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Abstract

Spatial audio is essential for immersive AR/VR applica-001
tions, yet existing existing methods for room impulse re-002
sponse estimation either needs dense training data or003
expensive physics simulation. In this work, we intro-004
duce Audio-Visual Differentiable Room Acoustic Render-005
ing (AV-DAR), a framework that leverages visual cues ex-006
tracted from multi-view images and acoustic beam trac-007
ing for physics-based room acoustic rendering. This multi-008
modal, physics-based, end-to-end framework is efficient,009
interpretable, and accurate. Experiments across six real-010
world environments from two datasets demonstrate that011
AV-DAR significantly outperforms a series of prior meth-012
ods. Notably, on the Real Acoustic Field dataset, AV-DAR013
achieves comparable performance to models trained on 10014
times more data while delivering relative gains ranging015
from 16.6% to 50.9% when trained at the same scale.016

1. Introduction017

Spatial audio is a fundamental component of immersive018
multimedia experiences and is often regarded as “half the019
experience” in VR/AR applications. Recreating the spa-020
tial acoustic experience is analogous to novel-view synthe-021
sis [13, 15] in vision, where the goal is to synthesize pho-022
torealistic images from arbitrary viewpoints based on fi-023
nite observations. Similarly, novel-view acoustic synthe-024
sis [9, 11, 12, 21, 23] aims to render the sound received at025
any listener location within a scene. A widely used repre-026
sentation for this task is the Room Impulse Response (RIR)027
[4, 20], which maps an emitted impulse to its received wave-028
form, summing direct sound and reflections.029

Existing methods for estimating RIRs generally fall into030
two broad categories: learning-based and physics-based.031
Learning-based approaches [3, 10, 12, 17, 21] treat RIR032
estimation as a regression task trained on densely mea-033
sured ground-truth RIRs, thus requires massive training034
data and is lack of physically grounded guarantees. Al-035
though physics-based approaches [9, 23] rely on explicit036
acoustic models, they become computationally impractical037

Figure 1. Our differentiable room acoustic rendering framework
combines multi-view visual observations and acoustic beam trac-
ing for efficient and accurate room impulse response (RIR) pre-
diction. By analyzing the visual cues of surfaces (e.g., fabric vs.
wood), it infers acoustic reflection responses for accurately ren-
dering RIRs through physics-based, end-to-end optimization.

in large, complex scenes, limiting real-world scalability. 038
Our key insight is that sound travels more slowly than 039

light, both are influenced by the same room geometry and 040
surface materials, therefore visual appearance and acoustic 041
property should correlate to each other (e.g., hard wooden 042
tables reflect high-frequency sound, while soft carpets ab- 043
sorb it). Leveraging this link, we propose the Audio-Visual 044
Differentiable Room Acoustic Rendering (AV-DAR), an 045
end-to-end framework that leverages multi-view images to 046
predict accurate room-impulse responses (RIRs). A cross- 047
attention module maps image features from camera space to 048
3-D scene space, building a unified, material-aware repre- 049
sentation that predicts reflection properties. On top of this, 050
we run differentiable beam tracing to enumerate specular 051
paths, requiring less computation and fewer training sam- 052
ples than existing physics-based methods, thus enabling ac- 053
curate and data-efficient acoustic modeling. Across six real- 054
world environments [5, 23], our method significantly out- 055
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Figure 2. Method Overview. Our framework contains two main components for rendering the room impulse response (RIR): (1) Visual
Processing (top): Multi-view images of the scene are passed through a pre-trained vision encoder to extract pixel-aligned features at
sampled points on the room surface. We then apply cross-attention both across views for each sampled point and across sampled points of
query x to obtain a unified, material-aware visual feature F(x) (detailed in Section 2.5). (2) Acoustic Processing (bottom): On the left,
we illustrate our acoustic beam tracing procedure (Section 2.3), where we sample specular paths and compute the path reflection response,
conditioned on both the positional encoding (Section 2.4) and the visual feature F(x). On the right, we show how we model the residual
acoustic field (Section 2.6) by treating every point on the surface as a secondary sound source and integrating its contribution via Monte-
Carlo integration. The entire pipeline is fully differentiable, enabling end-to-end optimization of both acoustic and visual parameters.

performs existing baselines. On the RAF dataset [5], our056
model achieves comparable performance to existing meth-057
ods trained on roughly 10× RIR measurements while de-058
livering 16.6% to 50.9% improvement when trained at the059
same scale.060

Our main contributions are threefold: First, we pro-061
pose a physics-based differentiable room acoustic render-062
ing pipeline that not only learn from sparse, real-world063
RIR measurements but is also efficient, interpretable, and064
accurate. Second, we are the first to integrate acoustic065
beam tracing within an end-to-end differentiable frame-066
work, enabling efficient computation of reflection re-067
sponses. Third, our approach leverages multi-view images068
to capture material-aware visual cues that correlate with069
acoustic reflection properties, achieving significantly more070
accurate RIR rendering than prior methods.071

2. Approach072

2.1. Preliminaries073

Our goal is to learn a time-domain room impulse re-074
sponse function RIR(xa,xb,pa, t) from sparse training075
data, where, xa, xb, pa denote the speaker location, the076

listener position, and the source orientation, respectively. 077
Training uses a sparse set of ground-truth RIR measure- 078

ments plus a set of multi-view images to capture the scene’s 079
visual information which contains visual material and geo- 080
metric cues missing from acoustics alone. Concretely, we 081
assume a set of Nc RGB images with known intrinsics π 082
and extrinsics P (i): 083{

{I(i), π, P (i)}
∣∣∣ i = 1, · · · , Nc

}
. (1) 084

Once RIR is learned, spatial audio at xb for any dry sig- 085
nal h(t) is obtained by convolution: 086

hb(t) = h(t) ∗ RIR(xa,xb,pa, t), (2) 087

enabling realistic spatial acoustic rendering. 088

2.2. Overview of the AV-DAR Framework 089

AV-DAR predicts room-impulse responses (RIRs) for ar- 090
bitrary source–listener pairs using sparse measured RIRs, 091
multi-view images, and coarse room geometry. Follow- 092
ing [23] we decompose the target RIR as 093

RIR(t) =
∑
τ

s(τ ; Θ1)R(t− τ ; Θ2) + r(t; Θ3), (3) 094

where: 095
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• s(t; Θ1) is a learnable source response,096
• R(t; Θ2)is the integrated reflection response, computed097

via differentiable beam tracing (Sec. 2.3) with multi-scale098
surface kernels (Sec. 2.4) and vision-conditioned material099
cues (Sec. 2.5),100

• r(t; Θ3) is the residual term capturing higher-order101
bounces, diffraction, and late reverberation (Sec. 2.6).102
Overall, AV-DAR integrates all components into an end-103

to-end differentiable pipeline, enabling gradient-based opti-104
mization for accurate RIR rendering.105

2.3. Acoustic Beam Tracing106

We require a differentiable renderer that efficient and re-107
liably captures specular paths. Image-source methods ex-108
plode combinatorially [1], while stochastic ray tracing [8,109
18, 19] misses specular bounces. Beam tracing [6, 7, 22]110
instead propagates cone-shaped volumes (see Supp.), mark-111
ing a listener “hit” whenever it lies inside a beam.112

From the source xa we cast Nd narrow Fibonacci-lattice113
beams; without splitting they return a set of specular paths114

P(xa,xb) = {x̃k}Nk=1. (4)115

For each path x̃ the frequency-domain attenuation is116 ∏
xj∈x̃

Refl(xj)[f ]Dx̃[f ], (5)117

with Dx̃ the source directivity. We convert this to a causal118
impulse via a minimum-phase transform [14]:119

κ(x̃, t) = MinPhase
{
Dx̃◦

∏
xj∈x̃

Refl(xj)
}
(t). (6)120

Air absorption and spherical spreading are applied with121

Sτ{h}(t) =
e−a0τ

vsoundτ
h(t− τ), (7)122

where τ is travel time. The room impulse response is the123
sum over all paths:124

R(t) =
∑
x̃k∈P

St̃k

{
κ(x̃k, t)

}
. (8)125

This fully differentiable formulation couples beam trac-126
ing with learnable reflection responses for gradient-based127
optimization.128

2.4. Multi-Scale Reflection Response129

As a volumetric beam propagates, its elliptical surface foot-130
print grows. Because the tracer returns only a hit point x,131
we approximate the whole footprint by a Gaussian x′ ∼132
N (x,Σ), where Σ (derivation in Supp.) scales with path133
length l, incidence angle θ, and half-aperture φ.134

Following Eq. 5, we define a set of F discrete135
key frequencies and predict their reflection magnitudes136
Refl

(
γ(x,Σ);Θ2

)
∈ RF . Here γ(x,Σ) is the integrated137

positional encoding (IPE) from Mip-NeRF [2]:138

γ(x,Σ) = Ex′∼N (x,Σ)

[
γ(x′)

]
= γ(x) ◦ e− 1

2 diag(Σγ), (9)139

so the network-predicted reflections is scale-aware.140

2.5. Multi-View Vision Feature Encoder 141

We guide reflection prediction with multi-view images via a 142
vision encoder F(x,Σ;Θ′

2), so that 143

Refl
(
γ(x,Σ), F(x,Σ);Θ2

)
∈ RF . (10) 144

Given Ns surface samples {zj} on geometry M and Nc 145
calibrated images {I(i)}, F is built in three steps: 146

Per-View Featur Extraction. Each image is encoded by a 147
frozen backbone (e.g., DINO-v2 [16]) into a feature map 148
W (i) = E(I(i)). A visible sample zj is projected with 149
known camera P (i), π and bilinearly interpolated: 150

v
(i)
j =

{
W (i)

(
π(P (i)zj)

)
, if visible;

0, if occluded.
(11) 151

Multi-View Feature Aggregation. Per-view features are 152
fused per sample by a single cross-attention layer: 153

vj = CrossAttn
(
Q(zj), KV

(
{v(i)

j }Ni=1

)
, M

)
. (12) 154

where mask M is by m
(i)
j =0 (visible) or −∞ (occluded). 155

Sample-Level Neighborhood Fusion. For a query x we 156
gather its k-nearest samples N(x) = {(z∗j ,v∗

j )} and apply 157
a point-transformer [24]: 158

F(x,Σ) = CrossAttn
(
Q
(
x,Σ

)
, KV

(
{v∗

j}kj=1

))
(13) 159

This two-level fusion (across views and local samples) 160
delivers a geometry-, visibility-, and appearance-aware fea- 161
ture that drives the subsequent acoustic modules. 162

2.6. Position-Dependent Residual Component 163

To capture high-order reflections, diffuse reflections, 164
diffraction, and late reverbarations, we introduce the resid- 165
ual component r(t;Θ3) by treating every surface point x ∈ 166
M as a secondary sound sources and integrate its contribu- 167
tion at the listener position xb. 168

A 4-layer MLP ϵ, predicts the differential time-domain 169
response h(t) per solid angle ω: 170

h(t) = ϵ(x, ω, t,xa,pb;Θ3). (14) 171

The residual RIR is the integral of these responses over 172
the unit sphere: 173

r(t;Θ3) =

∫
S2
Sτ{ϵ}(x′(ω),−ω, t;Θ3)pu(ω)dω (15) 174

≈
Nr∑
k=1

Sτk{ϵ}(x′
k,−ωk, t;Θ3). (16) 175

In Equation 15, x′(ω) is the intersection of a ray in direction 176
ω from x with room geometry M, and pu is the uniform 177
distribution over S2. Equation 16 approximates Equation 178
15 via Monte Carlo integration with Nr sampled directions 179
ωk from distribution pu. 180
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Method Scale
RAF-Empty RAF-Furnished

Loudness C50 EDT T60 Loudness C50 EDT T60
(dB) ↓ (dB) ↓ (ms) ↓ (%) ↓ (dB) ↓ (dB) ↓ (ms) ↓ (%) ↓

NAF++ [5, 12] 1% 6.05 2.10 94.5 23.9 6.61 2.10 74.9 23.0
INRAS++ [5, 21] 1% 3.69 2.59 100.3 23.5 2.96 2.61 92.6 25.0
AV-NeRF [10] 1% 3.16 2.52 96.4 21.8 2.92 2.64 96.7 24.5
AVR [9] 1% 3.00 2.19 87.3 24.1 2.97 2.33 72.3 17.9

Ours 0.1% 3.14 1.81 86.6 16.9 2.45 1.98 80.1 15.2
Ours 1% 2.50 1.42 56.2 10.7 1.68 1.29 47.4 9.61

Table 1. Results on the Real Acoustic Field dataset [5] (0.32 s, 16 kHz). Cells highlighted in green denote the best performance, and yellow
indicates the second best. Note that our model trained on only 0.1% of the data already achieves lower C50 and T60 errors than baseline
methods, and significantly outperforms all baselines when using the same amount of training data.

Method
Classroom Complex Room Dampened Room Hallway

Loud C50 T60 Loud C50 T60 Loud C50 T60 Loud C50 T60
(dB) ↓ (dB) ↓ (%) ↓ (dB) ↓ (dB) ↓ (%)↓ (dB) ↓ (dB) ↓ (%) ↓ (dB) ↓ (dB) ↓ (%) ↓

NAF++ [5, 12] 8.27 1.62 134.0 4.43 2.25 44.8 3.88 4.24 306.9 8.71 1.36 21.4
INRAS++ [5, 21] 1.31 1.86 60.9 1.65 2.26 29.5 3.45 3.28 187.1 1.55 1.87 7.4
AV-NeRF[10] 1.51 1.43 50.0 2.01 1.88 36.6 2.40 3.05 107.9 1.26 1.03 9.5
AVR [9] 3.26 4.18 44.3 6.47 2.55 36.7 6.65 11.11 81.4 2.48 2.69 7.0
Diff-RIR [23] 2.24 2.42 39.7 1.75 2.23 18.5 1.87 1.56 44.9 1.32 3.13 6.8

Ours 0.99 1.02 24.3 0.98 1.44 10.8 1.11 1.45 31.9 0.85 1.15 6.3

Table 2. Results on the Hearing Anything Anywhere dataset [23] (2.0 s segments, 16 kHz), trained on 12 listener locations. Our method
significantly outperforms all baseline methods in these scenes, demonstrating its effectiveness in accurately reconstructing room acoustics
in few-shot settings. See Supp. for EDT error results.

3. Experiments181

Datasets. We evaluate our method on two real-world182
datasets: the Real Acoustic Field (RAF) [5] dataset and the183
Hearing Anything Anywhere (HAA) [23] dataset, which are184
the only available real-world RIR datasets with accompany-185
ing visual capture.186

Evaluation Metrics. Following [5, 9, 21], we evalu-187
ate perception-related energy decay patterns using Clarity188
(C50), Early Decay Time (EDT), and Reverberation Time189
(T60). To account for differences in overall RIR magnitude,190
we also adopt a loudness metric defined as:191

Loudness Error =
∣∣∣10 log10(Epred

Egt

)∣∣∣, (17)192

where E =
∫∞
0

h2(t) dt is the energy of the signal h(t).193

3.1. Quantitative Results194

Results on the RAF Dataset. To fully exploit the dense195
samples in RAF [5], we split the original training split (80%196
of all data) into 9 nested subsets ranging from 0.01% to197
100% of the data (3–30k RIRs) and evaluate every model198
on the unchanged test set. As reported in Table 1, our model199
trained on just 0.1% of the data is comparable to state-of-200
the-art baselines trained on 10× more data. At equal train-201

ing scales we achieve the best scores across all metrics, e.g., 202
improving Loudness by 16.6% and T60 by 50.9% in the 203
RAF Empty scene. 204

Results on the HAA Dataset. Table 2 shows similar gains 205
on the four real-world scenes of HAA dataset [23], where 206
our method significantly outperforms all baseline methods. 207
The only exception is the C50 metric in Hallway, where 208
AV-NeRF exhibits particularly strong performance. This is 209
likely due to AV-NeRF uses depth as an input, which is es- 210
pecially beneficial in this simple, constrained geometry. 211

4. Conclusion 212

We presented AV-DAR, an audio-visual differentiable 213
pipeline for synthesizing room impulse responses (RIRs). 214
By combining beam tracing with visually-guided reflec- 215
tion modeling, our approach learns RIRs from sparse real- 216
world measurements and outperforms state-of-the-art base- 217
lines while reducing data requirements. Our work opens 218
new possibilities for immersive AR/VR applications. As 219
future work, we plan to extend our framework to handle 220
multi-scene scenarios for few-shot or zero-shot reflection 221
response prediction. We also aim to explore implicit acous- 222
tic modeling from only raw audio data, leveraging much 223
larger corpora for training more generalizable models. 224
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