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ABSTRACT

Among research on the interpretability of deep learning models, the ‘this looks
like that’ framework with ProtoPNet has attracted significant attention. By com-
bining the strong power of deep learning models with the interpretability of case-
based inference, ProtoPNet can achieve high accuracy while keeping its reasoning
process interpretable. Many methods based on ProtoPNet have emerged to take
advantage of this benefit, but despite their practical usefulness, they run into dif-
ficulty when utilizing similarity-based classifiers. This is because ProtoPNet and
its variants adopt the training process specific to linear classifiers, which allows
the prototypes to represent useful image features for class recognition. Due to this
difficulty, the effectiveness of similarity-based classifiers (e.g., k-nearest neighbor
(KNN)) on the ‘this looks like that’ framework have not been sufficiently exam-
ined. To alleviate this problem, we propose ProtoKNN, an extension of ProtoP-
Net that adopts KNN classifiers. Extensive experiments on multiple open datasets
demonstrate that the proposed method can achieve competitive results with a state-
of-the-art method.

1 INTRODUCTION

Deep learning has achieved very high accuracy in a variety of computer vision tasks. However, since
the reasoning process of deep learning models is black-boxed and cannot be interpreted by human
operators, it is very difficult to validate their inference, and this impedes their utilization in high-risk
domains. To alleviate this problem, several methods for constructing inherently interpretable models
have been proposed. However, inherently interpretable models generally suffer from degraded accu-
racy compared to black-box models. ‘Gray-box’ models have thus been proposed (Alvarez-Melis,
2018; Chen, 2019; Koh, 2020) to take advantage of the power of deep learning models while keep-
ing the reasoning process interpretable. Among the gray-box model approaches, the ‘this looks like
that’ framework with ProtoPNet (Chen, 2019) has attracted significant attention because it can guar-
antee a transparent reasoning process without any additional supervision. ProtoPNet first calculates
the similarity of the input samples to the prototypes corresponding to an image patch in the training
set and then classifies samples with inherently interpretable models on the basis of this similarity.
This process enables ProtoPNet to explain its reasoning process by providing patches in the train-
ing set that the model considers similar to the input sample. Thus, interpretability with case-based
reasoning is achieved. Thanks to this advantage in transparency, many methods based on ProtoPNet
have been proposed (Wang, 2021; Nauta, 2021; Rymarczyk, 2021; Donnelly, 2022; Keswani, 2022;
Rymarczyk, 2022).

When training ProtoPNet, the weights of the linear classifier connecting each of the prototypes and
class logits are fixed, and the feature vectors corresponding to an image patch are linked to the pro-
totypes if the prototypes make a positive contribution to the class logits to which the image belongs.
This enables the prototypes to represent the image patches most useful for class recognition. How-
ever, due to this special training process, it is difficult for ProtoPNet to utilize any classifiers other
than the linear classifier. As an alternative, Nauta (2021) proposed ProtoTree, which use a deci-
sion tree for the last classifier. However, this method is limited to the decision tree, which makes it
difficult to utilize in similarity-based classifiers with the ‘this looks like that’ framework. Similarity-
based classifiers perform inference on the basis of similarities (or distances) between samples. As
we will demonstrate in the experimental section and in the Appendix (Sec. D.2), interpreting the
distance enables us to obtain more fine-grained explanation in a counterfactual manner, which is
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important for understanding and interpreting the reasoning process of the model. Therefore, in this
work, we extend ProtoPNet so that we can utilize similarity-based classifiers (specifically, k-nearest
neighbor (KNN) classifiers) in the ‘this looks like that’ framework.

When extending ProtoPNet to the similarity-based classifier, it is no longer possible to pre-define
the relationship between the prototypes and the class labels, which is necessary for calculating the
cluster loss. As we will discuss in Sec. 2.2.2, it is also difficult to estimate this relationship from only
one sample. Therefore, the main difficulty is how to estimate the relationship between the prototypes
and the class labels. Our concept for estimating this relationship is to compare each sample in a mini-
batch and sum up the most distinctive prototypes. This enables us to estimate which prototypes are
relatively more related to which samples and thus which classes. Then, our novel cluster loss can be
defined based on this estimation. In summary, our contributions are three-fold:

・We propose ProtoKNN, an extension of ProtoPNet that can utilize KNN classifiers. This is
the first work to examine the effectiveness of similarity-based classifiers in the ‘this looks
like that’ framework.

・We developed a novel loss function for ProtoKNN that replaces the cluster loss in Pro-
toPNet. This enables us to train our model without predefining the relationship between
classes and prototypes.

・ The proposed method achieved competitive results with a state-of-the-art ProtoPNet variant
on multiple open datasets.

2 METHOD

In the following, we first describe the notation 1 used in this paper. Then, we present the training
strategy of the proposed method and explain how to classify the samples. Finally, we demonstrate
how to interpret the reasoning processes of our method. For context, we also briefly revisit the
origins of ProtoPNet and elaborate on why it cannot directly utilize similarity-based classifiers in
the Appendix (Sec. A).

2.1 PRELIMINARY

The input image and its class labels are denoted as x and y, respectively. Unless otherwise specified,
we use subscripts a, b, ... to denote the data indices. Thus, an input image and its class label are
denoted as xa and ya, respectively. The index sets of the images in a minibatch and their cardinality
are denoted as B and |B|, respectively. We use F to denote the feature extractor and Z to denote the
feature map output by F , i.e., Za = F (xa). z is used to denote the feature vectors contained in a
pixel of the feature map Z. We also call these feature vectors ‘image patch features’ in this paper.
After the transformation, the similarity between the prototypes {pi}i=0,1,... and the image patch
features contained in the feature map Za are calculated. The maximum similarity value is defined
as the similarity of the input image xa to the prototype pi, as sa,i = maxz∈Za

Sim(z,pi). Here,
we denote the similarity of the input image xa as sa and its component corresponding to pi as sa,i.
Sim is the function that calculates the similarity (cosine similarity in this paper) between the feature
vectors and the prototypes. In the following, we refer to the similarity sa as the ’prototype profile’
of the input image xa, and the index sets of the prototypes are denoted as P. The indicator function
is denoted as 1(condition), which returns 1 if the condition is true and 0 otherwise.

2.2 TRAINING PROCESS

Originally, ProtoPNet utilized three loss functions: classification loss, cluster loss, and separation
loss. In the proposed method, we do not use the separation loss because we expect the prototypes
to be common among the samples with different class labels. Instead, we use the auxiliary loss
function proposed in the context of deep metric learning to help the backbone model acquire better
feature extraction ability. In summary, we train our models with three loss functions: classification
loss Ltask, the novel cluster loss Lclst, and auxiliary loss Laux. Figure 1 shows the loss scheme of
the proposed method. The details of each loss are described in the following.

1We basically follow https://github.com/goodfeli/dlbook_notation/.
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Figure 1: The loss scheme of the proposed method. The model transforms the input sample xa

into the feature map Za and then encode it into the prototype profile sa. We measure the distance
between images on the space spanned by sa. To optimize the distance, we impose Ltask on sa. We
also impose Lclst to link the prototypes and the feature vectors contained in Za. In addition, to help
the model acquire the capability of feature extraction, we directly impose Laux on the output of the
model backbone.

2.2.1 CLASSIFICATION LOSS Ltask

In contrast to ProtoPNet and its variants, the proposed method performs inference on the basis of
similarity between samples. Therefore, in the space spanned by the similarity between the prototypes
and the input images, it needs to be ‘discriminable’ rather than ‘separable’. We therefore use the loss
function (Wu, 2017) typically utilized in the context of deep metric learning instead of the ordinarily
used cross-entropy loss for Ltask. Thus, we calculate Ltask as

Ltask =
1

N

∑
a∈B

([dap +m− β]+ + [m− dan + β]+), (1)

where m, β are margin and learnable parameters, and a, p, and n are the data indices of the anchor,
the hard-positive, and the hard-negative samples, respectively. The ReLU function is denoted as
[·]+, and N is the number of terms that take a non-zero value in the summation. dap and dan are the
Euclidean distance defined as ∥sa − sp∥2 and ∥sa − sn∥2, respectively.

2.2.2 ESTIMATION OF PROTOTYPE ATTRIBUTION

As we will discuss in the Appendix (Sec. A), the predefined relationship between the prototypes
and the class labels is no longer available. Thus, to calculate the cluster loss, we need to calculate
which image patch features should be attached to each of the prototypes and to what degree. For
this purpose, we first estimate the affiliation of the prototypes to each class.

Specifically, we first estimate which prototypes are contained in which samples. Utilizing the proto-
type profiles would be a natural choice here, but, thresholding methods are not appropriate because
the prototype profiles change their statistical properties during the training. Therefore, we estimate
the affiliation by comparing the prototype profiles, i.e., the similarity of the samples to the proto-
types, in the minibatch. If the image feature represented by a prototype pi is contained in sample xa

and not in sample xb, we can expect that the similarity (sa) of sample xa to prototype pi is greater
than the similarity (sb) of sample xb to prototype pi. Therefore, by extracting the prototypes with a
large difference between sa and sb for all of the indices in the minibatch (b ∈ B), we can construct
a set of the prototypes contained in xa. To achieve this, stochastic sampling with the Gumbel-Max
trick is conducted by

E(xa,pi) =
∑

b∈B/{a}

Γ

(
sa,i − sb,i

τ

)
, (2)
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Figure 2: Overall process of calculating the cluster loss. First, the prototype profiles are compared
to estimate which prototypes are likely to be included in each sample (this process is denoted as
’Sampling’). Second, we average the ’sampling results’ within a class and then debias the results
so that the class average of all results is the same. Third, the debiased results are normalized so
that the total amount of the prototypes contained in a class is 1. We refer to the normalized results
as ’prototype affiliation’. Finally, we modify the prototype affiliation and link the prototypes to the
image patch features on the basis of the modified attribution. Please refer to the main text for the
details of each process.

where τ is the temperature parameter (fixed to 0.05 in this paper). Γ is the Gumbel-Max operation
(Jang, 2017) and returns 1 for the index of the sampled prototype and 0 otherwise, i.e.,

Γ(si) = 1

(
i = argmax

j

exp(sj + γj)∑
k exp (sk + γk)

)
, (3)

where γj and γk are the random variables that follow the standard Gumbel distribution. We obtain
the sampling results Ē(y, pi) with respect to each class label y by averaging the sampling results
E(xa, pi) among the samples that have the same class labels, as

Ē(y,pi) =

∑
a∈B E(xa,pi)1(ya = y)∑

b∈B 1(yb = y)
. (4)

The sampling results Ē(y, pi) can still be biased toward some prototypes independent of the class
labels, which is undesirable. Thus, we de-bias the sampling results following the equation below so
that they are not biased toward any specific prototype.

Ê(y,pi) =
Ē(y,pi)∑

ya∈Y Ē(ya,pi)
(5)

where Y is the set of class labels contained in the mini-batch. This ’debiasing’ enforces the sum
of the sampling results with respect to the class labels are the same. In other words, the debiasing
process reflects the assumption that in the absence of information about the class, the same amount
of prototypes are observed with probability. Finally, we calculate the affiliation of the prototypes
to the class label y by normalizing the sampling results Ê(y, pi) so that the total amount of the
prototypes contained in a class would be the same (i.e., 1), as

P (y,pi) =
Ê(y,pi)∑
j∈P Ê(y,pj)

(6)

2.2.3 CLUSTER LOSS Lclst

Once we estimate the prototype affiliation (Sec. 2.2.2), we can calculate and minimize the cluster
loss to link the image patch features to the prototypes on the basis of that estimation. Here, due to
the various views of objects in the images, the samples do not always contain the prototypes whose
affiliation to the class is high. Therefore, we need to modify the affiliation for each sample. Note
that we can relatively estimate how much the sample xa contains the image feature represented by
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the prototype pi on the basis of the distance between them (minz∈Za
∥z − pi∥22). Therefore, we

propose to modify the attribution considering the distance. Specifically, we formulate this problem
as a linear assignment problem:

T y∗
a,i = argmin

Ty
a,i

∑
a∈B,i∈P

T y
a,iCa,i s.t.

∑
i∈P

T y
a,i = 1(ya = y),

∑
a∈B

T y
a,i = NyP (y,pi), (7)

where Ny =
∑

b 1(yb = y) is the number of samples contained in a mini-batch whose class label is
y and Ca,i is the cost function defined as

Ca,i = min
z∈Za

∥z − pi∥22. (8)

The solution T y∗
a,i can be considered as the modified attribution of the prototypes to each sample,

whose average among the samples match the attribution to the class. The components of T y∗
a,i would

be small when the sample xa does not contain the prototype pi, i.e., when the distance between
them is large, and high the other way around. Thus, we use the solution T y∗

a,i to calculate the cluster
loss, as

Lclst =
∑
y∈Y

∑
a∈B,i∈P

T y∗
a,iCa,i. (9)

Here, Y is the set of all class labels contained in the minibatch.

To minimize Eq. 9, we need to solve Eq. 7. However, quickly obtaining an exact solution to Eq. 7
is difficult, and it is not necessary for it to be unique. Therefore, we approximately solve Eq. 7 with
the Sinkhorn-Knopp algorithm (Cuturi, 2013) and re-define T y∗

a,i as

T y∗
a,i = argmin

Ty
a,i

∑
a∈B,i∈P

T y
a,iCa,i +

1

λ
T y
a,i log T

y
a,i

s.t.
∑
i∈P

T y
a,i = 1(ya = y),

∑
a∈B

T y
a,i = NyP (y,pi)

(10)

where λ is the hyper-parameter determining the weight of the entropy regularization term (fixed to
0.05 in this paper).

We also modified the proposed cluster loss to maximize the gap between the minimum and the aver-
age distance between the prototypes and the image patch features following ProtoPool(Rymarczyk,
2022). The aim of this modification is to address the problem that the learned prototypes tend to
focus on the background (Rymarczyk, 2022). We re-define our cluster loss (Eq. 9) as

Lclst =
∑
y∈Y

∑
a∈B,i∈P

T y∗
a,iĈa,i, where Ĉa,i = min

z∈Za

∥z − pi∥22 −
1

|Za|
∑
z∈Za

∥z − pi∥22 (11)

where |Za| is the number of pixels contained in the feature map Za.

2.2.4 AUXILIARY LOSS Laux

As stated earlier, we utilize the loss function proposed in the context of deep metric learning as
auxiliary loss Laux to help the model backbone acquire better feature extraction ability. Here, we
also specify that we do not impose Laux on the prototype profile s but on the feature vectors obtained
by applying Global Average Pooling (GAP) and a linear layer to the feature map output by the model
backbone. We refer to this feature vector and its L2-normalized one as g and ĝ in this section. As a
default, we used proxy anchor loss (Kim, 2020) for Laux, which is formulated as:

Laux =
1

|Q+|
∑

q∈Q+

log

1 +
∑

ĝ∈X+
p

e−α(s(ĝ,q)−δ)

+
1

|Q|
∑
q∈Q

log

1 +
∑

ĝ∈X−
p

eα(s(ĝ,q)−δ)


(12)

where δ, α, Q, and Q+ are margin, scaling factor, the set of all proxies, and the set of positive
proxies of data in the mini-batch, respectively. Also, for each proxy q, the batch of feature vectors is
divided into two sets: X+

p , a set of positive feature vectors of q and X−
p , the others. We also defined

s(ĝ, q) = ĝ q
∥q∥2

above.
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Figure 3: An example of the interpretation of the proposed method. Blue bounding boxes surround
the areas where the prototypes are the most activated. The numerical values in the center of the
figure indicate how much the distance between the anchor and the negative sample was increased
by the corresponding prototype relative to the distance between the anchor and the positive sample.
Please refer to the final paragraph of Sec. 2.4 for more details.

2.2.5 OVERALL LOSS FUNCTION AND PROTOTYPE PROJECTION

We train our models with the combination of the loss functions described above. Specifically, the
overall loss function of the proposed method can be written as

Ltotal = Ltask + λclst · Lclst + λaux · Laux, (13)

where λclst and λaux are the hyper-parameters that respectively determine the weight of each loss.
We empirically set λclst = 0.1 and λaux = 1.0 in this paper. After the training, each prototype is
projected onto the nearest image patch features in the training set following

pi ← argmax
z

z

∥z∥
pi

∥pi∥
(14)

This guarantees that each prototype represents the corresponding image patches, and thus the trans-
parency of the prototypes is achieved. We can then achieve case-based interpretability by classifying
samples on the basis of their similarity to the prototypes.

2.3 LABEL PREDICTION

To predict the class label with our method, given the test sample xtest, we first retrieve the nearest
top-k samples from the training set. Here, k is the hyper-parameter of the KNN classifier and we
use the Euclidean distance for the distance metric, i.e., the difference between samples xa and xb is
calculated by ∥sa−sb∥22. Then, the prediction ypred is given by the majority decision of the retrieved
top-k samples R(xtest, k), i.e., ypred = argmaxy

∑
xa∈R(xtest,k)

1(ya = y). In the experimental
section, we mainly report the results with k = 1, 3, and 5.

2.4 INTERPRETATION OF THE REASONING PROCESS

We limit the following explanation of the proposed method’s inference interpretation to the case of
k = 1 for simplicity. The proposed method can achieve a counterfactual explanation for why the
input sample is classified into the predicted class rather than another class. In the following, we
refer to the input image as the anchor sample and to the sample nearest to the anchor sample in the
training set as a positive sample. We also refer to the class of interest other than the predicted class
as a negative class and the nearest sample with the negative class label to the anchor sample in the
training set as a negative sample.

As shown in Fig. 3, the proposed method explains its inference by using the positive and negative
samples. In contrast to the naive KNN classifier, which only provides the positive sample for the
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Table 1: Accuracy comparison on full images of CUB200-2011 with various model backbones.
The results of ProtoPNet are directly borrowed from Donnelly (2022). ‘V’, ‘R’, and ‘D’ denote
VGG, ResNet, and DenseNet, respectively. Here, the top-1 accuracy [%] is reported.

Model V16 V19 R34 R50 R152 D121 D161
ProtoPNet(Chen, 2019) 70.3 72.6 72.4 81.1 74.3 74.0 75.4

Def. ProtoPNet(Donnelly, 2022) 75.7 76.0 76.8 86.4 79.6 79.0 81.2
ProtoKNN (k=1) + Margin 75.5 76.7 76.9 87.0 80.3 78.5 80.8
ProtoKNN (k=3) + Margin 76.6 77.2 77.3 87.1 80.6 79.3 81.2
ProtoKNN (k=5) + Margin 77.2 77.6 77.6 87.2 80.6 79.8 81.4

ProtoKNN (k=10) + Margin 77.5 77.6 77.4 87.0 80.5 79.9 81.3

reason of its inference, the proposed method can further explain why the distance between the anchor
and the negative samples is larger than the distance between the anchor and the positive samples.
Later, we will refer to the distance between the anchor and the positive (negative) samples as dap
(dan). Here, we used the subscripts a, p, and n to denote the data indices of the anchor, the positive,
and the negative samples, respectively. In the proposed method, the distance between two samples
is determined by the difference between the similarity of each sample to the prototypes. Therefore,
by extracting the prototypes that have a large contribution to dan and a small contribution to dap,
we can explain which image feature is responsible for the difference between dap and dan. In other
words, the prototype with the largest contribution to d2an − d2ap = ∥sa − sn∥22 − ∥sa − sp∥22 can be
considered as the reason for why the anchor sample is classified into the predicted class.

Consider the interpretation example shown in Fig. 3. First, the anchor sample (top left) and the
negative class (Vermilion Flycatcher) are given. Then, the positive (top center) and the negative
(top right) samples are retrieved from the training dataset. As a result, we find that d2an is 4.61
greater than d2ap (denoted as ‘Difference’) in this case. Next, as described above, we extract the
prototypes that make the largest contribution to d2an − d2ap, as shown in the middle table in Fig. 3.
The extracted results are the reason for why the anchor sample is classified into ‘Marsh Wren’ rather
than ‘Vermilion Flycatcher’. Specifically, these results show that the main reason is that the negative
sample has a red head, while the anchor and the positive samples do not. We can also see that this
difference makes d2an 0.421 greater than d2ap. Similarly, by repeating the interpretation described
above for the second and third results, we can quantitatively interpret why d2an is greater than d2ap.
Further examples for the interpretation of the proposed method can be found in the Appendix.

3 EXPERIMENTAL RESULTS

We conducted experiments on three public datasets: CUB200-2011 (Wah, 2011), Stanford Dogs
(Khosla, 2011), and Stanford Cars (Krause, 2013). Due to space limitations, we only describe the
experimental results here. Other details (e.g., implementation details) are provided in the Appendix.

3.1 COMPARISON WITH THE OTHER METHOD

Tables 1 and 2 show the top-1 accuracy of the proposed method with various model backbones on
CUB200-2011 and Stanford Dogs, respectively. Here, we directly borrowed the results of ProtoPNet
from Donnelly (2022). In these experiments, we used the full images following Donnelly (2022).
As shown, our method achieved competitive results with Deformable ProtoPNet (Donnelly, 2022).

Tables 3 and 4 show the comparison results with the state-of-the-art method among variants of
ProtoPNet. Here, we cropped the images using bounding boxes following the previous studies
(Chen, 2019; Wang, 2021; Rymarczyk, 2022). We also set the number of prototypes to that of
ProtoPool (Rymarczyk, 2022). As we can see, our method achieved a higher accuracy than the
other method when using a single model, and it even achieved competitive results with the ensemble
results of the other method in Table 4. Specifically, our method achieved a higher accuracy than
ProtoPool when we used the same model backbone and the same number of prototypes. These
findings demonstrate the effectiveness of our method, which eliminates the need for the sub-optimal
optimization process with a fixed-weight classification layer required by the conventional methods.
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Table 2: Accuracy comparison on full images of Stanford
Dogs with various model backbones. ‘V’, ‘R’, and ‘D’
denote VGG, ResNet, and DenseNet, respectively. Here,
the top-1 accuracy [%] is reported.

Method V19 R152 D161
ProtoPNet(Chen, 2019) 73.6 76.2 77.3

Def. ProtoPNet(Donnelly, 2022) 77.9 86.5 83.7
ProtoKNN (k=1) + Margin 76.9 85.9 84.7
ProtoKNN (k=3) + Margin 78.6 86.9 85.7
ProtoKNN (k=5) + Margin 79.3 87.3 85.7
ProtoKNN (k=10) + Margin 79.5 87.5 85.7

Table 3: Accuracy comparison on Stan-
ford Cars with state-of-the-art method.
Here, ‘R’ denotes ResNet and top-1 ac-
curacy [%] is reported.

Method R50
ProtoTree(Nauta, 2021) 86.6

ProtoPool(Rymarczyk, 2022) 88.9
ProtoKNN (k=1) + Margin 90.2
ProtoKNN (k=3) + Margin 90.8
ProtoKNN (k=5) + Margin 90.9

ProtoKNN (k=10) + Margin 90.7

Table 4: Accuracy comparison on CUB200-2011
with state-of-the-art method. ‘*’ and ‘**’ denote the
ensemble results with 3 and 5 models, respectively.

Method Top-1 Acc.
ProtoPNet(Chen, 2019) 79.2% (*84.8%)
ProtoTree(Nauta, 2021) 82.2% (**87.2%)

TesNet(Wang, 2021) 82.8% (**86.2%)
ProtoPool(Rymarczyk, 2022) 85.5% (**87.6%)

Def. ProtoPNet(Donnelly, 2022) 86.4% (**87.8%)
ProtoKNN (k=1) + Margin 87.1%
ProtoKNN (k=3) + Margin 87.4%
ProtoKNN (k=5) + Margin 87.5%
ProtoKNN (k=10) + Margin 87.2%

Table 5: Ablation study on Laux using full
images of CUB200-2011. Top-1 accuracy
[%] is reported here.

k Laux Res34 Res50
k=1 None 74.7% 86.0%
k=3 None 75.3% 86.5%
k=5 None 75.9% 86.6%
k=1 Margin 76.9% 87.0%
k=3 Margin 77.3% 87.1%
k=5 Margin 77.6% 87.2%
k=1 Proxy-Anchor 77.0% 87.0%
k=3 Proxy-Anchor 77.5% 87.3%
k=5 Proxy-Anchor 77.3% 87.2%

3.2 ABLATION STUDY

To examine the effectiveness of each component of the proposed method, we conducted an ablation
study on CUB200-2011 with the full images. In the following, we present the ablation study for
Laux. We include the ablation study for our cluster loss Lclst in the Appendix.

The results of the ablation study are shown in Table 5. As we can see, the accuracy improved
regardless of whether margin loss or proxy anchor loss was adopted for Laux. Thus, we can confirm
that Laux helps the backbone model to acquire better feature extraction ability. We can also see
that the proposed method utilized the learned good feature representation whether the ranking-based
or classification-based loss was adopted for Laux. Moreover, the improvement was marginal when
ResNet50 was adopted for the model backbone compared to when ResNet34 was adopted. This is
because we used ResNet50 pretrained on i-Naturalist 2017, so it has already acquired good feature
extraction ability. Therefore, we can conclude that Laux is more effective when the pretrained model
has not already acquired good feature extraction ability.

4 RELATED WORKS

Research on the interpretability of deep learning models can be divided into two approaches: (1)
the post-hoc approach, which analyzes trained black-box models, and (2) the ante-hoc approach,
which constructs inherently interpretable models. The post-hoc approach (Zhou, 2016; Selvaraju,
2017; Lundberg, 2017; Bau, 2017; Jiang, 2021; Hernandez, 2022) is beneficial when analyzing al-
ready deployed models because no re-training is required. However, in some cases, the explanations
provided by a post-hoc method will have nothing to do with the model inference (Rudin, 2019). To
address this problem in fidelity, some works have utilized the Shapley value (Shapley, 1951) and
proposed methods with a theoretical guarantee (Lundberg, 2017; Hamilton, 2022). However, cal-
culating the Shapley value is NP-hard and it is difficult to apply these methods to high-dimensional
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data such as raw images. Moreover, most methods explain the model inference by providing the
image region that contributes the most to the model inference, and the properties of the explanation
are thus very different from those provided by ProtoPNet and its variants. This makes it extremely
difficult to evaluate the interpretability of these approaches in a unified manner, which is why we
have omitted any comparison with the post-hoc approaches from the paper. In the following, we
describe the variants of ProtoPNet (Chen, 2019), which is the basis of our method.

After Chen (2019) proposed the ‘this looks like that’ framework with ProtoPNet, many methods
based on ProtoPNet were proposed, and they have improved in both accuracy and efficiency by
reducing the number of the prototypes (Wang, 2021; Rymarczyk, 2021; Donnelly, 2022; Keswani,
2022; Rymarczyk, 2022). In particular, ProtoPool (Rymarczyk, 2022) has succeeded in directly
learning the prototypes that are common among inter-class samples and achieved high accuracy.
However, as we will explain in the Appendix (Sec. A), these methods all have difficulty in utilizing
similarity-based classifiers. ProtoPool, even though it is quite successful, requires ‘slots’ specific
to certain classes and still has difficulty utilizing classifiers other than linear ones. Alternatively,
ProtoTree (Nauta, 2021) utilizes a decision tree for its classifier and has achieved high accuracy
while reducing the number of prototypes, However, its training process is specific to the decision
tree and it thus also has difficulty utilizing the similarity-based classifier. To address this problem,
our work extends ProtoPNet so that we can utilize the similarity-based classifier, and to the best of
our knowledge, it is the first work that combines the similarity-based classifier with the ‘this looks
like that’ framework.

Our method is also related to research in the field of deep metric learning. Many methods have
been proposed to achieve a good feature representation space in this context (Wu, 2017; Wang,
2019; Kim, 2020) , most of which utilize the cosine similarity to calculate the similarity between
samples (Kim, 2020). However, it is unreasonable to L2-normalize the similarity of each sample to
the prototypes, which makes it difficult to directly adopt these loss function as Ltask in our method.
Instead, we adopt these losses as Laux to take advantage of the deep metric learning and help the
model backbone acquire better feature representation.

5 DISCUSSION

Limitation. Our method utilizes the KNN classifier for classification, so we need to maintain the
similarity of each sample in the training set to the prototypes during inference. We also need to
calculate the distance between the input sample and each of the samples in the training dataset. This
is not desirable from the viewpoint of either memory efficiency or computational efficiency. The
computational cost of our method is O(ND), where N refers to the number of samples and D to the
number of channel dimensions. Although this cost is negligible when adopting the datasets used in
this paper, it might be problematic when scaling up to larger datasets. However, we believe these
problem can be solved by properly selecting the samples from the training set to be used during the
inference, which we leave to future work.

Our method also requires a sufficient number of training iterations to ensure the prototypes are close
enough to certain image patch features. Since most of the deep metric learning methods tend to
overfit the training dataset and degrade its accuracy the longer it is trained(Kim, 2021), we need
some trick such as regularization(Kim, 2021) or distillation(Park, 2019) from a well-generalizable
teacher in order to achieve high accuracy in the image retrieval settings with our method. Verifying
the effectiveness of such tricks is outside the scope of this paper and we leave it to future work.
Please note that the number of training iterations of our method is not higher than that of the other
variants of ProtoPNet. Moreover, the training time of our method (Resnet 50 on the CUB200-2011
dataset) is nearly four hours, which is almost the same as ProtoPool in our experimental settings
(one RTX3090 GPU).

Conclusion. In this paper, we proposed a method in which a KNN classifier is combined with
the ‘this looks like that’ framework. Extensive experiments on multiple open datasets showed that
the proposed method achieved competitive results with a state-of-the-art ProtoPNet variant, thus
demonstrating the effectiveness of utilizing similarity-based classifiers in the ‘this looks like that’
framework.
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A REVISITING PROTOPNET

In this section, we briefly revisit the origins of ProtoPNet and elaborate on why it cannot directly
utilize similarity-based classifiers.

ProtoPNet first transforms an input image xa into a feature map Za with its feature extractor F .
After the transformation, the similarity between the prototypes {pi}i=0,1,... and the image patch
features contained in the feature map Za are calculated. The maximum similarity value is defined as
the similarity of the input image xa to the prototypes, as

sa,i = max
z∈Za

Sim(z,pi). (15)

Here, we denote the similarity of the input image xa as sa and its component corresponding to
pi as sa,i. Sim is the function that calculates the similarity between the feature vectors and the
prototypes. Many functional forms have been proposed for Sim (Chen, 2019; Nauta, 2021; Wang,
2021; Donnelly, 2022), and in this study, we use cosine similarity. As stated in the main paper, the
inference is conducted on the basis of this similarity.

The training process of ProtoPNet is divided into two steps: (1) training the feature extractor and
the prototypes and (2) fine-tuning the classification layer. In the following, we mainly describe the
training of the feature extractor and the prototypes. In this step, the classification layer weights
are fixed by the predefined relationship between the class labels and prototypes, and the training is
conducted to minimize the loss function composed by classification loss, cluster loss, and separation
loss. Classification loss (typically, cross-entropy loss) is utilized to train the model so that it can
solve the classification task. Cluster loss is used to link the image patch features and the prototypes
within the same class, and the separation loss is vice versa. In ProtoPNet, the cluster loss and the
separation loss are defined as

Lclst =
1

|B|
∑
a∈B

min
i∈Pya

+

min
z∈Za

D(z,pi), Lsep = − 1

|B|
∑
a∈B

min
i∈Pya

−

min
z∈Za

D(z,pi). (16)

Here, we denote the function that calculates the (Euclidean) distances between the image patch
features z and the prototype p as D(z,p). We also denote the index sets of the prototypes belonging
to the class label ya as Pya

+ and vice versa as Pya

− . As explained above, ProtoPNet needs to define
which prototype contributes to which class logits, and this definition enables each of the prototypes
to represent useful image features for recognizing the class labels. This definition is also utilized
in calculating the cluster loss. However, in the training for the similarity-based classifiers, this
predefined relationship can no longer be used. Thus, ProtoPNet cannot directly utilize a similarity-
based classifier for its final classifier. To address this problem, our proposed training process features
a novel loss function that replaces the cluster loss in ProtoPNet (as described in Sec. 2.2.3).

After the training, each prototype is projected onto the nearest image patch features in the training
set. This makes the prototypes transparent and enables us to interpret their meanings. Thus, the case-
based interpretability is achieved by classifying samples based on the similarity of the input samples
to the prototypes. Note that the interpretability of the classification layer is the only requirement for
achieving case-based interpretability.

B DIFFERENTIABILITY OF PROPOSED CLUSTER LOSS

When calculating the cluster loss, we use the argmax function when sampling the prototypes (Eq.
2) to strictly set the affiliation of the prototypes that should not be included to zero. Therefore, the
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affiliation of the prototypes to each class P (y, pi) is not differentiable with respect to the model pa-
rameter. In addition, since it consumes a lot of memory to obtain the gradient through the Sinkhorn-
Knopp algorithm with the automatic differentiation, we treat T y∗

a,i as the constant and use the gradient
through Ĉa,i to train the model parameters. These problems for obtaining the gradients of T y∗

a,i with
respect to the model parameters can be solved by replacing the argmax function with softmax and
providing the explicit derivative of the Sinkhorn-Knopp algorithm (Eisenberger, 2022). Validating
these solution is outside the scope of this paper and is left for future work.

C IMPLEMENTATION DETAILS

We conducted our experiments based on the implementation of Roth (2020) and used VGG16,
VGG19, Resnet34, Resnet50, Resnet152, Densenet121, and Densenet161 for our model backbone
in this paper. Following previous works (Nauta, 2021; Donnelly, 2022; Rymarczyk, 2022), we uti-
lized the models pretrained on i-Naturerist 2017 when conducting experiments on CUB200-2011
and using ResNet50 for the model backbone. We also used the models pretrained on ImageNet for
the other experimental settings. The size of the input images was transformed into 224×224, so the
resolution of the feature map output from the model backbone was 7×7. Following previous studies
(Rymarczyk, 2022; Nauta, 2021), we reduced the number of channels in the feature map to 128 for
the experiments on Stanford Cars and to 256 for the other datasets by applying a 1×1 convolutional
layer. After the channel reduction, we calculated the similarity between the prototypes and the im-
age patch features contained in the feature map, and the maximum values of the similarity among
the feature map were output as the similarities of the input samples to the prototypes. These sim-
ilarities were then used to calculate Ltask during the training and to retrieve KNN samples during
the inference. We also applied Global Average Pooling (GAP) and a linear layer to the feature map
output by the model backbone and obtained the feature vectors, where the number of feature vector
channels was set to the same as that of the prototypes. Note that these feature vectors were not used
during the inference, though we did use them during the training to calculate Laux. When cropped
images were used, we followed previous work (Rymarczyk, 2022) and set the number of prototypes
to 195 for Stanford Cars and to 202 for CUB200-2011. We also set the number of prototypes to 512
on all datasets when we used the full images.

During the training, we used the Adam optimizer and set the learning rate to 1e-5 for the model
backbone and to 1e-3 for the other layers. For data augmentation, we used RandomPerspective,
ColorJitter, RandomHorizontalFlip, RandomAffine, and RandomCrop following ProtoTree (Nauta,
2021). When testing with cropped images, we simply resized them to 224×224, and when using
full images, we added RandomResizedCrop and set the minimum scale parameter to 0.6 during the
training. We also resized the short side of the images to 256 and then cropped the center to resize
them to 224×224 when testing with the full images. Further, to reduce the complexity during train-
ing, we first initialized the prototypes so that they were uniformly placed on the hyper-sphere and
fixed them (Mettes, 2019), which means they were updated only when we projected them onto cer-
tain image patch features in the training set after initialization. The number of epochs was set to 140,
140, and 60 for the experiments on Stanford Cars, CUB200-2011, and Stanford Dogs, respectively.
We constructed the minibatch so that it contained 56 classes and two images per class. When we
used DenseNet161 for our model backbone, due to limitations on the GPU memory, the minibatch
contained 42 classes and two images per class. Note that we report the average experimental results
with three different seeds in this paper.

D FURTHER EXPERIMENTAL RESULTS

In this section, we explain the experimental results we omitted from the main paper due to space
limitations.

D.1 ABLATION STUDY ON THE CLUSTER LOSS

In this subsection, we first describe the experimental settings of the ablation study on the proposed
cluster loss and then present the results. The difference of each setting here can be described as
the difference in how much the image patch features are linked to each of the prototypes, i.e., the
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difference in T y∗
a,i in Eq. 9 or Eq. 11. This is because the image patch features nearest to the

prototypes are linked to the prototypes in all of the settings. Table 6 summarizes the settings in the
ablation study that are relevant to the difference in T y∗

a,i , as described below.

First, ‘Just take the most similar’ is adopted for the baseline, which simply links the im-
age patches to the nearest prototypes. This setting is equivalent to setting T y∗

a,i to 1(i =

argminj (minz∈Za
∥z − pj∥)). In ‘+ Sampling’, the image patch features are linked to the pro-

totypes by using the estimated attribution of the prototypes to each class. Here, the attributions are
estimated on the basis of the similarity difference of each sample in the minibatch to the prototypes.
Specifically, we use the average of the sampling (Eq. 4) results within the samples that have the
same class labels. Thus, in the setting of ‘+ Sampling’, T y∗

a,i is defined as Ē(ya, pi)/
∑

j Ē(ya, pi)

by using Ē(y, pi) defined in Eq. 4. Here, we divide by
∑

j Ē(ya, pi) so that the cluster loss weight
added to each sample is the same. In ‘+ De-bias’, we use the de-biased attribution (Eq. 5) instead of
the average of the sampling results, i.e., we define T y∗

a,i as Ê(ya, pi)/
∑

j Ê(ya, pi), where Ê(y, pi)
is defined in Eq. 5. Next, in ‘+ Linear assignment’, we modify the attribution of the prototypes
to each sample to account for the absence of the prototypes due to differences in the object views.
Note that we modified the attribution by solving the linear assignment problem, so in the setting of
‘+ Linear assignment’, we define T y∗

a,i as in Eq. 10. Finally, in ‘ + Maximize the gap (full)’, we
redefine the cluster loss from Eq. 9 to Eq. 11. Note that the definition of T y∗

a,i is the same as in ‘+
Linear Assignment’.

The results of the ablation study are shown in Table 7. We adopted ResNet50 for the model backbone
and used the full images of CUB200-2011 in this experiment. As discussed in Sec. C, we fixed the
prototypes on the hypersphere and thus the accuracy does not vary among the experimental settings.
However, without debiasing, i.e., in the ‘Just take the most similar’ and ‘+ Sampling’ settings, image
patch features are linked to only a few of the prototypes by the cluster loss, and as a result, they are
not linked to the other prototypes and are not distributed over the hypersphere, which means the
prototypes after the projection are also not distributed on the hypersphere. This can be confirmed
by the fact that the variance of the prototypes on the hypersphere in these case is much smaller
compared to the other settings. Here, we defined the variance of the prototypes on the hypersphere
as

1−

∥∥∥∥∥ 1

|P|
∑
i∈P

pi

∥∥∥∥∥
2

. (17)

Since we initialized the prototypes so that their variance on the hypersphere would be maximized, the
small value of the variance observed here suggests the destruction of the original learned structures
by projecting the prototypes onto the image patch features.

We can see the accuracy is degraded when we adopted ‘+ Sampling’ and ‘+ De-bias’, which means
the inconsistency of attachment between the image patch features and the prototypes in these set-
tings. However, the accuracy is recovered while maintaining the variance high when we adopt ‘+
Linear assignment’, which confirms that the image patch features were properly linked to the pro-
totypes by modifying their attributions to account for the differences in object views by solving
the linear assignment problem. Finally, in ‘+ Maximize the gap (full)’, we can see that the vari-
ance further increased from that in ‘+ Linear assignment’. The reason for this increase may be that
maximizing the gap also acted as a separation loss and thereby led to the dispersal of image patch
features over the hypersphere. Our findings here demonstrate the effectiveness of each component
of the proposed cluster loss.

Table 6: Summary of experimental settings of ablation study on cluster loss.

T y∗
a,i

Just take the most similar 1(i = argminj (minz∈Za
)∥z − pj∥)

+ Sampling Ē(ya, pi)/
∑

j Ē(ya, pi)

+ Debias Ê(ya, pi)/
∑

j Ê(ya, pi)

+ Linear assignment argminTy
a,i

∑
a,i T

y
a,iCa,i +

1
λT

y
a,i log T

y
a,i

s.t.
∑

i T
y
a,i = 1(ya = y),

∑
a T

y
a,i = P (y,pi) ·

∑
b 1(yb = y)
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Table 7: Results of ablation study on cluster loss with CUB200-2011. We used ResNet50 for our
model backbone and Margin loss for Laux.

Top-1 Accuracy ↑ Variance of the prototypes ↑
k=1 k=3 k=5

Just take the most similar 87.0% 87.1% 87.3% 0.6624
+ Sampling 86.2% 86.6% 86.7% 0.6646

+ Debias 86.7% 87.0% 87.0% 0.7267
+ Linear assignment 86.9% 87.1% 87.2% 0.7211

+ Maximize the gap (full) 87.0% 87.1% 87.2% 0.7489

D.2 FURTHER EXAMPLES OF THE INTERPRETATION OF THE PROPOSED METHOD

Examples of the interpretation of our method are shown in Figs. 4 and 5. Here, in both figures, we
used randomly selected samples and negative classes.
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Figure 4: Examples of the interpretation of the proposed method. Red bounding boxes surround
the areas where the prototypes are activated the most.
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Figure 5: Examples of the interpretation of the proposed method. Red bounding boxes surround
the areas where the prototypes are activated the most.
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