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ABSTRACT

Multimodal Deep Learning enhances decision-making by integrating diverse infor-
mation sources, such as texts, images, audio, and videos. To develop trustworthy
multimodal approaches, it is essential to understand how uncertainty impacts these
models. We propose LUMA, a unique benchmark dataset, featuring audio, image,
and textual data from 50 classes, for learning from uncertain and multimodal data.
It extends the well-known CIFAR 10/100 dataset with audio samples extracted from
three audio corpora, and text data generated using the Gemma-7B Large Language
Model (LLM). The LUMA dataset enables the controlled injection of varying
types and degrees of uncertainty to achieve and tailor specific experiments and
benchmarking initiatives. LUMA is also available as a Python package including
the functions for generating multiple variants of the dataset with controlling the
diversity of the data, the amount of noise for each modality, and adding out-of-
distribution samples. A baseline pre-trained model is also provided alongside three
uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and
Reliable Conflictive Multi-View Learning. This comprehensive dataset and its
benchmarking tools are intended to promote and support the development, eval-
uation, and benchmarking of trustworthy and robust multimodal deep learning
approaches. We anticipate that the LUMA dataset will help the ICLR community
to design more trustworthy and robust machine learning approaches for safety
critical applications.

1 INTRODUCTION

In recent years, the use of Machine Learning and Deep Learning has surged across various fields, driv-
ing advancements in data analysis and decision-making. In domains such as healthcare, autonomous
driving, and finance, information is distributed across multiple modalities including audio, video,
text, and images. To better understand the data and improve decision-making capabilities, it is crucial
for deep learning models to integrate diverse, multimodal sources of information. Multimodal Deep
Learning (MDL) addresses this need and improves the capabilities of uni-modal networks (Bayoudh
et al., 2022; Krones et al., 2024; Xiao et al., 2020; Lee & Yoo, 2020).

Another important consideration for deploying deep learning models in safety critical fields is
trustworthiness. Traditional deep learning models are often overconfident in their predictions (Abdar
et al., 2021), which can lead to catastrophic results in areas such as healthcare or autonomous driving.
Although various techniques for uncertainty quantification have been proposed to measure the level
of uncertainty in data and model, this remains an open and challenging area. More research and
robust benchmarks are needed to advance the field of uncertainty quantification in deep learning
(Krishnan & Tickoo, 2020; Nado et al., 2021).

In probabilistic modeling, uncertainty is usually divided into aleatoric (data) and epistemic (model)
uncertainties (Kiureghian & Ditlevsen, 2009). Aleatoric uncertainty refers to the uncertainty in
the data due to inherent noise. It is impossible to reduce the amount of aleatoric uncertainty with
additional data (hence, it is also often called irreducible uncertainty). Epistemic uncertainty is the
uncertainty in model parameters, due to lack of data, hence, it can be reduced with additional data
samples. Epistemic uncertainty is also usually high for Out-of-distribution (OOD) data, and is
commonly used for OOD detection.
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Multimodal uncertainty quantification (MUQ) is a relatively new research area that adapts uncertainty
quantification approaches to multimodal deep learning problems, aiming to enhance the trustworthi-
ness of these models (Jung et al., 2022). Due to the unsupervised nature of uncertainty quantification,
where the exact extent of uncertainty in the data and the model is unknown, analyzing and bench-
marking proposed UQ methods is challenging. Current multimodal datasets used for benchmarking
state-of-the-art models in multimodal uncertainty quantification (Han et al., 2023; Jung et al., 2022;
2023; Liu et al., 2022; Xu et al., 2024) lack the ability to inject a controlled amount and various
types of uncertainties for each modality. This limitation hinders the comprehensive benchmarking of
MUQ techniques, which is essential for developing trustworthy and robust multimodal deep learning
approaches.

To address this challenge, we introduce LUMA (Learning from Uncertain and Multimodal dAta),
a multimodal dataset specifically designed for benchmarking multimodal learning algorithms on
uncertain data. The dataset includes 101,000 images, 135,096 audio recordings, and 62,875 text
passages, amounting to approximately 3 GB of data. Each modality is independently sourced,
reflecting real-world conditions where data is often collected under different conditions and times.
For example, in medical contexts, diagnostic data from different modalities such as radiography,
MRI, and ECG/EEG are gathered asynchronously, leading to modality-specific uncertainties. The
modalities are carefully aligned, ensuring that each text passage is related to the object in the
corresponding image, and each audio recording is the pronunciation of the object label in the image.
The provided Python toolkit allows the injection of aleatoric and epistemic uncertainties in a controlled
and parameterized way into each modality specifically.

To summarize, our contributions are as follows:

1. We propose LUMA1, a benchmarking dataset for learning from uncertain and multimodal
data. It includes audio, image, and textual modalities across 50 distinct classes. We compiled
the images from the CIFAR 10/100 dataset (Krizhevsky, 2009), extracted, validated, and
associated the corresponding audio samples from three diverse audio corpora, and generated
the related text modality utilizing Gemma-7B Instruct (Mesnard et al., 2024) Large Language
Model (LLM). We also performed additional bias analysis of the dataset. Each generated
version of the dataset consists of 600 data records per class (500 for training, and 100 for
testing) belonging to 42 classes, and 3,859 OOD data points, belonging to the remaining 8
classes.

2. We offer a Python package 1 that generates dataset samples with varying levels of noise and
uncertainty. The uncertainty generator can effectively increase aleatoric uncertainty in the
data and epistemic uncertainty in the model.

3. Finally, we provide baseline models including three different uncertainly quantification
methods (Monte-Carlo Dropout (Gal & Ghahramani, 2016), Deep Ensemble (Lakshmi-
narayanan et al., 2017), Reliable Conflictive Multi-View Learning (Xu et al., 2024)), to
serve as a starting point for benchmarking.

2 LIMITATIONS OF CURRENT DATASETS FOR MDL BENCHMARKING

In practice, we often don’t know the extent of inherent uncertainties in the data or how accurately
they represent the real-world data space. This often makes it hard to evaluate how well uncertainty
quantification algorithms work. Moreover, deep learning algorithms may behave differently under
different amount of uncertainties (i.e., the robustness to noise may vary). Thus, it may be beneficial
to inject additional amount of noise in the data, and observe the change in uncertainty metrics and the
performance of the models. Since approaches to quantify different types of uncertainty vary, it is
beneficial to have options for injecting various types of uncertainties.

Several datasets are used in multimodal uncertainty quantification settings. A notable line of work
(Han et al., 2023; Jung et al., 2022; 2023) has employed datasets such as HandWritten2, CUB3,

1https://osf.io/8ph6y/?view_only=8272969d8cd34c0b9459659fb4f41507 (Anonymized for the peer-review
process. Will be substituted with public links in case of acceptance.)

2https://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://www.vision.caltech.edu/visipedia/CUB-200.html

2

https://osf.io/8ph6y/?view_only=8272969d8cd34c0b9459659fb4f41507


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Scene154, and Caltech101 5. These datasets typically extract different features from unimodal sources
to create a multi-view setup. While they have been instrumental, they primarily repurpose unimodal
data for multimodal tasks, underscoring the need for more comprehensive and inherently multimodal
datasets to better evaluate uncertainty in deep learning models.

Furthermore, the current approaches that introduce uncertainty in the data (Han et al., 2023; Jung
et al., 2022; 2023) add Gaussian noise to the views or the extracted features. While Gaussian noise
does increase uncertainty, it does not accurately reflect the noise that can be found in real-world
datasets and this process lacks fine-grained control over the type of uncertainty being injected.

Additionally, how different modalities’ uncertainties interact significantly impacts the overall mul-
timodal uncertainty. When both modalities encode redundant information, the total uncertainty
might not decrease. Conversely, conflicting information can lead to increased uncertainty, while
complementary information can reduce it. A deeper understanding of these phenomena is crucial.
Fine-grained control over individual modalities’ uncertainties opens the way for more theoretical
research based on empirical observations.

To better understand and analyze uncertain multimodal data, as well as to debug and benchmark
uncertainty quantification techniques in the multimodal learning context, we propose a dataset
accompanied by an uncertainty generator package. This package includes various techniques for
injecting uncertainty, such as controlling data diversity, adding different types of real-world noise,
randomly switching labels to their closest class, and injecting out-of-distribution (OOD) data.

3 LUMA DATASET

In this section, we introduce LUMA, a dataset composed of an extensible list of modalities including
image, audio, and text modalities, collected from various sources.

3.1 IMAGE MODALITY

For the image modality, our priority was to choose a relatively simple yet well-known dataset, where
we could have the option to manually increase the degree of uncertainty. For that purpose, we chose
CIFAR-100 and CIFAR-10 (Krizhevsky, 2009) datasets since they are well-known datasets of small
32x32 images, with lots of baseline models. 42 classes were chosen so that after aligning with the
other modalities, we would have at least 600 samples in each class per modality. The 600 threshold
was selected based on the number of images per class in the CIFAR-100 dataset. We took another
8 classes, which had less than 600 samples after aligning with other modalities, as OOD samples.
In total, we took 25,200 images as train/test data, and 3,859 images as OOD data (see the image
collection pipeline in Figure 1).

Figure 1: Image collection pipeline

Aside from the main dataset, as described in Section 3.4, another priority was to understand the
behaviors of models under different levels of data diversity. To achieve this, we decided to sample
600 data points with different level of diversity from the bigger set CIFAR-10/100. However, in
CIFAR-100 dataset, there are no more than 600 samples per class. We alleviated this issue with

4https://serre-lab.clps.brown.edu/resource/hmdb-a-largehuman-motion-database
5https://data.caltech.edu/records/mzrjq-6wc02
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including images generated with EDM Diffusion-based generative model6(Karras et al., 2022). We
chose EDM-generated images, since the generated samples were already available, and Zheng et al.
(2024) showed that augmenting CIFAR-10 data with EDM-generated samples significantly improves
the classification accuracy.

3.2 AUDIO MODALITY

For audio modality, the diversity of accent in the pronunciation was an important factor to be
considered and we collected samples, where different people would pronounce the corresponding
class label. For this task, we used three audio/text parallel corpora, and extracted the desired audio
segments. More specifically, we used The Spoken Wikipedia (Köhn et al., 2016), LibriSpeech
(Panayotov et al., 2015), and Mozilla Common Voice (Ardila et al., 2020) corpora. The audio
collection pipeline is depicted in Figure 2.

Figure 2: Audio collection, extraction and validation pipeline

The Spoken Wikipedia is a collection of hundreds hours of phoneme-level aligned audio, where
volunteer readers are reading various Wikipedia articles. We used these alignments to extract all the
instances of audio segments that pronounced one of the CIFAR-10/100 classes.

The LibriSpeech dataset is a corpus of 1,000 hours of English speech, derived from audiobooks from
the LibriVox7 project, which is a collection of public domain audiobooks. Unfortunately, LibriSpeech
doesn’t provide word-level alignment, hence, we used force-aligned alignments8 generated with the
Montreal Forced Aligner (McAuliffe et al., 2017). Similarly to The Spoken Wikipedia, we looked
up the CIFAR-10/100 labels in forced aligned textual data, and extracted the corresponding audio
segments.

The Mozilla Common Voice corpora, is a crowdsourced open-source collection of voices by volunteer
contributors from around the world. Like LibriSpeech, Mozilla Common Voice also doesn’t provide
word-level alignments, hence, we again used forced aligned alignments9, and extracted the relevant
audio samples.

73 additional recordings of pronunciations belonging to 4 classes ("roses", "telephone", "whale",
"wolf") were voluntarily contributed by our colleagues, which were anonymized, trimmed, and added
to the dataset.

From these corpora, we used the following rule to extract the samples. First, we extended our class
label set with a superset that also contains the plural forms of the words (i.e., for the audio track
“horse”, the audio track “horses” was added to the set), then we iterated over all aligned transcripts, and
for any word included in the formed set, we extracted the corresponding audio sample. We considered
the plural forms, since we believe that an extra "s" or "es" does not change the pronunciation of the
words much. We did not consider the plural forms if it requires audible changes to the word root (i.e.,
mouse - mice). The extraction algorithm can be found in Appendix B.2.2.

6Retrieved generated samples from https://github.com/wzekai99/DM-Improves-AT
7https://librivox.org/
8https://github.com/CorentinJ/librispeech-alignments
9https://github.com/JRMeyer/common-voice-forced-alignments
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Since most of the audio data is collected from forced alignments, it is possible to have misaligned
audio segments, which could introduce additional noise to the dataset. Moreover, since part of the
audio samples are from voluntary contributions, there can be very noisy samples, which are hard to
interpret, or audio samples with a strong accent, which again can be hard to interpret. To remove
such extreme cases in audio samples, we performed an automatic validation of the samples. Then, we
filtered out the false negatives with manual validation for the negative predictions.

The automatic validation was achieved with the OpenAI’s Whisper Large V3 model (Radford et al.,
2023) for audio transcription, and transcribed the extracted audio samples. If the transcription
corresponded to the class label (or its plural form), then we considered the sample as valid. Otherwise,
the sample was sent for manual validation. Because of the huge output space of the Whisper Large
V3 model, the probability of false positives is quite low, so we did not perform a manual validation
for positive predictions. To summarize, we validated 130,069 out of 178,123 data samples with
automatic validation, and we performed a manual validation for the remaining samples.

For manual validation, we decided to check only the classes, which did not have more than 800
samples (to be able to sample 600 samples with different degrees of diversity, as described in Section
3.4). Hence, we filtered 8,372 samples, and scheduled them for manual labeling. We opted for Label
Studio (Tkachenko et al., 2020-2022) to build the labeling interface (see Appendix B.2.2 for the
annotation interface). The interface provided the audio sample, with the prompt "Is the audio saying
the word below? (An extra ’s’ or ’es’ in the pronunciation is okay.)" and answer options of "Yes" or
"No". We asked our colleagues (M.Sc. and PhD Students, and Professors) with advanced to fluent
English knowledge to annotate the samples.

In total, we collected 2 annotations per sample, from 17 annotators. We got 71.61% of annotation
agreement, and accepted 5,027 samples, where both annotators confirmed the validity of the sample.
Hence, we took the 42 classes that had more than 600 validated samples (automatically and manually)
as training/test data, and we took the remaining 8 classes as OOD data. In total, the auto-validated
and manually validated audio samples combined, LUMA has 135,096 audio samples. The final
distribution of audio data across classes can be seen in the Appendix B.2.2.

3.3 TEXT MODALITY

For text modality, the main constraint was that the text segments had to talk about the subject of the
images. For that, we decided to employ a generative model, and generate text segments about the
class label. We utilized Google’s Gemma-7B Instruct model (Mesnard et al., 2024) to generate more
than 1,200 texts samples per class, using 13 different prompts. Here is an example of a prompts used
for generation (please find the full list of prompts in Appendix B.3).� �
"You are explaining a five year old child what the word <word>

means. Use very simple and explanatory language, so the kid
will understand the meaning of the word <word>. Tone: Casual,
complexity: simple"� �

Gemma-7B Instruct was chosen, since according to their technical report (Mesnard et al., 2024), it
outperforms other open LLMs with similar size, in 11 out of 18 tasks. Moreover, in our experiments,
it provided better answers to our prompts compared with Mistral-7B (Jiang et al., 2023).

To validate that the generated texts accurately represent the labels, we masked all label occurrences in
the text and fed the masked text back into the Gemma-7B Instruct model, asking it to classify the text
into one of the labels (see the prompt in the Appendix B.3). Based on the prediction of the model,
if the prediction matched the ground truth label, we accepted the sample as validated. In total, we
accepted 55,953 text samples.

After manually analyzing some of the generated texts, we noticed that there were samples with
offensive biases and stereotypes (some examples are included in the Appendix B.3). Particularly, we
noticed a lots of gender bias for classes "man", "woman", "boy" and "girl". To find the proportion
of the biased data, we asked the Gemma model to find out if the given text contains gender, racial,
religious, or cultural biases. We found out, that indeed, the aforementioned 4 classes have a huge
amount of gender bias (see the bias detection statistics in Appendix B.3). Our hypothesis is, that
describing a man or woman in an unbiased way is a challenging task for LLM models (as well as for
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Figure 3: Text generation and validation pipeline

Figure 4: t-SNE (van der Maaten & Hinton, 2008) visualization of audio data points from class "man"
(in gray), and sampled points with different diversity parameter k. The higher is the value of k, the
more concentrated (less diverse) the points are.

humans), which are trained on unbalanced data (Kotek et al., 2023). For that purpose, we reconstruct
the prompts (see in Appendix B.3), to explicitly provide topics and keywords with occupations, which
will minimize the bias. We then rerun the bias detection prompt, which found fewer biased samples
and allowed us to filter enough samples to be included in the final dataset. Since textual data was
generated using an LLM, we recognize that the dataset may contain factual inaccuracies, or biases,
but our aim is to offer a benchmark to study uncertainty quantification in multimodal classification
settings. LUMA shall not be used as a source of knowledge or information.

3.4 DATASET COMPILATION

Based on the collected samples from the 3 modalities (image, text, audio), we wanted to compile a
dataset with little uncertainties, and later, provide tool to inject uncertainties on demand. Our priority
was to propose several options for uncertainty control and parameter setting: data diversity, sample
noise, label noise, OOD injection.

Data Diversity: With a fixed number of data points, increasing the diversity of the data enhances
the information passed to the model, thereby it shall reduce the epistemic uncertainty. Conversely,
when samples are concentrated at a single point in the latent space, they encode less information,
which shall lead to greater epistemic uncertainty in areas where data is scarce (Figure 5). Hence,
controlling the diversity of the data allows us to study the behavior of epistemic uncertainties under
varying amounts of information.

To control the diversity, we extract deep features from each modality (Wav2Vec (Baevski et al., 2020)
for audio, BERT (Devlin et al., 2019b) for text and VGG-11 (Simonyan & Zisserman, 2015) for
images (see Figure 6 for t-SNE visualizations of said features), and compute the inverse distance of
each sample to the center (mean vector) of its class, raised to the power of k:

Di =
1∥∥∥Fi − 1

|C|
∑

j∈C Fj

∥∥∥k
2

, i ∈ C, (1)
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Figure 5: t-SNE (van der Maaten & Hinton, 2008) visualization of audio data points for all classes,
sampled with different diversity parameter k. With higher k we have more concentrated samples, and
more separation between classes. The diversity can similarly be controlled for the other modalities.

Figure 6: t-SNE (van der Maaten & Hinton, 2008) visualization of image, text and audio data points
for all classes.

where F represents the deep feature vectors extracted from the samples, C is the set of data indices
belonging to the class, and | · | measures the cardinality of the set. Then, having the inverse distances,
we sample points from categorical distribution xn ∼ Categorical(D). In Eq. 1, k is the variable
controlling the diversity. If k = 0 the sampling is uniform. The bigger k, the higher probability of
selection will be applied to the samples closer to the center.

Having sufficient samples in image and text modalities, our bottleneck was the number of samples in
the audio modality. Since in the 42 in-distribution classes, around 70% have more than 900 audio
samples, we considered this enough for diversity control.

Sample Noise: We want to have an option to inject controlled amount of noise in the data. This
may reduce the information in each data sample, and increase the classification difficulty. With our
hypothesis, this may affect both epistemic and aleatoric uncertainty degrees. This type of noise can
also be very beneficial for estimating the model robustness to noise. We apply different types of noise
to each modality.

For audio modality, we added background noise from ESC-50 dataset (Piczak, 2015) to each sample,
using the audiomentations10 library. The amount of the minimum and maximum signal-to-noise
ratio, as well as the proportion of the noisy data is set as a hyper-parameter.

For text modality, we utilize the nlpaug (Ma, 2019) library, to add different types of noise. The
user has option to choose a subset of noise types from: 1) Keyboard noise that simulates keyboard
distance error; 2) OCR noise that simulates OCR engine noise; 3) Random character noise to insert,
substitute, or delete random characters; 4) Antonym noise to swap random words with their antonyms;
5) Random word noise to insert, substitute, or delete random words; 6) Spelling noise to add spelling
mistakes according to spelling mistake dictionary; and 7) Back-translation noise to translate the text
to another language, and then translate back to English. The parameters of these noise types can be
specified by the user, and are transferred to the nlpaug library for adding the specific type of noise.

10https://github.com/iver56/audiomentations
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For image modality, we added different types of noise suggested and implemented by Hendrycks
& Dietterich (2018). 15 perturbations are included such as: adding Gaussian noise, shot noise,
impulse noise, defocus blur, frosted glass blur, motion blur, zoom blur, snow, frost, fog, changing the
brightness, contrast, elasticity, pixelating, and JPEG compressing.

Label Noise: Another way to insert aleatoric uncertainty is to add label noise in the data (i.e.,
randomly switch the labels of some samples). Since the uncertainty induced by this type of noise
cannot be reduced with additional amount of data, this noise shall increase the aleatoric uncertainty
of the model. To insert this type of noise, we choose samples at random (according to a probability
defined by the user), then, based on their deep features (Wav2Vec (Baevski et al., 2020) for audio,
BERT (Devlin et al., 2019b) for text and VGG-11 (Simonyan & Zisserman, 2015) for images), we
find the average distance to the 5 nearest points from each class, and assign the label of the class that
has the closest mean distance.

OOD Injection: Ideally, the models shall be uncertain on data points from unknown distribution (i.e.,
distribution they haven’t been trained on). In the literature, often the OOD samples are taken from
another dataset, which can simplify the problem, because such samples are far from the training data.
For this matter, we kept a separate set of samples from the same dataset, but belonging to classes that
are not present in the training data, as OOD samples.

4 BASELINE MODELS WITH UNCERTAINTY QUANTIFICATION

4.1 BASELINE MODELS

We develop baseline models with three different uncertainty quantification algorithms, to serve as a
starting point for other research and benchmarking initiatives. For the sake of simplicity, we choose
late or decision fusion approaches, where we have classification networks for each modality, and then
fuse their decision by simple averaging the output logits. These baselines were selected to instantiate
unimodal and multimodal architectures, which can be trained on the dataset and are not intended to
serve as a comprehensive benchmark, nor did we endeavor to achieve the best possible performance.

For the image modality, we used a simple convolutional neural network, as depicted in Figure 7.
For the audio modality, we extracted 128x128 mel-spectrograms from padded audio samples, and
used a convolutional network for classification, as depicted in Figure 1. For the text modality, we
extracted the BERT (Devlin et al., 2019a) embeddings for each token, and averaged them out, so
that we have one embedding per text passage. Then, we passed the embedding through a simple
feed-forward neural network (Figure 7) to get the predictions. As depicted in Figure 7, each model
includes two output heads: one for the prediction and the other for aleatoric uncertainty, following
the methodology outlined by Valdenegro-Toro & Mori (2022). Then, to combine the aforementioned
unimodal networks into a multimodal architecture, we adopted the late fusion approach. In the Monte
Carlo Dropout and Deep Ensemble methods, we obtained the multimodal prediction by averaging
the logits from the final layers of the classifiers. For the RCML, we modified the output of the last
layer in each network to produce evidence, as described in (Xu et al., 2024), and followed their
methodology for combining the evidence.

The dropout probability is 0.3, with the deep ensemble comprising 10 networks. Networks were
trained for up to 300 epochs, with early stopping after 10 epochs of no validation loss improvement.

4.2 UNCERTAINTY METRICS

For uncertainty quantification, we implemented 3 approaches: Monte Carlo Dropout (MCD) (Gal
& Ghahramani, 2016), Deep Ensemble (DE) (Lakshminarayanan et al., 2017), Reliable Conflictive
Multi-View Learning (RCML) (Xu et al., 2024). In Monte Carlo Dropout and Deep Ensembles,
we use the aleatoric entropy and the epistemic entropy as as uncertainties measures HAle (y | x) =
entropy (pAle (y | x)) and HEpi(y | x) = entropy (pEpi(y | x)), where pEpi and pAle are the
probabilities obtained according to (Valdenegro-Toro & Mori, 2022). In RCML, we measure the
aleatoric uncertainty with the expected entropy such as:

Ep(π|x,θ̂)[H[P (y | π)]] = −
K∑

k=1

αk

α0
(ψ (αk + 1)− ψ (α0 + 1)) , (2)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

conv 1
3x3image

32x32

M
ax 

Pooling

D
ropout

conv 1
3x3

M
ax 

Pooling

D
ropout

Flatten

3 x 32 x 32 32 x 30 x 30

Prediction

Aleatoric
Uncertainty32 x 15 x 15 64 x 13 x 13 64 x 6 x 6

2304 x 1

audio
spectrogram

128x128

1 x 128 x 128

conv 1
5x5

M
ax 

Pooling

D
ropout

conv 1
3x3

M
ax 

Pooling

D
ropout

Flatten

32 x 124 x 124

Prediction

Aleatoric
Uncertainty32 x 62 x 62 64 x 60 x 60 64 x 30 x 30

12544 x 1

conv 1
3x3

M
ax 

Pooling

D
ropout

64 x 28 x 28 64 x 14 x 14
Text BER

T Em
bedding

Prediction

Aleatoric
Uncertainty

1 x 768 1 x 512 1 x 256

Fully C
onnected

D
ropout

Fully C
onnected

D
ropout

Figure 7: The classification network for the text modality.

where αk is the k-th concentration parameter of the Dirichlet distribution, and α0 is the sum of all
concentration parameters. ψ is the digamma function. As a measure for epistemic uncertainty, we
take N

α0
, where N is the number of classes. We evaluate the measures of accuracy and uncertainty of

the models on the clean dataset, the dataset with reduced diversity (↘ Diversity), the dataset with
increased sample noise (↘ Sample Noise), and the dataset with switched label↗ Label Noise).

4.3 RESULTS

The results are summarized in Tables 1. (For noise generation parameters, please refer to the Appendix
C.1). Since in RCML the uncertainty is quantified differently compared with MCD and DE, we
cannot directly compare their values, and relative changes to the two type of uncertainty compared to
the clean dataset is reported in the table. We observe that accuracy always decreases with increasing
the label noise, but reducing diversity and increasing sample noise may not always decrease accuracy
in the image modality.

Table 1: Results for UQ with baseline models. The absolute values are reported for clean dataset, and
changes in percentages relative to clean dataset are reported for the noisy versions of LUMA dataset.

Method Clean ↘ Diversity ↗ Label Noise ↗ Sample Noise

Ale. Epi. Ale. Epi. Ale. Epi. Ale. Epi.

MCD Image 1.00 1.03 -15.73% -11.66% +59.20% +54.51% +4.44% +2.18%
MCD Audio 0.52 0.70 -5.54% +2.16% +96.63% +54.49% +23.12% +14.40%

MCD Text 0.37 1.01 -3.91% -2.62% +93.59% +2.41% +64.96% -2.03%
MCD Multi. 0.26 0.78 -8.52% -1.21% +122.44% +11.60% +59.14% +9.89%

DE Image 1.45 1.40 -37.49% -8.54% -7.43% +0.24% -18.46% -3.22%
DE Audio 0.56 0.99 -27.39% -3.34% +156.40% +50.43% +70.26% +34.41%

DE Text 0.42 1.01 +5.02% -6.15% +81.26% -0.51% +62.24% -7.11%
DE Multi. 0.31 0.82 -22.80% -3.40% +115.15% +20.62% +45.97% +5.54%

RCML Multi. 1.99 0.43 +8.34% +16.16% +64.72% +106.16% +36.19% +58.21%

Table 2: OOD Detection AUC Values for Different Methods

Method MCD DE RCML Multi.
Image Audio Text Multi. Image Audio Text Multi.

AUC 0.54 0.47 0.53 0.50 0.54 0.49 0.54 0.50 0.91
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Figure 8: Changes in uncertainty estimations under different proportions of label noise (in percent-
ages). The RCML (Reliable Conflictive Multi-View Averaging) approach consistently increases both
aleatoric and epistemic uncertainties with increased label noise. In contrast, the MCD (Monte Carlo
Dropout) and DE (Deep Ensemble) models sometimes fail to increase the corresponding uncertainty
estimations in this experiment.

As we can observe in the table, in most cases, adding label and sample noises effectively increases
the epistemic and aleatoric uncertainties. Interestingly, in most MCD and DE models, the uncertainty
decreases when they are trained on data with lower diversity. This may indicate that these approaches
fail to recognize data points outside their training distribution, which we will further investigate with
the OOD detection task.

We evaluate AUC score for OOD detection by the networks based on the epistemic uncertainty. The
results are summarized in Table 2. We can see that Monte Carlo Dropout and Deep Ensembles fail
to provide epistemic uncertainty values suitable for OOD detection in LUMA dataset, with a poor
performance of approximately 0.5 AUC value. On the other hand, the RCML achieves an outstanding
AUC score of 0.91, indicating that the epistemic uncertainty values quantified with this method can
be effectively used for OOD detection.

To further evaluate the qualities of the uncertainties of the different models, we estimate the epis-
temic and aleatoric uncertainties under different amounts of label noise. Ideally, we expect a good
uncertainty quantification algorithm to provide higher uncertainty values for more noisy data. As we
can see from Figure 8, only RCML consitently raises the uncertainty estimates under increased label
noise, which again shows the higher quality of its uncertainty estimates over the other baselines.

In conclusion, the performance of Monte Carlo Dropout and Deep Ensembles indicates a limitation
in their suitability for OOD detection in LUMA dataset. This suggests new avenues for further
exploratory research to leverage uncertainty estimation for robust detection of out-of-distribution sam-
ples. Furthermore, the observed disparities highlight the necessity for a comprehensive benchmarking
effort on LUMA dataset, encompassing a broader array of state-of-the-art methodologies.

5 CONCLUSION

In this paper, we propose LUMA, a new multimodal dataset for learning from uncertain and multi-
modal data and benchmarking. It includes image, audio and text modalities and a Python package for
compiling different versions of the dataset with various amounts and types of uncertainty and noise.

The dataset can be easily extended with additional modalities and augmented with more data samples.
The open-source nature of the data compilation pipeline and code for uncertainty and noise generation
facilitates the integration of new contributions from the community to promote multimodal uncertainty
studies and benchmarking initiatives.
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APPENDICES

A DATASET LINKS AND LICENSES

In this section we present the dataset links and licenses for the LUMA dataset.

• LUMA Dataset link11:
https://osf.io/8ph6y/?view_only=8272969d8cd34c0b9459659fb4f41507

• LUMA Dataset DOI: Not included to keep double blind nature of the peer-review. Will be
added in the camera-ready version in case of acceptance.

• LUMA Python package and baseline code:
https://osf.io/8ph6y/?view_only=8272969d8cd34c0b9459659fb4f41507

• LUMA Dataset license: CC BY-SA 4.0

• LUMA Code license: GPL-3.0

B DETAILS ABOUT DATA COLLECTION

B.1 IMAGE MODALITY

B.1.1 LICENSES OF THE SOURCE DATASETS

As mentioned in Section 3.2 of the main paper, we use the CIFAR-100 and CIFAR-10 (Krizhevsky,
2009) datasets and EDM (Karras et al., 2022) generated images from the same distribution for the
image modality.

Unfortunately, we failed to find an explicit license for the CIFAR-10/100 datasets, hence, we did not
include the images in our dataset repository, and instead, allow the users to download them directly
using the provided LUMA dataset compilation and uncertainty generation tool.

The EDM Generated images retrieved from https://huggingface.co/datasets/P2333/DM-Improves-AT
are published under the Apache-2.0 license.

B.2 AUDIO MODALITY

In this section, we will present some additional information regarding data collection process of audio
modality.

B.2.1 LICENSES OF THE SOURCE DATASETS

As mentioned in Section 3.2 of the main paper, we collected audio data from 3 sources: The Spoken
Wikipedia (Köhn et al., 2016), LibriSpeech (Panayotov et al., 2015), and Mozilla Common Voice
(Ardila et al., 2020) corpora.

The Spoken Wikipedia dataset is published under the CC BY-SA 4.0 license. Following the
requirements of this license, we also distribute our dataset under the same license. The audio samples
extracted from this dataset are located in the sw_audio directory in LUMA dataset.

The LibriSpeech dataset is published under the CC BY 4.0 license. The audio samples extracted
from this dataset are located in the ls_audio directory in LUMA dataset.

The Mozilla Common Voice dataset is published under the CC0 (public domain) license. The audio
samples extracted from this dataset are located in the cv_audio directory in LUMA dataset.

B.2.2 AUDIO EXTRACTION AND VALIDATION

To extract the audio pronunciation of each word as described in Section 3.2, we follow the Algorithm
1. First, the algorithm iterates through all the words in the transcripts. If a word matches one of the

11The dataset and code links are anonymized for the peer-review process. They will be substituted with public
links in case of acceptance.
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labels or their plural forms, it is added to the extraction_words list (Lines 3-10), along with its
corresponding time steps and audio path. Next, the algorithm processes each word in this list, using
the extract_audio function to extract the relevant audio segments. These segments are then
added to the extracted_audios list, which is returned as output of the algorithm (Lines 11-17).

Algorithm 1 Audio Extraction Algorithm

1: Input: labels← list of the CIFAR-100/10 labels
2: Input: transcripts_paths← list of (transcript, audio_path) tuples
3: extraction_words← empty list
4: for transcript, audio_path in transcripts_paths do
5: for word in transcript do
6: if word in labels or word + ’s’ in labels or word + ’es’ in labels then
7: extraction_words.append((word, transcript[word].start_time, transcript[word].end_time,

audio_path))
8: end if
9: end for

10: end for
11: extracted_audios← list
12: for entry in extraction_words do
13: word, start_time, end_time, path← entry
14: audio_segment← extract_audio(path, start_time, end_time)
15: extracted_audios.append(audio_segment)
16: end for
17: return extracted_audios

Then, we perform automatic validation with the OpenAI’s Whisper Large V3 model (Radford et al.,
2023), and on the subset of the negative predictions of the model we perform a manual validation. For
the manual validation, we have collected manual annotations thanks to the efforts of our volunteering
colleagues and friends. To build the annotation interface, we opted for the Label Studio (Tkachenko
et al., 2020-2022), an open-source data labeling platform. You can see the screenshot of the annotation
interface in Figure 9. In total, we collected 16,744 manual annotations from 17 human annotators
over a period of 2 months. Each sample was annotated by 2 annotators, and only annotations with
100% agreement were accepted.

After automatic and manual validation, we have 135,096 audio samples with the class distribution
shown in Figure 10.

Figure 9: The labeling interface using Label Studio
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Figure 10: Number of validated audio samples per class. We will include the classes with higher than
600 samples as in-distribution data, and others as out-of-distribution data.

B.3 TEXT MODALITY

For the text modality, as described in the Section 3.3, we employed Google’s Gemma-7B Instruct
model (Mesnard et al., 2024) to generate more than 1,200 text samples per class, using 13 different
prompts. The 13 prompts are as follows:� �
"You are talking with your friend about some topic. Use the word <

word> in a sentence with your friend. Use casual language.
Tone: Casual / Conversational, length: short",

"You are the prime minister of the United Kingdom. During a press
conference you are asked a question about <word>. Give a
sentence from that press conference mentioning the word <word>.
Tone: Formal, length: medium",

"You are explaining a five year old child what the word <word>
means. Use very simple and explanatory language, so the kid
will understand the meaning of the word <word>. Tone: Casual,
complexity: simple",

"Imagine you are writing a science fiction book. Write a
conversation from that book mentioning the <word>.",

"You are the editor in a mainstream journal. Write a sentence from
a news article about a <word> in your journal that mentions

the word <word>.",
"You are a teenager writing a post in Facebook about <word>. Write

the post about the experience you had with the <word>.",
"You are playing a word describing game with your friend. The word

is <word>, and you shall describe it without mentioning the
word itself, so your friend will guess it. Explain it to him
clearly in a simple language.",

"Think of something else that shares similar characteristics or
functions with the <word>. Draw comparisons or use analogies
between that other word and the <word>.",

"Place the word <word> within historical context. How would you
describe it in relation to its origins, evolution, or
significant historical events? Be creative in your description
.",
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"Consider how the word ’<word>’ is depicted or referenced in
popular culture, literature, or media. Describe it by
referencing these cultural elements.",

"Pretend you are a character who sees a <word> for the first time
in your life. Describe it from the character’s perspective,
considering their background, personality, and knowledge.",

"Write a 4 line small poem about the word <word>. Be creative, and
use casual tone for the poem.",

"You are a musician composing a song inspired by <word>. Write the
lyrics to the song, capturing the mood, emotions, and imagery
associated with <word>. Use rhythm and melody to convey the

essence of <word> in your music."� �
The <word> was replaced with the class labels. After generating the text data, to check if the
generated text has any bias or stereotype, we again used the Gemma-7B Instruct model with the
following prompt:� �
Your job is to identify biases in texts. You will be given a text,

and you need to classify it into one of: [gender_bias,
cultural_bias, racial_bias, religous_bias, no_bias].

Give the output in JSON format: {{"bias_type": <predicted bias tpe
>}}. DO NOT WRITE ANYTHING ELSE. \n\n The text is: <text>� �

The <text> was replaced with the text that needed to be checked. The number of biased and
unbiased texts in each class according to Gemma model can be found in Figure 11. As we can see, the
labels man, woman, boy, and girl have high amount of biased texts. Some examples of identified
biased texts are:� �
A woman is a grown-up person who has a soft, nurturing personality

. She usually takes care of her family and friends, and
sometimes works outside the home. Women are strong and smart,
they can do many things that men can do.

Man, a force of might,
A guardian, protector, and light.
With strength and wisdom, they stand tall,
Strong and proud, answering the call.

A tool in a toolbox is an efficient and valuable asset that aids
in various tasks. Similarly, a man is also a valuable asset to
any group or society. Just like a tool in a toolbox, a man’s

capabilities are tailored to fulfill different roles and
functions, making him an essential component of any endeavor.� �

To alleviate this issue, for the labels of man, woman, boy and girl, we reconstructed the prompts
for text generation. The prompt used is the following:� �
Write two sentences with topic: <topic>, and keywords: <keyword1>,

<keyword2>.� �
where <topic> was replaced with one of the following words: ‘factual’, ‘fiction’,
‘history’, ‘books’, ‘movies’, ‘philosophical’, and <keyword1> with one of
the following words: ‘man’, ‘woman’, ‘boy’, ‘girl’. <keyword2> was treated dif-
ferently depending on the label: For the term ‘man’, it was replaced with one of the following
words:� �
actor, king, scientist, doctor, wizard, duke, lord, governor,

prime minister, father, sorcerer, waiter, chess, director,
producer, uncle, singer� �
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Figure 11: The amount of texts with different biases according to Gemma-7B Instruct model.
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Figure 12: The amount of texts with different biases according to Gemma-7B Instruct model, after
reconstructing the prompts for these 4 labels. Although there is still high amount of bias, we can filter
them out and still have enough unbiased texts (more than 800 text passages per class).
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For the term woman, it was replaced with one of the following words:� �
actress, queen, scientist, doctor, witch, duchess, lady, governor,

prime minister, mother, sorcerer, waitress, chess, director,
producer, aunt, singer� �

For the term boy, it was replaced with one of the following words:� �
kid, actor, prince, son, nephew, pupil, student, singer� �
And for the term girl, it was replaced with one of the following words:� �
kid, actress, princess, daughter, niece, pupil, student, singer� �
We then performed another round of bias detection using the Gemma model. While we found that a
significant amount of bias still exists, we identified enough unbiased texts (according to the Gemma
model) to include in the LUMA dataset. The number of biased and unbiased texts after re-generating
the data for these 4 classes can be found in Figure 12.

To validate that the generated text passages could be correctly classified, we fed them back into the
Gemma model using the following prompt:� �
In the text: "<text>", you need to understand what is the <

masked_word> or find out what is the whole text about.
You need to classify the text into one of these classes: "<classes

>"
give the output in JSON format: {{"class": <predicted class (1

word from the list)>}}. DO NOT WRITE ANYTHING ELSE.� �
were the <text> was replaced with the text that needed to be verified, and the <classes> was
replaced with the possible classes.

C DETAILS ABOUT BASELINE ARCHITECTURES AND DATASETS

Parameter Clean Dataset Reduced Diversity Increased Label Noise Increased Sample Noise
Compactness 0 20 0 0
Sample Noise False False False True
Label Switch Prob. 0 0 0.3 0
Noisy Data Ratio 0.0 0.0 0.0 1
Audio Noise SNR None None None 3-5

Image Noise None None None

Gaussian Noise: 4,
Shot Noise: 4,
Impulse Noise: 4,
Defocus Blur: 4,
Frosted Glass Blur: 4,
... (additional noises
summarized)

Text Noise None None None

KeyboardNoise: 1-5 char,
3-8 word,
BackTranslation,
Spelling: 0.4,
OCR: 0.5 word

Table 3: The parameters for generating the different versions of the dataset for experiments with the
baseline models.
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C.1 DATASET GENERATION

We compiled one clean version and three noisy versions of the dataset, each with a specific type
of noise: reduced diversity, increased label noise, and increased sample noise. The parameters for
compiling the different versions can be found in Table 3. These parameters were selected to introduce
sufficient noise, ensuring observable changes in the uncertainty metrics. Please refer to our codebase
for the full configuration files.

C.2 CLASSIFICATION ACCURACIES FOR BASELINE MODELS

In Table 4 we present the classification accuracy measures for the clean dataset and variations in
accuracy under different types of noise for the three baseline models (Monte Carlo Dropout, Deep
Ensemble, and RCML) across each modality. Each version of the noisy dataset incorporates a single
type of noise: Reduced Diversity (K=20), Label Noise (30%), and Sample Noise, with severity
varying by noise type and modality (detailed in Appendix C.1). The RCML model, a multimodal
approach, is evaluated exclusively in the multimodal setting. We observe that accuracy always
decreases with increasing the label noise, but reducing diversity and increasing sample noise may not
always decrease accuracy in the image modality.

Table 4: Classification accuracies for the clean dataset and variations in accuracy under different
types of noise.

Model Clean Dataset Reduced Diversity Increased Label Noise Increased Sample Noise

Accuracy Difference in accuracy from the clean dataset

MCD Image 0.335 +0.058 -0.306 +0.019
MCD Audio 0.867 -0.025 -0.784 -0.155
MCD Text 0.965 -0.027 -0.864 -0.144
MCD Multi. 0.991 -0.010 -0.874 -0.063
DE Image 0.387 +0.066 -0.166 +0.019
DE Audio 0.912 -0.003 -0.809 -0.149
DE Text 0.973 -0.023 -0.864 -0.125
DE Multi. 0.996 -0.006 -0.849 -0.042
RCML Multi 0.973 -0.128 -0.833 -0.148
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