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ABSTRACT

The excellent performance of the state-of-the-art Generative Adversarial Net-
works (GANs) is always accompanied by enormous parameters and computations,
making them unaffordable on resource-limited mobile devices. As an effective
model compression technique, knowledge distillation (KD) has been proposed
to transfer the knowledge from a cumbersome teacher to a lightweight student.
Following its success on classification, some recent works have applied KD to
GAN-based image-to-image translation but lead to unsatisfactory performance.
In this paper, to tackle this challenge, we propose a novel knowledge distillation
framework named IYOR (Imitate Your Own Refinement), which consists of the
following two techniques. Firstly, since image-to-image translation is an ill-posed
problem, knowledge distillation on image-to-image translation may force the stu-
dent to learn the average results between multiple correct answers and thus harm
student performance. To address this problem, we propose to replace the teacher
network in knowledge distillation with a refining network, which is trained to re-
fine the images generated by the student to make them more realistic. During the
training period, the refining network and the student are trained simultaneously,
and the student is trained to imitate the refined results in a knowledge distilla-
tion manner. Secondly, instead of only distilling the knowledge in the generated
images, we propose SIFT KD, which firstly extracts the distinctive and scale-
invariant features of the generated images with Scale-invariant feature transform
(SIFT), and then distills them from the refining network to the student. Extensive
experimental results demonstrate the effectiveness of our method on five datasets
with nine previous knowledge distillation methods. Our codes are available in the
supplementary material and will be released on Github.

1 INTRODUCTION

In the last decade, Generative Adversarial Networks (GANs) have evolved to one of the most domi-
nated methods for content generation of images (Isola et al., 2017; Zhu et al., 2017a), videos (Von-
drick et al., 2016), text (Zhang et al., 2016), audios (Kong et al., 2020), graphs (Wang et al., 2018a),
point clouds (Li et al., 2019) and multi-modal systems (Zhu et al., 2017b). Their remarkable abil-
ity of representation and generation has significantly boosted the performance of image-to-image
translation and further promoted their usage in real-world applications. Despite their impressive
performance, GANs models usually suffer from massive parameters and computation, which have
limited them to deploy on resource-restricted platforms such as mobile phones. This problem further
raises the research trend in model compression such as network pruning (Buciluǎ et al., 2006; He
et al., 2018a; 2017), weights quantization (Lee et al., 2019; Nagel et al., 2019), lightweight model
design (Ma et al., 2018; Sandler et al., 2018; Howard et al., 2017), neural network architecture
search (Howard et al., 2019; He et al., 2018b), and knowledge distillation (Hinton et al., 2014).

Knowledge distillation (KD), which aims to improve the performance of lightweight students by
transferring knowledge from an over-parameterized teacher model, has become a popular technique
for model compression. By imitating the prediction results and the intermediate features of teachers,
students can achieve significant performance improvements. Following its success in image classi-
fication (Hinton et al., 2014; Zhang et al., 2020), object detection (Zhang & Ma, 2021) and semantic
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Figure 1: Comparison between traditional KD and IYOR on Edge→Shoe. (a) The teacher network
in traditional KD is trained to translate images of edges to shoes. (b) In contrast, the refining network
in IYOR is trained to refine the shoe images generated by students to make them more realistic.
Since the refining network is conditioned on the student outputs, the refined results tend to be more
consistent with student outputs than teacher outputs, and thus they are better learning targets for the
student. (c) In traditional KD, the teacher network is firstly pretrained and then used for knowledge
distillation with its weights frozen. In our method, the refining network is trained with the student
simultaneously. (d) Besides, we propose SIFT KD, which firstly extracts the scale-invariant and
highly distinctive features in the generated images with Scale-invariant feature transform (SIFT),
and then distills them to the students. Note that the student and refining network are also trained
with the original loss in GANs, which are not shown in the figure for simplicity.

segmentation (Yang et al., 2022), Recently, some researchers have tried to apply knowledge distilla-
tion to image-to-image translation by training students to mimic the images generated by the teach-
ers. Unfortunately, these trials usually lead to limited and even sometimes negative performance (Li
et al., 2020c; Zhang et al., 2022). Some works have been proposed to distill teacher knowledge in
their features and lead to positive effectiveness (Ren et al., 2021; Li et al., 2020c). However, there is
still no analysis on the reason that why traditional image-based knowledge distillation fails.

In this paper, we mainly impute the unsatisfactory performance of naive knowledge distillation
to the ill-posed property of image-to-image translation. Unlike image classification, where each
image always has a unique categorical label, an image can have multiple different but correct post-
translation answers in image-to-image translation. For example, in Edge→Shoe translation (i.e.,
translating edges of shoes to photos), given an input image of edges, there are multiple corresponding
images of shoes with different colors, styles, and contents. All of these images can be correct
answers while the average of them may have low quality. Unfortunately, in traditional KD, the
student and teacher are likely to give two different but correct predictions for the same input image.
In this case, the knowledge distillation loss forces the students to learn the average between the
student outputs and the teacher outputs, which can harm student performance acutely. In contrast,
the ideal case to avoid this problem is to guarantee that the student and teacher output the consistent
answers for the input image. However, this assumption does not always hold since the student and
the teacher in traditional KD are two independent image-to-image translation models.

To address this problem, we propose IYOR (Imitate Your Own Refinement), a generalized knowledge
framework which introduces a different manner to build the “teacher network” in knowledge distil-
lation. Taking Edge→Shoe translation as an example, as shown in Figure 1, instead of building a
teacher network which translates edges into shoes, IYOR introduces a refining network, which takes
the shoe images generated by the student as inputs, refines them, and outputs the images of the shoe
which have much better quality. Note that the refining network is trained with the student simul-
taneously and can be discarded during inference to avoid additional parameters and computations.
Since the refining network has much more parameters than the student, this refining process can
significantly improve the quality of images generated by students. Hence, the refined results can be
considered as the “teacher outputs” in traditional knowledge distillation, and utilized as the learning
targets of the students. The major advantage of IYOR is that the refining network is conditioned on
the outputs of students, instead of the original inputted images. Hence, the refined results are more
likely to be consistent with the student outputs than the teacher outputs in traditional knowledge
distillation. As a result, it can alleviate the problem of ineffective knowledge distillation caussed by
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the ill-posed property. Extensive experiments show that dramatic performance gain of five datasets
can be observed by simply replacing the traditional teacher network with the refining network.

Moreover, instead of directly training the student to imitate the images generated by the refining
network pixel by pixel, we further propose SIFT distillation which adopts Scale Invariant Feature
Transform (SIFT) (Lowe, 1999), a typical image feature extraction method in traditional image
processing to extract the scale-invariant and highly distinctive features of the generated images and
then distills them from the refining network to the students. As pointed out by abundant previous
research (Lowe, 1999; 2004; Yuan et al., 2008), the features extracted by SIFT are invariant to image
scaling, rotation and illumination, and highly distinctive for downstream tasks such as detection and
tracking. Hence, these features carry more semantic information of the images, and they are more
beneficial in knowledge distillation than traditional pixel-wise imitating. Another advantage of SIFT
KD is that SIFT does not contain any trainable parameters, which makes SIFT KD generalize well
on different image-to-image translation tasks as a plug-and-play knowledge distillation technique.

Experimental results on five image-to-image translation tasks have demonstrated the performance
of IYOR for both paired and unpaired image-to-image translation in terms of both quantitative and
qualitative analysis. Despite its simplicity, IYOR outperforms the previous nine knowledge distilla-
tion methods by a clear margin. Besides, experimental results also demonstrate that IYOR can be
combined with the previous feature-based knowledge distillation methods to achieve better perfor-
mance. To sum up, our main contributions can be summarized as follows.

• We propose IYOR, a knowledge distillation method for efficient image-to-image transla-
tion. To the best of our knowledge, IYOR firstly shows that the most naive image-based
knowledge distillation can be effective by replacing the teacher with a refining network.

• We propose SIFT distillation, which adopts SIFT to extract the distinctive and scale-
invariant features of images and distill them from the refining network to the student.

• Extensive experiments on both paired and unpaired translation tasks have demonstrated
the performance of IYOR over nine previous methods and five datasets in terms of both
quantitative and qualitative results. Our codes have been released for future research.

2 RELATED WORK

2.1 IMAGE-TO-IMAGE TRANSLATION WITH GANS

Remarkable progress has been achieved in image-to-image translation with the rapid development
of generative adversarial networks (GANs) (Goodfellow et al., 2014; Brock et al., 2018). Pix2Pix
is first proposed to perform paired image-to-image translation with conditional GANs (Isola et al.,
2017). Then, Pix2PixHD is proposed to improve the generation quality with multi-scale generators
and discriminators (Wang et al., 2018b). The similar idea has also been extended in text-to-image
translation (Zhang et al., 2017), multi-modal image-to-image translation (Huang et al., 2018; Zhu
et al., 2017c) and applications such as super-resolution and image dehazing (Wang et al., 2018d;
Ledig et al., 2017; Zhang et al., 2017). In the real-world applications, the paired image-to-image
translation dataset is usually not available. To address this problem, abundant methods have been
proposed to perform image-to-image translation on unpaired datasets with cycle-consistency regu-
larization (Zhu et al., 2017a; Yi et al., 2017; Kim et al., 2017). StarGAN is proposed to perform
image-to-image translation for multiple domains with a single model (Choi et al., 2018), and Star-
GAN v2 is proposed to increase the scalability and the diversity of image-to-image translation mod-
els at the same time (Choi et al., 2020). Attention based GANs have been widely utilized to improve
the performance of image-to-image translation by localizing the to-be-translated regions with atten-
tion modules (Tang et al., 2021; Chen et al., 2018; Emami et al., 2020; Alami Mejjati et al., 2018).
Recently, some researchers have proposed to replace the convolutional layers in GAN with MLP-
mixers and vision transformers, which leads to better high-fidelity translation (Wan et al., 2021;
Cazenavette & De Guevara, 2021).

2.2 KNOWLEDGE DISTILLATION

The idea that employing a large model to improve the performance of a small model is firstly pro-
posed by Buciluǎ (Buciluǎ et al., 2006) for the compression of neural network ensemble. Then,
Hinton et al. propose the concept of knowledge distillation, which introduces a temperature hyper-
parameter in the softmax layer to flatter teacher prediction (Hinton et al., 2014). Following their
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success, many researchers have proposed to not only distill the teacher knowledge in its predicted
categorical probability distribution, but also the dark knowledge in features (Romero et al., 2015;
Tian et al., 2019), spatial attention (Zagoruyko & Komodakis, 2017), channel-wise attention (Liu
et al., 2021a; Shu et al., 2021; Li et al., 2021a), pixel-wise relation (Zhang & Ma, 2021; Li et al.,
2020c; Yoon et al., 2020), instance-wise relation (Park et al., 2019b; Tung & Mori, 2019; Peng
et al., 2019), task-oriented information (Zhang et al., 2020), decision boundary samples (Heo et al.,
2019b), positive feature (Heo et al., 2019a) and frequency-biased information (Zhang et al., 2022)
with optimization methods such as L2-norm distance (Romero et al., 2015; Yim et al., 2017), adver-
sarial learning (Shen et al., 2019; Liu et al., 2019a; Xu et al., 2017), and contrastive learning (Tian
et al., 2019; Chen et al., 2020b). Besides image classification, knowledge distillation has already
been used in model compression for object detection (Chen et al., 2017; Li et al., 2017; Wang et al.,
2019; Bajestani & Yang, 2020; Li et al., 2020b), semantic segmentation (Liu et al., 2019b; Park &
Heo, 2020), pre-trained language models (Sanh et al., 2019; Xu et al., 2020)s and so on.

Knowledge Distillation on Image-to-Image Translation A few research has been proposed to per-
form knowledge distillation on image-to-image translation. Li et al. propose the framework of GAN
compression, which has applied the classic L2-norm feature distillation on the intermediate neural
layers (Li et al., 2020a). However, their results demonstrate that this application leads to unsatisfy-
ing performance improvements. Then, Li et al. propose the semantic relation preserving knowledge
distillation, which aims to distill the relation between different patches in the generated images in-
stead of the encoded features (Li et al., 2020c). Then, Chen et al. propose to distill image-to-image
translation models with knowledge distillation not only generators but also the discriminators (Chen
et al., 2020a). Similarly, Li et al. propose to revisit the discriminator in GAN compression, which
transfers the knowledge in the teacher discriminator with L2-norm and texture loss (Li et al., 2021b).
Jin et al. introduce the centered kernel alignment as the distance metric in knowledge distillation,
which does not require additional layers for feature reshaping. Ren et al. propose to train the teacher
and student GANs simultaneously, which shows the possibility of online knowledge distillation on
image-to-image translation (Ren et al., 2021). Recently, motivated by the fact that tiny GANs work
badly in generating high-quality high-frequency information, Zhang et al. propose to distill only the
high-frequency information decomposed by discrete wavelet transformation in the images generated
by teachers (Zhang et al., 2022). Besides image-to-image translation, there are also some knowl-
edge distillation methods designed for GAN compression on the other tasks (Liu et al., 2021b; Wang
et al., 2018c; Aguinaldo et al., 2019). Unfortunately, most of these knowledge distillation methods
focus on distilling teacher knowledge in their features, and sufficient evidences show that directly
training students to mimic the generated images from teachers leads to insufficient and even negative
performance (Li et al., 2020c; Zhang et al., 2022). In contrast, this paper firstly shows that naive
image-based distillation can also achieve valuable performance boosts.

3 METHODOLOGY

3.1 KNOWLEDGE DISTILLATION

In this section, we firstly revisit the formulation of knowledge distillation on image classifica-
tion and then simply extend them to image-to-image translation. Given a set of training samples
X = {x1, x2, ..., xn} and the corresponding ground truth Y = {y1, y2, ..., yn}, by denoting the
student function and the pre-trained teacher function as fs and ft, then the training loss of classical
knowledge distillation method (Hinton et al., 2014) can be formulated as

argmin
fs

Ex,y

[
(1− α) · CE(fs(x), y) + α · KL(fs(x)/τ, ft(x)/τ)

]
, (1)

where CE and KL indicate cross-entropy loss and the Kullback-Leibler divergence, respectively. τ
is the temperature hyper-parameter to soften the probability distribution and α is a hyper-parameter
to balance the origin training loss and the knowledge distillation loss. When knowledge distillation
is applied to image-to-image translation, since the predictions of students and teachers are the value
of pixels instead of probability distributions, KL divergence can be replaced with the L1-norm loss,
which is widely utilized in low-level vision. And the cross-entropy loss for classification should
be replaced with the GAN training loss. Taking Pix2Pix (Isola et al., 2017) as an example, the
knowledge distillation loss (Hinton et al., 2014) for training the generator can be formulated as

argmin
fs

Ex,y

[
(1− α) · L1

(
fs(x), y

)
+ α · L1

(
fs(x), ft(x)

)
+ LcGAN

(
fs(x)

)]
, (2)
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where L1 indicates the L1-norm loss. LcGAN indicates the conditional GAN loss, which measures
how the generated images fool the discriminator. Note that we do not introduce LcGAN and the
discriminator of GANs in detail here since they have no direct influence with our method.

3.2 IYOR: IMITATE YOUR OWN REFINEMENT

Instead of using two independent neural networks as the student and the teacher we append a refining
network fr after the student network, which is trained to translate the images generated by the
student network fr(fs(x)) to the corresponding ground-truth y. Thus, the “teacher model” in IYOR
can be written as ft = fs ◦ fr. In our implementation, fr has the same architecture as the teacher
in traditional KD and hence it has enough learning ability to refine student outputs. Note that the
fr can be discarded after the training period to avoid the additional parameters and computation.
Besides, unlike traditional KD where the teacher is first pre-trained and then utilized to teach the
student, in IYOR, fr and fs are trained simultaneously. For simplicity, by denoting zs = fs(x) and
zr = fr ◦ fs(x), the training objective of the refining network fr can be formulated as

argmin
fr

Ex,y

[
L1

(
zr, y

)
+ LcGAN

(
zr
)]
. (3)

And the training objective of the student fs can be formulated as

argmin
fs

Ex,y

[
(1− α) · L1

(
zs, y

)
+ α · L1

(
zs, zr

)
+ LcGAN

(
zs(x)

)]
. (4)

Note that since IYOR only distills the generators of GANs, we omit the description of discriminators
here. Besides, IYOR can be easily extended to unpaired image-to-image translation models such as
CycleGAN by introducing two refining networks to both the two translation directions, respectively.

3.3 WHY IYOR WORKS

Consider a general knowledge distillation with the L1-norm, define a function G as

G
(
fs(x), ft(x)

)
:= Ex,y

[
(1− α) · L1

(
fs(x), y

)
+ α · L1

(
fs(x), ft(x)

)
+H

(
fs(x)

)]
, (5)

where H is a function about the student network. For simplicity, we abbreviate Ex,y as E. The
objective function of traditional knowledge distillation (TKD) (2) and IYOR (4) are specific cases of
equation (5). Let f1

s and f2
s be the optimal student networks of problem (2) and IYOR (4), we will

provide an assumption and a theorem to interpret the effectiveness of IYOR.
TKD : f1

s = argmin
fs

G
(
fs(x), ft(x)

)
, IYOR : f2

s = argmin
fs,fr

G
(
fs(x), fr ◦ fs(x)

)
. (6)

Assumption 3.1 Since our teacher fr ◦ fs(x) has more parameters than the traditional teacher
ft(x), we assume that when they achieve the optimal values, the loss of TKD is less than IYOR. In
other words, denoting f1

t and f2
t as the optimal teacher networks of TKD and IYOR, then we have

G(f2
s , f

2
t ) ≤ G(f1

s , f
1
t ). (7)

Theorem 3.1 Under the Assumption (3.1), the L1 distance between the optimal student network
and teacher network in IYOR is less than that in TKD, which means

E
[
L1(f

2
s , f

2
t )
]
≤ E

[
L1(f

1
s , f

1
t )
]
. (8)

Please refer to Appendix A for the proof. Besides, we have also explained why traditional KD
methods fail on image-to-image translation with VC theory in Appendix B.

3.4 SIFT DISTILLATION

Scale-Invariant Features Transform (SIFT) is one of the most effective and popular image descriptors
in classicial image processing. Usually, SIFT mainly has four steps, including scale-space extrema
detection, keypoint localization, orientation assignment and keypoint description. Usually, SIFT
features carry rich semantic information of the images while having much lower dimensions than
the original image. Thus, distilling the SIFT features is more efficient than directly distilling the
pixels of the generated images. By denoting SIFT as ϕ(·) and a loss hyper-parameter as β, then the
loss function of SIFT distillation in our method can be formulated as

argmin
fs

Ex,y

[
(1− α) · L1

(
zs, y

)
+ α · L1

(
zs, zr

)
+ LcGAN

(
zs(x)

)
+ β · L1

(
ϕ(zs), ϕ(zr)

)]
. (9)
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Table 1: Experiment results on unpaired image-to-image translation on Horse→Zebra and
Zebra→Horse with CycleGAN. ∆ indicates the performance improvements compared with the ori-
gin student. Each result is averaged from 8 trials. A lower FID is better.

Horse→Zebra

#Params (M) FLOPs (G) Method Metric #Params (M) FLOPs (G) Method Metric

FID↓ ∆ ↑ FID↓ ∆ ↑

11.38 49.64 Teacher 61.34±4.35 – 11.38 49.64 Teacher 61.34±4.35 –

0.72
15.81×

3.35
14.82×

Origin Student 85.04±6.88 –

1.61
7.08×

7.29
6.80×

Origin Student 70.54±9.63 –
Hinton et al. 84.08±3.78 0.96 Hinton et al. 70.35±3.27 0.18
Zagoruyko et al. 81.24±2.01 3.80 Zagoruyko et al. 67.51±4.57 3.03
Li and Lin et al. 83.97±5.01 1.07 Li and Lin et al. 68.94±2.98 1.60
Li and Jiang et al. 81.74±4.65 3.30 Li and Jiang et al. 68.94±2.98 1.60
Jin et al. 82.37±8.56 2.67 Jin et al. 67.31±3.01 3.23
Ahn et al. 82.91±2.41 2.13 Ahn et al. 69.32±5.89 1.22
Ren et al. 77.31±6.41 7.73 Ren et al. 64.78±5.21 5.76
Li et al. 79.29±7.31 5.75 Li et al. 66.85±6.17 3.69
Zhang et al. 77.04±3.52 8.00 Zhang et al. 61.65±4.73 8.89

Ours 69.67±5.32 15.37 Ours 56.45±2.59 14.09
Ours + Ren et al. 67.32±4.32 17.72 Ours + Ren et al. 55.32±2.97 15.22
Ours + Li et al. 68.32±5.20 16.72 Ours + Li et al. 55.85±4.06 14.69
Ours + Zhang et al. 67.21±4.91 17.83 Ours + Zhang et al. 55.34±4.40 15.20

Zebra→Horse

#Params (M) FLOPs (G) Method Metric #Params (M) FLOPs (G) Method Metric

FID↓ ∆ ↑ FID↓ ∆ ↑

11.38 49.64 Teacher 138.07±4.01 – 11.38 49.64 Teacher 138.07±4.01 –

0.72
15.81×

3.35
14.82×

Origin Student 152.57±9.63 –

1.61
7.08×

7.29
6.80×

Origin Student 141.86±1.57 –
Hinton et al. 148.64±1.62 4.03 Hinton et al. 142.03±3.27 -0.17
Zagoruyko et al. 148.92±1.20 3.75 Zagoruyko et al. 141.23±1.88 0.63
Li and Lin et al. 151.32±2.31 1.35 Li and Lin et al. 141.32±1.27 0.54
Li and Jiang et al. 151.09±3.67 1.58 Li and Jiang et al. 141.16±1.31 0.70
Jin et al. 149.73±3.94 2.94 Jin et al. 140.98±1.41 0.88
Ahn et al. 150.31±3.55 2.36 Ahn et al. 141.50±2.51 0.36
Ren et al. 147.34±2.98 5.23 Ren et al.- 140.87±2.03 0.99
Li et al. 148.30±1.53 4.27 Li et al. 140.92±2.31 0.94
Zhang et al. 146.01±1.80 6.66 Zhang et al. 138.84±1.47 3.02

Ours 144.20±2.78 8.37 Ours 137.98±2.90 3.88
Ours + Ren et al. 143.01±3.11 9.56 Ours + Ren et al. 137.57±1.40 4.29
Ours + Li et al. 143.16±2.87 9.40 Ours + Li et al. 137.60±1.57 4.26
Ours + Zhang et al. 143.08±2.10 9.48 Ours + Zhang et al. 137.18±1.89 4.68

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Models and Datasets In this paper, we mainly evaluate the performance of our method with Cycle-
GAN (Zhu et al., 2017a) for unpaired image-to-image translation, and Pix2Pix (Isola et al., 2017)
and Pix2PixHD (Wang et al., 2018b) for paired image-to-image translation. The refining network
in our method has an identical architecture to the original model before compression. The students
in our experiments have the same network depth as the original model before compression except
for fewer channels. Five datasets are utilized for quantitative evaluation, including Horse→Zebra,
Maps, Edge→Shoe, Summer→Winter, and Apple→Orange.

Comparison Methods We have compared our methods with nine knowledge distillation methods,
including three of them which are firstly proposed for image classification and then adopted by us to
image-to-image translation (Hinton et al., 2014; Ahn et al., 2019; Zagoruyko & Komodakis, 2017),
and six of them which are designed for image-to-image translation (Li et al., 2020a; Jin et al., 2021;
Zhang et al., 2022; Li et al., 2021b; Ren et al., 2021; Li et al., 2020c). Note that some comparison
methods have both knowledge distillation and neural network pruning. Following the setting of the
previous work (Zhang et al., 2022), we only compare our method with their knowledge distillation
algorithms for a fair comparison.

Training and Evaluation Settings We adopt the same training setting from the origin implementa-
tion of CycleGAN and Pix2Pix. Models for Edge→Shoe and the other datasets are trained by 50 and
200 epochs, respectively. Following previous works, we adopt Frechet Inception Distance (FID) as
the performance metric for all datasets. A lower FID indicates that the distribution of the generated
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Table 2: Experimental results on paired image-to-image translation on the Edge→Shoe dataset
with Pix2Pix and Pix2PixHD. ∆ indicates the performance improvements compared with the origin
student. Each result is averaged from 8 trials. “Origin Student” indicates the student trained without
knowledge distillation. A lower FID is better.

Pix2Pix on Edge→Shoe Pix2PixHD on Edge→Shoe

#Params (M) FLOPs (G) Method Metric #Params (M) FLOPs (G) Method Metric

FID↓ ∆ ↑ FID↓ ∆ ↑

54.41 6.06 Teacher 59.70±0.91 – 11.38 49.64 Teacher 41.59±0.42 –

13.61
4.00×

1.56
3.88×

Origin Student 85.06±0.98 –

1.61
28.23×

1.89
25.59×

Origin Student 44.64±0.54 –
Hinton et al. 86.97±3.49 -1.91 Hinton et al. 45.31±0.63 -0.67
Zagoruyko et al. 84.25±2.08 0.81 Zagoruyko et al. 44.21±0.72 0.43
Li and Lin et al. 83.63±3.12 1.43 Li and Lin et al. 44.03±0.41 0.61
Li and Jiang et al. 84.01±2.31 1.05 Li and Jiang et al. 43.90±0.36 1.28
Jin et al. 84.39±3.62 0.67 Jin et al. 43.97±0.17 1.21
Ahn et al. 84.92±0.78 0.14 Ahn et al. 44.53±0.48 0.11
Ren et al. 80.31±2.59 4.75 Ren et al. 42.98±0.34 1.66
Li et al. 81.24±3.74 3.82 Li et al. 43.21±0.35 0.29
Zhang et al. 80.13±2.18 4.93 Zhang et al. 42.53±0.29 2.11

Ours 77.90±2.20 7.16 Ours 41.37±0.67 3.27
Ours + Ren et al. 76.34±1.84 8.72 Ours + Ren et al. 41.02±0.48 3.62
Ours + Li et al. 77.09±2.34 7.97 Ours + Li et al. 41.28±0.81 3.36
Ours + Zhang et al. 76.27±3.21 8.79 Ours + Zhang et al. 40.90±0.42 3.74

Figure 2: Qualitative comparison between our methods and previous knowledge distillation methods
with 14.82× accelerated and 15.81 × compressed CycleGAN students on Horse→Zebra.

images and the real images have a lower distance, and thus the generated images have better quality.
On paired image-to-image translation, we report model performance at the last epoch. On unpaired
image-to-image translation, since the performance for different epochs is unstable, we compute the
FID for every five epochs and report the lowest one. For both paired and unpaired image-to-image
translation, FID are computed over only the images in the test set.

4.2 EXPERIMENT RESULTS

Quantitative Results Quantitative comparison with previous knowledge distillation methods on
unpaired image-to-image translation and paired image-to-image translation datasets are shown in
Table 1 and Table 2, respectively. It is observed that: (i) Directly applying the naive image-based
knowledge distillation (Hinton et al., 2014) leads to very limited and even negative performance. For
instance, it leads to 1.91 and 0.67 FID increments (performance drop) on Edge→Shoe with Pix2Pix
and Pix2PixHD, respectively. (ii) In contrast, by replacing the teacher in naive image-based with
the refining network in our method, knowledge distillation leads to consistent performance improve-
ments. On average, 5.12 and 10.43 FID decrements (performance improvements) can be gained in
paired and unpaired image-to-image translation, respectively. (iii) Combining our method with pre-
vious feature-based knowledge distillation leads to further performance improvements. For instance,
on the 14.82× compressed and 6.80× compressed Horse→Zebra students, combining our method
with the method of Ren et al. leads to 2.35 and 1.13 further FID decrements. (iv) Table 3 further
demonstrates the effectiveness of our method in more compression ratios and more datasets. These
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Figure 3: Qualitative results between our methods and previous knowledge distillation methods with
3.88 × accelerated and 4.00 × compressed Pix2Pix students on Maps and Edge→Shoe.
Input w/o KD Ours Teacher Input w/o KD Ours Teacher Input w/o KD Ours Teacher

Winter to Summer Summer to Winter Apple to Orange & Orange to Apple

Apple to Orange

Figure 4: Qualitative results on Winter→Summer, Summer→Winter, Orange→Apple and
Apple→Orange with with 14.82× accelerated and 15.81 × compressed CycleGAN students.

observations demonstrate that our method can significantly improve the performance of lightweight
image-to-image translation models in a wide range of settings.

Qualitative Results Qualitative comparison between our methods and previous methods on un-
paired and paired image-to-image translation datasets are shown in Figure 2 and Figure 3 , respec-
tively. Besides, Figure 4 further shows the performance of our method on the other two datasets. It
is observed that: (i) Compared with the model before compression (the teacher model), a significant
performance drop can be observed on the student model trained without knowledge distillation. For
instance, on Horse→Zebra, most student models can not transform the whole body of horses into
stripes. Some previous knowledge distillation methods (e.g. Zhang et al., Ren et al.) can alleviate
this problem while our method leads to much better performance. (ii) On the Maps translation task,
the buildings and the roads generated by students trained with previous knowledge distillation meth-
ods are fuzzy. In contrast, our method can generate clearer shapes and edges for buildings, roads,
and rivers. (iii) On Edge→Shoe, the images generated by the students trained without knowledge
distillation usually have severe corruption such as the holes in high-heeled shoes. In contrast, the im-
ages generated by our methods have better quality in terms of highlights, shapes, and colors. (iv) On
Winter→Summer, the model trained by our method can successfully remove the snow on the plants.
On Apple→Orange, the images generated by our method have much less corruption than the base-
line model. These results demonstrate that students trained by IYOR achieve better performance in
terms of not only statistical scores but also human vision.
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Table 3: Experiment results of CycleGAN with and without IYOR on different compression ratios
and datasets. Each result is averaged from 8 trials. The reported number is FID (lower is better).

Dataset Param(M) FLOPs(G) without KD with KD

Horse→Zebra

11.37 49.64 61.34±4.35 –
1.61 7.29 70.54±9.63 56.45±2.59

1.11 4.84 76.09±3.89 59.25±3.30

0.72 3.35 85.04±6.88 69.67±5.32

0.40 1.74 104.30±8.40 91.53±0.98

0.28 1.21 121.45±16.78 98.06±6.88

0.17 0.77 134.51±14.6 111.75±10.77

Dataset Param(M) FLOPs(G) without KD with KD

Apple→Orange
11.37 49.64 117.59±1.65 –
2.84 12.41 124.34±1.87 118.09±2.82

1.61 7.29 135.70±3.12 120.53±3.43

Summer→Winter
11.37 49.64 81.61±3.80 –
2.84 12.41 93.18±2.73 82.61±1.16

1.61 7.29 104.51±4.53 85.30±2.65

0 50 100 150 200
Training Epoch

50

100

150

200

F
I
D

Hinton KD

Our Method

Figure 5: Comparison between our method and
Hinton KD on the FID between students and
teachers on Horse→Zebra with CycleGAN.

Table 4: Ablation study on SIFT distilla-
tion and the usage of the refining network on
Horse→Zebra with CycleGAN students.

#Params FLOPs Refining SIFT FID↓ ∆ ↑

1.61 7.29

× × 70.54±9.63 –
✓ × 59.31±2.89 11.23
× ✓ 63.17±3.66 7.37
✓ ✓ 56.45±2.59 14.09

0.72 3.35

× × 85.04±6.88 –
✓ × 72.53±3.15 12.51
× ✓ 78.11±1.71 6.93
✓ ✓ 69.67±5.32 15.37

5 DISCUSSION

5.1 ABLATION STUDY

In this paper, we mainly propose two knowledge distillation techniques, including (a) learning from
a refining network instead of a teacher network and (b) SIFT KD. Table 4 shows the ablation study of
the two techniques on Horse→Zebra with CycleGAN. It is observed that on the 7.08× and 15.81×
compressed students: (i) 11.23 and 12.51 FID decrements can be observed by replacing the teacher
network in traditional knowledge distillation with a refining network, respectively. (ii) 7.37 and
6.93 FID decrements can be observed by applying SIFT KD, respectively. (iii) 14.09 and 15.37 FID
decrements can be obtained by combining the two techniques together, respectively. These observa-
tions indicate that both the two techniques have their own merits and their benefits are orthogonal.

5.2 STUDENT-TEACHER SIMILARITY

In this subsection, we show that the refining network in IYOR has more consistent outputs with
the student than the teacher in traditional KD. The FID between images generated by students and
refining network in our method and the traditional KD method is shown in Figure 5. Note that A
lower FID here indicates a larger student-teacher similarity. It is observed that our method leads to
lower FID during the whole training period, indicating that compared with the teachers in traditional
KD, the images generated by the refining network in our method are more likely to be consistent with
images generated by the students. Besides, since FID measures the distance between the distribution
of images generated by the student and the teacher, this observation also implies that the student in
our method can learn teacher knowledge more effectively.

6 CONCLUSION

Due to the ill-posed property of image-to-image translation, directly applying traditional knowledge
distillation usually leads to unsatisfactory and even negative impacts. To address this problem,
we propose a new knowledge distillation method, named IYOR (imitate your own refinement), in
which a refining network replaces the teacher network in traditional KD. During the training phase,
the refining network strives to improve the quality of images generated by the students instead of
generating images from the inputs. Hence, the refined results can be better learning targets than
the teacher outputs that are used in traditional KD. Extensive quantitative and qualitative results
have demonstrated that IYOR outperforms existing nine approaches in both paired and unpaired
translation. Besides, SIFT knowledge distillation is also introduced to improve the effectiveness of
knowledge distillation by extracting the distinctive and scale-invariant features of images and then
distilling them from teachers to students. Furthermore, we have analyzed why traditional KD fails
and IYOR works well on image-to-image translation theoretically.
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A THE PROOF FOR THEOREM 3.1

Proof According to the Assumption 3.1, we have
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Combining equation (10) and equation (11), we have
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□

B ANALYSING KNOWLEDGE DISTILLATION WITH VC THEORY

Recent evidences show that directly applying the naive Hinton et al. knowledge distillation (Hinton
et al., 2014; Zhang et al., 2022; Li et al., 2020c) to image-to-image translation usually leads to
limited and even negative performance. In this subsection, we try to explain this observation from
the perspective of VC theory based on generalized knowledge distillation (Lopez-Paz et al., 2016).
Denoting a function class as F , then the student function, the teacher function and the oracle real
target function can be written as fs ∈ Fs, ft ∈ Ft, and f ∈ F , respectively. Given n training
samples, we can assume that the student function fs and the teacher function fs may learn the true
function f at a rate of αs and αt, which can be formulated as

R(fs)−R(f) ≤ O(
|Fs|C
nαs

) + εs, and R(ft)−R(f) ≤ O(
|Ft|C
nαt

) + εt respectively, (13)

where O(·) term is the estimation error, εs and εt are the approximation error of the student function
class Fs and the teacher function class Ft with respect to f ∈ F . A higher α indicates the learning
problem is easier to be solved. Then, we can assume that the student learns from the teacher at the
rate αkd with the approximation error εkd, which can be formulated as

R(fs)−R(ft) ≤ O(
|Fs|C
nαkd

) + εkd. (14)

As pointed out by Lopez-Paz et al. (Lopez-Paz et al., 2016), since the teacher model has more
parameters than the student, we can assume the teacher function can learn the true function with a
higher rate, indicating αt > αs and αt > αkd. By combining (13) and (14), we have the following
inequality.

R(fs)−R(f) = R(fs)−R(ft) +R(ft)−R(fs)

≤ O(
|Fs|C
nαkd

) + εkd +O(
|Ft|C
nαt

) + εt

≤ O(
|Fs|C + |Ft|C

nαkd
) + εkd + εt

(15)

Thus, given a learning task, now we can study whether knowledge distillation works well in this
task by analyzing whether the following inequality

O(
|Fs|C + |Ft|C

nαkd
) + εkd + εt ≤ O(

|Fs|C
nαs

) + εs (16)

holds. Since the teacher model usually have more parameters than the student model, |Fs|C +
|Ft|C ≤ |Fs|C | usually does not hold in knowledge distillation. Thus, the inequality highlights that
the benefits of knowledge distillation arise because of εkd + εt ≤ εs and αkd > αs.
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In image classification, as pointed out by Lopez-Paz et al. (Lopez-Paz et al., 2016), since soft labels
ft(x) (the probability distribution) of teachers contain more information than the one-hot label y,
it allows students to learn teachers at a higher rate than learning the true function, indicating that
αkd >αs (Lopez-Paz et al., 2016). Besides, since the label for an input image is unique, learning
the true function does not conflict with learning the teacher function, and thus it is safe to assume
that εs ≥ εt + εkd. In contrast, on image-to-image translation, since the prediction of students and
teachers are values of pixels instead of the probability distribution, there is no additional information
in ft(x) compared with the ground truth. Thus αkd >αs does not hold. Moreover, since image-to-
image translation is an ill-posed problem, the prediction of students and teachers may be different
but correct answers for the same input image, indicating that εs ≥ εt + εkd also does not hold.
These observations demonstrate that the inequality (16) does not hold in image-to-image translation,
which can explain the limited performance of directly applying Hinton et al. knowledge distillation
to image-to-image translation.

Instead of distilling the generated images, some recent knowledge distillation methods have been
proposed to distill teacher knowledge in their features. Since there is more information contained
in teacher features than ground-truth images, these methods can be considered as a guarantee for
αkd >αs. In contrast, IYOR aims to improve knowledge distillation by addressing the ill-posed
property, implying εs ≥ εt + εkd. Since IYOR and previous feature-based methods have different
perspectives to support inequality (16), their benefits are orthogonal and can be combined.

C DETAILED EXPERIMENT SETTINGS

We follow the official codes of CycleGAN and Pix2Pix1 to conduct our experiments. Models on
Edge→Shoe are trained by 50 epochs. Models on the other datasets are trained by 200 epochs. The
momentum of Adam optimizer is 0.5. During the all the experiments, we set α = 1 and β = 1.
The initial learning rate is 0.0002. LSGAN is used as the generator of the model. The discriminator
is a 70x70 PatchGAN. In the experiments of CycleGAN, the backbone in the generators of both
students and teachers (refining networks) are ResNet with six blocks. Their main difference is that
the student backbone has much less channels than the teacher. Batch size is set to 1 for both training
and inference. We compute the FID scores based on Pytorch-FID 2, a well known python package.
We find that some of previous works compute the FID for unpaired image-to-image translation by
using the images in both training set and test set to achieve more stable performance. However, we
believe this behavior that access the test images during training is not reasonable. Hence, we choose
to compute the FID on only the test set. As claimed by previous research Jin et al. (2021)3, this
makes the FID scores in our experiments around 5-6 lower than the previous works which report
FID on the both training and test set.

D INFLUENCE FROM HYPER-PARAMETERS

In this paper, we mainly have two hyper-parameters α and β to balance the magnitudes of knowl-
edge distillation loss and the original GAN training loss. Hyper-parameters sensitivity study on
Horse→Zebra with 15.81× compressed students is introduced in Figure 6. Note that the reported
value is FID (lower is better). It is observed that: (i) With the worst α, our method achieve 70.21 FID,
which is still 14.83 lower than the student trained without KD, and 6.83 lower than the second-best
KD method. (ii) With the worst β, our method achieve 70.54 FID, which is still 14.50 lower than the
student trained without KD, and 6.50 lower than the second-best KD method. These observations
indicate that our method is not sensitive to the value of hyper-parameters.

E INFLUENCE FROM THE SIZE OF THE REFINING NETWORK

In our experiments, the refining network has the same architecture as the teacher network in tra-
ditional KD, which is also same as the image-to-image translation model before compression. In

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/
2https://github.com/mseitzer/pytorch-fid
3https://github.com/snap-research/CAT
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Figure 6: Hyper-parameter sensitivity study on 15.81× compressed CycleGAN.

Table 5: Influence from the number of parameters and FLOPs in the refining network. Note that the
student is a 15.81× compressed CycleGAN.

#Params of Refining Network FLOPs Refining FID Student FID

11.37 49.64 56.31 69.67
2.84 12.41 62.59 70.56
1.61 7.29 63.41 73.28

Table 6: Experimental results on Cityscapes with Pix2Pix. ∆ indicates the performance improve-
ments compared with the origin student. Each experiment is averaged from 8 trials. “Origin Student”
indicates the student trained without knowledge distillation. A higher mIoU is better.

Model #Params (M) FLOPs (G) Method Metric

mIoU↑ ∆ ↑

Pix2Pix

54.41 96.97 Teacher without KD 46.51±0.32 –

13.61 4.00× 24.90 3.88×

Origin Student without KD 41.35±0.22 –
Hinton et al. (2014) 40.49±0.41 -0.86
Zagoruyko & Komodakis (2017) 40.17±0.36 -1.18
Li et al. (2020a) 41.52±0.34 0.17
Li et al. (2020c) 41.77±0.30 0.42
Jin et al. (2021) 41.29±0.51 -0.06
Ahn et al. (2019) 41.88±0.45 0.53
Ren et al. (2021) 42.31±0.31 0.96
Li et al. (2021b) 41.75±0.42 0.40
Zhang et al. (2022) 42.81±0.25 1.46
Ours 43.52±0.41 0.71

this section, we study the influence from the size of the refining network. As shown in Table 5: (i)
With more parameters, the refining network can achieve a very low FID, which indicates that the
refinement has good quality. And at the same time, the student can also be trained better, which
achieve relative lower FID. (ii) When the refining network does not have enough parameters, the
refinement has a relative higher FID and the effectiveness of knowledge distillation is not very sig-
nificant. These observations indicate that a refining network with enough parameters can make a
positive influence to the performance of knowledge distillation. In contrast, when the refining net-
work does not have enough parameters, it can not successfully refine the image generated by the
student, which leads to limited knowledge distillation performance.

F EXPERIMENTS ON CITYSCAPES

Following previous research Zhu et al. (2017a); Park et al. (2019a), we have also evaluated our
method on Cityscapes (Cordts et al., 2016). Cityscapes is original proposed as a dataset for au-
tonomous driving, including tasks such as detection and segmentation. In our experiments, we take
the semantic segmentation mask as the input and take the natural images of the street as the label to
train the image-to-image translation models. Then, we adopt the mIoU of a pre-trained FCN model
on the generated images as the performance metric. A higher mIoU indicates that the image-to-
image translation model has better performance. Our experimental results are shown in Table 6. It
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is observed that there are 2.17 mIoU improvements on the student trained with our method, which
is 0.71 higher than the second-best method.

G PYTHON-STYLE PSEUDO CODE

The following code block presents a brief implementation of IYOR.

# The pseudo code of IYOR
def IYOR(x, student, refiner, sift):

# x: the input image, student: the student network
# refiner: the refining network
# sift: a function to extract sift features
student_output = student(x)
refinement = refine(student_output.detach())
# pixel-wise imitating
kd_loss = l1_loss(student_output, refinement)
# sift distillation
kd_loss += l1_loss(sift(student_output), sift(refinement))
return kd_loss
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