that the query complexity of strategy (2) improves greatly if we assume that
|B| is small enough. If we know that δ ≤ 1

logn , then we only need to try t = 2p ≥ log n and so the
query complexity becomes ≈ n lnn

∑
p≥log logn 2

−p = O(n). On the other hand, if we assume that
δ > 1

logn , then in strategy (1) we only need to try p ≤ log log n yielding a total of O(n log log n)
queries. Combining these yields the final algorithm.

Remark 2.1 (On approximate clustering). We point out that these ideas can be used to obtain more
efficient algorithms for the easier task of correctly clustering a (1 − α)-fraction of points. In this
setting we can ignore the case of δ < α/2 (recall the definition of δ above) as this will only result in
an incorrect classification of an α-fraction of points. Thus, for example, one can employ "strategy 1"
above, but only iterate over p ≤ log(2/α), leading to an O(n log 1

α ) query algorithm. However, in
this paper we focus on the more challenging task of recovering the clustering exactly, and leave the
possibility of more efficient approximate algorithms as a possible direction of future work.

Algorithm. A full description of the algorithm is given in pseudocode Alg. 1, which is split into
two phases: a "query selection phase", which describes how queries are chosen by the algorithm, and
a "reconstruction phase" which describes how the algorithm uses the query responses to determine
the clustering. Both phases contain a for-loop iterating over all p ∈ {0, 1, . . . , log n} where the goal

4



of the algorithm during the p’th iteration is to learn all remaining clusters of size at least n
2k·2p . This

is accomplished by two different strategies depending on whether p is small or large.

When p ≤ log log n, the algorithm samples O(k log k) random sets T formed by 2p samples from U
and makes a query on T and T ∪ {x} for every x ∈ U (see lines 5-9 of Alg. 1). LetRp be the union
of all clusters reconstructed before phase p (i.e., clusters of size at least n

2k·2p−1 ). If such a T contains
exactly one point z ∈ T \ Rp belonging to an unrecovered cluster, then we can use these queries to
learn the cluster containing z (see lines 24-28 of Alg. 1), since for x ∈ U \ Rp, q(T ) = q(T ∪ {x})
if and only if x, z belong to the same cluster. Moreover, we show that this occurs with probability
Ω(1) and repeat this O(k log k) times to ensure that every cluster C where |C| ∈ [ n

2k·2p ,
n

2k·2p−1 ) is
learned with high probability. The total number of queries made during iterations p ≤ log log n is
O(n log log n · k log k).

When p > log log n, the algorithm queries O(nk · logn
2p ) random sets T again formed by 2p samples

from U (see lines 11-14 of Alg. 1). Note that
∑

p>log logn 2
−p = O( 1

logn ) and so the total number
of queries made during these iterations is O(nk).

We now describe the reconstruction phase (see lines 32-37 of Alg. 1). If T contains exactly two points
x, y ∈ T \ Rp belonging to unrecovered clusters, then we can use the fact that we already know the
clustering on Rp to tell whether or not x, y belong to the same cluster or not, i.e. we can compute
q({x, y}) ∈ {1, 2} from q(T ). We then consider the set of all such pairs where q({x, y}) = 1 (this
is Q′′

p defined in line 34) and consider the graph G with this edge set, and vertex set U \ Rp, the
set of points whose cluster hasn’t yet been determined. If two points belong to the same connected
component in this graph, then they belong to the same cluster. Thus, the analysis for this iteration
boils down to showing that with high probability, the induced subgraph G[C] will be connected for
every C where |C| ∈ [ n

2k·2p ,
n

2k·2p−1 ). This is accomplished by applying a basic fact from the theory
of random graphs, namely Fact 2.4.

Analysis We restate the main theorem for this section.
Theorem 2.2. There is a non-adaptive algorithm for k-clustering that uses O(n log log n · k log k)
subset queries and succeeds with probability at least 1− δ for any constant δ > 01.

The following Lemma 2.3 establishes that after the first p iterations of the algorithm’s query selection
and reconstruction phases, all clusters of size at least n

2k·2p have been learned with high probability.
This is the main technical component of the proof. After stating the lemma we show it easily implies
that Alg. 1 succeeds with probability at least 99/100 by an appropriate union bound. The choice of
99/100 is arbitrary, and can be made 1− δ for any constant δ.
Lemma 2.3. For each p = 0, 1, . . . , log n, let Ep denote the event that all clusters of size at least

n
2k·2p have been successfully recovered immediately following iteration p of Alg. 1. Then,

Pr[¬E0] ≤
1

100k
and Pr[¬Ep | Ep−1] ≤

1

100k
for all p ∈ {1, 2 . . . , log n}.

Proof of Theorem 2.2: Before proving Lemma 2.3, we first observe that it immediately implies
the correctness of Alg. 1 and thus proves Theorem 2.2. Let I0 = ( n

2k , n] and for 1 ≤ p ≤ log n, let
Ip = [ n

2k·2p ,
n

2k·2p−1 ). If there are no clusters C for which |C| ∈ Ip, then trivially Pr[¬Ep | Ep−1] = 0,
and otherwise Pr[¬Ep | Ep−1] ≤ 1

100k by the lemma. Since there are k clusters, clearly there are at
most k values of p for which there exists a cluster with size in the interval Ip. Using this observation
and a union bound, we have

Pr[¬Elogn] ≤ Pr[¬E0] +
logn∑
p=1

Pr[¬Ep | Ep−1] ≤
1

100

which completes the proof of correctness since the algorithm succeeds iff Elogn occurs.

Query complexity: During iterations p < log log n the algorithm makes at most O(n log log n ·
k log k) queries. During iterations p > log log n, it makes at most O(nk log n)

∑
p>log logn 2

−p =

O(nk) queries since k ≤ n.
1For simplicity of exposition, we use a constant δ in our proofs. The success probability can be boosted to

any 1− 1
poly(n)

by paying a logn factor in the query complexity in all algorithms.
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Time complexity: We assume that obtaining a uniform random sample from a set of size n can
be done in O(1) time. Thus, since the algorithm makes O(n log log n · k log k) queries and each is
on a set of size at most n, the total runtime of the query selection phase (lines 3-15) is bounded by
O(n2 log log n · k log k). We now account for the runtime in the reconstruction phase. Lines (25-28)
clearly can be performed in O(n) time and so the time spent in lines (24-28) is O(|Qp| · n). Now,
for T ∈ Qp, checking if |T \ Rp| = 2 can clearly be done in O(n) time and so lines (33-34) run
in time O(|Qp| · n). Line (36) amounts to finding every connected component in Gp which can be
done in time O(|Q′′

p |+ n) = O(|Qp|+ n) by iteratively running a BFS (costing time linear in the
number of edges plus the number of vertices). Thus, the runtime of the p’th iteration of the for-loop
is always dominated by O(|Qp| · n). Since the total number of queries is O(n log log n · k log k), the
total runtime of the reconstruction phase is O(n2 log log n · k log k).
We now prove the main Lemma 2.3.

Proof. of Lemma 2.3. Let Cp denote the set of clusters recovered before phase p and let Rp =⋃
C∈Cp

C. When p = 0, both of these sets are empty. We will consider three cases depending on the
value of p.

Case 1: p = 0. Let C denote some cluster of size |C| ≥ n
2k . Note that in this iteration the sets T

sampled by the algorithm in line (7) are singletons. We need to argue that one of these singletons will
land in C, and thus C is recovered in line (28), with probability at least 1− 1

100k2 . Since there are at
most k clusters, applying a union bound completes the proof in this case.

A uniform random element lands in C with probability at least 1
2k and so this fails to occur for all

|Q0| ≥ 4k ln 10k samples with probability at most (1− 1
2k )

4k ln 10k ≤ exp(−2 ln 10k) = 1
100k2 , as

claimed.

Case 2: 1 ≤ p ≤ log log n. Let C denote some cluster with size |C| ∈ [ n
2k·2p ,

n
2k·2p−1 ). Note that

we are conditioning on the event that every cluster of size ≥ n
2k·2p−1 has already been successfully

recovered after iteration p− 1. Thus, the number of elements belonging to unrecovered clusters is
|U \ Rp| ≤ k · n

2k·2p−1 = n
2p . We need to argue that the set Qp will contain some T sampled in line

(7) such that T \ Rp = {z} where z ∈ C, and thus C is successfully recovered in line (28), with
probability at least 1− 1

100k2 . Once this is established, the lemma again follows by a union bound.
We have

Pr
T : |T |=2p

[|T \Rp| = 1 and T \Rp ⊆ C] = |T |· |C|
n
·
(
|Rp|
n

)|T |−1

≥ 2p

k · 2p+1

(
1− 1

2p

)2p

≥ 1

2ek

and so the probability that this occurs for some T ∈ Qp is at least 1− (1− 1
2ek )

4ek ln 10k ≥ 1− 1
100k2 ,

as claimed.

Case 3: p > log log n. Let C denote some cluster with size |C| ∈ [ n
2k·2p ,

n
2k·2p−1 ). Note that

|U \ Rp| ≤ k · n
2k·2p−1 = n

2p . Recall from lines (34-35) the definition of Q′′
p and recall that Gp is

the graph with vertex set U \ Rp and edge set Q′′
p . We need to argue that the induced subgraph

Gp[C] is connected, and thus C is successfully recovered in lines (36-37), with probability at least
1 − 1

100k2 . Once this is established, the lemma again follows by a union bound. We rely on the
following standard fact from the theory of random graphs. For completeness, we give a proof in
Appendix D.2.

Fact 2.4. Let G(N, p) denote an Erdös-Rényi random graph. That is, the graph contains N vertices
and there is an edge between each pair of vertices with probability p. If p ≥ 1− (δ/3N)

2/N , then
G(N, p) is connected with probability at least 1− δ.

Consider any x, y ∈ C and observe that

Pr
T : |T |=2p

[T \ Rp = {x, y}] =
(
2p

2

)
· 1

n2
·
(
|Rp|
n

)2p−2

≥ 22p

3n2

(
1− 1

2p

)2p

≥ 22p

10n2
.
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Algorithm 1: Non-adaptive Algorithm for Constant k
1 Input: Subset query access to a hidden partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 (Query Selection Phase)
3 for p = 0, 1, . . . , log n do
4 Initialize Qp ← ∅;
5 if p ≤ log log n then
6 Repeat 4ek ln(10k) times;
7 −→ Sample T ⊆ U formed by 2p independent uniform samples from U ;
8 −→ Query T and T ∪ {x} for all x ∈ U ;
9 −→ Add T to Qp;

10 end
11 if p > log log n then
12 Repeat 40nk ln(300nk2)

2p times;
13 −→ Sample T ⊆ U formed by 2p independent uniform samples from U ;
14 −→ Query T and add it to Qp;
15 end
16 end
17 (Reconstruction Phase)
18 Initialize learned cluster set C0 ← ∅;
19 for p = 0, 1, . . . , log n do
20 Let Cp denote the collection of clusters reconstructed before iteration p;
21 LetRp =

⋃
C∈Cp

C denote the points belonging to these clusters;
22 Initialize Cp+1 ← Cp;
23 if p ≤ log log n then
24 for T ∈ Qp do
25 if |T \ Rp| = 1 then
26 Let z denote the unique point in T \ Rp;
27 If x ∈ U \ Rp, then q(T ) = q(T ∪ {x}) iff x, z are in the same cluster;
28 Thus, we add {x ∈ U \ Rp : q(T ) = q(T ∪ {x})} to Cp+1;
29 end
30 end
31 end
32 if p > log log n then
33 Let Q′

p = {T \ Rp : T ∈ Qp and |T \ Rp| = 2}. Since each T ∈ Qp is a uniform
random set, the elements of Q′

p are uniform random pairs in U \ Rp;
34 Let Q′′

p = {{x, y} ∈ Q′
p : q({x, y} = 1)} denote the set of pairs in Q′

p where both points
lie in the same cluster. This set can be computed since q(T \ Rp) = q(T )− q(T ∩Rp)
and q(T ∩Rp) is known since at this point we have reconstructed the clustering onRp;

35 Let Gp denote the graph with vertex set U \ Rp and edge set Q′′
p ;

36 Let C1, . . . , Cℓ denote the connected components of Gp with size at least n
2k·2p ;

37 Add C1, . . . , Cℓ to Cp+1;
38 end
39 end
40 Output clustering Clogn+1
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Recall that the algorithm queries |Qp| = 40·nk ln(300nk2)
2p random sets T of size 2p. Thus,

Pr
Qp

[(x, y) ∈ E(Gp[C])] = Pr
Qp

[
{x, y} ∈ Q′′

p

]
= Pr

Qp

[∃T ∈ Qp : T \ Rp = {x, y}]

≥ 1−
(
1− 22p

10n2

)40 n
2p ·k ln(300nk2)

≥ 1− exp

(
−2p

n
· 4k ln(300nk2)

)
and using |C| ≥ n

2k·2p and |C| ≤ n, we obtain

Pr
Qp

[(x, y) ∈ E(Gp[C])] ≥ 1− exp

(
−2 ln(300nk2)

|C|

)
≥ 1− exp

(
−2 ln(300k2|C|)

|C|

)
= 1−

(
1

300k2|C|

) 2
|C|

.

Thus, (x, y) is an edge in Gp[C] with probability at least 1−
(

1
300k2|C|

) 2
|C|

and so by Fact 2.4 Gp[C]

is connected with probability at least 1− 1
100k2 , as claimed.

Bounded Query Size We can restrict the query size to s ≤
√
n, and still achieve a near-linear

query complexity. We sketch the main ideas here for the case of k = 3 similar to the "warm-up"
in Section 2.1. Details are provided in Appendix A. Our Theorem 1.4 gives an O(n log n log log n)
query non-adaptive sample-based algorithm using subset queries of size at most O(

√
n). The

main idea is to employ "Strategy 2" described in the warm-up section of Section 2.1 with a slight
alteration. Let A,B denote the largest, and second largest clusters, respectively, where |B| = δn

and so |A| ≥ (1 − 2δ)n. Observe that if we take a random set S of size t ≈
√
1/δ, then the

probability that two points land in B and the rest land in A is at least
(
t
2

)
· δ2 · (1− 2δ)t−2 = Ω(δ).

Recalling the definition of the graph G and the discussion in Section 2.1, after querying Ω(n lnn)
such S, the induced subgraph G[B] becomes connected with high probability, thus recovering the
clustering. Similar ideas let us generaize to any s, and achieve an optimal dependency on s as stated
in Corollary C.2 for constant k.

2.2 An O(n log2 n log k) Algorithm for General k

We now consider the situation with general k, for which our algorithm and analysis follow a
completely different approach by using techniques from combinatorial group testing.

Warm up. The main subroutine in our algorithm is a procedure for recovering the support of a
Boolean vector via OR queries. Given a vector v ∈ {0, 1}n, an OR query on a set S ⊆ [n] returns
ORS(v) =

∨
i∈S vi, i.e. it returns 1 iff v has a 1-valued coordinate in S. The problem of recovering

the support of v, supp(v) = {i : vi = 1} via OR queries is a basic problem from the group testing
and coin-weighing literature. The relevance of this problem for k-clustering with subset queries is
as follows. Consider a hidden clustering C1 ⊔ · · · ⊔ Ck = U . Given x ∈ U , let C(x) denote the
cluster containing U = {x1, . . . , xn} (an arbitrary ordering of U ), and let v(x) ∈ {0, 1}n denote the
Boolean vector where v

(x)
i = 1(xi ∈ C(x)). An OR query on set S to v(x) can be simulated by a

subset query to the clustering on sets S and S ∪ {x} since

ORS(v
(x)) =

∨
i∈S

v
(x)
i = 1(C(x) ∩ S ̸= ∅) = 1(q(S ∪ {x}) = q(S)).

Thus, the problem or reconstructing C(x) via subset queries is equivalent to the problem of recovering
v(x) via OR queries, up to a factor of 2 in the query complexity.

Then, to learn a cluster C with size n
2p ≤ |C| ≤

n
2p−1 it suffices to sample O(2p) random x (one

of which lands in C with high probability) and then recover C(x) using O( n
2p log n

δ ) OR queries.
Iterating over every p ≤ log n and boosting the number of samples to guarantee a high probability of
success for all k clusters yields our algorithm.
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This algorithm can also be restricted to only make subset queries of size at most s, and the query
complexity scales with 1

s .
Theorem 2.5. For every s ∈ [2, n], there is a non-adaptive k-clustering algorithm making
O(n log n log k · (ns + log s)) subset queries of size at most s. In particular, for unbounded query
size the algorithm makes O(n log2 n log k) queries.

Proof of Theorem 2.5 We will use the following lemma for recovering supp(v) = {i : vi = 1} via
OR queries. We prove and discuss this lemma in Appendix D.1 (see Lemma D.5).
Lemma 2.6. Let v ∈ {0, 1}n and s, t ≥ 1 be positive integers where s ≤ n

t . There is a non-adaptive
algorithm that makes O(ns log n

δ ) OR queries on subsets of size s, and if |supp(v)| ≤ t, returns
supp(v) with probability 1 − δ, and otherwise certifies that |supp(v)| > t. The algorithm runs in
time O(n log n

δ ).

Recall that ORS(v
(x)) = 1(q(S ∪ {x}) = q(S)), i.e. an OR query on S is simulated by subset

queries on sets S and S ∪ {x}. Thus, we immediately get the following corollary.
Corollary 2.7. Let x ∈ U and r ≥ 2, t ≥ 1 be positive integers where r ≤ n

t . There is a non-
adaptive algorithm that makes O(nr log n

δ ) subset-queries on sets of size at most r, and if |C(x)| ≤ t,
returns C(x) with probability 1− δ, and otherwise certifies that |C(x)| > t. The algorithm runs in
time O(n log n

δ ).

Algorithm The pseudocode for the algorithm is given in Alg. 2. The idea is to draw random points
x ∈ U (line 5) and then use the procedure from Corollary 2.7 as a subroutine to try to learn C(x)
(line 6). By the corollary, this will succeed with high probability in recovering C(x) as long as t is set
to something larger than |C(x)|. Note that the query complexity of this subroutine depends2 on t. If a
cluster C is small, then Pr[x ∈ C] is small, but we can call the subroutine with small t, while if C(x)
is large, then Pr[x ∈ C] is reasonably large, though we will need to call the subroutine with larger t.
Concretely, the algorithm iterates over every p ∈ {1, . . . , log n} (line 3), and in iteration p the goal is
to learn every cluster C with |C| ∈ [ n2p ,

n
2p−1 ]. To accomplish this, we sample Θ(2p log k) random

points x ∈ U (line 4-5) and for each one, call the subroutine with t = n
2p−1 (line 6), which is an upper

bound on the sizes of the clusters we are trying to learn.Note that we always invoke the corollary
with query size r = min(s, 2p−1) ≤ s, enforcing the query size bounded stated in Theorem 2.5.

Algorithm 2: Non-adaptive Algorithm for General k
1 Input: Subset query access to a hidden partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 Initialize hypothesis clustering C ← ∅;
3 for p = 1, . . . , log n do
4 Repeat 2p ln(200k) times:
5 −→ Sample x ∈ U uniformly at random;
6 −→ Run the procedure from Corollary 2.7 on x with t = n

2p−1 , query-size r = min(s, 2p−1),
and error probability δ = 1

200k . This outputs C(x), the cluster containing x, with
probability at least 1− δ if |C(x)| ≤ t;

7 −→ If the procedure returns a set C, then set C ← C ∪ {C}. Otherwise, continue;
8 end
9 Output the clustering C.

Query complexity: Note that the number of queries made in line (6) during the p’th iteration is
O(ns log n) when 2p−1 ≥ s, and O( n

2p log n) when 2p−1 < s. Therefore, the total number of queries
made is at most

O(log k)

 ∑
p : 1≤2p−1<s

O(2p · n
2p

log n) +
∑

p : s≤2p−1≤n

O(2p · n
s
log n)

 .

The first sum is bounded by O(n log n log s) and the second sum is bounded by O(n
2

s log n). The
time-complexity is clearly identical by Corollary 2.7.

2For intuition, if the subroutine is called with r = n
t

, then Corollary 2.7 makes O(t log n
δ
) queries.
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Time complexity: We assume that attaining a uniform sample from a set of size n can be performed
in O(1) time. The procedure in line (6) has runtime at most O(n log n) since we set δ = Θ( 1k ). Thus,
the total runtime of the algorithm is O(n log n log k) ·

∑
p≤logn 2

p = O(n2 log n log k).

Correctness: Consider any cluster C and let p ∈ {1, . . . , log n} be such that n
2p ≤ |C| ≤

n
2p−1 .

Let EC denote the event that some element x ∈ C is sampled in line (5) during iteration p. Let
RC denote the event that C ∈ C when the algorithm terminates. Observe that by Corollary 2.7,
Pr[RC | EC ] ≥ 1− δ = 1− 1

200k . Moreover, using our lower bound on C we have

Pr[¬EC ] ≤
(
1− |C|

n

)2p ln 200k

≤
(
1− 1

2p

)2p ln 200k

≤ 1

200k
.

Thus, Pr[¬RC ] ≤ Pr[¬EC ] + Pr[¬RC | EC ] ≤ 1
100k and taking another union bound over all k

clusters completes the proof.
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A Bounded Query Size and Sample-Based Algorithms

In this section we present an algorithm using subset queries with size bounded by s, which matches
the lower bound of Theorem C.1, up to a log n-factor. Our algorithm has the additional desirable
property of being sample-based, meaning that the subsets it queries are formed by taking uniform
independent samples. In addition to Theorem A.1, we also obtain a non-adaptive sample-based
algorithm using O(nk log n) unbounded queries in Theorem G.1, using a similar approach. We also
show a lower bound of Ω(n log n) for any k ≥ 2 in Appendix C.2 for sample-based algorithms,
showing that the dependence on n is optimal for this special class of algorithms.
Theorem A.1. There are non-adaptive, sample-based k-clustering algorithms making (a)
O(nk log n log log n) subset queries of size at most O(

√
n), and (b) O(n

2

s2 k log n) subset queries of
size at most s = n1/2−δ for any constant δ ∈ (0, 1/2). Each algorithm is correct with probability at
least 99/100.

For convenience, we will parameterize the query-size bound by s = n1/r where r is any positive real
number in the range 2 ≤ r ≤ log n. Before proving the theorem formally, we informally describe the
algorithm and its analysis. A full description of the algorithm is given in pseudocode in Alg. 3, which
is split into two phases: a "query selection phase", describing how queries are chosen by the algorithm,
and a "reconstruction phase", describing how the algorithm uses the query responses to determine
the clustering. Both phases contain a for-loop iterating over all p ∈ {0, 1, . . . , logr log n − 1}
where the goal of the algorithm during the p’th iteration is to learn all remaining clusters of size at
least n

k · 2
−rp+1

. We prove that this occurs with high probability in Lemma 2.3, which gives the
main analysis. If each iteration is successful in doing so than the entire clustering has been learned
successfully after iteration p = logr log n− 1 (since 2−rlogr log n

= 2− logn = 1
n ), and we justify this

formally just after the statement of Lemma A.2.

We describe the algorithm and it’s analysis informally for the case of r = 2, i.e. when the query sizes
are bounded by s =

√
n. We also refer the reader to Section 2 for discussion of the ideas for the

simple case of k = 3. Consider some iteration p ∈ {0, 1, . . . , log log n− 1} and suppose that prior
to this iteration, all clusters of size at least n

k · 2
−2p have been successfully recovered. Let Cp denote

the collection of all such clusters and letRp =
⊔

C∈Cp
C be the set of points they contain. The goal

in iteration p is to learn every cluster C with |C| ∈ [nk · 2
−2p+1

, n
k · 2

−2p). The algorithm queries
O(nk log n) random sets T formed by 22

p

samples3 from U (see lines 5-7 of Alg. 3). Similar to the
proof of Theorem 2.2, if T contains exactly two points x, y ∈ T \ Rp belonging to unrecovered
clusters, then we can use the fact that we already know the clustering onRp to tell whether or not
x, y belong to the same cluster or not, i.e. we can compute q({x, y}) ∈ {1, 2} from q(T ). We then
consider the set of all such pairs where q({x, y}) = 1 (this is Q′′

p defined in line 16) and consider the
graph G with this edge set, and vertex set U \ Rp, the set of points whose cluster hasn’t yet been
determined. If two points belong to the same connected component in this graph, then they belong to
the same cluster. Thus, the analysis boils down to showing that with high probability, the induced
subgraph G[C] will be connected for every C where |C| ∈ [nk · 2

−2p+1

, n
k · 2

p). This is accomplished
by applying a basic fact from the theory of random graphs, namely Fact 2.4.

Proof of Theorem A.1: The following Lemma A.2 establishes that after the first p iterations of the
algorithm’s query selection and reconstruction phases, all clusters of size at least n

k · 2
−rp+1

have
been learned with high probability. This is the main effort of the proof. After stating the lemma we
show it easily implies that Alg. 3 succeeds with probability at least 99/100 by an appropriate union
bound.
Lemma A.2. For each p = 0, 1, . . . , logr log n− 1, let Ep denote the event that all clusters of size at
least n

k · 2
−rp+1

have been successfully recovered immediately following iteration p of Alg. 3. Then,

Pr[¬E0] ≤
1

100k
and Pr[¬Ep | Ep−1] ≤

1

100k
for all p ∈ {1, 2, . . . , logr log n− 1}.

Before proving Lemma A.2, we observe that it immediately implies Theorem A.1 as follows. Let
I0 = [nk · 2

−r, n] and for 1 ≤ p < logr log n, let Ip = [nk · 2
−rp+1

, n
k · 2

−rp). If there are no clusters

3Note that p ≤ log log n− 1 and so 22
p

≤ 2
1
2
logn =

√
n.
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Algorithm 3: Sample-Based Algorithm Using Bounded Queries
1 Input: Subset query access to a hidden partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 (Query Selection Phase)
3 for p = 0, 1, . . . , logr log n− 1 do
4 Initialize query set Qp ← ∅;
5 Repeat 20 · nk ln(300nk2) · 2rp+1(1− 2

r ) times;
6 −→ Sample T ⊆ U formed by 2r

p

independent uniform samples from U ;
7 −→ Query T and add it to Qp;
8 end
9 (Reconstruction Phase)

10 Initialize learned cluster set C0 ← ∅;
11 for p = 0, 1, . . . , logr log n− 1 do
12 Let Cp denote the collection of clusters reconstructed before iteration p;
13 LetRp =

⋃
C∈Cp

C denote the points belonging to these clusters;
14 Initialize Cp+1 ← Cp;
15 Let Q′

p = {T \ Rp : T ∈ Qp and |T \ Rp| = 2}. Since each T ∈ Qp is a uniform random
set, the elements of Q′

p are uniform random pairs in U \ Rp;
16 Let Q′′

p = {{x, y} ∈ Q′
p : q({x, y} = 1)} denote the set of pairs in Q′

p where both points lie
in the same cluster. This set can be computed since q(T \ Rp) = q(T )− q(T ∩Rp) and
q(T ∩Rp) is known since at this point we have reconstructed the clustering onRp;

17 Let Gp denote the graph with vertex set U \ Rp and edge set Q′′
p ;

18 Let C1, . . . , Cℓ denote the connected components of Gp with size at least n
k · 2

−rp+1

;
19 Add C1, . . . , Cℓ to Cp+1;
20 end
21 Output clustering Clogr logn;

C for which |C| ∈ Ip, then trivially Pr[¬Ep | Ep−1] = 0, and otherwise Pr[¬Ep | Ep−1] ≤ 1
100k by

the lemma. Since there are k clusters, clearly there are at most k values of p for which there exists a
cluster with size in the interval Ip. Using this observation and a union bound, we have

Pr[¬Elogr logn−1] ≤ Pr[¬E0] +
logr logn∑

p=1

Pr[¬Ep | Ep−1] ≤
1

100

which completes the proof of correctness since the algorithm succeeds iff Elogr logn−1 occurs.

Query complexity: Note that the total number of queries made is O(nk log n)·
∑logr logn

p=1 2r
p(1− 2

r ).
When r = 2, the summation evaluates to log log n which establishes the query complexity in item (a)
of Theorem A.1.

Otherwise, let r = 2 + C for some constant C > 0. We will argue that 2r
p(1− 2

r ) ≤ 1
22

rp+1(1− 2
r ) for

any p ≤ logr log n− 1 greater than some constant and thus the summation is bounded as

logr logn∑
p=1

2r
p(1− 2

r ) = O(2r
logr log n(1− 2

r )) = O(n1− 2
r ) = O(n/s2)

establishing the query complexity in item (b) of Theorem A.1. Observe that 2r
p(1− 2

r ) ≤ 1
22

rp+1(1− 2
r )

is equivalent to rp(1− 2
r ) ≤ rp+1(1− 2

r )− 1, or equivalently

rp−1 ≥ 1

(r − 1)(r − 2)
=

1

C(1 + C)

which clearly holds as long as p− 1 > log 1
C since r > 2.

Time complexity: We assume that sampling a uniform random element from a set of size n can be
done in O(1) time. Thus any set that is sampled during the course of the algorithm can be constructed

15



in O(s) time. No matter the value of s, the number of queries made by the algorithm is dominated
by O(n

2

s2 k log n log log n). Thus, the runtime of the query selection phase (lines 3-7) is bounded by
O(n

2

s k log n log log n). Now for the reconstruction phase. In line (15), |T \ Rp| can be computed in
O(n) time and so lines (15-16) take time O(|Qp| · n). Line (18) amounts to finding every connected
component in Gp which can be done in time O(|Q′′

p | + n) = O(|Qp| + n) by iteratively running
a BFS (costing time linear in the number of edges plus the number of vertices). Thus, the runtime
of the p’th iteration of the for-loop is always dominated by O(|Qp| · n). Since the total number of
queries is dominated by O(n

2

s2 k log n log logn), the total runtime of the reconstruction phase (lines
11-19) is O(n

3

s2 k log n log log n), which dominates the runtime of the query selection phase.

We now prove the main Lemma A.2.

Proof. of Lemma A.2. LetRp denote the set of points belonging to a cluster which has been recovered
before iteration p.

Case 1: p = 0. In this iteration, the algorithm queries |Q0| ≥ 8 · nk ln(300nk2) · 2r−2 random pairs
and we need to show that it successfully recovers all clusters with size at least n

k·2r with probability at
least 1− 1

100k . Let C denote any such cluster and recall from lines (16-17) the definition of the graph
G0 with vertex set U and edge set Q′′

0 . We will show that the induced subgraph G0[C] is connected,
and thus C is correctly recovered in lines (18-19), with probability at least 1− 1

100k2 . Since there are
at most k clusters, the lemma holds by a union bound.

Consider any two vertices x, y ∈ C and note that |Q0| ≥ 2n2 ln(300nk2)
|C| since |C| ≥ n

k·2r . We lower
bound the probability that (x, y) is an edge in G0[C] as follows. Note that this occurs iff {x, y} ∈ Q0.
Thus,

Pr
Q0

[(x, y) ∈ E(G0[C])] = Pr
Q0

[{x, y} ∈ Q0] = 1−
(
1− 1

n2

)|Q0|

≥ 1− exp

(
−2 ln(300nk2)

|C|

)
≥ 1− exp

(
−2 ln(300k2|C|)

|C|

)
= 1−

(
1

300k2|C|

) 2
|C|

(1)

and so by Fact 2.4, G0[C] is connected with probability at least 1− 1
100k2 as claimed.

Case 2: 1 ≤ p < logr log n. Recall from lines (12-13) that Cp denotes the set of clusters recovered
prior to iteration p andRp =

⋃
C∈Cp

C is the set of points belonging to these clusters. Note that we
are conditioning on the event that every cluster of size at least n

k · 2
−rp has been recovered prior to

iteration p. Let C denote some cluster with size

|C| ∈
[n
k
· 2−rp+1

,
n

k
· 2−rp

)
and note that |U \ Rp| ≤ k · n

k
· 2−rp = n · 2−rp .

Recall from lines (16-17) the definition of Q′′
p and that Gp is the graph with vertex set U \ Rp and

edge set Q′′
p . We need to argue that the induced subgraph Gp[C] is connected, and thus C is correctly

recovered in lines (18-19), with probability at least 1− 1
100k2 . Since there are at most k clusters, a

union bound completes the proof of the lemma.

Consider any two vertices x, y ∈ C. We lower bound the probability that (x, y) is an edge in Gp[C],
which occurs iff there is some T ∈ Qp where T \ Rp = {x, y}. We have

Pr
T : |T |=2r

p
[T \ Rp = {x, y}] =

(
2r

p

2

)
· 1

n2
·
(
|Rp|
n

)t−2

≥ 22r
p

3n2

(
1− 2−rp

)t
≥ 22r

p

10n2
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and since |Qp| = 20nk ln(300nk2) · 2rp+1(1− 2
r ), we have

Pr
Qp

[(x, y) ∈ E(Gp[C])] = Pr
Qp

[
{x, y} ∈ Q′′

p

]
= Pr

Qp

[∃T ∈ Qp : T \ Rp = {x, y}]

≥ 1−
(
1− 22r

p

10n2

)20·nk·2r
p+1−2rp ln(300nk2)

≥ 1− exp

(
−2 · 2rp+1

k ln(300nk2)

n

)
and plugging in |C| ≥ n

k · 2
−rp+1

and |C| ≤ n into the RHS yields

Pr
Qp

[(x, y) ∈ E(Gp[C])] ≥ 1− exp

(
−2 ln(300nk2)

|C|

)
≥ 1− exp

(
−2 ln(300k2|C|)

|C|

)
= 1−

(
1

300k2|C|

) 2
|C|

.

Therefore, (x, y) is an edge in Gp[C] with probability at least 1−
(

1
300k2|C|

) 2
|C|

, which by Fact 2.4

implies that Gp[C] is connected with probability at least 1− 1
100k2 as claimed.

B The Special Case of Balanced Clusters

Given B ≥ 1, we say that a k-partition C1, . . . , Ck is B-balanced if n
Bk ≤ |Ci| ≤ Bn

k for all i ∈ [k].
In this section we prove the following theorem, which gives a non-adaptive algorithm for recovering
a roughly balanced k-clustering making O(n log k) subset queries when k = O( n

log3 n
). We give an

alternative algorithm making O(n log2 k) queries for arbitrary k in Appendix E. We also described a
two-round algorithm for this setting making O(n log log k) queries in Appendix F.2.
Theorem B.1. There is a non-adaptive algorithm that recovers a B-balanced k-clustering using
O(B2n log k)+O(Bk log4 k) subset queries of size O(k log k) and succeeds with probability 49/50.

Pseudocode for the algorithm is given in Alg. 4. In line (3) we draw s = Θ(B2 log k) sets T1, . . . , Ts

each formed by k/B samples from U and in line (5) learn the clustering over their union using
Theorem 2.5. I.e., for T = T1 ∪ · · · ∪ Ts, we find Rj = T ∩Cj . Then, we query Ti and Ti ∪ {x} for
every x ∈ U and every i ∈ [s] in line (5). Now, consider some point x ∈ U and let j∗ be it’s cluster’s
index. Note that q(Ti ∪ {x}) = q(Ti) iff Ti intersects Cj∗ . Thus, if Ti does not intersect Cj∗ , then
every cluster j that Ti intersects can be ruled out as a candidate for being the cluster containing x.
The set Jx computed in line (8) is the set of all j which can be ruled out in this way. If for every
j ̸= j∗, there is some Ti containing j, but not j∗, then Jx = {j∗} and we determine j∗ in line (9).
This occurs for every x ∈ U if the following holds: for every pair (j, j′) ∈

(
U
2

)
, there exists Ti

intersecting Cj , but not Cj′ . We show in Claim B.2 that this happens with high probability.

Proof of Theorem B.1 There are O(B2n log k) queries made in line (5) and O(B ·k log4 k) queries
in line (4), since |

⋃
i∈[s] Ti| = O(Bk log k).

Time complexity: We assume the attaining a uniform sample from any set can be done O(1) time.
Thus, constructing sets T1, . . . , Ts in line (3) costs O(Bk ln k) time and by Theorem 2.5 line (4) costs
O(k2B2 ln4 k). Line (5) costs O(n · s) = O(B2n ln k) time. Constructing Jx in line (8) amounts to
checking if q(Ti ∪ {x}) ̸= q(Ti) and if Ti ∩Rj ̸= ∅ for each i ∈ [s] and j ∈ [k]. This can be done
in time O(|Ti| · |Rj |) = O(k2 ln k) simply using |Rj | ≤ |R| = O(Bk ln k) and |Ti| = k/B. Thus,
the total runtime of lines (7-14) is dominated by O(nk2 ln k).

Correctness: We now prove correctness, which is due to the following claim.
Claim B.2. For i ∈ [s], j ∈ [k], let Ei,j denote the event that Ti ∩ Cj ̸= ∅. Then,

Pr
T1,...,Ts

[
∀(j, j′) ∈

(
[k]

2

)
, ∃i ∈ [s] : Ei,j ∧ ¬Ei,j′

]
≥ 99

100
. (2)
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Algorithm 4: Algorithm for the B-Balanced Case
1 Input: Subset query access to a B-balanced partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 (Query Selection Phase)
3 Choose s = 2eB2 ln(100k2) sets T1, . . . , Ts each formed by k

B uniform samples from U ;
4 Run the algorithm from Theorem 2.5 to learn the clustering restricted on R =

⋃s
i=1 Ti. Let

R1, . . . , Rk be the output of the algorithm. I.e., if the algorithm is successful, then
Rj = R ∩ Cj for all j ∈ [k];

5 Query Ti and Ti ∪ {x} for all i ∈ [s] and all x ∈ U ;
6 (Reconstruction Phase)
7 for x ∈ U do
8 Let Jx =

⋃
i∈[s] : q(Ti∪{x})̸=q(Ti)

{j ∈ [k] : Ti ∩Rj ̸= ∅}. Note that Ti ∩Rj ̸= ∅ iff
Ti ∩ Cj ̸= ∅. Note that q(Ti ∪ {x}) ̸= q(Ti) iff x does not belong to any cluster that is hit
by Ti. Thus, Jx is the collection of all j such that some set Ti has revealed that x /∈ Cj ;

9 if |Jx| = k − 1 then
10 Add x to Rj∗ where j∗ is the unique element of [k] \ Jx;
11 else
12 Output fail;
13 end
14 end
15 Output clustering (R1, . . . , Rk);

Proof. Firstly, for fixed i ∈ [s] and j ̸= j′, since each cluster’s size is bounded in the interval
[ n
Bk ,

Bn
k ], we have

Pr
Ti

[Ei,j ∧ ¬Ei,j′ ] = Pr[Ei,j ] · Pr[¬Ei,j′ | Ei,j ]

=

(
1−

(
1− |Cj |

n

)|Ti|
)
·
(
1− |Cj′ |

n

)|Ti|−1

≥

(
1−

(
1− 1

Bk

)k/B
)
·
(
1− B

k

)k/B

≥
(
1− exp

(
B−2

))
· 1
e
≥ 1

2eB2

and so for a fixed (j, j′) ∈
(
[k]
2

)
, we have

Pr
T1,...,Ts

[∀i ∈ [s] : ¬ (Ei,j ∧ ¬Ei,j′)] ≤
(
1− 1

2eB2

)2eB2 ln(100k2)

≤ 1

100k2

and the claim follows by a union bound over all (j, j′) ∈
(
[k]
2

)
.

By Claim B.2, with probability at least 99/100, for every j ̸= j′ ∈ [k] we have some Ti such that
Ti ∩ Cj ̸= ∅ and Ti ∩ Cj′ = ∅. In particular, for x ∈ U , let Cj∗ be the cluster containing x. For
every j ̸= j∗ we have some Ti such that Ti ∩ Cj ̸= ∅ and Ti ∩ Cj∗ = ∅ which means that in line (9)
of the algorithm, we have Jx = [k] \ {j∗} and so we successfully identify the cluster containing x.
Moreover, this occurs for all x. Finally, line (4) succeeds with probability 99/100 and thus the entire
algorithm succeeds with probability at least 49/50 by a union bound.

C Lower Bounds

C.1 An Ω(n
2

s2 ) Lower Bound for Non-adaptive 3-Partition Recovery

Theorem C.1. Non-adaptive 3-clustering requires Ω(n2) pair queries.

Proof. For every (x, y) ∈
(
U
2

)
consider the following pair of partitions:

P 1
x,y = ({x, y}, ∅, U \ {x, y}) and P 2

x,y = ({x}, {y}, U \ {x, y}).
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Observe that the oracle returns the same value for P 1
x,y and P 2

x,y on every possible query except on
the set {x, y}. Thus, if query set Q ⊆ U × U distinguishes these two clusterings, then Q ∋ {x, y}.
Therefore, the number of pairs {x, y} such that Q distinguishes P 1

x,y and P 2
x,y is at most |Q|. Now, let

A be any non-adaptive pair-query algorithm which successfully recovers an arbitrary 3-clustering with
probability≥ 2/3. The algorithm A queries a random set Q ⊆ U ×U according to some distribution,
DA. In particular, for every {x, y} ∈

(
U
2

)
, Q distinguishes P 1

x,y and P 2
x,y with probability ≥ 2/3.

Thus,

2

3

(
n

2

)
≤

∑
{x,y}∈(U2)

Pr
Q∼DA

[Q distinguishes P 1
x,y and P 2

x,y]

= EQ∼DA

[∣∣∣∣{{x, y} ∈ (U2
)
: Q distinguishes P 1

x,y and P 2
x,y

}∣∣∣∣] ≤ |Q|
using linearity of expectation, and this completes the proof.

Corollary C.2. Non-adaptive 3-clustering requires Ω(n2/s2) subset queries of size at most s.

Proof. This follows from Theorem C.1 since one s-sized query can be simulated by
(
s
2

)
pair-

queries.

Thus, in order to achieve a near-linear non-adaptive upper bound for 3-clustering, we require an
algorithm which makes queries of size Ω̃(

√
n).

C.2 An Ω(n log n) Lower Bound for Sample-Based 2-Partition Recovery

Theorem C.3. Sample-based 2-clustering requires Ω(n log n) subset queries.

Proof. Let |U | = n be even and let A,B ⊆ U be two disjoint sets of size |A| = |B| = n/2. Let
P = (A,B) and for any x ∈ U let Px denote the partition obtained by switching the set that x
belongs to. We show that it requires Ω(n log n) sample-based subset queries to distinguish P from
Px for all x. For x ∈ U and T ⊆ U , let Ex,T denote the event that querying T distinguishes P from
Px. Note that Ex occurs iff x ∈ T and T \ x ⊆ A or T \ x ⊆ B. Thus, for a random set T of size
s ≥ 2, we have

Pr
T : |T |=s

[
Ex,T

]
= s · 1

n
· 2 ·

(
n/2

n

)s−1

=
s

n
·
(
1

2

)s−2

≤ 2

n
(3)

since the second-to-last quantity is clearly maximized when s = 2. Now, let Q be a collection of sets,
each of which consists of some of number of independent uniform samples. Note that the cardinality
of these sets can differ from one another. Note that Q distinguishes P from every Px iff Ex,T occurs
for every x and some T . By eq. (3) and a standard coupon-collector argument, if |Q| = o(n log n),
then with high probability there will be some x for which ¬

∨
T∈Q Ex,T occurs.

D Useful Lemmas

D.1 Vector Support Recovery from OR Queries

Given x ∈ {0, 1}n, let supp(x) = {i : xi = 1} denote the support of x. An OR-query on set S ⊆ [n]
returns

ORS(x) =
∨
i∈S

xi = 1 (supp(x) ∩ S ̸= ∅) .

This section discusses the problem of recovering the support of a vector via OR queries. In particular,
we are interested in non-adaptive algorithms for this problem. The results in this section are standard
in the combinatorial group testing and coin-weighing literature. See e.g. [26, 28] and also [48], who
applied these results to obtain query algorithms for graph connectivity.
Lemma D.1. Let x ∈ {0, 1}n such that |supp(x)| = 1. There is a deterministic, non-adaptive
algorithm that makes ⌈log n⌉ OR queries and returns supp(x). The runtime is also O(log n).
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Proof. Since |supp(x)| = 1, an OR query on set S is equivalent to taking ⟨x, v⟩ where vi = 1
iff i ∈ S. Let M be the ⌈log n⌉ × n matrix whose i’th column is simply bi ∈ {0, 1}⌈logn⌉, the
binary representation of i. The rows of M correspond to OR queries. Then, Mx =

∑n
i=1 xib

i =∑
i : xi=1 b

i = bj where j is the unique coordinate where xj = 1.

Lemma D.2. Let x ∈ {0, 1}n. There is a deterministic, non-adaptive algorithm SER1bit that makes
2⌈log n⌉ OR queries and certifies whether |supp(x)| = 0, |supp(x)| = 1, or |supp(x)| > 1. If
|supp(x)| = 1, then it outputs supp(x). The runtime is also O(log n).

Proof. Let M be the ⌈log n⌉ × n matrix described in the proof of Lemma D.1. Let 1 = 1⌈logn⌉×n

denote the all 1’s matrix with the same dimensions. We query M · x and (1−M) · x where here (·)
denotes the "OR product". I.e. the i’th coordinate of M · x is 1((Mx)i > 0). Note that 1−M is
obtained by flipping every bit in M . Note that if |supp(x)| = 1, then M · x is guaranteed to return
the unique coordinate where x has a one, as in the proof of Lemma D.1. Thus, it suffices to show that
we can use these queries to determine whether |supp(x)| is 0, 1, or strictly greater than 1.

First, |supp(x)| = 0 iff (M · x)1 = 0 and ((1−M) · x)1 = 0 since the sets of 1-coordinates in the
first row of M and 1−M partition [n].

Next, we claim that |supp(x)| > 1 iff there exists some i ∈ [⌈log n⌉] such that (M · x)i = 1 and
((1 −M) · x)i = 1. Note that for every row i, the 1-coordinates in the i’th row of M and 1 −M
partition [n]. Thus, clearly if (M ·x)i = 1 and ((1−M) ·x)i = 1, then there are at least 2 coordinates
where x has a one. Now we prove the converse. Suppose there exists i ̸= j ∈ [n] where xi = xj = 1.
Let bi, bj ∈ {0, 1}⌈logn⌉ denote the binary representations of i, j respectively. Since i ̸= j, there
exists some bit k where bik ̸= bjk. Without loss of generality let bik = 1 and bjk = 0. Then,

(M · x)k = 1

((
n∑

ℓ=1

xℓb
ℓ

)
k

> 0

)
= 1

(
n∑

ℓ : xℓ=1

bℓk > 0

)
= 1,

((1−M) · x)k = 1

((
n∑

ℓ=1

xℓ(⃗1− bℓ)

)
k

> 0

)
= 1

(
n∑

ℓ : xℓ=1

(1− bℓk) > 0

)
= 1

and this completes the proof.

Next, we describe a randomized non-adaptive algorithm for recovering the entire support of x.

Lemma D.3. Let x ∈ {0, 1}n. There is a non-adaptive algorithm that makes O(t log n
δ ) OR queries

on subsets of size ⌈nt ⌉, and if |supp(x)| ≤ t, returns supp(x) with probability 1− δ, and otherwise
certifies that |supp(x)| > t. The algorithm’s runtime is O(n log n

δ ).

Proof. For brevity, we assume that t divides n. Let m = e · t ln n
δ . We make OR queries on sets

S1, . . . , Sm, each formed by taking n/t i.i.d. uniform samples from [n] and define

X = [n] \
⋃

ℓ∈[m] : ORSℓ
(x)=0

Sℓ. (4)

If |X| > t, we certify |supp(x)| > t and if |X| ≤ t, then we output X .

Assuming a uniform sample from [n] can be obtained in O(1) time, the runtime of the algorithm is
O(m · nt ) = O(n ln n

δ ).

Suppose that |supp(x)| > t. Observe that supp(x) ⊆ X and so |X| > t with probability 1. Thus, the
algorithm is always correct in this case.

Now suppose |supp(x)| ≤ t. We argue that X = supp(x) with probability at least 1− δ. Consider
some i /∈ supp(x). Note that i /∈ X iff there is some query Sℓ ∋ i for which Sℓ ∩ supp(x) = ∅. Let
Ei,ℓ denote the event that i ∈ Sℓ and Sℓ ∩ supp(x) = ∅. Then, since |supp(x)| ≤ t, we have

Pr[Ei,ℓ] =
n

t
· 1
n
·
(
1− |supp(x)|

n

)n
t −1

≥ 1

t

(
1− t

n

)n
t

≥ 1

et
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and so

Pr[i ∈ X] = Pr
[
¬Ei,ℓ for all ℓ ∈ [m]

]
≤
(
1− 1

et

)m
≤ δ

N

since m = e · t ln N
δ . Thus, by a union bound, we have Pr[X ̸= supp(x)] ≤ δ.

Finally, we make the following simple observation regarding algorithms that are restricted to making
OR queries on subsets of bounded size.

Observation D.4. A single OR query on a set S can be simulated by |S|
s queries of size at most s.

Combining this observation with Lemma D.3 gives the following lemma.

Lemma D.5. Let x ∈ {0, 1}n and s, t ≥ 1 be positive integers where s ≤ n
t . There is a non-adaptive

algorithm that makes O(ns log n
δ ) OR queries on subsets of size s, and if |supp(x)| ≤ t, returns

supp(x) with probability 1 − δ, and otherwise certifies that |supp(x)| > t. The algorithm runs in
time O(n log n

δ ).

D.2 Connectivity of Erdös-Rényi Random Graphs

Our proofs in Section 2.1, Appendix A, and Appendix G make use of the following bound on the
probability of a random graph being connected. For intuition, note that for sufficiently large n,

1− (δ/3n)2/n ≈ 1− exp(−2 ln(3n/δ)

n
) ≈ ln(3n/δ)

n
.

Thus, Fact D.6 asserts that for sufficiently large n a random graph containing ≫ n lnn edges is
connected with high probability, which may be a more familiar statement to the reader. However,
we need such a bound to be true even for very small n and so we give the following more broadly
applicable version.

Fact D.6. Let G(n, p) denote an Erdös-Rényi random graph. If p ≥ 1− (δ/3n)2/n, then G(n, p) is
connected with probability at least 1− δ.

Proof. A graph G = (V,E) is connected if and only if for every cut S ⊂ V , there exists an edge
(u, v) ∈ E ∩ (S × S). When G is drawn from G(n, p), this does not occur for a cut S of size |S| = t
with probability exactly (1− p)t(n−t). There are exactly

(
n
t

)
such cuts. Thus, taking a union bound

over all cuts and using our lower bound on p, we have

Pr
G∼G(n,p)

[G not connected] ≤
n−1∑
t=1

(
n

t

)(
δ

3n

) 2
n ·t(n−t)

≤ 2

⌊n/2⌋∑
t=1

(
n

t

)(
δ

3n

) 2
n ·t(n−t)

≤ 2

⌊n/2⌋∑
t=1

(
n

t

)(
δ

3n

) 2
n · tn2

≤ 2

⌊n/2⌋∑
t=1

nt

(
δ

3n

)t

= 2

⌊n/2⌋∑
t=1

(δ/3)
t ≤ δ

and this completes the proof.

E An O(n log2 k) Algorithm for the Balanced Case

In Appendix B, we gave an algorithm for k-clustering making O(n log k + k log4 k) subset queries
when the cluster sizes are balanced within any constant factor. This query complexity simplifies to
O(n log k) as long as k = O( n

log3 n
). In this section we give an alternative algorithm which is more

efficient when k ≫ n
log3 n

.

Theorem E.1. There is a non-adaptive algorithm for recovering a B-balanced k-clustering using
O(B2n log2 k) subset queries of size O(k) which succeeds with probability 99/100.
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Proof. Recall that for a vector v ∈ {0, 1}n, an OR query on a set S ⊆ [n] returns ORS(v) =
∨

i∈S vi.
We will use the following lemma for recovering supp(v) = {i : vi = 1} via OR queries. We prove
and discuss this lemma in Appendix D.1 (see Lemma D.2).

Lemma E.2. There is a deterministic, non-adaptive algorithm that takes an arbitrary v ∈ {0, 1}n,
makes 2⌈log n⌉ OR queries, and certifies whether |supp(v)| = 0, |supp(v)| = 1, or |supp(v)| > 1.
If |supp(v)| = 1, then it outputs supp(v). The runtime is O(log n).

Given x ∈ U = {x1, . . . , xn}, let C(x) denote the cluster containing it. Let v(x) ∈ {0, 1}n

denote the Boolean vector with v
(x)
i = 1(xi ∈ C(x)). As in Section 2.2, we have ORS(x) =

1(q(S ∪ {x}) = q(S)). I.e. OR queries to v(x) are simluted by two subset queries to the clustering.
This implies the following corollary.

Corollary E.3. Given a k-clustering on U of size n and an element x ∈ U , let C(x) denote the
cluster containing x. There is a deterministic non-adaptive algorithm which takes as input x and a
set R ⊆ U , makes O(log |R|) subset queries, and if |R ∩ C(x)| = 1, then the algorithm returns the
unique z ∈ R ∩ C(x), and otherwise certifies that |R ∩ C(x)| ≠ 1. The runtime is O(log |R|).

The pseudocode for the algorithm is given in Alg. 5. In words, Corollary E.3 says that if we have
a set R containing exactly one representative from C(x), then with O(log |R|) subset queries we
can identify that representative. Thus, suppose we have a collection of sets R1, . . . , Rs such that for
every cluster j ∈ [k], there is some Ri containing a unique representative from Cj . Consider the
bipartite graph where on the left we have U and on the right we have R1 ∪ · · · ∪Rs. Then, for every
x ∈ U and every Ri we can run the procedure from Corollary E.3, and if it returns a representative
y ∈ Ri ∩ C(x), then we add the edge (x, y) to this graph. By the property of R1, . . . , Rs, two
vertices x, y ∈ U belong to the same cluster iff they are connected by a path of length 2 in this graph.
We show that setting s = Θ(B2 log k) and letting each Ri be a random sample of k/B elements
from U results in a collection of sets with this good property with high probability. This leads to a
query complexity of n · s ·O(log k) = O(n log2 k).

Algorithm 5: Second Algorithm for the B-Balanced Case
1 Input: Subset query access to a B-balanced partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 Choose s = eB2 ln(100k) sets R1, . . . , Rs each formed by k

B uniform samples from U ;
3 Construct a bipartite graph G(U,

⋃s
j=1 Rj , E) as follows;

4 for x ∈ U and i ∈ [s] do
5 Run the algorithm from Corollary E.3 on input x and Ri;
6 if the algorithm certifies there is a unique y ∈ Ri such that x, y are in the same cluster then
7 Add the edge (x, y) to E(G);
8 end
9 end

10 Let C1, . . . , Cℓ denote the connected components of G;
11 Output the clustering (C1, . . . , Cℓ);

Query complexity and time complexity: The algorithm makes n · s ·O(log k
B ) = O(B2n log2 k)

queries. We assume that a uniform random sample can be obtained in O(1) time. Thus, line (2) runs
in O(Bk ln k) time. By Corollary E.3, line (5) runs in time O(|Ri|) = O(log k). Thus, the entire
for-loop (lines 4-9) runs in time O(ns log k) = O(B2n log2 k). The bipartite graph G has at most
O(n+Bk log k) vertices and at most O(ns) = O(B2n log k) edges. Thus, line (10) can be executed
in time O(B2n log k) time. The total runtime is thus dominated by O(B2n log2 k).

The correctness of the algorithm now follows immediately from the following claim.

Claim E.4. With probability at least 99/100, for every j ∈ [k], there exists i ∈ [s] such that
|Ri ∩ Cj | = 1.
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Proof. Fix j ∈ [k] and i ∈ [s]. We have

Pr[|Ri ∩ Cj | = 1] = |Ri| ·
|Cj |
n
·
(
1− |Cj |

n

)|Ri|−1

≥ k

B
· 1

Bk
·
(
1− B

k

)k/B

≥ 1

eB2

and so for a fixed j ∈ [k],

Pr[∀i ∈ [s] : |Ri ∩ Cj | ≠ 1] ≤
(
1− 1

eB2

)eB2 ln(100k)

≤ 1

100k

and so by a union bound

Pr[∃j ∈ [k], ∀i ∈ [s] : |Ri ∩ Cj | ≠ 1] ≤ 1

100
and this completes the proof.

F Two-Round Algorithms

In this section we describe two algorithms that use two rounds of adaptivity. That is, these algorithms
are allowed to specify a round of queries, receive the responses, perform some computation, then
specify a second round of queries and receive the responses, before finally recovering the clustering.
We give a simple deterministic algorithm making O(n log k) queries in Appendix F.1 and a random-
ized algorithm for recovering a balanced clustering with O(n log log k) queries in Appendix F.2.
Both algorithms exploit the additional round of queries to first compute a set containing exactly one
representative from every cluster.

F.1 A Two Round O(n log k) Deterministic Algorithm using Single Element Recovery

Theorem F.1. There is a two-round, non-adaptive, deterministic algorithm for k-clustering using
O(n log k) subset queries.

Algorithm 6: Deterministic 2-Round Algorithm
1 Input: Subset query access to a hidden partition C1, . . . , Ck of U = {x1, . . . , xn};
2 Round 1:
3 Query Pt = {xi : i ≤ t} for every t ∈ [n];
4 Define R = {xt : q(Pt)− q(Pt−1) = 1} containing exactly one point from every cluster;
5 For each y ∈ R, define cluster Ry = {y};
6 Round 2:
7 for x ∈ U do
8 Use the O(log k) deterministic non-adaptive algorithm of Corollary F.2 to find the unique

y ∈ R for which x, y lie in the same cluster;
9 Place x into Ry;

10 end
11 Output clustering (Ry : y ∈ R);

Proof. Pseudocode for the algorithm is given in Alg. 6. The runtime is clearly dominated by the
for-loop (lines 7-9) which run in time O(n log k) by Corollary E.3. Fix an arbitrary ordering U =
{x1, . . . , xn}. The first round of queries (lines 3-5) is used to compute a set R ⊆ U containing exactly
one representative from every cluster. This is done by querying every prefix Pt = {x1, . . . , xt}
and observing that q(Pt)− q(Pt−1) = 1 iff xt is the only representative for its cluster in Pt. Thus,
the set R computed in line (4) contains, for each cluster C, the first member of C in the ordering
x1, . . . , xn. In particular, it contains exactly one representative from every cluster. The second round
of queries is used to determine, for every x ∈ U , the unique representative of C(x) in R (see line 8).
To accomplish this we recall Corollary E.3 from Appendix E which we restate below. This completes
the proof.

Corollary F.2. Given a k-clustering on U of size n and an element x ∈ U , let C(x) denote the
cluster containing x. There is a deterministic non-adaptive algorithm which takes as input x and a
set R ⊆ U , makes O(log |R|) subset queries, and if |R ∩ C(x)| = 1, then the algorithm returns the
unique z ∈ R ∩ C(x), and otherwise certifies that |R ∩ C(x)| ≠ 1.
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F.2 A Two Round O(n log log k) Algorithm for Balanced Clusters

Recall that a clustering C1 ⊔ · · · ⊔ Ck = U is B-balanced if n
Bk ≤ |Cj | ≤ Bn

k .
Theorem F.3. There is a two round, non-adaptive algorithm which recovers a B-balanced k-
clustering using O(

√
B · n log log k) subset queries.

Proof. We will use the following result of [49] on query-based reconstruction of bipartite graphs
as a black-box. Given a bipartite graph G(V,W,E), an edge-count query on (S, T ) where S ⊆ V ,
T ⊆W returns |E ∩ S × T |, the number of edges between S and T .

Lemma F.4 ([49], see Section 4.3). There is a non-adaptive algorithm which reconstructs any
bipartite graph G(V,W,E) where (a) |V | = n, (b) |W | = m, and (c) every vertex in V has degree
at most 1, using O(n · logn

logm ) edge-count queries.

We will say a set A ⊆ U is an independent set if each element of A belongs to a distinct cluster.
Given two independent sets A,B let M(A,B) be the matching where there is an edge from x ∈ A
to y ∈ B if x, y belong to the same cluster. We observe that edge-count queries in M(A,B) can be
simulated by subset queries, leading to the following corollary.

Corollary F.5. Suppose that A,B ⊆ U are independent sets. There is a deterministic, non-adaptive
algorithm which reconstructs M(A,B) using O(|A| · log |A|

log |B| ) subset queries.

Proof. We need to show that an edge-count query (S, T ) where S ⊆ A, B ⊆ T can be simulated by
a constant number of subset queries. Let m(S, T ) denote the number of edges in M(A,B) between
S and T . Since A,B are independent sets, S, T are also independent sets, and so we have

m(S, T ) = q(S) + q(T )− q(S ∪ T )

since m(S, T ) is the number of clusters intersected by both S and T . Thus, one edge-count query to
M(A,B) can be simulated by three subset queries and this completes the proof.

Pseudocode for the algorithm is given in Alg. 7. The algorithm is parameterized in terms of a value
τ > 1 which we will choose later in the proof so as to minimize the query complexity. The first
round is used to accomplish the following. In lines (4-5) we construct a set R containing exactly
one representative from every cluster and use this to define an initial clustering. In line (6) we
sample random sets I1, . . . , Is and in line (8) make a query to each to check whether or not it is an
independent set. Line (10) defines V which is the union of all the Ii’s which are independent sets.
We now describe the second round. In line (14) we run the procedure of Corollary F.5 to construct
the matching M(Ii, R) whenever Ii is an independent set. Finally, we determine for every x ∈ U ,
the unique y ∈ R for which x, y belong to the same cluster. If x ∈ V this is done in lines (18-20) by
taking x’s neighbor in M(Ii, R) for some independent set Ii. If x /∈ V , this is done in lines (23-24)
by running the procedure of Corollary F.2.

The algorithm always either outputs fail in line (11), or correctly reconstructs the clustering by
Corollary F.5 and Corollary F.2. Thus we only need to argue that |U \V | ≤ n

τ occurs with probability
at least 99/100 allowing it to pass the check in line (11), and that conditioned on this, the algorithm
makes O(n ln ln k) queries when we set τ appropriately. Let us first count the number of queries
conditioned on this event. Line (8) performs s queries. Since each Ii is of size

√
k and |R| = k,

by Corollary F.5, lines (13-14) perform a total of O(s ·
√
k ln τ) = O(

√
B · n ln τ) queries. Lines

(22-23) use |U \ V |O(log k) = O(nτ log k) queries. Setting τ = Θ(ln k) yields a query complexity
of O(

√
Bn log log k). We now prove in Claim F.6 that the required bound on |U \ V | holds with

high probability, and this completes the proof.

Claim F.6. With probability at least 99/100, we have |U \ V | ≤ n
τ .

Proof. We prove an appropriate bound on E[|U \V |] and then apply Markov’s inequality. Fix x ∈ U .
For i ∈ [s], let Ex,i denote the event that x ∈ Ii and Ii is an independent set. Observe that x ∈ U \ V
iff Ex,i does not occur for every i ∈ [s]. We first lower bound the probability of Ex,i. Observe that

Pr
Ii
[Ex,i] = Pr[x ∈ Ii] Pr[Ii an independent set | x ∈ Ii] (5)
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Algorithm 7: Two Round Algorithm for Balanced Clustering
1 Input: Subset query access to a hidden partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 Round 1:
3 Query Pt = {xi : i ≤ t} for every t ∈ [n];
4 Define R = {xt : q(Pt)− q(Pt−1) = 1} containing exactly one point from every cluster;
5 For each y ∈ R, define cluster Ry = {y};
6 Sample s = 10

√
B
k · n ln(100τ) sets I1, . . . , Is ⊂ U each formed by

√
k

10B samples from U ;
7 for i ∈ [s] do
8 Query Ii. (This is to check if q(Ii) = |Ii|, i.e. whether Ii is an independent set.);
9 end

10 Let V =
⋃

i∈[s] : q(Ii)=|Ii| Ii be the points in U lying in an independent set among I1, . . . , Is;
11 If |V | < n(1− 1

τ ), then output fail. Otherwise, continue;
12 Round 2:
13 for i ∈ s : q(Ii) = |Ii| do
14 Run the algorithm from Corollary F.5 on sets Ii, R and let Mi ⊂ Ii ×R be the output;
15 end
16 for x ∈ U do
17 if x ∈ V then
18 Choose Ii such that x ∈ Ii and Ii is an independent set;
19 Let y ∈ R denote the neighbor of x in the matching Mi ⊂ Ii ×R;
20 Place x into Ry;
21 end
22 if x ∈ U \ V then
23 Use the O(log k) deterministic non-adaptive algorithm of Corollary F.2 to find the unique

y ∈ R for which x, y lie in the same cluster;
24 Place x into Ry;
25 end
26 end
27 Output clustering (Ry : y ∈ R);

and

Pr
Ii
[x ∈ Ii] = 1−

(
1− 1

n

)|Ii|

≥ 1− exp

(
−|Ii|

n

)
≥ |Ii|

2n
≥
√

k

B
· 1

8n

where we have used the inequality exp(−z) ≤ 1− z
2 for z ∈ [0, 1]. Next, by a simple union bound

over all pairs in Ii and the fact that every cluster is bounded as |Cj | ≤ Bn
k , we have

Pr[Ii not an independent set | x ∈ Ii] ≤ |Ii|2
B

k
≤ 1

10
.

Plugging these bounds back into Equation (5) yields PrIi [Ex,i] ≥
√

k
B ·

1
10n and noting that these

events are independent due to the Ii’s being independent yields

Pr[x /∈ V ] = Pr[¬Ex,i, ∀i ∈ [s]] ≤

(
1−

√
k

B
· 1

10n

)s

= exp(− ln(100τ)) =
1

100τ
(6)

where we have used the definition of s = 10
√
B/k · n ln(100τ). Finally, this implies E[|U \ V |] ≤

n
100τ and so by Markov’s inequality Pr[|U \ V | > n

τ ] <
1

100 . This completes the proof.

G Sample-Based Algorithm using Unbounded Queries

Theorem G.1. There is a non-adaptive, sample-based k-clustering algorithm making O(nk log n)
subset queries which is correct with probability at least 99/100.
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Proof. The algorithm is defined in Alg. 8. The proof techniques are quite similar to that of Theo-
rems 2.2 and A.1 detailed in Section 2.1 and appendix A. We also refer the reader to Section 2 for a
discussion on the main ideas.

Algorithm 8: Sample-Based Algorithm Using Unbounded Queries
1 Input: Subset query access to a hidden partition C1 ⊔ · · · ⊔ Ck = U of |U | = n points;
2 (Query Selection Phase)
3 for p = 0, 1, . . . , log n do
4 Initialize query set Qp ← ∅;
5 Repeat 40nk ln(300nk2)

2p times;
6 −→ Sample T ⊆ U formed by 2p independent uniform sample from U ;
7 −→ Query T and add it Qp;
8 end
9 (Reconstruction Phase)

10 Initialize hypothesis clustering C0 ← ∅;
11 for p = 0, 1, . . . , log n do
12 Let Cp denote the collection of clusters reconstructed before phase p;
13 LetRp =

⋃
C∈Cp

C denote the points belonging to these clusters;
14 Initialize Cp+1 ← Cp;
15 Let Q′

p = {T \ Rp : T ∈ Qp and |T \ Rp| = 2}. Since each T ∈ Qp is a uniform random
set, the elements of Q′

p are uniform random pairs in U \ Rp;
16 Let Q′′

p = {{x, y} ∈ Q′
p : q({x, y} = 1)} denote the set of pairs in Q′

p where both points lie
in the same cluster. This set can be computed since q(T \ Rp) = q(T )− q(T ∩Rp) and
q(T ∩Rp) is known since at this point we have reconstructed the clustering onRp;

17 Let Gp denote the graph with vertex set U \ Rp and edge set Q′′
p ;

18 Let C1, . . . , Cℓ denote the connected components of Gp with size at least n
2k·2p ;

19 Add C1, . . . , Cℓ to Cp+1;
20 end
21 Output clustering Clogn+1

Since
∑logn

p=0
1
2p = O(1), the number of queries made by the algorithm is O(nk log n). To prove

correctness it suffices to prove the following lemma.

Lemma G.2. For each p = 0, 1, . . . , log n, let Ep denote the event that all clusters of size at least
n

2k·2p have been successfully recovered immediately following iteration p of Alg. 8. Then,

Pr[¬E0] ≤
1

100k
and Pr[¬Ep | Ep−1] ≤

1

100k
for all p ∈ {1, 2 . . . , log n}.

The proof that Lemma G.2 implies Theorem G.1 is identical to the proof that Lemma 2.3 implies
Theorem 2.2 given just after the statement of Lemma 2.3. Thus, we move on to proving Lemma G.2.

Proof. of Lemma G.2. First consider the case of p = 0. In this iteration, the algorithm queries
|Q0| ≥ 40 ·nk ln(300nk2) random pairs and we need to show that it successfully recovers all clusters
with size at least n

2k with probability at least 1− 1
100k . Let C denote any such cluster and recall from

lines (16-17) the definition of the graph G0 with vertex set U and edge set Q′′
0 . We will show that

the induced subgraph G0[C] is connected, and thus C is correctly recovered in lines (18-19), with
probability at least 1− 1

100k2 . Since there are at most k clusters, the lemma holds by a union bound.

Consider any two vertices x, y ∈ C and note that |Q0| ≥ 20n2 ln(300nk2)
|C| since |C| ≥ n

2k . We lower
bound the probability that (x, y) is an edge in G0[C] as follows. Note that this occurs iff {x, y} ∈ Q0.
Using an identical calculation to that of eq. (1), this probability is at least 1−( 1

300k2|C| )
2/|C|, implying

that G0[C] is connected with probability at least 1− 1
100k2 by Fact 2.4.

The argument for the case of p > 0 is identical to the argument given in "Case 3" of in the proof of
Lemma 2.3 in Section 2.

26



H An O(n log k) Adaptive algorithm

Here we sketch a simple adaptive algorithm using O(n log k) queries. Suppose, we have identified
one element from i clusters (initially i = 0, and we have i ≤ k always). Suppose they are
X = {x1, x2, ..., xi}. We now want to find the cluster to which a new point y belongs to. We first
query {X, y}. If the answer is i+ 1, then y is part of a new cluster and i grows to i+ 1. Otherwise,
y is part of the i clusters, and we detect the cluster to which y belongs to using a binary search. We
consider the two sets X1 = {x1, x2, .., x⌈i/2⌉}, and X2 = {x⌈i/2⌉+1, .., xi}. We then query {X1, y}.
If the answer is ⌈i/2⌉+ 1, then we search recursively in X2, else if the query answer is ⌈i/2⌉, then
we search recursively in X1. Clearly, the query complexity is O(log k) per item, and it requires
O(log k) rounds of adaptivity even to place one element.
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our results are all purely theoretical and did not require the use of any data-sets
or human subjects and don’t pose any potential violation of the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since all of our results are theoretical and pertain to a specific model for the
very broadly applicable problem of clustering, it is difficult to meaningfully discuss the
specific societal impact of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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