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ABSTRACT

The limited context window of contemporary large language models (LLMs) re-
mains a major obstacle to their broader adoption across diverse domains. Al-
though continual pre-training on long-context data offers a straightforward and
effective solution, it comes with prohibitive costs in terms of data acquisition and
computational resources. To address this challenge, we propose SHAREDLLM, a
novel framework grounded in the design philosophy of multi-grained context com-
pression and query-aware information acquisition. SHAREDLLM is instantiated
as two stacked short-context LLMs: a lower model serving as a compressor and
an upper model acting as a decoder. The lower model compresses the long inputs
into compact and multi-grained representations, which are transmitted to the up-
per model for context-aware processing. To maximize efficiency, this information
transfer occurs only at the lowest layers, avoiding long forward paths and redun-
dant cross-attention. This entire process, wherein the upper and lower models are
derived from the same LLM layer, is referred to as self-injection. Supporting this
architecture, a specialized tree-style data structure enables efficient encoding and
query-aware retrieval of contextual information. Trained on 8K-length sequences,
SHAREDLLM can effectively generalize on inputs longer than 128K tokens.
Across a broad suite of long-context modeling and understanding benchmarks,
SHAREDLLM achieves superior or comparable results to several strong baselines,
striking an effective balance between efficiency and performance. Meanwhile,
with the aforementioned design choices, SHAREDLLM substantially reduces the
memory consumption and yields notable speedups over other advanced baselines
(2× over streaming, 3× over encoder-decoder architectures). The core code of
our implementation, along with training and evaluation details, is provided in the
appendix and supplementary materials.

1 INTRODUCTION

Since the release of GPT-3 (Brown, 2020), the rapid advancement of large language models
(LLMs) (Chowdhery et al., 2022; Achiam et al., 2023; Touvron et al., 2023a;b; Dubey et al., 2024;
Ma et al., 2024; Guo et al., 2025) has revolutionized the NLP research community and transformed
various workflows. Pretrained on trillions of tokens, LLMs exhibit remarkable abilities, such as
completing unfinished text or code and following human instructions to perform designated tasks
after simple supervised fine-tuning (Wei et al., 2021; Chung et al., 2024; Wang et al., 2025). Despite
their impressive capabilities, several factors limit their broader application. One major constraint is
the context window size (Hsieh et al., 2024; Liu et al., 2025), which refers to the maximum number
of tokens on which an LLM can work normally. When the input text exceeds this limit, LLMs may
exhibit erratic behavior during inference.

Many researchers have attempted to extend the context window of LLMs with minimal training
costs (Peng et al., 2023; Together, 2023; Xiong et al., 2024). One routine involves post-pretraining
LLMs on long-context corpora with tons of GPUs (TogetherAI, 2023; Xiong et al., 2024; Ma et al.,
2024). Advanced positional encoding methods, which usually extend RoPE to rescale attention
scores in a more sensible way, are integrated to minimize the size of training corpus (Chen et al.,
2023; Peng et al., 2023). Although they achieve extrapolation—“train short, test long”, the effi-
ciency is relatively low. For example, to reach the context length of 128K tokens, using YaRN Peng
et al. (2023), one has to pretrain an LLM on 64K tokens. Prompt compression (Ge et al., 2023;
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Gao et al., 2025) accelerates the inference process by replacing long prompts with LLM generated
semantic tokens, but fails to extend the context window of LLMs or only applies on limited sce-
narios. Other approaches upgrade the conventional transformer architectures to enable streaming
processing of long context (Xiao et al., 2024b; Yen et al., 2024; Zhang et al., 2025), which main-
tain a sliding window of constant-sized memory. Although these designs significantly alleviate the
memory-bound issue of matrix multiplication, their specialized attention patterns may cause incom-
patibility with high-performance attention implementations (e.g., FlashAttention (Dao et al., 2022;
Dao, 2023)), potentially leading to slower inference speeds.

To strike a balance between efficiency and performance, we propose SHAREDLLM, a lightweight
architecture which consists of one upper model and one lower model. The lower model compresses
text chunks into multi-grained representations, while the upper model integrates the encoded infor-
mation and generates the final output. This multi-grained setting helps LLM focus on task-related
fine-grained information while leaving other auxiliary coarse-grained information in a secondary
place. Both models are initialized from the same off-the-shelf checkpoint of a short-context LLM,
either in full or in part. Since there is no disparity between the hidden spaces of the two mod-
els, SHAREDLLM can be trained from scratch without extra stages to warmup.

This paper makes the following major contributions:

• We propose SHAREDLLM, a hierarchical architecture for efficient LLM context window
extension. It consists of two models which work collaboratively through shared key-value
mechanism with minimal tunable parameters.

• We design a tree-like structure, called context tree, which can express long unstructured
context in a coarse-to-fine format. To facilitate this process, we introduces a dynamic con-
text tree construction and search algorithm. Given a context and an query, it can efficiently
transform the context into the hierarchical representation and collect relevant information
from that tree.

• We conduct a comprehensive experimental study to demonstrate the effectiveness of
SHAREDLLM. On the settings of both post-pretraining and supervised fine-tuning,
SHAREDLLM shows impressive extrapolation property and yields stronger performance
than baseline models with superior memory and time efficiency.

2 METHOD

In this section, we first introduce the overall architecture of our proposed SHAREDLLM in Sec. 2.1,
and then elaborate on its two main components, the lower model and upper model in Sec. 2.2 and 2.3.

2.1 OVERVIEW

As illustrated in Figure 1, SHAREDLLM adopts a hierarchical architecture. The lower model, or the
“compressor”, breaks down the long input context XC into smaller chunks that are then encoded
within limited GPU memory. It then uses the same LLM to compress each context chunk into com-
pact and structured coarse-to-fine representations in parallel. The upper model, or the “decoder”,
takes the rear part of the input text (the running context, such as questions) as input. It then integrates
the compressed information from the lower model, and finally generates predictions of successive
tokens in an auto-regressive manner. The lower and upper models are interconnected via the sharing
of key-value (KV) states, which are further integrated at the cross-attention modules in the upper
model. To facilitate efficient information gathering and integration, the contextual information pro-
cessed by the lower model is organized as a binary tree, referred to as the context tree, which stores
multi-grained information at different levels. Note that the KV compression and transmission oc-
cur during the prefilling stage of inference, yet they still improve decoding efficiency because each
query token attends to a reduced number of key–value pairs.

In the following, we elaborate on the lower and upper model. To begin with, we first define some
notations to enhance clarity and readability. Let X = {x1, x2, ..., xT } represent the entire input
sequence, where T denotes the sequence length. We call the LLM whose context window to be
extended as “target LLM”. In comply with previous setting (Yen et al., 2024), we split these tokens
into two continuous parts: X = concat([XC ;XD]), where the past context XC and the running
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Figure 1: Overview of SHAREDLLM. The architecture resembles general encoder-decoder archi-
tecture like T5 (Raffel et al., 2020), but the interaction occurs at the first M layers between lower
and upper model through shared key-values which are encoded and compressed from the text chunk
into a sequence of trees (top-left).

text XD serve as the inputs to the lower and upper models, respectively. Moreover, the past con-
text XC is further divided into n smaller and non-overlapping chunks, denoted by C1, C2, ..., Cn,
namely, where C1 ∪ C2 ∪ ... ∪ Cn = XC and Ci ∩ Cj = ∅, ∀i ̸= j. The chunk size is controlled to
fit within the lower model’s context window, allowing the lower model to fully utilize its encoding
capacity.

2.2 LOWER MODEL

The lower model is a small pretrained LLM, implemented as the first M shallow layers of the target
LLM. It independently encodes and compresses each past context chunk Ci from the set of chunks
{Ci}ni=1, and constructs a context tree that stores multi-grained information across various levels.
The encoding process for all chunks {Ci}ni=1 is fully paralleled to boost the speed. Below, we detail
the context tree structure and its efficiency-enhanced query-dependent dynamic construction, and
the tree search process.

1

2

3

Preserved Node
Selected/Unselected 
branch

Discarded Node

Selected Node

Figure 2: An running example of our tree
(depth=3). Each box indexed by i repre-
sents the ith iteration of node split and se-
lection.

Context Tree. The motivation to build the context
tree is intuitive and problem-driven. Given a text chunk
Ci and a task-specific query, the task-related informa-
tion is often distributed unevenly across the chunk of
text. For instance, to summarize a given passage, one
should pay more attention to the topic sentences, col-
lect messages from them and rephrase to produce the
answer, rather than focuses much on narrative details.
Whereas in the task of passkey finding, detailed rela-
tions are more important than theme paragraphs. To
this end, we aim for the contextual representations to
capture fine-grained details for the relevant portions of
the text, while encoding only coarse-grained informa-
tion for the less relevant parts. The tree structure is the
best fit to simulate this process: the spltting of nodes
resembles splitting larger text chunks into smaller ones,
from which we can get more fine-grained information.
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The root node of a context tree contains the entire chunk Ci = {xs, ..., xt}, where xp (s ≤ p ≤ t)
denotes a token, s and t are the start and end index of that chunk; and each other node consists of a
sub-sequence of the chunk Ci. Then we introduce how to build the child nodes from a parent node.
Specifically, for any non-leaf node that contains l tokens {xu+1, ..., xu+l}, at the training phase, we
split it into two sub-sequences to construct its left child and right child as:

Cparent = {xu+k}lk=1, Cleft = {xu+k}bk=1, Cright = {xu+k}lk=b+1. (1)

Here we adopt a random splitting by setting b = ⌊ l
2 − ϵ⌋ and ϵ ∼ N (0, σ2) where σ is a predefined

hyperparameter, since random lengths can slightly improve the performance as concluded in (Zhang
et al., 2025). At test time, the noise ϵ is fixed to zero. One can continue this process until arriving
at the limited tree depth. Next, building upon this static tree, we construct a more efficient query-
dependent dynamic tree.

Query-Dependent Dynamic Tree Construction and Search. A task-specific query is typically
highly relevant to certain tree nodes while being less relevant to others. For highly relevant nodes,
further expansion is necessary to extract fine-grained information. In contrast, for less relevant
nodes, expansion is unnecessary. Thus, instead of constructing an entire static context tree as afore-
mentioned, we build a query-dependent dynamic tree that expands only the relevant nodes, as shown
in Figure 2, significantly saving both GPU memory and time.

Starting from the root node, we perform a depth-first splitting and search process. Each node se-
quence is first divided into two subsequences according to Eq. (1). We then use a non-parametric
policy π to decide the next selected node based on the two subsequences, x⃗left and x⃗right, and a
query sequence y⃗:

π((x⃗left, x⃗right), y⃗) → left or right, (2)
Here the policy π determines whether the left or right child of the node will be selected. The
unselected sibling node is marked as “preserved” and will not be expanded further. Note, the root
node is always selected to ensure expansion. For policy π, it is task-specific. Specifically, for
language modeling tasks (where the LLM behaves like the non-SFT model), we keep selecting the
right branch to simulate the useful Λ-shape pattern (Han et al., 2024; Ge et al., 2024):

π((x⃗left, x⃗right), y⃗) ≡ right. (3)

For instruction-following tasks (where the LLM serves as the supervised finetuned version), where
queries are explicit and available, π selects the node with higher semantical similarity to the query:

π((x⃗left, x⃗right), y⃗) = argmax
ϕ∈{left,right}

(sim(⃗hx⃗ϕ
, h⃗y⃗)), (4)

where sim(·, ·) represents the cosine similarity of two vectors. The hidden vector h⃗ at the last
position of a sequence is embedded by either the lower or upper model. Specifically, this involves
a short forward pass through one self-attention layer in the lower model for h⃗x⃗ϕ

and the upper
model for h⃗y⃗ . Once the selected node is determined, the process continues with that node, repeating
the procedure until reaching leaf nodes. At this point, both the left and right child are marked as
“preserved”.

For each preserved node, we feed its associated context into the lower model to obtain a collection
of key-value (KV) states from all M layers, denoted as S = {K,V}, where K,V ∈ RM×l×d

represents the key and value states for all M layers. Here, l is the sequence length, and d is the
hidden dimension. Next, we perform a uniform downsampling along the length dimension to retain
only a portion of the KV states, resulting in S′ = {K′,V′}, where K′,V′ ∈ RM×l′×d and l′ are
the downsampled length. The compression ratio α for the node is defined as α = l/l′. For the
context tree, we apply a constant compression ratio αw for all preserved nodes at level w, but the
ratio diminishes progressively from top to bottom, i.e., αw > αw+1. In our implementation, we
set αw = 2αw+1. This approach creates coarse-to-fine distribution of semantic information from
top to down: nodes at higher levels possess longer subsequences and are compressed with a higher
compression ratio, corresponding to more coarse-grained information, while on the contrary, nodes
closer to the bottom store fine-grained information. The overall compression ratio β of a tree is
defined as the ratio of the chunk length |C| to the total length of the compressed KV states:
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β =

∑
lwnw∑
l′wnw

=
|C|∑
l′wnw

(5)

where nw is the number of preserved nodes at level w, and l′w is the compressed length of each
preserved node at level w. For the convenience of parallel processing, we set β to be the same value
for all n context trees. Experimental results in Section 3 demonstrate that this compression ratio can
reach as high as 8, significantly improving efficiency.

2.3 UPPER MODEL

The upper model shares a similar architecture with the full-layer version of the base model, except
for the inserted cross-attention layers to interact with the lower model, as illustrated in Figure 1.

Position-aware Cross-attention on the Context Tree. In Section 2.2, we can obtain a sequence
of tree-structural representations S ′ = {S′

1, ...,S
′
n} for n chunks {Ci}ni=1, where S′

i = {K′
i,V

′
i}

stands for the representations of chunk Ci. Since the sequence of chunk keys K = {K′
1; ...,K

′
n}

is produced from ordered chunks {C1, ..., Cn}, their positional information should be aware at the
chunk level by the query. We assign the following chunk-level positional indices to Q and K:

PQ = {n, n, ..., n︸ ︷︷ ︸
|XD|

}, PK = {0, 0, ..., 0︸ ︷︷ ︸
|C1|/β

, 1, 1, ..., 1︸ ︷︷ ︸
|C2|/β

, n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
|Cn|/β

}. (6)

Here we view the upper model’s query Q as one chunk and endow it with the largest positional
index, because Q is encoded from XD which is behind all context chunks XC in the raw input
sequence X . We then apply rotary positional embedding (RoPE) to Q and K according to these
block indices.

In the cross-attention layer, we calculate attention results between the query Q and concatenated
KVs to integrate their carried context information into the running context for more coherent lan-
guage modeling:

O = cross attn(Q,concat([K′
1; ...;K

′
n]),concat([V

′
1; ...;V

′
n])). (7)

Training We use the standard language modeling loss during training, which maximizes the log
probability of the ground-truth tokens in the target sequences Xtar, conditioned on the context XC

and all preceding tokens x<t from XD:

L = −
∑

xt∈Xtar

logP (xt|XC ;x<t).

For language modeling data, Xtar = XD, i.e., the target tokens are all tokens in XD, excluding the
first token. For instruction-following data, XD includes both the instruction Xinst and the annotated
response Xres. In this case, we set Xtar = Xres, meaning that we optimize only for the response
tokens, while the instruction text is masked during loss calculation.

3 EXPERIMENT

3.1 SETUP

We highlight some key experimental settings in this section. For more detailed information, please
refer to Section A.1.

Dataset For language modeling, we follow Yen et al. (2024) to prepare the training data by sam-
pling a subset of 20B (1%) tokens from RedPajama (Together, 2023). Due to the copyright issue,
the books3 subset is no longer available and thus excluded from our training set. We will give an
analysis towards the impact by this in Section A.4. The sampled texts are truncated to 8,192 tokens
for training. In SFT, we follow Zhang et al. (2025) to prepare the dataset. More details can be found
in the appendix.
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Table 1: Language modeling results (perplexity) of the continual pretraining setting on downsam-
pled RedPajama. Best results on context-extended models are marked in bold. Perplexity higher
than 102 are denoted by dash (”-”). LLaMA-3.1 has the declared 128K context-length since release,
and we list the direct inference results separately for reference only.

Base Model Arxiv PG19 ProofPile
4K 8K 32K 128K 4K 8K 32K 128K 4K 8K 32K 128K

LLaMA-2-32K (Together, 2023) 3.58 3.34 2.96 OOM 6.93 6.81 7.04 OOM 2.87 2.58 2.47 OOM
PI (Chen et al., 2023) 3.49 3.21 2.77 OOM 6.97 6.77 6.89 OOM 2.77 2.64 2.51 OOM
YaRN (Peng et al., 2023) 3.35 3.09 2.58 OOM 6.85 6.62 6.91 OOM 2.82 2.56 2.47 OOM
CEPE (Yen et al., 2024) 3.03 3.02 2.51 2.97 6.69 6.40 6.80 6.10 2.38 2.43 2.45 2.39
SHAREDLLM 2.99 2.97 2.46 2.91 6.55 6.28 6.65 5.96 2.33 2.34 2.38 2.40

LLaMA-3.1 3.17 3.26 2.63 3.12 6.77 6.52 6.84 6.03 2.58 2.54 2.52 2.48

Training We initialize the upper model with short-context LLMs, such as LLaMA-2-7B, LLaMA-
3-8B and Mistral-7B. The lower model is initialized with the weights of the first M layers
from the same LLM, where we set M = 4 in language modeling and M = 16 in SFT. We
train SHAREDLLM on an 8× A800 GPU machine. The batch size is set to 1 per GPU with gradient
accumulation of 16 steps (global batch size is 128) for language modeling and 1 step (global batch
size is 8) for SFT. The cross-attention layers remain fully tunable, while we opt to train the upper
model’s top N − M self-attention layers in language modeling as post-injection aggregation for
faster convergence.

Baseline Methods. For post-pretraining, we compare with other baselines in the same category
which have extrapolation abilities, such as Positional Interpolation (Chen et al., 2023), YaRN (Peng
et al., 2023) and CEPE (Yen et al., 2024). For SFT, we additionally compare with training-based
methods, like StreamingLLM (Xiao et al., 2024b), LongAlpaca (Chen et al., 2024), and Activation
Beacon (Zhang et al., 2025), as well as the advanced inference time method, SnapKV (Li et al.,
2024) and OmniKV (Hao et al., 2025).

3.2 MAIN RESULTS

Language Modeling. We first report the results on language modeling at various input lengths,
which compares the extrapolation (length generalization) capability among methods. All perplexity
values reported in Tables 1 and 2 are averaged over 1000 examples, except for the 128K length
on which we test only 10 examples due to the data scarcity (Yen et al., 2024; Zhang et al., 2025).
The results unveil our model’s strong extrapolation capability—it successfully avoids perplexity
explosion even when tested at the 128K-token length, though only having seen up to 8K-token
sequences during training. Notably, SHAREDLLM outperforms CEPE in nearly all cases except
the run at 128K tokens on ProofPile, showcasing the effectiveness of the introduced self-injection
mechanism. Moreover, the improvement over Activation-Beacon is more pronounced than over
CEPE, as CEPE experiences an additional pretraining stage and a warmup stage to align the hidden
space between its encoder and decoder. In contrast, SHAREDLLM can directly be finetuned from
publicly available off-the-shelf checkpoints, which saves huge training expenses.

Long-context Understanding Benchmarks. We continue to test the supervised fine-tuned ver-
sion of SHAREDLLM on tasks from LongBench (Bai et al., 2023) and InfiniBench (Zhang et al.,
2024b). The two benchmarks comprise a variety of long-context tasks and cover various input
lengths, which help to quantify both task and length generalizability in a unified manner.

For LongBench, we report the average scores on all 14 English tasks from 5 categories, including
single-document QA (SD-QA), multi-document QA (MD-QA), summarization (Summ.), few-
shot learning/reasoning (FS) and code-completion (Code). For InfBench, we report the results
on three representative tasks: Mathematical Find (Math.F), English Multi-Choice (EN.MC) and
Retrieval of Numbers (Ret.N). SHAREDLLM outperforms or matches other advanced instruction-
tuned long-context baselines across all five categories. In Table 3, SHAREDLLM surpasses advanced
baselines on both benchmarks, showing superior capabilities in tackling extremely long inputs. We
note that truncation from the middle, as what many previous works did, could reduce the difficulty
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Table 2: Langauge modeling results of the supervised fine-tuning setting. “OOM” denotes the out-
of-memory exception is raised during inference. Excessively large perplexities (> 102) are hidden
with a dash (“-”).

Base Model Method PG19 ProofPile CodeParrot
4K 16K 32K 100K 4K 16K 32K 100K 4K 16K 32K 100K

LLaMA-2

StreamingLLM 9.21 9.25 9.24 9.32 3.47 3.51 3.50 3.55 2.55 2.60 2.54 2.56
LongAlpaca-16K 9.96 9.83 - OOM 3.82 3.37 - OOM 2.81 2.54 - OOM
Activation Beacon 9.21 8.34 8.27 8.50 3.47 3.34 3.32 3.31 2.55 2.43 2.41 2.62
SHAREDLLM 8.68 8.01 7.96 8.24 3.36 3.24 3.21 3.19 2.33 2.25 2.23 2.36

Mistral-7B

StreamingLLM 9.58 9.63 9.52 9.55 4.08 4.19 4.16 4.23 2.99 3.05 3.13 3.02
LongAlpaca-16K 10.21 10.39 - OOM 3.26 3.34 - OOM 3.05 3.21 - OOM
Activation Beacon 9.35 9.41 9.39 9.48 3.82 3.64 3.69 3.72 2.96 2.85 2.74 2.92
SHAREDLLM 8.97 9.02 8.98 9.05 3.58 3.38 3.49 3.74 2.71 2.68 2.58 2.76

Table 3: Evaluation results of different SFT methods on two benchmarks from LongBench and
Infini-Bench. Note that for some baselines we follow their default settings to truncate the input
below their window length, which may cast positive effects on their performance.

Base Model Base Model LongBench InfBench
SDQA MDQA Summ. FS Code Math.F En.MC Ret.N

LLaMA-2

Base 24.90 22.60 24.70 60.00 48.10 2.85 22.79 1.85
StreamingLLM 21.47 22.22 22.20 50.05 48.00 6.00 32.31 5.23
LongAlpaca-16K 28.70 28.10 27.80 63.70 56.00 6.23 25.74 4.87
SnapKV 24.05 22.98 17.25 16.11 58.87 9.95 28.83 2.31
OmniKV 23.86 22.77 21.09 35.74 49.37 8.81 26.25 3.66
Activation Beacon 28.27 28.44 25.15 61.00 57.75 12.14 32.05 80.58
SHAREDLLM 28.83 30.93 25.76 63.50 59.93 13.82 33.65 82.79

Mistral-7B

Base 23.10 16.20 23.17 48.20 46.10 3.57 20.65 5.41
StreamingLLM 26.19 16.65 23.48 48.23 45.98 7.26 18.84 9.75
LongAlpaca-16K 27.05 17.33 26.18 51.97 52.28 5.41 21.19 12.48
SnapKV 22.87 16.43 16.47 19.74 54.09 4.73 16.18 15.71
OmniKV 22.95 16.87 21.36 42.85 41.90 3.81 19.77 14.98
Activation Beacon 29.89 18.04 25.92 52.36 51.81 14.72 28.71 62.37
SHAREDLLM 30.75 19.81 27.43 54.92 53.74 16.12 29.80 65.73

LLaMA-3

Base 5.12 7.95 26.13 68.75 56.04 9.93 24.17 49.85
StreamingLLM 6.73 8.56 26.85 68.32 54.83 11.27 35.81 52.85
LongAlpaca-16K 21.41 12.45 27.74 70.72 60.05 12.03 25.28 16.13
SnapKV 3.31 6.52 19.96 21.05 66.71 7.82 17.73 43.51
OmniKV 4.54 8.21 20.77 32.19 57.92 8.29 21.16 41.10
Activation Beacon 22.08 13.75 29.06 70.67 61.14 15.56 37.17 95.18
SHAREDLLM 22.62 14.32 28.94 71.45 63.57 17.26 36.99 97.31

of some tasks and improve the performance (Zhang et al., 2025), especially on decoder-only models,
as the relevant information for many tasks is located at the head or rear of the entire context rather
than the middle part.

3.3 TIME AND MEMORY EFFICIENCY

SHAREDLLM shows high computational efficiency in terms of both speed and GPU memory uti-
lization. As Figure 3 visualizes, we compare the average inference time (ms) and memory consump-
tion (GB) produced by SHAREDLLM against other advanced baseline models from the architecture
types of streaming (Zhang et al., 2025), encoder-decoder (Yen et al., 2024) and vanilla with posi-
tional encoding (Peng et al., 2023) that have shown competitive performance in prior evaluations.
YaRN (Peng et al., 2023), which exploits the same fully attention as vanilla auto-regressive LLaMA,
has O(L2) time and space complexity. The squared complexity makes it the only model that triggers
the out-of-memory exception at 128K length. Activation Beacon (Zhang et al., 2025), which adopts
the streaming processing paradigm, maintains a minimum constant memory O(l) under different
input lengths L, where l is the sliding window length, a predefined constant hyperparameter. How-
ever, Activation Beacon is incompatible with FlashAttention (Dao, 2023) also due to its specialized
attention paradigm, which causes a sharp increment in inference time as input size grows. CEPE can
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process past context chunks in parallel, but these chunks must be passed through all its encoder lay-
ers (24-layer RoBERTa in CEPE) and layer-wise linear projections to obtain the final hidden states
for cross-attention, leading to even slower inference speed than non-parallel Activation Beacon. In
contrast, SHAREDLLM avoids such redundancy through shallow-layer compression and injection,
which exhibits significant speed-up and limited memory consumption.

3.4 ABLATION STUDY
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Figure 3: Comparison of memory usage (left) and total inference time
on 100 examples (right) between SHAREDLLM and other training time
baseline methods. The data is collected by running a tiny experiment on
100 examples in corresponding lengths. “OOM” means out-of-memory
exception triggered during test time.

Validation of Design
Choices. We conduct
more experiments on
the following ablative
settings to validate the
rationale behind the
design choices: 1) the
choice of context infor-
mation injection layers;
2) other configurations,
including the effect from
contextual information
collection policy π (only
for instruction-following
task), the noise in node
splitting, and the addition
of chunk-level positional
indices during cross-attention. Regarding the layers selected to transmit KV cache for cross-
attention, our implementation, which adapts the continuous bottom strategy and injects the context
information in the bottom M layers, obtains the strongest performance over the other two choices,
not to mention its outstanding efficiency from the shortest forwarding and back-propagating path.
For other settings, as shown in the bottom rows, performance significantly drops after removing any
of the three items. Among the three items, the query-aware information gathering mechanism plays
the most crucial role, as removing it causes the largest performance drop on query-driven tasks. In
addition, the decoder’s awareness of the sequential order of chunks is essential, since the key-value
pairs produced by the encoder are fed in a shuffled manner and must be accurately re-ordered
during training. Finally, introducing noise serves as an effective regularizer during training and also
contributes to improved overall performance.

Architecture Hyperparameters. We further examine SHAREDLLM’s sensitivity to some key
hyperparameters, such as tree height and token compression ratio. The performance fluctuation
on the same two tasks across these configurable hyperparameters are depicted in Figure 4. The figure
reflects the sentitivity to hyperparameters, indicated by the inconsistent trend when tree hight is less
than 3 and compression ratio is smaller than 8. The figure reflects the sentitivity to hyperparameters,
indicated by the inconsistent trend when tree hight is less than 3 and compression ratio is smaller
than 8. The left bar chart reveals the importance of proper tree height. If the height is excessively
small, then the tree is undersplit and the chunk size is so large that only coarse-grained information
is preserved and received by the upper model, while task-related fine-grained information is lost.
Conversely, if the tree is too high, then the tree is oversplit and the leaves carry minor details,
which are less useful for tasks demanding a global view of the context, the downstream performance
also degrades significantly. A similar trend can be captured with the global compression ratio β.
Although the perplexity declines when all KVs (β = 1) are retained for cross-attention as more
semantic information can be utilized, the query-aware information gathering ability deteriorates and
thus the MDQA score becomes lower.

Besides the effect on task performance, we also conduct more experiments to explore how these
configurations impact speed and memory in Appendix C.
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Table 4: Ablative Studies on
different configurations of struc-
tural information injection. The
best values in each category and
settings consistent with our de-
faults are highlighted in bold.

Configuration arxiv MD-QA

Default 2.46 30.93

Continuous Top 2.61 28.66
Interleaving 2.57 29.15

w/o query-aware - 29.27
w/o noise 2.51 30.08
w/o chunk pid 2.49 29.81

Figure 4: Results on arxiv-32K (perplexity) and MD-QA (av-
erage F1) when configuring with different tree heights (left)
and compression ratios (right) to SHAREDLLM. The values
on the horizontal axis represent these individual variables.
The value from the default configuration are highlighted in
bold.
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4 RELATED WORK

Building Long-context Language Models. There are two prevalent routines to empower LLMs’
capability to process extremely long text: directly pretraining on long-context corpus (Touvron et al.,
2023a; Dubey et al., 2024; Jiang et al., 2023; GLM et al., 2024; Yang et al., 2025) or adapting short
context-window LLMs to longer context lengths via combined various techniques (Tworkowski
et al., 2024). The former approach consumes enormous amounts of data and computational re-
sources, while the latter makes room for researchers to explore more flexible optimization strate-
gies (Fu et al., 2024). Adaptation methods intend to mimic short input scenarios when the input text
is actually long. Typical implementations include positional encoding (PE) rescaling (Press et al.,
2021; Chen et al., 2023; Peng et al., 2023) and positional index rearranging (Xiao et al., 2024b;
Ding et al., 2023; An et al., 2024; He et al., 2024). Both adjust the attention weight distribution
to resemble the short-input scenarios. Another line of work compresses past tokens sequentially
into dense representations (Chevalier et al., 2023; Zhang et al., 2025; Gao et al., 2025), serving
as next-step input or storing them in an external retrievable memory (Wu et al., 2022; Xiao et al.,
2024a). Yen et al. (2024) utilizes small model (Liu, 2019) for context compression to enable higher
parallelism and minimize latency. However, this heterogeneous architecture necessitates extra pre-
training and warmup stages to stabilize the fine-tuning process. Packer et al. (2023) proposes a
system-level approach that introduces a hierarchical architecture along with a predefined set of I/O
operations, enabling LLMs to offload, store, and retrieve long-range contextual information while
maintaining a bounded active context within the model’s window. Nevertheless, the effectiveness
of this mechanism is fundamentally constrained by the capability of the underlying backbone LLM.
In contrast to these works, our method directly tunes off-the-shelf models to compress context into
structural representations for query-aware retrieval. Powered by efficient architecture design and a
fast-forwarding mechanism, the whole procedure can be fully paralleled online without excessive
memory usage.

Efficient Techniques for Long-context Modeling. In vanilla self-attention, the space and time
complexity grows quadratically (O(L2)) with the input sequence length L, which usually causes
out-of-memory (OOM) issues on GPU clusters when inputs are extremely long. A straightforward
solution is to add parameter efficient fine-tuning (PEFT) modules (Chen et al., 2024; Zhang et al.,
2025; 2024a) to shrink the size of gradient tensors during back-propagation. Many works strive to
reduce the memory footprint of attention computation to enhance computational efficiency. Long-
former (Beltagy et al., 2020) introduces a hybrid attention pattern to capture local and global se-
mantic features concurrently. (Katharopoulos et al., 2020) designs linearized attention that merely
demands O(L) space to accomplish attention computation. FlashAttention (Dao et al., 2022; Dao,
2023) and PagedAttention (Kwon et al., 2023) maximize the memory efficiency from the system’s
perspective. More recently, (Xiao et al., 2024b) discovers the “attention sink” phenomenon and
constructs pseudo sink to address the issue under window-attention. Similar attention patterns have
been identified in (Han et al., 2024; Ge et al., 2024; Zhang et al., 2025) and leveraged as a principle
when sparsifying attention maps during long-context modeling. Our work basically follows the effi-
cient design principle in three aspects: 1) lightweight architecture through lower-layer self-injection;
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2) compact representations via structural information extraction and compression; 3) efficient con-
struction and retrieval algorithm based on context tree data structure.

5 CONCLUSION

In this work, we present SHAREDLLM, which leverages a self-injection mechanism to adapt a pair
of short-context LLMs for efficient long-context modeling. By integrating the operations of context
compression and key information retrieval into a dedicated binary-tree structure, SHAREDLLM ex-
cels in language modeling and various downstream instruction-following tasks, while maintaining
excellent memory and time efficiency. Besides, SHAREDLLM is directly trained from off-the-shelf
LLMs, eliminating the need for additional feature alignment steps and making implementation eas-
ier. We hope this learning paradigm can be generalized to other short-context LLMs, offering a
scalable approach for context-window extension to arbitrary lengths.

ETHICAL STATEMENT

All datasets in this paper are publicly available and have been widely tested in previous works. We
do not leverage any synthetic data during training or evaluation. Components in SHAREDLLM are
initialized from the checkpoint of released open-sourced LLMs and its security has been sufficiently
validated when input queries are safe. We also scrutinized many sampled outputs and found no
harmful information was generated.

REPRODUCIBILITY STATEMENT

We provide many materials for reproduction in the appendix, including training and testing config-
urations, pseudo code snippets, and an anonymous code repository, etc. More evidence, such as the
full code and model checkpoints, will be released in a later time.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. In Forty-first International Confer-
ence on Machine Learning, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 3829–3846, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arxiv 2022. arXiv preprint arXiv:2204.02311, 10,
2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Colin B Clement, Matthew Bierbaum, Kevin P O’Keeffe, and Alexander A Alemi. On the use of
arxiv as a dataset. arXiv preprint arXiv:1905.00075, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2023.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
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USAGE OF LLMS

We only use LLMs for writing suggestions, and revising purposes, including basic spelling, gram-
mar, polishing, and LATEX code formatting. The major workloads in this paper, such as ideation,
coding, experiments, and paper writing, are fully completed by ourselves, while leaving LLMs as
an auxiliary assistant instead of a major contributor to this paper.

A MORE IMPLEMENTATION DETAILS

A.1 TRAINING CONFIGURATIONS

Table 5: Configurations for training on both tasks.

Item Continual Pretraining Supervised Fine-tuning

training epoch 1 2
warmup ratio 0.01 0.001

σ l/5 l/10
chunk size 1024 512

α 1/16, 1/8, 1/4
AdamW (β1, β2) 0.9, 0.999

In accord with the settings in previous
works (Chen et al., 2024; Yen et al.,
2024; Zhang et al., 2025), for con-
tinual pretrainng, we initialize both
lower and upper model with the base
version (pretrained, non-finetuned) of
LLMs. In SFT, we use their corre-
sponding instruction-tuned version as
the start point for training.

Zero Redundancy Optimizer (ZeRO)
stage 3 from DeepSpeed without of-
fload is enabled in both training and
inference to allocate the memory usage evenly among GPUs. The cross-attention layers remain
fully tunable, while we opt to train upper model’s top N − M self-attention layers in language
modeling as post-injection aggregation for faster convergence. No parameter efficient fine-tuning
(PEFT) techniques, such as LoRA, are applied during the training time, as PEFT seriously slows
down model’s convergence (Chen et al., 2024), which consequently costs longer tuning time than
partial parameter fine-tuning. We adopt AdamW optimizer with the starting learning rate 1e−5 and
cosine scheduler during training.

We list more training configurations that are not specified in the main text in Table 5. The sequential
values of α are level-wise compression ratio, from level 1 to level 3.

A.2 DATASET STATISTICS

We use different compositions of training dataset in continual pretraining and supervised fine-tuning
below.

Downsampled Redpajama. We follow (Yen et al., 2024) and (Touvron et al., 2023b) to prepare
our training set. The proportions of data regarding seven domains in the resulted training set are
listed in Table 6. All documents are truncated by 8,192 tokens to fit in the pretraining mode.

Table 6: Dataset composition in our downsampled Redpajama (10B) tokens.

Domain Proportion (%)

Arxiv (Clement et al., 2019) 2.5
Books (w/o S3) (Rae et al., 2020) 4.5
C4 (Roberts et al., 2019) 15.0
CommonCrawl (Luccioni & Viviano, 2021) 67.0
Github 4.5
StackExchange 2.0
Wikipedia (Foundation) 4.5

During pretraining, 4K tokens are fed to the lower model and upper model respectively. The lan-
guage modeling loss is calculated on the upper model’s token prediction.
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Mixed Dataset in SFT. This dataset is directly picked from (Zhang et al., 2025), which is a mix-
ture of RedPajama and LongAlpaca (Chen et al., 2024). LongAlpaca is composed of Stanford
Alpaca instruction-following dataset (Taori et al., 2023) and author-curated long-context tasks such
as summarization and long-document question answering. We follow (Zhang et al., 2025) to filter
samples and only preserve those whose lengths range from 1K to 8K. The distribution of samples in
terms of length is specified in Table 7.

Table 7: Proportion of samples within each length interval.

Length <2K 2∼4K 4∼6K 6∼8K

Proportion 47% 29% 8% 16%

Since we found there was an absence of training data in fine-grained retrieval tasks, we additionally
sample a small set (200 samples) of data from Llama-3-8B-262K training corpus and add them to the
SFT data collections. This tiny proportion of data plays decisive roles in ensuring SHAREDLLM’s
non-decreasing accuracy as the input context length grows.

A.3 ONLINE SPLIT-AND-SEARCH ALGORITHM

We provide the pseudo code for the online split-and-search algorithm introduced in Section 2.2,
from the splitting of the root node till collecting all key-value states for all preserved nodes and all
M layers. The full implementation is not intricate, which can be readily accomplished with around
25 lines of code.

For the full set of the core code, please refer to https://anonymous.4open.science/r/
sharedllm_anony-04B1 for details. The code snippet in the entire model.py file can also be
found in this anonymous repository.

Algorithm 1 Pseudo code of dynamic Construction-and-Search.

# N: number of trees; L: chunk size

# depth: tree depth; chunk_ids: the entire input ids for chunk in shape (N, L)
# gamma: a hyper-parameter to adjust the variance of the gaussian sampling

selected_input_ids = chunk_ids
selected_length = chunk_ids.shape[-1]
all_kvs = []

for i in range(depth):
# sample lengths of left and right child
if i < depth - 1:

half_length = last_length // 2
sigma = half_length / gamma
delta = random.randn(1) * sigma
l_left, l_right = half_length - int(delta), half_length + int(delta)

# split the node into two children
left_input_ids, right_input_ids = input_ids[:l_left], input_ids[-l_right:]
# query_aware is a flag indicating if the selected nodes are determined on query
if query_aware:

# short forward (1-layer) to get representation vectors for the query and two nodes
h_q = upper_model(query, 1)
h_left, h_right = lower_model(left_input_ids, 1), lower_model(right_input_ids, 1)
selected = argmax(sim(h_q, h_left), sim(h_q, h_right)

else:
selected = 1 # deterministic example, can change to 0 or random selection

selected_input_ids = [left_input_ids, right_input_ids][selected]
selected_length = [l_left, l_right][selected]

preserved_input_ids = [left_input_ids, right_input_ids][1 - selected]
else:

preserved_input_ids = cat(last_input_ids.chunk(2, -1), 0)

cur_level_kvs = lower_model(preserved_input_ids).past_key_values
cur_level_kvs = downsample(cur_level_kvs)
all_kvs.append(cur_level_kvs)

cat: concatenation; chunk: split into the specified number of chunks
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A.4 CONSEQUENCE FROM THE ABSENCE OF BOOK-S3

Book-S3 is a large dataset of copyrighted published books composed by professional writers in
various domains. Due to the copyright infringement allegations, all online entries to access this
corpus have been removed. Prior studies (Yen et al., 2024) have shown that the absence of Book-S3
subsets in RedPajama corpus casts a negative impact on language modeling results. Here we simply
show the comparison in terms of perplexity when SHAREDLLM is trained with and without Book-
S3. As Table 8 shows, the baselines without Book-S3 as part of their continual pretraining corpus
show inferior results, which is consistent with the observation in Yen et al. (2024). We hypothesize
that the root cause is that Book-S3 contains many well-structured and logically sound articles written
by expert-level writers, which show higher quality and lower noise than data from other domains.
Therefore, it plays a great role in improving language modeling.

Table 8: Perplexity increment as a negative effect from the lack of books3. † represents the values
in corresponding rows are reproduced from open-sourced code.

Model Arxiv PG19 ProofPile
4K 8K 32K 128K 4K 8K 32K 128K 4K 8K 32K 128K

LLaMA-2-7B (4K) 2.60 - - OOM 6.49 - - OOM 2.28 - - OOM

Books3 involved in training

YaRN-2-128K 3.13 2.96 2.34 OOM 6.15 6.02 6.32 OOM 2.70 2.47 2.41 OOM
CEPE 2.86 2.84 2.34 2.91 6.60 6.24 6.66 5.99 2.22 2.33 2.26 2.23

Books3 not involved in training

YaRN-2-128K 3.46 3.30 2.57 OOM 6.83 6.59 7.14 OOM 2.85 2.68 2.63 OOM
CEPE† 3.03 3.02 2.51 2.97 6.69 6.40 6.80 6.10 2.38 2.43 2.45 2.39
SHAREDLLM 2.99 2.97 2.46 2.91 6.59 6.31 6.72 6.00 2.36 2.37 2.41 2.46

A.5 DETAILS OF TEST BENCHMARKS

For all inference results, we report the average values of five runs under different random seeds.

RedPajama To test the long-context modeling capability, we use a tiny proportion of corpus which
has never been seen by the model during the continual pretraining period as the test set. The sampled
passages are ensured to match the corresponding test lengths. We hold a constant 4K input for the
upper model while the left long context is passed to the lower model, akin to what we did during
pretraining.

Long Bench (Bai et al., 2023) is the first bilingual (English and Chinese), multi-task benchmark
for long context understanding. It comprises 21 datasets (16 English and 5 Chinese) across 6 subcat-
egories, which aims for a more rigorous evaluation of long context understanding. These categories
encompass single document QA, multi-document QA, summarization, few-shot learning, synthetic
tasks, and code completion. The average length of documents is 6,711 words in English and 13,386
characters in Chinese.

Infinity-Bench (Zhang et al., 2024b) extends context lengths in previous long-context bench-
marks from 10K to more than 100K tokens. The benchmark is composed of synthetic and realistic
tasks that span diverse domains and bilingual (Chinese and English), such as retrival (Ret.), summa-
rization (sum), question answering (QA), code and math.

B MORE EXPERIMENTAL RESULTS

B.1 RESUTLS ON PASSKEY RETRIEVAL

We further assess the retrieval capability of SharedLLM on the passkey retrieval, or needle-in-
haystack (NIAH) task. Following the settings in (Yen et al., 2024), we train a new version of
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SharedLLM that can perform accurate passkey retrieval from the haystacks of the surrounded non-
sense. We follow the examples in (Chen et al., 2024) to set up the single key-value pair test cases.
The results averaged on 10 randomly generated NIAH test samples are shown in Figure 5. It can
be observed that SHAREDLLM enjoys the minimal accuracy decay as length extends compared to
other baselines, although it has only seen context within 8K length.

Figure 5: Accuracy comparison on passkey retrieval (single key-value pair) task.

B.2 COMPARISON BETWEEN DIFFERENT ATTENTION MAPS

The introduced self-injection algorithm can also be regarded as an attention remapping process,
where we use “continuous-right” and “query-aware” node selection strategy for language modeling
and long-context understanding respectively. Meanwhile, many concurrent works (Han et al., 2024;
Xiao et al., 2024b; Ge et al., 2024) observed the special Λ-shape attention map and took advantage of
this for acceleration. In fact, the policy selection is not only intuitive but also with the fundamental
support from pilot experiments. We report the results of all these choices below:

Table 9: Pilot studies of branch-selection policies.

Setting Arxiv MD-QA
Default 2.46 (±0.01) 30.93 (±0.16)
Random 2.61 (±0.13) 28.85 (±0.45)
Fixed Left 2.49 (±0.02) 29.62 (±0.15)
Query-aware 2.48 (±0.02) 29.27 (±0.12)
Λ-shape 2.52 (±0.04) 29.48 (±0.18)

The results manifest that the selected policy can produce the optimal performance on the downstream
tasks.

C TIME AND MEMORY EFFICIENCY

C.1 QUANLITATIVE ANALYSIS

Apart from strong performance on downstream tasks, SHAREDLLM demonstrates high computa-
tional efficiency in terms of both inference speed and GPU memory utilization. We compare these
metrics produced by SHAREDLLM against other representative models of streaming (Zhang et al.,
2025), encoder-decoder (Yen et al., 2024) and vanilla (Peng et al., 2023) architectures that have
shown competitive performance in prior evaluations. The results are visualized in Figure 3.

YaRN (Peng et al., 2023), which only modifies the encoding policy but still applies the vanilla
multi-head attention as LLaMA, shows squared (O(L2)) time and space complexity. Consequently,
it triggers the out-of-memory exception at an early stage (128K tokens). Activation Beacon (Zhang
et al., 2025), which adopts the streaming processing paradigm, maintains a minimum constant mem-
ory O(l) under different input lengths L, where l is the sliding window length. However, Activa-
tion Beacon is incompatible with FlashAttention (Dao, 2023) also due to its specialized attention
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paradigm, which causes a sharp increment in inference time as input size grows. CEPE can pro-
cess past context chunks in parallel, but these chunks must be passed through all its encoder layers
(24-layer RoBERTa in CEPE) and layer-wise linear projections to obtain the final hidden states for
cross-attention, leading to even slower inference speed than non-parallel Activation Beacon. In con-
trast, SHAREDLLM alleviates such redundancy through shallow-layer compression and injection,
which exhibits significant speed-up and limited memory consumption.

We have explained the outstanding efficiency of our model by comparing the memory usage and
inference speed with other competitors. In this section, we give a more comprehensive analysis
towards the inherent factors that may impact model’s efficiency, including compression ratio β, tree
height h, the number of shared layers M and the retrieval-based policy which requires an additional
short forward pass.

Table 10: Inference time under various M with constant h = 3 and β = 8. Our default setting is
highlighted in bold.

M 1 2 4 8 16

Time (s) 6.78 9.35 11.81 16.81 25.85
Memory (GB) 21.04 21.50 22.39 24.08 27.82

C.2 EFFICIENCY RESULTS

We rerun our experiments to measure the forward time and memory cost from language modeling
on 8K tokens, adjusting one variable at a time while keeping others at their default values. The
results are shown in Table 10, 11 and 12. Among these factors, the number of injection layers, M ,
has the most significant impact on both speed and memory: both memory and latency grows as M
increases. As an opposite, compression ratio β and tree height h produces nuances effect on both
metrics. For example, if we decreases β from 64 to 1 (preserve all KVs), the inference time increases
by 6.7% while memory increases by 3%. A similar trend is observed on experiments with tree height
h. We speculate that the reason behind these outcomes are partly from the internal optimization in
FlashAttention, which efficiently computes attention blockwisely. When the configuration meets its
requirement for block size and hidden dimension (e.g., length is divisible by 256),

Table 11: Inference time under various β with constant h = 3 and M = 4. Our default setting is
highlighted in bold. For β ∈ {1, 2}, we are not able to set levelwise compression ratios and thus we
set the compression ratio same as the β for every level of the tree.

β 64 32 16 8 4 2 1

Time (s) 11.68 11.73 11.78 11.81 11.87 12.04 12.47
Memory (GB) 22.20 22.20 22.20 22.39 22.40 22.35 22.97

Table 12: Inference time under various h with constant β = 8 and M = 4. Our default setting is
highlighted in bold.

h 1 2 3 4

Time (s) 11.16 11.55 11.81 11.86
Memory (GB) 19.72 22.42 22.39 22.41

We further investigate the potential overhead caused by the extra short forward path query-aware
splitting-and-search algorithm. As shown in Table 13, we observe that it incurs around 15% over-
head in both time and space. We believe this type of overhead can be further eliminated with more
careful optimization of the implementation details.
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Table 13: Comparison of time and memory consumption when query-based retrieval is incorporat-
ed/not incorporated in SHAREDLLM. h, M and β are fixed at the default values.

Setting Time Memory

w/o query-aware retrieval 11.81 22.39
w query-aware retrieval 13.18 25.44
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Figure 6: A living example of tree growth and split on the passkey retrieval task. The numbers
above the text boxes are the correlation score between the text chunk and user query. Green/Red
boxes indicate the chunk is selected/not selected.

D VISUALIZATION OF TREE SPLITTING PROCESS

We provide a living example to demonstrate how the tree is constructed and how the key chunk is
retrieved when performing the passkey retrieval task. In this example, we assume that the length of
input text is 8,192 and the passkey is located between token id 15 and 20. The process is depicted
in Figure 6. As the figure shows, SharedLLM first split the entire input of 4,096 tokens into two
chunks of 2,048 tokens. Then, it computes the correlation scores between the query and subchunks,
and finds the first chunk more correlated (0.79 > 0.18). Hence, it repeats the procedure by splitting
that chunk into two subchunks of 1,024 tokens. The process iterates until the maximum tree depth
has been reached (suppose dmax = 3), where the chunk size is 512. At each iteration, the chunks
where the passkey resides are always selected due to their higher correlation scores.
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