Under review as a conference paper at ICLR 2026

STACKED FROM ONE: MULTI-SCALE SELF-INJECTION
FOR CONTEXT WINDOW EXTENSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The limited context window of contemporary large language models (LLMs) re-
mains a major obstacle to their broader adoption across diverse domains. Al-
though continual pre-training on long-context data offers a straightforward and
effective solution, it comes with prohibitive costs in terms of data acquisition and
computational resources. To address this challenge, we propose SHAREDLLM, a
novel framework grounded in the design philosophy of multi-grained context com-
pression and query-aware information acquisition. SHAREDLLM is instantiated
as two stacked short-context LLMs: a lower model serving as a compressor and
an upper model acting as a decoder. The lower model compresses the long inputs
into compact and multi-grained representations, which are transmitted to the up-
per model for context-aware processing. To maximize efficiency, this information
transfer occurs only at the lowest layers, avoiding long forward paths and redun-
dant cross-attention. This entire process, wherein the upper and lower models are
derived from the same LLM layer, is referred to as self-injection. Supporting this
architecture, a specialized tree-style data structure enables efficient encoding and
query-aware retrieval of contextual information. Trained on 8K-length sequences,
SHAREDLLM can effectively generalize on inputs longer than 128K tokens.
Across a broad suite of long-context modeling and understanding benchmarks,
SHAREDLLM achieves superior or comparable results to several strong baselines,
striking an effective balance between efficiency and performance. Meanwhile,
with the aforementioned design choices, SHAREDLLM substantially reduces the
memory consumption and yields notable speedups over other advanced baselines
(2x over streaming, 3x over encoder-decoder architectures). The core code of
our implementation, along with training and evaluation details, is provided in the
appendix and supplementary materials.

1 INTRODUCTION

Since the release of GPT-3 (Brown, 2020), the rapid advancement of large language models
(LLMs) (Chowdhery et al., 2022} |Achiam et al., [2023; [Touvron et al., |2023a}b; Dubey et al., |[2024;
Ma et al., |2024; \Guo et al., |2025) has revolutionized the NLP research community and transformed
various workflows. Pretrained on trillions of tokens, LLMs exhibit remarkable abilities, such as
completing unfinished text or code and following human instructions to perform designated tasks
after simple supervised fine-tuning (Wei et al.,[2021;|Chung et al., 2024; /Wang et al.,|2025)). Despite
their impressive capabilities, several factors limit their broader application. One major constraint is
the context window size (Hsieh et al.| 2024} [Liu et al., [2025])), which refers to the maximum number
of tokens on which an LLM can work normally. When the input text exceeds this limit, LLMs may
exhibit erratic behavior during inference.

Many researchers have attempted to extend the context window of LLMs with minimal training
costs (Peng et al.| 2023} |Together, [2023; Xiong et al.,2024). One routine involves post-pretraining
LLMs on long-context corpora with tons of GPUs (TogetherAll [2023; Xiong et al., | 2024; Ma et al.,
2024). Advanced positional encoding methods, which usually extend RoPE to rescale attention
scores in a more sensible way, are integrated to minimize the size of training corpus (Chen et al.,
2023} |Peng et al., 2023)). Although they achieve extrapolation— “train short, test long”, the effi-
ciency is relatively low. For example, to reach the context length of 128K tokens, using YaRN |Peng
et al.| (2023)), one has to pretrain an LLM on 64K tokens. Prompt compression (Ge et al.l 2023

Under review as a conference paper at ICLR 2026

Gao et al} [2025) accelerates the inference process by replacing long prompts with LLM generated
semantic tokens, but fails to extend the context window of LLMs or only applies on limited sce-
narios. Other approaches upgrade the conventional transformer architectures to enable streaming
processing of long context (Xiao et al., [2024b; [Yen et al.l |2024; |[Zhang et al.| [2025)), which main-
tain a sliding window of constant-sized memory. Although these designs significantly alleviate the
memory-bound issue of matrix multiplication, their specialized attention patterns may cause incom-
patibility with high-performance attention implementations (e.g., FlashAttention (Dao et al., [2022;
Dao, 2023))), potentially leading to slower inference speeds.

To strike a balance between efficiency and performance, we propose SHAREDLLM, a lightweight
architecture which consists of one upper model and one lower model. The lower model compresses
text chunks into multi-grained representations, while the upper model integrates the encoded infor-
mation and generates the final output. This multi-grained setting helps LLM focus on task-related
fine-grained information while leaving other auxiliary coarse-grained information in a secondary
place. Both models are initialized from the same off-the-shelf checkpoint of a short-context LLM,
either in full or in part. Since there is no disparity between the hidden spaces of the two mod-
els, SHAREDLLM can be trained from scratch without extra stages to warmup.

This paper makes the following major contributions:

* We propose SHAREDLLM, a hierarchical architecture for efficient LLM context window
extension. It consists of two models which work collaboratively through shared key-value
mechanism with minimal tunable parameters.

* We design a tree-like structure, called context tree, which can express long unstructured
context in a coarse-to-fine format. To facilitate this process, we introduces a dynamic con-
text tree construction and search algorithm. Given a context and an query, it can efficiently
transform the context into the hierarchical representation and collect relevant information
from that tree.

* We conduct a comprehensive experimental study to demonstrate the effectiveness of
SHAREDLLM. On the settings of both post-pretraining and supervised fine-tuning,
SHAREDLLM shows impressive extrapolation property and yields stronger performance
than baseline models with superior memory and time efficiency.

2 METHOD

In this section, we first introduce the overall architecture of our proposed SHAREDLLM in Sec.
and then elaborate on its two main components, the lower model and upper model in Sec.[2.2and[2.3]

2.1 OVERVIEW

As illustrated in Figure[I] SHAREDLLM adopts a hierarchical architecture. The lower model, or the
“compressor”’, breaks down the long input context X into smaller chunks that are then encoded
within limited GPU memory. It then uses the same LLM to compress each context chunk into com-
pact and structured coarse-to-fine representations in parallel. The upper model, or the “decoder”,
takes the rear part of the input text (the running context, such as questions) as input. It then integrates
the compressed information from the lower model, and finally generates predictions of successive
tokens in an auto-regressive manner. The lower and upper models are interconnected via the sharing
of key-value (KV) states, which are further integrated at the cross-attention modules in the upper
model. To facilitate efficient information gathering and integration, the contextual information pro-
cessed by the lower model is organized as a binary tree, referred to as the context tree, which stores
multi-grained information at different levels. Note that the KV compression and transmission oc-
cur during the prefilling stage of inference, yet they still improve decoding efficiency because each
query token attends to a reduced number of key—value pairs.

In the following, we elaborate on the lower and upper model. To begin with, we first define some
notations to enhance clarity and readability. Let X = {1, x2,...,z7} represent the entire input
sequence, where 1" denotes the sequence length. We call the LLM whose context window to be
extended as “target LLM”. In comply with previous setting (Yen et al., 2024)), we split these tokens
into two continuous parts: X = concat([X¢; Xp]), where the past context X¢ and the running

Under review as a conference paper at ICLR 2026

Extracted KV KV : The
Context Tree _ixd rxd answer should be...
. Encod_ N | /—I—\ .
Self-attention
i o e — 7] ‘
2 ;.= : i ILV— M
%2 mm—=.] t ayers
Down-sample [Self-attention]
| I Layer M
[Layer M
Layer 1 [Layer 1]——J r Layer1
[1] i [1] i Given the
Chunk 1 SuEEéﬁUences Chunkn SLjEEéﬂuences Jollowing context...
Lower Model (single model with chunk parallelism) Upper Model

Figure 1: Overview of SHAREDLLM. The architecture resembles general encoder-decoder archi-
tecture like TS (Raffel et al., [2020), but the interaction occurs at the first M layers between lower
and upper model through shared key-values which are encoded and compressed from the text chunk
into a sequence of trees (top-left).

text Xp serve as the inputs to the lower and upper models, respectively. Moreover, the past con-
text X¢ is further divided into n smaller and non-overlapping chunks, denoted by C1, Cs, ..., Cp,
namely, where C; UC> U ...UC),, = X¢ and C; N C;j = 0, Vi # j. The chunk size is controlled to
fit within the lower model’s context window, allowing the lower model to fully utilize its encoding
capacity.

2.2 LOWER MODEL

The lower model is a small pretrained LLM, implemented as the first M shallow layers of the target
LLM. It independently encodes and compresses each past context chunk C; from the set of chunks
{C;}?_,, and constructs a context tree that stores multi-grained information across various levels.
The encoding process for all chunks {C;}?_, is fully paralleled to boost the speed. Below, we detail
the context tree structure and its efficiency-enhanced query-dependent dynamic construction, and
the tree search process.

Context Tree. The motivation to build the context -

tree is intuitive and problem-driven. Given a text chunk O Preserveanode @ 2:2:::%:22;‘6)
C; and a task-specific query, the task-related informa- SelectedNode 3 [

tion is often distributed unevenly across the chunk of
text. For instance, to summarize a given passage, one
should pay more attention to the topic sentences, col-
lect messages from them and rephrase to produce the
answer, rather than focuses much on narrative details.
Whereas in the task of passkey finding, detailed rela-
tions are more important than theme paragraphs. To
this end, we aim for the contextual representations to
capture fine-grained details for the relevant portions of
the text, while encoding only coarse-grained informa-)
tion for the less relevant parts. The tree structure is the Figure 2: An running §xample of our tree
best fit to simulate this process: the spltting of nodes (depth=3). Each box indexed by i repre-
resembles splitting larger text chunks into smaller ones, Sents the ith iteration of node split and se-
from which we can get more fine-grained information. ~ lection.

Under review as a conference paper at ICLR 2026

The root node of a context tree contains the entire chunk C; = {zs, ..., 2¢ }, where x,, (s < p < t)
denotes a token, s and t are the start and end index of that chunk; and each other node consists of a
sub-sequence of the chunk C;. Then we introduce how to build the child nodes from a parent node.
Specifically, for any non-leaf node that contains [tokens {21, ..., T+ }, at the training phase, we
split it into two sub-sequences to construct its left child and right child as:

Cparent = {xu—&-k}gc:la Cleft = {xu—&-k}z:l; Criqht = {xu+k}§c:b+1- (1)

Here we adopt a random splitting by setting b = | — €] and € ~ A/(0, 0%) where o is a predefined
hyperparameter, since random lengths can slightly improve the performance as concluded in (Zhang
et al., [2025). At test time, the noise ¢ is fixed to zero. One can continue this process until arriving
at the limited tree depth. Next, building upon this static tree, we construct a more efficient query-
dependent dynamic tree.

Query-Dependent Dynamic Tree Construction and Search. A task-specific query is typically
highly relevant to certain tree nodes while being less relevant to others. For highly relevant nodes,
further expansion is necessary to extract fine-grained information. In contrast, for less relevant
nodes, expansion is unnecessary. Thus, instead of constructing an entire static context tree as afore-
mentioned, we build a query-dependent dynamic tree that expands only the relevant nodes, as shown
in Figure [2] significantly saving both GPU memory and time.

Starting from the root node, we perform a depth-first splitting and search process. Each node se-
quence is first divided into two subsequences according to Eq. (I). We then use a non-parametric
policy 7 to decide the next selected node based on the two subsequences, T1e¢: and Zyigne, and a
query sequence ¥

T((#1ee, Lrigne),¥) = left or right, 2
Here the policy 7 determines whether the left or right child of the node will be selected. The
unselected sibling node is marked as “preserved” and will not be expanded further. Note, the root
node is always selected to ensure expansion. For policy 7, it is task-specific. Specifically, for
language modeling tasks (where the LLM behaves like the non-SFT model), we keep selecting the
right branch to simulate the useful A-shape pattern (Han et al.| 2024} [Ge et al.| [2024):

7T((fleftyia,rj.qlflt)v:lj) = right' (3)

For instruction-following tasks (where the LLM serves as the supervised finetuned version), where
queries are explicit and available, 7 selects the node with higher semantical similarity to the query:

7T((flefta fright)a 37) = argmax (Sim(ﬁi}w H?}'))v (4)
¢e{left,right}

where sim(-, -) represents the cosine similarity of two vectors. The hidden vector h at the last
position of a sequence is embedded by either the lower or upper model. Specifically, this involves

a short forward pass through one self-attention layer in the lower model for }_if , and the upper

model for f_ig Once the selected node is determined, the process continues with that node, repeating
the procedure until reaching leaf nodes. At this point, both the left and right child are marked as
“preserved”.

For each preserved node, we feed its associated context into the lower model to obtain a collection
of key-value (KV) states from all M layers, denoted as S = {K, V}, where K,V ¢ RMxIxd
represents the key and value states for all M layers. Here, [is the sequence length, and d is the
hidden dimension. Next, we perform a uniform downsampling along the length dimension to retain
only a portion of the KV states, resulting in 8’ = {K’, V’'}, where K', V' € RM*!"*d and [’ are
the downsampled length. The compression ratio « for the node is defined as « = [/I’. For the
context tree, we apply a constant compression ratio v, for all preserved nodes at level w, but the
ratio diminishes progressively from top to bottom, i.e., &, > 1. In our implementation, we
set oy, = 2au,+1. This approach creates coarse-to-fine distribution of semantic information from
top to down: nodes at higher levels possess longer subsequences and are compressed with a higher
compression ratio, corresponding to more coarse-grained information, while on the contrary, nodes
closer to the bottom store fine-grained information. The overall compression ratio 3 of a tree is
defined as the ratio of the chunk length |C| to the total length of the compressed KV states:

Under review as a conference paper at ICLR 2026

Yl Yl

where 1., is the number of preserved nodes at level w, and I/, is the compressed length of each
preserved node at level w. For the convenience of parallel processing, we set 3 to be the same value

for all n context trees. Experimental results in Section [3|demonstrate that this compression ratio can
reach as high as 8, significantly improving efficiency.

B

2.3 UPPER MODEL

The upper model shares a similar architecture with the full-layer version of the base model, except
for the inserted cross-attention layers to interact with the lower model, as illustrated in Figure

Position-aware Cross-attention on the Context Tree. In Section we can obtain a sequence
of tree-structural representations S’ = {S, ..., S} } for n chunks {C;};, where S, = {K/, V/}
stands for the representations of chunk C;. Since the sequence of chunk keys K = {K/;..., K/}
is produced from ordered chunks {C4, ..., Cy, }, their positional information should be aware at the

chunk level by the query. We assign the following chunk-level positional indices to Q and :

Pq ={n,n,...,n}, Px=1{0,0,..,011,..,1,n—1,n—1,..,n—1}. (6)
——— —_——— ——
[Xbp| IC11/8 IC2|/B [Cnl/B

Here we view the upper model’s query Q as one chunk and endow it with the largest positional
index, because Q is encoded from Xp which is behind all context chunks X in the raw input
sequence X . We then apply rotary positional embedding (RoPE) to Q and X according to these
block indices.

In the cross-attention layer, we calculate attention results between the query Q and concatenated
KVs to integrate their carried context information into the running context for more coherent lan-
guage modeling:

O = cross_attn(Q, concat ([K};...; K}]),concat ([V};..; Vi])). @)

Training We use the standard language modeling loss during training, which maximizes the log
probability of the ground-truth tokens in the target sequences X,,, conditioned on the context X«
and all preceding tokens ., from X p:

L=- Z log P(2¢|Xc5xct).

T+ € Xtar

For language modeling data, X,, = Xp, i.e., the target tokens are all tokens in X p, excluding the
first token. For instruction-following data, X p includes both the instruction Xj,y and the annotated
response X;es. In this case, we set Xy, = X,es, meaning that we optimize only for the response
tokens, while the instruction text is masked during loss calculation.

3 EXPERIMENT

3.1 SETUP

We highlight some key experimental settings in this section. For more detailed information, please
refer to Section [Al

Dataset For language modeling, we follow Yen et al.| (2024)) to prepare the training data by sam-
pling a subset of 20B (1%) tokens from RedPajama (Together, 2023)). Due to the copyright issue,
the books3 subset is no longer available and thus excluded from our training set. We will give an
analysis towards the impact by this in Section[A.4] The sampled texts are truncated to 8,192 tokens
for training. In SFT, we follow |Zhang et al.|(2025) to prepare the dataset. More details can be found
in the appendix.

Under review as a conference paper at ICLR 2026

Table 1: Language modeling results (perplexity) of the continual pretraining setting on downsam-
pled RedPajama. Best results on context-extended models are marked in bold. Perplexity higher
than 102 are denoted by dash (-”). LLaMA-3.1 has the declared 128K context-length since release,
and we list the direct inference results separately for reference only.

Arxiv PG19 ProofPile
4K 8K 32K 128K | 4K 8K 32K 128K | 4K 8K 32K 128K

LLaMA-2-32K (Together|[2023) | 3.58 334 296 OOM | 693 6.81 7.04 OOM | 2.87 258 247 OOM

Base Model

PI (Chen et al.|[2023) 349 321 277 OOM | 697 6.77 6.89 OOM | 277 264 251 OOM
YaRN (Peng et al.|[2023) 335 3.09 258 OOM | 685 6.62 691 OOM | 282 256 247 OOM
CEPE (Yen et al.[|2024) 3.03 3.02 251 297 | 669 640 680 6.10 | 238 243 245 239
SHAREDLLM 299 297 246 291 | 655 6.28 6.65 596 | 233 234 238 240
LLaMA-3.1 | 3.17 326 263 312 | 677 652 684 603 | 258 254 252 248

Training We initialize the upper model with short-context LLMs, such as LLaMA-2-7B, LLaMA-
3-8B and Mistral-7B. The lower model is initialized with the weights of the first M layers
from the same LLM, where we set M = 4 in language modeling and M = 16 in SFT. We
train SHAREDLLM on an 8 x A800 GPU machine. The batch size is set to 1 per GPU with gradient
accumulation of 16 steps (global batch size is 128) for language modeling and 1 step (global batch
size is 8) for SFT. The cross-attention layers remain fully tunable, while we opt to train the upper
model’s top N — M self-attention layers in language modeling as post-injection aggregation for
faster convergence.

Baseline Methods. For post-pretraining, we compare with other baselines in the same category
which have extrapolation abilities, such as Positional Interpolation (Chen et al.|[2023), YaRN (Peng
et al., 2023) and CEPE (Yen et al.| [2024). For SFT, we additionally compare with training-based
methods, like StreamingL. LM (Xiao et al.,|2024b), LongAlpaca (Chen et al.| 2024)), and Activation
Beacon (Zhang et al., 2025)), as well as the advanced inference time method, SnapKV (Li et al.,
2024) and OmniKV (Hao et al., 2025)).

3.2 MAIN RESULTS

Language Modeling. We first report the results on language modeling at various input lengths,
which compares the extrapolation (length generalization) capability among methods. All perplexity
values reported in Tables |1| and [2| are averaged over 1000 examples, except for the 128K length
on which we test only 10 examples due to the data scarcity (Yen et al., 2024} Zhang et al. [2025).
The results unveil our model’s strong extrapolation capability—it successfully avoids perplexity
explosion even when tested at the 128K-token length, though only having seen up to 8K-token
sequences during training. Notably, SHAREDLLM outperforms CEPE in nearly all cases except
the run at 128K tokens on ProofPile, showcasing the effectiveness of the introduced self-injection
mechanism. Moreover, the improvement over Activation-Beacon is more pronounced than over
CEPE, as CEPE experiences an additional pretraining stage and a warmup stage to align the hidden
space between its encoder and decoder. In contrast, SHAREDLLM can directly be finetuned from
publicly available off-the-shelf checkpoints, which saves huge training expenses.

Long-context Understanding Benchmarks. We continue to test the supervised fine-tuned ver-
sion of SHAREDLLM on tasks from LongBench (Bai et al., 2023)) and InfiniBench (Zhang et al.,
2024b). The two benchmarks comprise a variety of long-context tasks and cover various input
lengths, which help to quantify both task and length generalizability in a unified manner.

For LongBench, we report the average scores on all 14 English tasks from 5 categories, including
single-document QA (SD-QA), multi-document QA (MD-QA), summarization (Summ.), few-
shot learning/reasoning (FS) and code-completion (Code). For InfBench, we report the results
on three representative tasks: Mathematical Find (Math.F), English Multi-Choice (EN.MC) and
Retrieval of Numbers (Ret.N). SHAREDLLM outperforms or matches other advanced instruction-
tuned long-context baselines across all five categories. In Table[3] SHAREDLLM surpasses advanced
baselines on both benchmarks, showing superior capabilities in tackling extremely long inputs. We
note that truncation from the middle, as what many previous works did, could reduce the difficulty

Under review as a conference paper at ICLR 2026

Table 2: Langauge modeling results of the supervised fine-tuning setting. “OOM” denotes the out-
of-memory exception is raised during inference. Excessively large perplexities (> 10?) are hidden
with a dash (“-”).

PG19 ProofPile CodeParrot
Base Model | Method 4K 16K 32K 100K | 4K 16K 32K 100K | 4K 16K 32K 100K
StreamingLLM 921 925 924 932 | 347 351 350 355 | 255 260 254 256

LongAlpaca-16K 996 9.83 OOM | 3.82 3.37 OOM | 2.81 2.54 OOM

LLaMA-2 Activation Beacon 921 834 827 850 |347 334 332 331 |255 243 241 262
SHAREDLLM 868 801 796 824 |336 324 321 319 |233 225 223 236
StreamingLLM 958 9.63 952 955 | 408 419 416 423 |299 305 313 3.02

Mistral-7B LongAlpaca-16K 1021 10.39 - OOM | 326 3.34 - OOM | 3.05 3.21 - OOM
Activation Beacon 935 941 939 948 |382 364 3.69 372 |29 285 274 292

SHAREDLLM 897 9.02 898 9.05 | 358 338 349 374 | 271 268 258 276

Table 3: Evaluation results of different SFT methods on two benchmarks from LongBench and
Infini-Bench. Note that for some baselines we follow their default settings to truncate the input
below their window length, which may cast positive effects on their performance.

LongBench InfBench
Base Model | Base Model SDQA MDQA Summ. FS Code | MathF EnMC RetN
Base 2490 2260 2470 6000 48.10 | 285 2279 185
StreamingLLM 2047 2222 2220 5005 4800 | 600 3231 523
LongAlpaca-16K | 2870 28.10 27.80 6370 5600 | 623 2574 487
LLaMA-2 | SnapKV 2405 2298 1725 1611 5887 | 995 2883 23l
OmniKV 2386 2277 2109 3574 4937 | 881 2625 366
Activation Beacon | 2827 2844 2515 6100 5775 | 12.14 3205 8058
SHAREDLLM 2883 3093 2576 6350 59.93 | 1382 33.65 8279
Base 2310 1620 23.17 4820 4610 | 357 2065 541
StreamingLLM 2619 1665 2348 4823 4598 | 726 1884 975
LongAlpaca-16K | 27.05 17.33 2618 5197 5228 | 541 2119 1248
Mistral-7B | SnapKV 287 1643 1647 1974 5409 | 473 1618 1571
OmniKV 2205 1687 2136 4285 4190 | 381 1977 1498
Activation Beacon | 29.89 18.04 2592 5236 SI81 | 1472 2871 6237
SHAREDLLM 3075 1981 2743 5492 5374 | 1612 2980 65.73
Base 512 795 2613 6875 5604 | 993 2417 4985
StreamingLLM 673 856 2685 6832 5483 | 1127 3581 5285
LongAlpaca-16K | 2141 1245 2774 7072 60.05 | 12.03 2528 16.13
LLaMA-3 | SnapKV 331 652 1996 2105 6671 | 782 1773 4351
OmniKV 454 821 2077 3219 5792 | 829 2116 41.10
Activation Beacon | 22.08 1375 29.06 70.67 61.14 | 1556 3717 95.18
SHAREDLLM 2262 1432 2894 7145 6357 | 17.26 3699 9731

of some tasks and improve the performance (Zhang et al.|[2025), especially on decoder-only models,
as the relevant information for many tasks is located at the head or rear of the entire context rather
than the middle part.

3.3 TIME AND MEMORY EFFICIENCY

SHAREDLLM shows high computational efficiency in terms of both speed and GPU memory uti-
lization. As Figure[3]visualizes, we compare the average inference time (ms) and memory consump-
tion (GB) produced by SHAREDLLM against other advanced baseline models from the architecture
types of streaming (Zhang et al.| [2025), encoder-decoder (Yen et al.| [2024) and vanilla with posi-
tional encoding (Peng et al.,|2023) that have shown competitive performance in prior evaluations.
YaRN (Peng et al., [2023)), which exploits the same fully attention as vanilla auto-regressive LLaMA,
has O(L?) time and space complexity. The squared complexity makes it the only model that triggers
the out-of-memory exception at 128K length. Activation Beacon (Zhang et al.||2025), which adopts
the streaming processing paradigm, maintains a minimum constant memory O({) under different
input lengths L, where [is the sliding window length, a predefined constant hyperparameter. How-
ever, Activation Beacon is incompatible with FlashAttention (Dao, [2023)) also due to its specialized
attention paradigm, which causes a sharp increment in inference time as input size grows. CEPE can

Under review as a conference paper at ICLR 2026

process past context chunks in parallel, but these chunks must be passed through all its encoder lay-
ers (24-layer RoBERTa in CEPE) and layer-wise linear projections to obtain the final hidden states
for cross-attention, leading to even slower inference speed than non-parallel Activation Beacon. In
contrast, SHAREDLLM avoids such redundancy through shallow-layer compression and injection,
which exhibits significant speed-up and limited memory consumption.

3.4 ABLATION STUDY

Validation of DeSign Memory (GB) Inference Time (ms)
Choices. We conduct ;
more experiments on /
the following ablative s
settings to validate the e /
rationale behind the
design choices: 1) the 40
choice of context infor- g
mation injection layers;

2) other configurations,
including the effect from
contextual information
collection policy 7 (only
for instruction-following
task), the noise in node
splitting, and the addition
of chunk-level positional
indices during cross-attention. Regarding the layers selected to transmit KV cache for cross-
attention, our implementation, which adapts the continuous bottom strategy and injects the context
information in the bottom M layers, obtains the strongest performance over the other two choices,
not to mention its outstanding efficiency from the shortest forwarding and back-propagating path.
For other settings, as shown in the bottom rows, performance significantly drops after removing any
of the three items. Among the three items, the query-aware information gathering mechanism plays
the most crucial role, as removing it causes the largest performance drop on query-driven tasks. In
addition, the decoder’s awareness of the sequential order of chunks is essential, since the key-value
pairs produced by the encoder are fed in a shuffled manner and must be accurately re-ordered
during training. Finally, introducing noise serves as an effective regularizer during training and also
contributes to improved overall performance.

Memory (
SN
@
<)

N
N

Inference Time (ms)
2
3

o
S

4K 8K 16K 32K 128K 4K 8K 16K 32K 128K

—0- YaRN CEPE —&— Activation Beacon --0-- Shared-LLaMA (Ours)

Figure 3: Comparison of memory usage (left) and total inference time
on 100 examples (right) between SHAREDLLM and other training time
baseline methods. The data is collected by running a tiny experiment on
100 examples in corresponding lengths. “OOM” means out-of-memory
exception triggered during test time.

Architecture Hyperparameters. We further examine SHAREDLLM’s sensitivity to some key
hyperparameters, such as tree height and token compression ratio. The performance fluctuation
on the same two tasks across these configurable hyperparameters are depicted in Figure[d] The figure
reflects the sentitivity to hyperparameters, indicated by the inconsistent trend when tree hight is less
than 3 and compression ratio is smaller than 8. The figure reflects the sentitivity to hyperparameters,
indicated by the inconsistent trend when tree hight is less than 3 and compression ratio is smaller
than 8. The left bar chart reveals the importance of proper tree height. If the height is excessively
small, then the tree is undersplit and the chunk size is so large that only coarse-grained information
is preserved and received by the upper model, while task-related fine-grained information is lost.
Conversely, if the tree is too high, then the tree is oversplit and the leaves carry minor details,
which are less useful for tasks demanding a global view of the context, the downstream performance
also degrades significantly. A similar trend can be captured with the global compression ratio 3.
Although the perplexity declines when all KVs (6 = 1) are retained for cross-attention as more
semantic information can be utilized, the query-aware information gathering ability deteriorates and
thus the MDQA score becomes lower.

Besides the effect on task performance, we also conduct more experiments to explore how these
configurations impact speed and memory in Appendix

Under review as a conference paper at ICLR 2026

Table 4: Ablative Studies on Figure 4: Results on arxiv-32K (perplexity) and MD-QA (av-

different configurations of struc- erage F1) when configuring with different tree heights (left)
tural information injection. The and compression ratios (right) to SHAREDLLM. The values
best values in each category and on the horizontal axis represent these individual variables.
settings consistent with our de- The value from the default configuration are highlighted in
faults are highlighted in bold. bold.
Configuration ‘ arxiv ‘ MD-QA ,e Performancevstree height ~ _ ~ Performance vs compression ratio _
’ W arxiv-32K N arxiv-32K ’
Default | 246 | 30.93 o 8 B o, e 10
Continuous Top | 2.61 | 28.66 [| l w0s w05
Interleaving 2.57 29.15 Z2s0 . l I g250 l T
30.0 30.0
w/o query-aware 29.27 l l u l . l = l
w/0 noise 2.51 30.08 24 s 2 295
wlo chunk pid | 2.49 | 29.81 » l l l l v a0 B l l l o
. 1 2 3 4 1 4 8 16 -

4 RELATED WORK

Building Long-context Language Models. There are two prevalent routines to empower LLMs’

capability to process extremely long text: directly pretraining on long-context corpus (Touvron et al.]

20234, [Dubey et all, 2024}, Jiang et al.| 2023} [GLM et all, 2024; [Yang et al [2025)) or adapting short
context-window LLMs to longer context lengths via combined various techniques (Tworkowski

2024). The former approach consumes enormous amounts of data and computational re-
sources, while the latter makes room for researchers to explore more flexible optimization strate-
gies 2024). Adaptation methods intend to mimic short input scenarios when the input text
is actually long. Typical implementations include positional encoding (PE) rescaling (Press et al.,
2021}, |Chen et al., 2023} [Peng et al.| and positional index rearranging (Xiao et al., [2024b;
Ding et al., [2023; |[An et al., 2024; |He et all 2024). Both adjust the attention weight distribution
to resemble the short-input scenarios. Another line of work compresses past tokens sequentially

into dense representations (Chevalier et al 2023} [Zhang et all, 2025} [Gao et all, [2025)), serving
as next-step input or storing them in an external retrievable memory (Wu et al., 2022} [Xiao et al.}

[20244). [Yen et all (2024) utilizes small model for context compression to enable higher
parallelism and minimize latency. However, this heterogeneous architecture necessitates extra pre-
training and warmup stages to stabilize the fine-tuning process. [Packer et al| (2023) proposes a
system-level approach that introduces a hierarchical architecture along with a predefined set of I/O
operations, enabling LLMs to offload, store, and retrieve long-range contextual information while
maintaining a bounded active context within the model’s window. Nevertheless, the effectiveness
of this mechanism is fundamentally constrained by the capability of the underlying backbone LLM.
In contrast to these works, our method directly tunes off-the-shelf models to compress context into
structural representations for query-aware retrieval. Powered by efficient architecture design and a
fast-forwarding mechanism, the whole procedure can be fully paralleled online without excessive
memory usage.

Efficient Techniques for Long-context Modeling. In vanilla self-attention, the space and time
complexity grows quadratically (O(L?)) with the input sequence length L, which usually causes
out-of-memory (OOM) issues on GPU clusters when inputs are extremely long. A straightforward
solution is to add parameter efficient fine-tuning (PEFT) modules (Chen et al.l 2024} [Zhang et al.,
[2025} 20244) to shrink the size of gradient tensors during back-propagation. Many works strive to
reduce the memory footprint of attention computation to enhance computational efficiency. Long-
former (Beltagy et al.} [2020) introduces a hybrid attention pattern to capture local and global se-
mantic features concurrently. (Katharopoulos et al}, [2020) designs linearized attention that merely
demands O(L) space to accomplish attention computation. FlashAttention (Dao et al., 2022} [Dao),
and PagedAttention (Kwon et al, 2023) maximize the memory efficiency from the system’s
perspective. More recently, (Xiao et al} [2024b) discovers the “attention sink” phenomenon and
constructs pseudo sink to address the issue under window-attention. Similar attention patterns have
been identified in (Han et al., 2024} [Ge et all, 2024} Zhang et al.,2025)) and leveraged as a principle
when sparsifying attention maps during long-context modeling. Our work basically follows the effi-
cient design principle in three aspects: 1) lightweight architecture through lower-layer self-injection;

Under review as a conference paper at ICLR 2026

2) compact representations via structural information extraction and compression; 3) efficient con-
struction and retrieval algorithm based on context tree data structure.

5 CONCLUSION

In this work, we present SHAREDLLM, which leverages a self-injection mechanism to adapt a pair
of short-context LLMs for efficient long-context modeling. By integrating the operations of context
compression and key information retrieval into a dedicated binary-tree structure, SHAREDLLM ex-
cels in language modeling and various downstream instruction-following tasks, while maintaining
excellent memory and time efficiency. Besides, SHAREDLLM is directly trained from off-the-shelf
LLMs, eliminating the need for additional feature alignment steps and making implementation eas-
ier. We hope this learning paradigm can be generalized to other short-context LLMs, offering a
scalable approach for context-window extension to arbitrary lengths.

ETHICAL STATEMENT

All datasets in this paper are publicly available and have been widely tested in previous works. We
do not leverage any synthetic data during training or evaluation. Components in SHAREDLLM are
initialized from the checkpoint of released open-sourced LLMs and its security has been sufficiently
validated when input queries are safe. We also scrutinized many sampled outputs and found no
harmful information was generated.

REPRODUCIBILITY STATEMENT

We provide many materials for reproduction in the appendix, including training and testing config-
urations, pseudo code snippets, and an anonymous code repository, etc. More evidence, such as the
full code and model checkpoints, will be released in a later time.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. In Forty-first International Confer-
ence on Machine Learning, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models

to compress contexts. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 3829-3846, 2023.

10

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arxiv 2022. arXiv preprint arXiv:2204.02311, 10,
2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Colin B Clement, Matthew Bierbaum, Kevin P O’Keeffe, and Alexander A Alemi. On the use of
arxiv as a dataset. arXiv preprint arXiv:1905.00075, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2023.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Proceedings of the 35th Neural Informa-
tion Processing Systems Conference (NeurlPS), 2022.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Wikimedia Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024.

Jun Gao, Qi Lv, Zili Wang, Tianxiang Wu, Ziqiang Cao, and Wenjie Li. Uniicl: An efficient icl
framework unifying compression, selection, and generation. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2025. URL https://api.semanticscholar.org/
CorpusID:2800350809.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. In The Twelfth International Conference
on Learning Representations, 2024.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for context
compression in a large language model. ArXiv, abs/2307.06945, 2023. URL https://api.
semanticscholar.org/CorpusID:259847425,

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11

https://dumps.wikimedia.org
https://api.semanticscholar.org/CorpusID:280035089
https://api.semanticscholar.org/CorpusID:280035089
https://api.semanticscholar.org/CorpusID:259847425
https://api.semanticscholar.org/CorpusID:259847425

Under review as a conference paper at ICLR 2026

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-infinite:
Zero-shot extreme length generalization for large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3991-4008, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.222. URL https://aclanthology.org/
2024 .naacl-1long.222/.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo. Om-
nikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Liwei Wang, Jingjing Xu, Zhi Zhang, Hongxia
Yang, and Di He. Two stones hit one bird: Bilevel positional encoding for better length extrapo-
lation. In Forty-first International Conference on Machine Learning, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What'’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611-626, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947-22970, 2024.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context lan-
guage modeling. arXiv preprint arXiv:2503.17407, 2025.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Alexandra Sasha Luccioni and Joseph D Viviano. What’s in the box? a preliminary analysis of
undesirable content in the common crawl corpus. arXiv preprint arXiv:2105.02732, 2021.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length. Advances in Neural Information Processing Systems, 37:71831—
71854, 2024.

Charles Packer, Vivian Fang, Shishir_G Patil, Kevin Lin, Sarah Wooders, and Joseph_E Gonzalez.
Memgpt: Towards llms as operating systems. 2023.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. In International Conference on
Learning Representations, 2020.

12

https://aclanthology.org/2024.naacl-long.222/
https://aclanthology.org/2024.naacl-long.222/

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Adam Roberts, Colin Raffel, Katherine Lee, Michael Matena, Noam Shazeer, Peter J Liu, Sharan
Narang, Wei Li, and Yanqi Zhou. Exploring the limits of transfer learning with a unified text-to-
text transformer. Google, Tech. Rep., 2019.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpacal 2023.

Together. Redpajama: An open source recipe to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/RedPajama—Data.

TogetherAl. Llama-2-7b-32k-instruct - and fine-tuning for llama-2 models with together api, 2023.
URL https://www.together.ai/blog/llama-2-7b-32k-instruct!

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Szymon Tworkowski, Konrad Staniszewski, Mikotaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr MitosS. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel Ritter, Alexander M Rush, and Tri Dao.
MI1: Towards scalable test-time compute with mamba reasoning models. arXiv preprint
arXiv:2504.10449, 2025.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing trans-
formers. In International Conference on Learning Representations, 2022.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617,
2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024b.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar-
tin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4643-4663, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL
https://aclanthology.org/2024.naacl-1long.260.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

13

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/togethercomputer/RedPajama-Data
https://www.together.ai/blog/llama-2-7b-32k-instruct
https://aclanthology.org/2024.naacl-long.260

Under review as a conference paper at ICLR 2026

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
encoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2588-2610, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-1long.142|

Peitian Zhang, Ninglu Shao, Zheng Liu, Shitao Xiao, Hongjin Qian, Qiwei Ye, and Zhicheng Dou.
Extending llama-3’s context ten-fold overnight, 2024a.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Long context
compression with activation beacon. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=1eQT90z£fNQ.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. coBench: Extending long context evaluation
beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15262-15277, Bangkok, Thailand, August 2024b. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.814.

14

https://aclanthology.org/2024.acl-long.142
https://openreview.net/forum?id=1eQT9OzfNQ
https://aclanthology.org/2024.acl-long.814

Under review as a conference paper at ICLR 2026

USAGE OF LLMS

We only use LLMs for writing suggestions, and revising purposes, including basic spelling, gram-
mar, polishing, and I&IEX code formatting. The major workloads in this paper, such as ideation,
coding, experiments, and paper writing, are fully completed by ourselves, while leaving LLMs as
an auxiliary assistant instead of a major contributor to this paper.

A MORE IMPLEMENTATION DETAILS

A.1 TRAINING CONFIGURATIONS

In accord with the settings in previous

works (Chen et al.| [2024; |Yen et al.| Table 5: Configurations for training on both tasks.
2024; |Zhang et al) 2025), for con-

tinual pretrainng, we initialize both

- Item \ Continual Pretraining \ Supervised Fine-tuning
lower and upper model with the base —
. ined -finetuned) of training epo_ch 1 2
version (pretrained, non-fine 1 warmup ratio 0.01 0.001
LLMs. In SFT, we use their corre- pn /5 /10
sponding instruction-tuned version as chunk size 1024 512

the start point for training. 1/16,1/8,1/4

«
.. AdamW .9, 0.
Zero Redundancy Optimizer (ZeRO) amW (51, 2) 09.09%

stage 3 from DeepSpeed without of-

fload is enabled in both training and

inference to allocate the memory usage evenly among GPUs. The cross-attention layers remain
fully tunable, while we opt to train upper model’s top N — M self-attention layers in language
modeling as post-injection aggregation for faster convergence. No parameter efficient fine-tuning
(PEFT) techniques, such as LoRA, are applied during the training time, as PEFT seriously slows
down model’s convergence (Chen et al., 2024), which consequently costs longer tuning time than
partial parameter fine-tuning. We adopt AdamW optimizer with the starting learning rate 1e~> and
cosine scheduler during training.

We list more training configurations that are not specified in the main text in Table[5] The sequential
values of « are level-wise compression ratio, from level 1 to level 3.

A.2 DATASET STATISTICS

We use different compositions of training dataset in continual pretraining and supervised fine-tuning
below.

Downsampled Redpajama. We follow (Yen et al. [2024) and (Touvron et al., 2023b) to prepare
our training set. The proportions of data regarding seven domains in the resulted training set are
listed in Table[] All documents are truncated by 8,192 tokens to fit in the pretraining mode.

Table 6: Dataset composition in our downsampled Redpajama (10B) tokens.

Domain | Proportion (%)
Arxiv (Clement et al.,[2019) 2.5
Books (w/o S3) (Rae et al., [2020) 4.5
C4 (Roberts et al., [2019) 15.0
CommonCrawl (Luccioni & Viviano, [2021) 67.0
Github 4.5
StackExchange 2.0
Wikipedia (Foundationl) 4.5

During pretraining, 4K tokens are fed to the lower model and upper model respectively. The lan-
guage modeling loss is calculated on the upper model’s token prediction.

15

Under review as a conference paper at ICLR 2026

Mixed Dataset in SFT. This dataset is directly picked from (Zhang et al., 2025)), which is a mix-
ture of RedPajama and LongAlpaca (Chen et al. [2024). LongAlpaca is composed of Stanford
Alpaca instruction-following dataset (Taor1 et al.| 2023) and author-curated long-context tasks such
as summarization and long-document question answering. We follow (Zhang et al.| [2025)) to filter
samples and only preserve those whose lengths range from 1K to 8K. The distribution of samples in
terms of length is specified in Table[7}

Table 7: Proportion of samples within each length interval.

Length ‘<2K 2~4K 4~6K 6~8K
Proportion | 47% 29% 8% 16%

Since we found there was an absence of training data in fine-grained retrieval tasks, we additionally
sample a small set (200 samples) of data from Llama-3-8B-262K training corpus and add them to the
SFT data collections. This tiny proportion of data plays decisive roles in ensuring SHAREDLLM’s
non-decreasing accuracy as the input context length grows.

A.3 ONLINE SPLIT-AND-SEARCH ALGORITHM

We provide the pseudo code for the online split-and-search algorithm introduced in Section 2.2}
from the splitting of the root node till collecting all key-value states for all preserved nodes and all
M layers. The full implementation is not intricate, which can be readily accomplished with around
25 lines of code.

For the full set of the core code, please refer to https://anonymous.4open.science/r/
sharedllm_anony-04B1 for details. The code snippet in the entire model.py file can also be
found in this anonymous repository.

Algorithm 1 Pseudo code of dynamic Construction-and-Search.

=

N: number of trees; L: chunk size

ids for chunk in s

gaussian

depth: tree depth; the entire

gamma: a hyper—-parameter

input
n
#

selected_input_ids = chunk_ids
selected_length = chunk_ids.shape[-1]
all_kvs = []

for 1 in range (depth):
sample lengths of left and right child
if 1 < depth - 1:
half_length = last_length // 2
sigma = half_length / gamma
delta = random.randn(l) * sigma
1 _left, 1l_right = half_length - int(delta), half_length + int (delta)

split the node into two children
left_input_ids, right_input_ids input_ids[:1_left], input_ids[-1l_right:]
query_aware is a flag indicating if the selected nodes are determined on query
if query_aware:
short forward (l-layer) to get representation vectors for the query and two nodes

h_g = upper_model (query, 1)
h_left, h_right = lower_model (left_input_ids, 1), lower_model (right_input_ids, 1)
selected = argmax(sim(h_qg, h_left), sim(h_g, h_right)

else:
selected = 1 # deterministic example, can change to 0 or random selection
selected_input_ids = [left_input_ids, right_input_ids] [selected]
selected_length = [1_left, 1_right] [selected]
preserved_input_ids = [left_input_ids, right_input_ids] [l - selected]
else:

preserved_input_ids = cat (last_input_ids.chunk (2, -1), 0)

cur_level_kvs = lower_model (preserved_input_ids) .past_key_values
cur_level_kvs = downsample (cur_level_ kvs)
all_kvs.append(cur_level_kvs)

cat: concatenation; chunk: split into the specified number of chunks

16

https://anonymous.4open.science/r/sharedllm_anony-04B1
https://anonymous.4open.science/r/sharedllm_anony-04B1

Under review as a conference paper at ICLR 2026

A.4 CONSEQUENCE FROM THE ABSENCE OF BOOK-S3

Book-S3 is a large dataset of copyrighted published books composed by professional writers in
various domains. Due to the copyright infringement allegations, all online entries to access this
corpus have been removed. Prior studies (Yen et al.|[2024) have shown that the absence of Book-S3
subsets in RedPajama corpus casts a negative impact on language modeling results. Here we simply
show the comparison in terms of perplexity when SHAREDLLM is trained with and without Book-
S3. As Table[§]shows, the baselines without Book-S3 as part of their continual pretraining corpus
show inferior results, which is consistent with the observation in Yen et al.| (2024)). We hypothesize
that the root cause is that Book-S3 contains many well-structured and logically sound articles written
by expert-level writers, which show higher quality and lower noise than data from other domains.
Therefore, it plays a great role in improving language modeling.

Table 8: Perplexity increment as a negative effect from the lack of books3. t represents the values
in corresponding rows are reproduced from open-sourced code.

Model Arxiv PG19 ProofPile

ode 4K 8K 32K 128K | 4K 8K 32K 128K | 4K 8K 32K 128K
LLaMA-2-7B (4K) | 2.60 - - OOM | 6.49 - - OOM | 2.28 - - OOM
Books3 involved in training
YaRN-2-128K 313 296 234 OOM | 6.15 6.02 632 OOM |270 247 241 OOM
CEPE 286 2.84 234 291 | 660 624 6.66 599 |222 233 226 223
Books3 not involved in training
YaRN-2-128K 346 330 257 OOM | 683 659 7.14 OOM | 285 268 2.63 OOM
CEPE' 3.03 3.02 251 297 |6.69 640 680 6.10 | 238 243 245 239
SHAREDLLM 299 297 246 291 | 659 631 6.72 6.00 | 236 237 241 246

A.5 DETAILS OF TEST BENCHMARKS

For all inference results, we report the average values of five runs under different random seeds.

RedPajama To test the long-context modeling capability, we use a tiny proportion of corpus which
has never been seen by the model during the continual pretraining period as the test set. The sampled
passages are ensured to match the corresponding test lengths. We hold a constant 4K input for the
upper model while the left long context is passed to the lower model, akin to what we did during
pretraining.

Long Bench (Bai et al., [2023)) is the first bilingual (English and Chinese), multi-task benchmark
for long context understanding. It comprises 21 datasets (16 English and 5 Chinese) across 6 subcat-
egories, which aims for a more rigorous evaluation of long context understanding. These categories
encompass single document QA, multi-document QA, summarization, few-shot learning, synthetic
tasks, and code completion. The average length of documents is 6,711 words in English and 13,386
characters in Chinese.

Infinity-Bench (Zhang et al., 2024b) extends context lengths in previous long-context bench-
marks from 10K to more than 100K tokens. The benchmark is composed of synthetic and realistic

tasks that span diverse domains and bilingual (Chinese and English), such as retrival (Ret.), summa-
rization (sum), question answering (QA), code and math.

B MORE EXPERIMENTAL RESULTS

B.1 RESUTLS ON PASSKEY RETRIEVAL

We further assess the retrieval capability of SharedLLM on the passkey retrieval, or needle-in-
haystack (NIAH) task. Following the settings in (Yen et al., [2024), we train a new version of

17

Under review as a conference paper at ICLR 2026

SharedLLM that can perform accurate passkey retrieval from the haystacks of the surrounded non-
sense. We follow the examples in (Chen et al., [2024) to set up the single key-value pair test cases.
The results averaged on 10 randomly generated NIAH test samples are shown in Figure [5] It can
be observed that SHAREDLLM enjoys the minimal accuracy decay as length extends compared to
other baselines, although it has only seen context within 8K length.

Accuracy

4 8 16 32 64 128
Context Length (K)

—e—LLAMA-2 —e—P| —e—CEPE —e—Activation Beacon —e—SharedLLM

Figure 5: Accuracy comparison on passkey retrieval (single key-value pair) task.

B.2 COMPARISON BETWEEN DIFFERENT ATTENTION MAPS

The introduced self-injection algorithm can also be regarded as an attention remapping process,
where we use “continuous-right” and “query-aware” node selection strategy for language modeling
and long-context understanding respectively. Meanwhile, many concurrent works (Han et al.| |2024;
Xiao et al.,[2024b; |Ge et al ., 2024) observed the special A-shape attention map and took advantage of
this for acceleration. In fact, the policy selection is not only intuitive but also with the fundamental
support from pilot experiments. We report the results of all these choices below:

Table 9: Pilot studies of branch-selection policies.

Setting \ Arxiv | MD-QA
Default 2.46 (£0.01) | 30.93 (+0.16)
Random 2.61 (£0.13) | 28.85 (£0.45)

Fixed Left 2.49 (£0.02) | 29.62 (£0.15)
Query-aware | 2.48 (£0.02) | 29.27 (+0.12)
A-shape 2.52 (£0.04) | 29.48 (+0.18)

The results manifest that the selected policy can produce the optimal performance on the downstream
tasks.

C TIME AND MEMORY EFFICIENCY

C.1 QUANLITATIVE ANALYSIS

Apart from strong performance on downstream tasks, SHAREDLLM demonstrates high computa-
tional efficiency in terms of both inference speed and GPU memory utilization. We compare these
metrics produced by SHAREDLLM against other representative models of streaming (Zhang et al.,
2025)), encoder-decoder (Yen et al., 2024) and vanilla (Peng et al.l 2023)) architectures that have
shown competitive performance in prior evaluations. The results are visualized in Figure

YaRN (Peng et al., 2023)), which only modifies the encoding policy but still applies the vanilla
multi-head attention as LLaMA, shows squared (O(L?)) time and space complexity. Consequently,
it triggers the out-of-memory exception at an early stage (128K tokens). Activation Beacon (Zhang
et al.,[2025)), which adopts the streaming processing paradigm, maintains a minimum constant mem-
ory O(l) under different input lengths L, where [is the sliding window length. However, Activa-
tion Beacon is incompatible with FlashAttention (Daol 2023) also due to its specialized attention

18

Under review as a conference paper at ICLR 2026

paradigm, which causes a sharp increment in inference time as input size grows. CEPE can pro-
cess past context chunks in parallel, but these chunks must be passed through all its encoder layers
(24-layer RoBERTa in CEPE) and layer-wise linear projections to obtain the final hidden states for
cross-attention, leading to even slower inference speed than non-parallel Activation Beacon. In con-
trast, SHAREDLLM alleviates such redundancy through shallow-layer compression and injection,
which exhibits significant speed-up and limited memory consumption.

We have explained the outstanding efficiency of our model by comparing the memory usage and
inference speed with other competitors. In this section, we give a more comprehensive analysis
towards the inherent factors that may impact model’s efficiency, including compression ratio 3, tree
height h, the number of shared layers M and the retrieval-based policy which requires an additional
short forward pass.

Table 10: Inference time under various M with constant & = 3 and 8 = 8. Our default setting is
highlighted in bold.

M I 2 4 8 16

Time (s) 6.78 935 11.81 16.81 25.85
Memory (GB) | 21.04 21.50 2239 24.08 27.82

C.2 EFFICIENCY RESULTS

We rerun our experiments to measure the forward time and memory cost from language modeling
on 8K tokens, adjusting one variable at a time while keeping others at their default values. The
results are shown in Table [I0] [[T]and[I2] Among these factors, the number of injection layers, M,
has the most significant impact on both speed and memory: both memory and latency grows as M
increases. As an opposite, compression ratio § and tree height i produces nuances effect on both
metrics. For example, if we decreases 3 from 64 to 1 (preserve all KVs), the inference time increases
by 6.7% while memory increases by 3%. A similar trend is observed on experiments with tree height
h. We speculate that the reason behind these outcomes are partly from the internal optimization in
FlashAttention, which efficiently computes attention blockwisely. When the configuration meets its
requirement for block size and hidden dimension (e.g., length is divisible by 256),

Table 11: Inference time under various 3 with constant h = 3 and M = 4. Our default setting is
highlighted in bold. For 5 € {1, 2}, we are not able to set levelwise compression ratios and thus we
set the compression ratio same as the 3 for every level of the tree.

B8 | 64 32 16 8 4 2 1

Time (s) 11.68 11.73 11.78 11.81 11.87 12.04 1247
Memory (GB) | 22.20 2220 2220 2239 2240 2235 2297

Table 12: Inference time under various i with constant 8 = 8 and M = 4. Our default setting is
highlighted in bold.

h |1 2 3 4

Time (s) 11.16 11.55 11.81 11.86
Memory (GB) | 19.72 2242 2239 2241

We further investigate the potential overhead caused by the extra short forward path query-aware
splitting-and-search algorithm. As shown in Table we observe that it incurs around 15% over-
head in both time and space. We believe this type of overhead can be further eliminated with more
careful optimization of the implementation details.

19

Under review as a conference paper at ICLR 2026

Table 13: Comparison of time and memory consumption when query-based retrieval is incorporat-
ed/not incorporated in SHAREDLLM. h, M and 3 are fixed at the default values.

Setting | Time | Memory

w/o query-aware retrieval | 11.81 22.39
w query-aware retrieval | 13.18 25.44

The sky is blue. The cloud is
white. The passkey is
A1B2C3D4ESF6. The sky is blue.
The cloud is white...

Iteration [A \
0.79 0.18
Th? sky is blue. The doudis The sky is blue. The cloud is
1 white. The grass is green. The white The grass is green....

passkey is A1B2C3D4ESF6. The
sky is blue. The cloud is white...

A
[)

0.85 0.14
The sky is blue. The The sky is blue. The
cloud is white. The cloud is white. The
2 grass is green. The grass is green...
passkey is
A1B2C3D4ESF6...
A
[)
091 0.17
The sky is blue. The The sky is blue. The
cloud is white. The cloud is white. The
3 grass is green. The grass is green.
passkey is
A1B2C3D4ESF6...

Figure 6: A living example of tree growth and split on the passkey retrieval task. The numbers
above the text boxes are the correlation score between the text chunk and user query. Green/Red
boxes indicate the chunk is selected/not selected.

D VISUALIZATION OF TREE SPLITTING PROCESS

We provide a living example to demonstrate how the tree is constructed and how the key chunk is
retrieved when performing the passkey retrieval task. In this example, we assume that the length of
input text is 8,192 and the passkey is located between token id 15 and 20. The process is depicted
in Figure [§] As the figure shows, SharedLLM first split the entire input of 4,096 tokens into two
chunks of 2,048 tokens. Then, it computes the correlation scores between the query and subchunks,
and finds the first chunk more correlated (0.79 > 0.18). Hence, it repeats the procedure by splitting
that chunk into two subchunks of 1,024 tokens. The process iterates until the maximum tree depth
has been reached (suppose d,nq = 3), where the chunk size is 512. At each iteration, the chunks
where the passkey resides are always selected due to their higher correlation scores.

20

	Introduction
	Method
	Overview
	Lower Model
	Upper Model

	Experiment
	Setup
	Main Results
	Time and Memory Efficiency
	Ablation Study

	Related Work
	Conclusion
	More Implementation Details
	Training Configurations
	Dataset Statistics
	Online Split-and-Search Algorithm
	Consequence from the absence of Book-S3
	Details of Test Benchmarks

	More Experimental Results
	Resutls on Passkey Retrieval
	Comparison between Different Attention Maps

	Time and Memory Efficiency
	Quanlitative Analysis
	Efficiency Results

	Visualization of Tree Splitting Process

