
Published in Transactions on Machine Learning Research (10/2024)

AGaLiTe: Approximate Gated Linear Transformers
for Online Reinforcement Learning

Subhojeet Pramanika,b, Esraa Elelimya,b, Marlos C. Machadoa,b,c, Adam Whitea,b,c

aDepartment of Computing Science, University of Alberta, Canada
bAlberta Machine Intelligence Institute (Amii), Canada
cCanada CIFAR AI Chair
{spramanik, elelimy, machado, amw8}@ualberta.ca

Reviewed on OpenReview: https://openreview.net/forum?id=lh6vOAHuvo

Abstract

In this paper we investigate transformer architectures designed for partially observable on-
line reinforcement learning. The self-attention mechanism in the transformer architecture is
capable of capturing long-range dependencies and it is the main reason behind its effective-
ness in processing sequential data. Nevertheless, despite their success, transformers have
two significant drawbacks that still limit their applicability in online reinforcement learning:
(1) in order to remember all past information, the self-attention mechanism requires access
to the whole history to be provided as context. (2) The inference cost in transformers is ex-
pensive. In this paper, we introduce recurrent alternatives to the transformer self-attention
mechanism that offer context-independent inference cost, leverage long-range dependencies
effectively, and performs well in online reinforcement learning task. We quantify the impact
of the different components of our architecture in a diagnostic environment and assess per-
formance gains in 2D and 3D pixel-based partially-observable environments (e.g. T-Maze,
Mystery Path, Craftax, and Memory Maze). Compared with a state-of-the-art architecture,
GTrXL, inference in our approach is at least 40% cheaper while reducing memory use more
than 50%. Our approach either performs similarly or better than GTrXL, improving more
than 37% upon GTrXL performance in harder tasks.

1 Introduction

In many real-world settings agents often have limited observability of the environment making decision
making extra challenging. For example, an agent designed to drive cars must remember the road signs it saw
a few minutes ago to adjust its velocity if there are any major changes to the road. A naive approach would
be to store the entire history of camera observations. However, such an approach is not scalable as the history
of observations can be longer than the memory available to the agent (McCallum, 1996). Alternatively, the
agent can learn a compressed representation of the history of observations, and use it to make decisions. This
approach, however, is not feasible in continuing problems where agent’s face an unending stream of experience
and information critical for decision making occurred in the distant past. Therefore, we need agents that
can incrementally update their internal representation of the environment state with computation that does
not growth as a function of total experience. In this paper, we investigate incremental state construction in
the context of partially observable online reinforcement learning (RL), where agents learn while interacting
with the world and thus computation and memory require special consideration.

In RL, incremental state construction is a long-studied problem with many possible solution methods. Re-
current neural network (RNN) architectures provide a framework for learning such representations due to

1

https://openreview.net/forum?id=lh6vOAHuvo

Published in Transactions on Machine Learning Research (10/2024)

their ability to automatically learn relationships about the past. RNNs, such as LSTMs (Hochreiter &
Schmidhuber, 1997) and GRUs (Gao & Glowacka, 2016), handle sequential data by maintaining a vector of
hidden states that capture dependencies between consecutive elements in the sequence. RNNs have been
applied to a wide range of partially observable RL environments such as Atari 2600 games (Hausknecht
& Stone, 2015) and Starcraft (Vinyals et al., 2017). The inference cost of RNNs—the cost of processing a
single element in a sequence of data—is independent of the length of the sequence making them an attractive
choice for online RL. Unfortunately, RNNs such as LSTMs are notoriously difficult to train (Bakker, 2001;
Khandelwal et al., 2018), and their computations over the input cannot be parallelized.

Transformers (Vaswani et al., 2017) have achieved state-of-the-art performance in many sequential data
processing problems, but have seen limited application in online RL (Parisotto et al., 2020). Transformer
architectures have been widely used in natural language processing (e.g., Brown et al., 2020; Devlin et al.,
2018) and computer vision (e.g., Petit et al., 2021; Zhong et al., 2020). These successes are often attributed
to the transformers’ self-attention mechanism which can capture long-range dependencies, but they cannot
learn relationships that exceed this fixed-length memory. In addition, the inference costs are higher than an
RNN: linear in the length of the context window. The linear transformer architecture reduces computational
complexity of the self-attention mechanism (Katharopoulos et al., 2020).

In this paper, we introduce two new approaches designed for partially observable RL problems based on the
linear transformer’s self-attention mechanism. Our new approach to self-attention, based on linear transform-
ers, was designed to achieve the following: (1) a self-attention mechanism that can add and delete previous
information, (2) a learned feature map, and (3) a self-attention mechanism that requires computation linear
in the size of the embedding dimension. Our first contribution, Gated Linear Transformer (GaLiTe), uses a
gated structure that allows it to uncover relationships far in the past. It also uses a different self-attention
mechanism that can learn a highly parallelizable feature map that is amenable to sequential computation
with a context-independent inference cost. Our second contribution, Approximate Gated Linear Transformer
(AGaLiTe), introduces an approximate version of GaLiTe’s self-attention mechanism, eliminating the need
to maintain a matrix as a recurrent state.

We demonstrate the utility of our proposed approaches in several partially observable RL problems. Our
experiments show that both GaLiTe and AGaLiTe can match the performance of more computationally
expensive transformer architectures in a small diagnostic T-Maze environment. In a pixel-based navigation
task, we find that our approach outperforms the state-of-the-art transformer architecture, GTrXL (Parisotto
et al., 2020), by more than 37%. Our AGaLiTe-based agent achieves higher rewards than a GTrXL-based
agent and higher performance across various in-game skills in Craftax Symbolic (Matthews et al., 2024),
a symbolic adaptation of the 2D survival game Crafter (Hafner, 2021). In 3D pixel-based navigation tasks,
AGaLiTe’s performance is close to GTrXL while reducing the computation and memory by 40% and 50%
respectively. Our results in Craftax and 3D navigation provide promising initial evidence of the scalability of
our new our approach; a step towards better transformer-based architectures for online, partially observable
RL. Code and implementation for this work is publicly available1.

2 Preliminaries

In this section, we provide a brief background on Transformers. We first discuss the canonical transformer
architecture and then we discuss the linear transformer approach, which is the basis of our approach.

The transformer architecture was introduced for supervised next token prediction tasks (Vaswani et al.,
2017). Our main contribution is a new self-attention mechanism; this section provides the background
required to understand the self-attention mechanism in transformers.

Self-attention is mechanically simple. For a given query token i (embedded in xi
.= X(i, ·)), we output

an embedded context vector that weights each input token’s importance (attention weighted) to the query
token. The input to the self-attention layer is a matrix X ∈ RN×d, an embedding of each input token (1 to
N) into a vector, Rd. The output is a matrix A ∈ RN×dh , where dh is the head dimension. Algorithm 1
shows a single self-attention layer with learnable parameters WQ, WK , WV ∈ Rd×dh .

1https://github.com/subho406/agalite

2

https://github.com/subho406/agalite

Published in Transactions on Machine Learning Research (10/2024)

2.1 Canonical Transformer Architecture

Algorithm 1 Canonical Self-Attention
Input: X ∈ RN×d

Parameters: WQ, WK , WV ∈Rd×dh

1: Q← XWQ

2: K← XWK

3: V← XWV

4: A← softmax(QK⊤
√

d
)V

Output: A ∈ RN×dh

We can think of the process in two steps. In step one we cal-
culate the attention weights. We compare each token in the
context to all other tokens in the context (QKT). The weights
are then scaled the size of the embedding dimension and nor-
malized with an element-wise softmax. In step two, we compute
and return the attention-weighted context vectors, one for each
input in X.

The self-attention mechanism in Algorithm 1 is computation-
ally expensive. We define the inference cost of self-attention
as the cost for processing a single element in a sequence. To
generate representations for a single element, a query vector is
calculated instead of query matrix using a single input (Algorithm 1, step 1). In canonical self-attention
mechanism, processing a single element requires having the full sequence as input for generating the value
and key matrix (Algorithm 1, step 2 and 3). Thus, the inference cost depends on the input sequence length
N . For a naive implementation, the inference cost has O(Nd2) time and O(Nd) space complexity; increasing
the sequence length linearly increases the computational complexity. A simple mitigation is to limit the size
of the input sequence by maintaining a window of the history of input activations in memory (Dai et al.,
2019), but doing so limits the past information the self-attention mechanism can recall.

2.2 Recurrent Attention with Linear Transformers

Algorithm 2 Linear Transformer’s Self-Attention
Input: xt ∈ Rd, Ct−1 ∈ Rdh×dk , st−1 ∈ Rdk

Parameters : WQ, WK , WV ∈ Rdh×d

s0 ← 0, C0 ← 0.

1: qt ← ϕ(WQxt)
2: kt ← ϕ(WKxt)
3: vt ←WV xt

4: Ct ← Ct−1 + vt ⊗ kt

5: st ← st−1 + kt

6: at ← (Ctqt)/(s⊤
t qt)

Output: at ∈ Rdh ,Ct ∈ Rdh×dk , st ∈ Rdk

The linear transformer architecture (Katharopou-
los et al., 2020) introduces a general way of for-
mulating self-attention as a recurrent neural net-
work by replacing the softmax with a kernel func-
tion, leveraging its equivalence to applying kernel
smoothing over inputs (see work by Tsai et al.,
2019).

A single time-step of inference of the linear trans-
former self-attention is described in Algorithm 2.
Note that we present the algorithm for processing
a single input vector in the case of the linear trans-
former. This is in contrast to Algorithm 1, which
presents the algorithm for processing a sequence.
Let k(a, b) = ϕ(a)⊤ϕ(b), where ϕ : Rdh → Rdk

is a non-linear feature map, dk is the output dimension of the feature map ϕ, and k : Rdh × Rdh → R+.
Additionally, let ⊗ be defined as the outer product vector operation. At a given timestep t, the linear
transformer self-attention maintains a matrix, Ct−1 ∈ Rdh×dk , and a vector, st ∈ Rdk , as a recurrent state,
which is updated iteratively using the current input vector, xt. Different from Algorithm 1, Algorithm 2
applies the feature map, ϕ, to generate the query and key for a given time-step (lines 1 and 2). The linear
transformer self-attention stores the outer product of value and key vectors as a recurrent state matrix, Ct

(line 4). Additionally, the sum of the key vectors is stored as a recurrent normalization vector st (line 5).
The attention output vector, at, is calculated by multiplying the recurrent state with the query vector, and
normalizing it using the product of the normalization vector, st, and the query vector, qt (line 6).

The linear transformer’s self-attention has a context-independent inference cost, unlike the canonical
self-attention mechanism. In Algorithm 2, processing a single input vector (xt) has a space and time
complexity of O(ddk), assuming d, the embedding dimension (of the input), is greater than dh, which is the
size of the attention-weighted context vector, at. Unlike vanilla self-attention, the computational complexity
does not depend on the context length, making it more efficient for longer sequences.

3

Published in Transactions on Machine Learning Research (10/2024)

3 Gated Linear Transformers (GaLiTe)

In this section, we introduce GaLiTe to address two of the limitations of linear transformers. Specifically,
(1) the recurrent equations in Algorithm 2 (lines 5 and 6) add positive values to the recurrent state, without
any mechanism to delete past information. (2) Performance critically depends on the choice of the kernel
feature map ϕ (lines 1 and 2); element-wise functions such as the Exponential Linear Unit (ELU) typically
perform worse than softmax (Katharopoulos et al., 2020).

GaLiTe mitigates these two issues by introducing a gating mechanism and a parameterized feature map. The
gating mechanism controls the flow of information at each index of C (the location of the recurrent states of
the self-attention mechanism), allowing arbitrary context memory (inducing a trade-off with precision). The
parameterized feature map is used to calculate the key and query vectors in the self-attention mechanism,
eliminating the choice of the kernel feature map ϕ.

3.1 Gating Mechanism to Control the Flow of Information

In the linear transformer self-attention, at a given time-step t, Algorithm 2 increments the recurrent state,
Ct−1, and the normalization vector, st−1, (lines 4 and 5). Assuming C0 and s0 are initialized to zero, recall
the update equations for Ct and st are recursively defined as follows:

Ct
.= Ct−1 + vt ⊗ kt, (1) st

.= st−1 + kt. (2)

As kt is a function of ϕ and under the assumption of a positive feature map ϕ, Equation 2 adds arbitrary
positive values to st−1. Similarly, Equation 1 adds arbitrary positive values to Ct−1 if the elements in
value vector vt are positive. Both Equation 1 and 2 have no way to control the flow of past information
and the values in the recurrent state could grow. Instead, we use a normalized exponential average—with
element-wise learned decay parameters—which smoothly reduces the impact of past information.

Gating mechanisms can be used to control the flow of information in recurrent updates. We pro-
pose a learned outer-product-based gating mechanism that decays every element of Ct−1 and st−1
allowing the network to learn the decay for each element (also known as the memory location).
We introduce learnable parameters Wβ ∈ Rdh×d, Wγ ∈ Rdk×d, and gating vectors βt, and
γt. Let σg be a sigmoid function defined as σg(x) .= 1/1+e−x, we define βt and γt as follows:

βt
.= σg(Wβxt), (3) γt

.= σg(Wγxt). (4)

Let ⊙ be the element-wise product, we use the outer product of βt and γt to control the flow of past
information in recurrent states Ct and st, modifying Equations 1 and 2 as follows:

Ct
.=
(
(1− βt)⊗ (1− γt)

)
⊙Ct−1 +

(
βt ⊙ vt

)
⊗
(
γt ⊙ kt

)
, (5)

st
.= (1− γt)⊙ st−1 + γt ⊙ kt. (6)

We use outer products to learn the decay rate for each index of Ct, without requiring individual parameters
for each index. The outer product assumes the decay rate at each index is independent from each other.

3.2 Learnable Feature Map for Self-Attention

Recall that the self-attention mechanism of the linear transfomer uses a kernel feature map to calculate the
key and query vectors:

kt
.= ϕ(WKxt), (7) qt

.= ϕ(WQxt). (8)
We consider a deterministic approach to learn the key and value vectors in the linear transfomer self-attention
mechanism. We introduce modifications to kt, qt, and gating vectors calculation described in Equations 7, 8,
3, and 4 respectively. We start by introducing a hyperparameter η that controls the dimension of the feature
maps used to construct kt and qt. Let Wp1 , Wp2 , Wp3 ∈ Rη×d be learnable parameters. We modify the
dimensions of Wγ as Wγ ∈ Rdh×d, getting rid of dk, the kernel feature map dimension. Let f() be a function

4

Published in Transactions on Machine Learning Research (10/2024)

that flattens a matrix into a vector. We redefine kt and qt (previously defined in Equations 7 and 8) as follows:

kt
.= f(relu(Wp1xt)⊗ relu(WKxt)) (9) qt

.= f(relu(Wp2xt)⊗ relu(WQxt)). (10)

We also modify the gating vectors calculation in Equation 4 as follows:

γt
.= f(σg(Wp3xt)⊗ σg(Wγxt)). (11)

Using the modified key, query, and gating vectors, the recurrent states Ct ∈ Rdh×ηdh and st ∈ Rηdh

are calculated according to Equations 5 and 6. It is important to note that the feature map dimension,
dk = ηdh, is now controlled by the hyperparameter η. Equations 9 and 10 use outer products to learn
multiplicative interactions in the key and query vectors. Learning multiplicative interactions in the feature
vectors allows learning complex non-linear relationships through training instead of relying on an explicit
non-linear element-wise function or on random feature maps. Using outer products to generate an expansive
feature map allows us to have a large feature map output dimension. Having a large feature map output
dimension is essential as it correlates with the memory capacity (see the work by Schlag et al., 2021).

Finally, we use the relu activation function to ensure the output of the feature map is positive. A positive
feature map is a common assumption in the linear transformer literature as it is simple way to ensure that
similarity scores produced by the underlying kernel function are positive.

The Gated Linear Transformer (GaLiTe) self-attention incorporates the changes discussed above into the
linear transfomer self-attention. The pseudo-code for GaLiTe is available in Appendix A. GaLiTe has
similar space and time complexity as the linear transfomer. For processing a single element in a sequence,
GaLiTe has a space and time complexity of O

(
ηd2) and O

(
ηd2), respectively. In comparison, the linear

transfomer requires O (dkd) and O (dkd). Notice dk is defined to be the output dimension of the kernel
feature map, which is ηdh in GaLiTe. Similar to the linear transfomer, the space and time complexity of
GaLiTe is independent of N and only depend on static hyperparameters d and η.

4 Approximate Gated Linear Transformer (AGaLiTe)

Operating on large matrices is expensive. Recall that GaLiTe stores a matrix of dimension d2
hη as a recurrent

hidden state. This becomes more problematic with the use of multiple heads and layers; which are typically
required to improve stability during the training (see the work by Michel et al., 2019). For example, previous
applications of transformers in RL by Parisotto et al. (2020) use 8 heads and 12 layers; 96 heads in total.
Second, the update to Ct makes use of expensive and memory heavy operations: an outer product, element-
wise matrix sum, and multiplication.

Our goal is to approximate the recurrent state update in Equation 5 with an approximation that uses less
space than O(ηd2). Recall that Equation 5 replaces Ct with Ct−1 plus a new outer product. To derive an
approximation, we want to replace Ct−1 with a matrix that has a lower rank. Also, we want to derive an
update rule that is an approximation of Equation 5, but instead of updating the full-rank matrix, Ct−1, it
updates the low-rank approximation.

Our second approach, called Approximate Gated Linear Transformer (AGaLiTe), uses a low-rank approx-
imation to reduce the space complexity of GaLiTe. We replace the previous recurrent state matrix, Ct−1,
with a set of vectors, reducing the space complexity of GaLiTe by d. We introduce an approximation of the
Kronecker delta function using a sum of cosine functions and we use this to approximate Ct−1.

We introduce an approximation that uses a sum of cosine functions to approximate a sum of outer products.
This approximation is deterministic, it does not introduce variance in the approximation, and it keeps incre-
mental updates to the state end-to-end differentiable. Our approach is inspired by the rank-1 approximation
introduced by Ollivier et al. (2015), but instead of using random numbers to approximate a Kronecker delta
function, we use a trigonometric identity that relates a Kronecker delta function to an integral over cosines.
Recall that the Kronecker delta function is defined for integers m and n such that δmn = 1 if m = n, and

5

Published in Transactions on Machine Learning Research (10/2024)

δmn = 0 if m ̸= n. We present an approximation δ̂mn of δmn such that δ̂mn is defined as follows:

δ̂mn
.= 2

r

r∑
i=0

(
cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
. (12)

It can further be shown that limr→∞ δ̂mn = δmn. The derivation for this result is presented in Appendix
B.1. We use the approximation of the Kronecker delta function in Equation 12 to approximate the recurrent
state update in Equation 5. Briefly, the approximation introduces the approximate Kronecker delta function
to approximate Ct as a sum of r outer-products, where each of the vectors in the outer-product is defined
recursively and updated using the value and key at the current timestep. For a given r, we maintain recurrent
states ṽk

t−1 and k̃k
t−1 for k = 0, 1, . . . , r. For ωk

.= 2πk
r , and assuming ṽi

0 and k̃i
0 are initialized as zeros, we di-

rectly calculate the attention output, at, in replacement of Ct, considering the recurrent updates to ṽi
t and k̃i

t:

ṽk
t

.= cos(ωkt)βt ⊙ vt + (1− βt)⊙ ṽk
t−1, (13) k̃k

t
.= cos(ωkt)γt ⊙ kt + (1− γt)⊙ k̃k

t−1, (14)

at
.=

∑r
k=0 ṽk

t

((
k̃k

t

)⊤ qt

)
2r(s⊤

t qt)
. (15)

Due to space constraints, the rationale behind these approximations is presented in Appendix B.1.1.

Table 1: Space and time complexity of AGaLiTe,
GaLiTe, linear transformer, and GTrXL for processing
a single element in a streaming sequence (M : memory
size in GTrXL, d: representation dimension, dk fea-
ture map dimension in the linear transformer, η: fea-
ture map hyperparameter in GaLiTe and AGaLiTe, r:
approximation parameter in AGaLiTe).

Space Time
GTrXL O(Md) O(M d2)
Linear Transformer O (dkd) O (dkd)
GaLiTe O

(
ηd2) O

(
ηd2)

AGaLiTe O(rηd) O
(
d2 + rηd

)

The pseudocode for AGaLiTe can be found in Ap-
pendix C. Unlike Equation 5, Equations 13 and 14
define a recurrence over vectors instead of matri-
ces. If r ≪ d, then the recurrence is more effi-
cient in space than the recurrence in Equation 5.
In Appendix E, we provide an empirical evaluation
of the impact of different values of r in the qual-
ity of the approximation, showing that, in practice,
it seems small values of r do not compromise the
quality of the approximation or the overall perfor-
mance. The computational complexity of AGaLiTe
is O(rηd) and O

(
d2 + rηd

)
in space and time. With

AGaLiTe, we have significantly improved the com-
plexity of the self-attention mechanism and these
differences manifest in experiments as we show next.
We compare the computational complexities of our
proposed approaches and GTrXL (Parisotto et al., 2020) in Table 1. We provide empirical latency measure-
ments of forward pass using the AGaLiTe architecture and compare it to GTrXL in Appendix K. We also
discuss the parallelization of GaLiTe and AGaLiTe over a sequence of data in Appendix F.

5 Empirical Evaluation

This section investigates our proposed approaches in several partially observable reinforcement learning (RL)
control problems. The memory requirements vary across the environments we consider. In T-Maze (Bakker,
2001), the agent must remember a single cue signal. In CartPole, the agent must estimate the hidden state
by integrating information over time. In Mystery Path (Pleines et al., 2023), the agent must remember
multiple locations in a grid environment. In Craftax (Matthews et al., 2024), a 2D survival game, the agent
faces with partial observability as it can only observe a limited portion of a large 2D map. In Memory Maze
environment (Pašukonis et al., 2023), the agent must retain the layout of a 3D maze in addition to several
locations across the maze.

Additionally, we also provide results in Long Range Arena (Tay et al., 2021) in Appendix D, a classical
benchmark used to evaluate the ability to learn long-range dependencies in a supervised learning scenario. We

6

Published in Transactions on Machine Learning Research (10/2024)

evaluate in two of the tasks from the benchmark: ListOps and IMDB. We found that AGaLiTe outperforms
transformers and linear transformers across both of these tasks, despite using a smaller number of learnable
parameters.

Diagnostic MDP. The T-Maze environment is used to evaluate an agent’s ability to learn long context
dependencies in a reinforcement learning scenario (Bakker, 2001). In this environment, the agent must
remember a cue shown only at the beginning of an episode in order to decide which way to turn at the end
of a hallway (inset plot in Figure 1). The cue is only included in the observation on the first timestep. The
difficulty of this environment can be increased by increasing the corridor length. The agent’s actions are
NSEW, and the observation is a binary encoding of the current cell (gray code), the cue (on the first step),
and several random distractor bits. The full details are provided in Appendix G.1.

Success
Rate

Corridor
Length -1

01 +4

T-Maze

Corridor Length

GTrXL-256
GaLiTe
AGaLiTe

GTrXL-128
Linear TF
GRU
LSTM

Figure 1: Success rate in the last 100K timesteps av-
eraged over 50 runs in T-Maze (shown inset). The
shaded regions represents the standard error.

We trained seven agents for five million steps in
the T-Maze environment, for corridor lengths 120–
200. The network architecture for each agent has a
shared representation learning layer, either an RNN
or a transformer, which is then followed by sepa-
rate actor and critic heads. Two of these agents
were trained using an RNN as the shared represen-
tation layer, namely LSTM (Hochreiter & Schmid-
huber, 1997) and GRU (Cho et al., 2014). The
other two agents used a transformer, particularly
the GTrXL architecture (Parisotto et al., 2020), and
the linear transformer architecture (Katharopoulos
et al., 2020). In GTrXL, the memory size hyper-
parameter, defined as the amount of stored history,
controls the context length. We train two GTrXL
agents, GTrXL-128 and GTrXL-256, corresponding
to memory sizes 128 and 256. Note that for the
corridor lengths considered, GTrXL-256 has the en-
tire episode provided as input. We also evaluate
GaLiTe (η = 4) and AGaLiTe (η = 4, r = 1); we do
so by replacing the XL-attention (Dai et al., 2019)
of GTrXL with one of the two approaches, while preserving the order of the layers and the gating of GTrXL.
This allows us to evaluate exactly the impact of the newly introduced self-attention mechanisms without
other confounders. The base RL algorithm for all agents use Advantage Actor-Critic (A2C) (Wu et al.,
2017). Architecture-specific hyperparameters and tuning strategies are described in Appendix G.1.

Figure 1 summarizes the main results. We report the success rate, the percentage of correct decisions,
averaged over the last 100K timesteps of the experiment. An agent that chooses randomly at the intersection
would achieve a success rate of 0.5. In this experiment, GTrXL is sensitive to the amount of history provided
as input; GTrXL-128 (brown) fails for corridor lengths greater than 120, whereas GTrXL-256 (orange) works
well across all corridor lengths. GaLiTe (purple) and AGaLiTe (red) match the performance of GTrXL-256
despite not having access to the entire episode as input. Note that AGaLiTe performs close to GaLiTe even
with r = 1 (the approximation parameter). GRU (green) and linear transformer (grey) outperform LSTM
(blue), but their performance drop in the longest corridor lengths. AGaLiTe is more computationally efficient
than GTrXL-256 in T-Maze. For a single attention head, AGaLiTe uses roughly 125.1 times fewer operations
than GTrXL-256, and 36.57 times less space. Also, AGaLiTe uses roughly 62.67 times fewer operations and
18.28 times less space than GTrXL-128.

Partially Observable Classic Control. Inspired by previous work (Morad et al., 2022; Duan et al.,
2016), we explored two variants of partially observable CartPole (Barto et al., 1983). In the first variant, we
mask out the velocity information from the observation vector and only allow positional information. This
modification makes the problem difficult as the agent now needs to estimate these velocities itself. The second
modification introduced an additional challenge by adding noise to the positional information communicated

7

Published in Transactions on Machine Learning Research (10/2024)

to the agent. We sampled the noise from a normal distribution with zero mean and 0.1 standard deviation.
This problem is qualitatively different from the T-Maze because of the different requirements imposed by
the environment. In CartPole, the agents must integrate information over time to construct a reasonable
estimate of the underlying state of the MDP, whereas in T-Maze the agent must learn the cue was important
and remember it for a long period of time.

Figure 2: The total reward is binned over
10 timesteps and averaged over 30 different
seeds ± standard error.

We used both GRU and GTrXL as baselines for this prob-
lem. GRU-based approaches perform best on these partially
observable classical control tasks, even compared to transform-
ers (Morad et al., 2022). We used PPO (Schulman et al., 2017)
and trained all agents for 5M steps on the two variants of Cart-
pole. We also performed an extensive sweep of the hyperparam-
eters of PPO and GRU, which is described in Appendix G.2.

Figure 2 summarizes the results of our experiment in the
Noisy stateless CartPole, the second variant from above. The
AGaLiTe agent learns faster and finds a better-balancing pol-
icy than the GRU and GTrXL agents. The results for the
other variant of partially observable CartPole (without noise)
is qualitatively similar and can be found in Appendix G.2.

Mystery Path. In Mystery Path (Pleines et al., 2023), the
agent is required to remember multiple cue signals for long periods of time in a 2D pixel-based environment.
In this environment, the agent’s goal is to reach a target position by traversing through a random invisible
path. Episodes have fixed length and the agent is reset back to the start location (along with a feedback
observation) upon deviating from the path. We consider two configurations of this environment: MPGrid
and MP; MP is more difficult. In MP, there are six actions and smoother motion dynamics compared to
MPGrid, with grid-like movements and four actions. MPGrid has a maximum episode length of 128, while
MP’s is 512. Appendix G.3 describes the environment and the configurations considered.

Agent

Goal

Path

Start

AGaLiTe-8

AGaLiTe-4

GTrXL-128

GTrXL-64

GTrXL-32

MPGrid MP

Figure 3: Left: Learning curves in MPGrid (averaged over 15 seeds ± 95% bootstrapped CI) along with an
inset figure showing a possible ground truth maze layout. Right: Learning curves in MP (averaged over 5
seeds ±95% bootstrapped CI) along with inset figure depicting the agent’s observation. The agent does not
observe the path to the goal (left); a red cross is shown as feedback if the agent deviates off from the path,
with the agent being reset to the start tile (right).

8

Published in Transactions on Machine Learning Research (10/2024)

We trained three GTrXL agents with memory sizes ∈ {32, 64, 128}, and two AGaLiTe agents with feature
map dimension η ∈ {4, 8}, and r = 1. The architecture sizes for GTrXL and AGaLiTe were chosen to
be similar to the ones used in the T-Maze experiments. PPO was the base RL agent used. We used a
standard agent network architecture (e.g., Mnih et al., 2016; Schulman et al., 2017) for all agents. Details
on hyperparameters sweeps can be found in Appendix G.3.

Figure 3 summarizes the main results. Again we report success rate, the percentage of episodes the agent
reaches the goal before an episode timeout, calculated over a window of one million steps. Across both
configurations, MPGrid and MP, we observe that AGaLiTe matches the performance of GTrXL-128 when
η = 4 and surpasses GTrXL-128 in mean performance when η = 8. Also, similar to T-Maze, we observe that
reducing the memory size of GTrXL drastically impacts its performance.

We observe again that AGaLiTe is more computationally efficient than GTrXL. For a single attention head,
AGaLiTe-8 uses roughly 55.75 times fewer operations than GTrXL-128, and it uses 9.84 times less space. In
other words, we observe performance at least as good as GTrXL, in both variants of pixel-based control, at
a fraction of the cost.

0.00 0.25 0.50 0.75 1.00
Steps ×109

0

10

20

30

40

Total
Reward

GTrXL-128

AGaLiTe

PPO+RNN

Figure 4: Learning curves of GTrXL-128
and AGaLiTe in the Craftax symbolic en-
vironment (averaged over 15 seeds ± 95%
bootstrapped CI). The inset plot shows the
result of rendering a sample observation
(left) and the full map (right).

Craftax. Crafter (Hafner, 2021) is a 2D open-world survival
game where an agent needs to forage for food and water, find
shelter to sleep, defend against monsters, collect materials, and
build tools. This environment is designed to evaluate an agent’s
ability to perform a wide range of tasks purely from a scalar
reward signal. The environment is partially observable as the
agent can only observe a portion of the large randomly gener-
ated map that it navigates. Our hypothesis is that an agent
with better memory capabilities and longer context should
achieve higher performance through navigating and utilizing
the cues in the environment effectively. We consider the sym-
bolic variant of the environment, Craftax symbolic, detailed in
Matthews et al. (2024). The symbolic variant simplifies the
observations of original pixel-based crafter by encoding each
pixel as a one-hot vector and an intensity value.

We trained a GTrXL agent with memory size 128 and an
AGaLiTe agent with feature map dimension η = 8, and r = 1
for 1B steps. The architecture sizes for GTrXL and AGaLiTe
were chosen similar to the ones used in the T-Maze and Mystery
Path experiments. PPO was the base RL agent used. Details
on hyperparameters sweeps can be found in Appendix G.5.

Figure 4 shows the total episodic reward achieved by the AGaLiTe-based agent compared with a GTrXL-
based agent. We observe that the AGaLiTe achieves a higher reward than both GTrXL and previously
reported PPO+RNN baseline (Matthews et al., 2024). In Appendix J we compare the performance across
the various game-related achievements present in Crafter. We find that AGaLiTe achieves higher scores in
several of these achievements.

We also considered a 3D navigation environment called Memory Maze (Pašukonis et al., 2023) that has a
fixed horizon and that requires the agent to remember multiple cue signals for long periods of time. At
the beginning of each episode, a new maze is generated randomly and several objects of different colors are
distributed across the maze. The agent perceives a 64 × 64 RGB image with a colored border indicating
the color of the current object of interest. Once the agent touches the object, it gets a +1 reward and the
borders’ colors change. The agent’s goal is to maximize rewards within the fixed time budget. Thus, the
agent must remember the objects’ locations to travel through the maze as quickly as possible. Figure 5
(inset) provides an illustration of the Memory Maze environment. In the main paper, we report results on
the largest maze size, 15× 15, with an episode duration of 4,000 steps. Results for other maze sizes can be
found in Appendix H.

9

Published in Transactions on Machine Learning Research (10/2024)

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e8

0

5

10

15

20

25
Reward
Total

MemoryMaze 15x15
GTrXL-256

AGaLiTe

Figure 5: Learning curves in MemoryMaze .
The bold lines report total episodic reward
averaged over three seeds; the other lines
are individual seeds. The inset plot shows
a sample observation.

Memory Maze. We trained a GTrXL agent and an
AGaLiTe agent, each with 22M learnable parameters, for 100M
steps using the Async-PPO algorithm (Petrenko et al., 2020).
The GTrXL agent had a memory size of 256, and the AGaLiTe
agent had a feature map η = 4 and an approximation hyper-
parameter r = 7. We based our architectures for both the
policy and the critic on the work by Petrenko et al. (2020).
In this work, a ResNet (He et al., 2016) is used to extract the
features from the input image, then a sequence of features are
fed into an RNN or a transformer. We detail the hyperparam-
eters used, the architecture sizes, and the tuning strategy in
Appendix G.4.

Figure 5 shows the total episodic reward achieved by our
AGaLiTe-based agent compared with a GTrXL-based agent.
The asymptotic performance of all the three agents is similar,
but the GTrXL-based agent exhibits faster learning early on.
Additionally, we explore the impact of smaller GTrXL memory
sizes in Appendix I. We find that reducing the memory size
of GTrXL did not affect the performance in this environment,
suggesting that the agents might not be utilizing their memory
capabilities effectively.

Finally, we looked at the agents’ utilization of the computational resources. For a single attention head,
AGaLiTe uses roughly 125 times fewer operations than GTrXL-256 and it uses 46 times less space. Addi-
tionally, we measured the frames per second (FPS) and the memory usage from 12 AGaLiTe and GTrXL
agents. Overall, AGaLiTe achieves 535.63± 0.52 FPS while GTrXL achieves 373.63± 0.49 FPS, correspond-
ing to a 43.36% improvement. Further, AGaLiTe uses 52.37% less memory than the GTrXL agent. The
number of operations and space used are asymptotic information that highlight the benefits one can expect
when using even bigger neural network architectures, such as those now common in industry. The FPS rate
demonstrates the performance gain when AGaLiTe is instantiated in a particular network architecture.

6 Ablation Study

In this section, we present ablations for each of the three modifications proposed to the linear transformer
architecture in AGaLiTe, highlighting the importance of each modification. We present the results for these
ablations in Figure 6.

Our first ablation evaluates the impact of proposed gating mechanisms in AGaLiTe. We conduct this ablation
in the MPGrid environment. This environment requires an agent to selectively filter and remember multiple
pieces of information throughout an episode. Our proposed gating mechanism significantly outperforms an
AGaLiTe without the gating mechanism in Figure 6a.

The other two ablations compare the proposed feature map and approximation approach to other approaches
in the literature. We conducted these ablations in the T-Maze environment with the corridor length set to
200. We use the same hyperparameter tuning strategy as described in Section G.1, but focusing on the best
hyperparameter on corridor length 200. We report the success rate while training an agent for 5M steps over
50 seeds.

To evaluate the impact of different feature maps ϕ in AGaLiTe, we consider two alternatives, proposed in
the existing literature. The first uses an element-wise feature map ELU + 1 (Clevert et al., 2016), which
was used originally in the linear transformer architecture. The second is the deterministic parameter free
projection (DPFP) introduced by Schlag et al. (2021), which was shown to outperform exisiting feature
map approaches in language modelling tasks. We present these results in Figure 6b. We observed that our
proposed feature map outperform both of these methods.

10

Published in Transactions on Machine Learning Research (10/2024)

0.0 0.5 1.0 1.5
Steps ×108

0.0

0.2

0.4

0.6

0.8

1.0

Success
Rate

AGaLiTe
AGaLiTe without gating

(a) Gating mechanism

0 2 4
Steps ×106

0.0

0.2

0.4

0.6

Success
Rate

AGaLiTe
AGaLiTe with ELU + 1

AGaLiTe with DPFP

(b) Feature map

0 2 4
Steps ×106

0.0

0.2

0.4

0.6

Success
Rate

AGaLiTe
AGaLiTe with Rank-1 approx.

(c) Approximation approach

Figure 6: Ablation of various components of the AGaLiTe architecture

Finally, we compare AGaLiTe’s approximation to an alternative incremental low-rank approximation method.
We consider the rank-1 trick introduced by Ollivier et al. (2015). The rank-1 trick approximates a Kronecker
delta function using random signs drawn from a uniform distribution. Similar to our proposed approximation
approach, the rank-1 trick could be applied to derive incremental updates to a low-rank decomposition of a
matrix. We derived an approximation using the rank-1 trick and compared it to our proposed approximation
(with r = 1) in Figure 6c. We observe that our proposed approximation approach outperforms the rank-1
trick.

7 Related Work

Similar to our approach, several previous works have explored extensions to the linear transformer architec-
ture, addressing its limitations. The DeltaNet architecture (Schlag et al., 2021) implements a scalar gating
mechanism to accumulate the value vectors over time, and then uses an error-correcting delta rule to update
the recurrent states. In contrast, our proposed approach utilizes an element-wise gating mechanism applied
directly over the recurrent states. DeltaNet also introduces a deterministic feature map called DPFP we
have found to perform worse compared to our proposed feature map in Figure 6. RecurrentDeltaNet ar-
chitecture (Irie et al., 2021) proposed improvements to the DeltaNet architecture by introducing additional
recurrence and non-linearity to the updates of the key, value, and query vectors. However, the non-linear
update rule in RecurrentDeltaNet limits its parallelizability over an input sequence. In contrast, our pro-
posed approach uses linear update rules, and could be parallelized over an input sequence (Appendix F).
In a concurrent and independent work, Aksenov et al. (2024) explored a learnable kernel function inspired
from Taylor expansion of exponential functions, demonstrating impressive in-context learning performance.
Notably, none of these work improve upon the computational complexity or introduce approximations to
recurrence mechanism of the linear transformer.

Gating mechanisms such as the one we used in GaLiTe and AGaLiTe are commonly used in RNNs to control
the flow of information and mitigate the impact of vanishing gradients (Hochreiter & Schmidhuber, 1997).
Often, scalar gating mechanisms have been applied, such as in the linear transformer (Peng et al., 2021).
However, using a single learned coefficient could be sub-optimal as it does not allow for a more fine-grained
control of the flow of past information from each index location in a recurrent state.

The choice of the feature map ϕ can have a significant impact on the overall performance (Schlag et al.,
2021). For example, a non-expansive map based on ELU+1 can be used (Katharopoulos et al., 2020),
however, element-wise activation functions are limited in their ability to learn complex non-linear rela-
tionships and using them as a feature map limits the memory capacity of the architecture (Schlag et al.,
2021). Alternatively, random feature maps can be used to approximate a softmax function (Peng et al.,
2021; Choromanski et al., 2021). Although randomized feature maps are equivalent to softmax function in
expectation, they introduce additional variance. Our model is deterministic.

11

Published in Transactions on Machine Learning Research (10/2024)

In the context of AGaLiTe, there are other incremental approaches to approximating large matrices. In-
cremental singular value decomposition (SVD) (Brand, 2002; 2006) provides a way to perform additive
modifications to a low-rank singular value decomposition of a matrix. Previous applications of incremen-
tal SVD in RL, however, suggest that sensitivity to the rank parameter is a significant issue (Pan et al.,
2017). The rank-1 approximation introduced by Ollivier et al. (2015) uses random numbers to approximate
a Kronecker delta function producing an unbiased approximation of a matrix represented as a sum of outer
products. The use of random numbers, however, introduces variance in the approximation (Cooijmans &
Martens, 2019); our results in the T-Maze suggest the proposed approximation leads to better results than
the rank-1 approximation.

Various approaches have been proposed that increase the context length of the transformers or reduce the
computational complexity of self-attention. The LongFormer architecture (Beltagy et al., 2020) selectively
calculates a sparse attention matrix over a large context and the Transformer-XL architecture (Dai et al.,
2019) caches previous activations to attend over a larger context. Alternatively, the RMT architecture
(Bulatov et al., 2022) introduced segment-level recurrence to pass global information over a larger context.
Other approaches reduce the computational complexity of self-attention by proposing approximations (Kitaev
et al., 2020; Choromanski et al., 2021; Wang et al., 2020).

Other methods such as RWKV (Peng et al., 2023), and state-space models such as LRU (Orvieto et al., 2023),
S4 (Gu et al., 2021), and S5 Smith et al. (2023) offer context-independent inference cost while leveraging
parallelization over a sequence. The S4 architecture was recently applied to offline in-context RL (Lu et al.,
2024) and model-based RL (Samsami et al., 2024), demonstrating superiority over RNNs. However, none of
these approaches have yet been explored in the model-free RL setting, which has been the main focus of this
paper.

Several works have explored using transformers in RL. Parisotto & Salakhutdinov (2021) used transform-
ers to learn policies in an asynchronous setting relying on policy distillation to make interaction with the
environment feasible. Others have explored transformers in model-based, fully-observable RL, such as the
TransDreamer architecture which replaces the GRU used inside Dreamer V2 (Hafner et al., 2020) with a
transformer (Chen et al., 2022).

While focus of this paper has been towards online RL settings, several previous works have applied transform-
ers to offline RL and in-context RL. Chen et al. (2021) demonstrated that transformers could learn single-task
policies from offline RL data through imitation learning. Extensions to Chen et al. (2021) demonstated that
transformers could also derive multi-task policies from offline RL data in both same-domain (Lee et al., 2022)
and cross-domain environments (Reed et al., 2022). Laskin et al. (2023) and Lin et al. (2024) demonstrated
that transformers could be trained on offline datasets to learn RL policies in-context on novel tasks. Offline
training of transformers can also be combined with online RL and has demonstrated application in discov-
ering high value molecules (Ghugare et al., 2024). We believe that our proposed approach could be also
be useful across offline and in-context RL settings by offering a larger context with reduced computational
requirements.

8 Conclusion and Future Work

Transformers have revolutionized many branches of AI research, but their computational requirements make
extension to other domains such as online RL difficult. In this paper, we have introduced two recurrent
alternatives of the self-attention mechanism in transformers, called Gated Linear Transformer (GaLiTe) and
Approximate Gated Linear Transformer (AGaLiTe). We demonstrate the efficacy of both approaches in
a several partially observable reinforcement learning tasks (e.g., T-Maze, Mystery Path, Craftax, Memory
Maze). When compared to a state-of-the-art architecture GTrXL, the inference cost of our approach is more
than 40% cheaper while reducing memory use more than 50%.

Future work could explore algorithmic improvements to AGaLiTe such as using updates based on efficient
real-time recurrent learning (Zucchet et al., 2023; Williams & Zipser, 1989). Furthermore, the application
of AGaLiTe to model-based RL algorithms such as the Dreamer V3 (Hafner et al., 2023) could be exciting.
Finally, Morad et al. (2024) leverages the properties of linear transformer approaches to propose a batching

12

Published in Transactions on Machine Learning Research (10/2024)

method that improves sample efficiency, increases the return, and simplifies the implementation of recurrent
loss functions in RL. Application of some of these ideas to AGaLiTe would be exciting. In addition, previous
work has found RNN-based approaches are best in some tasks and transformers better in others. There is
much to be understood empirically in partially observable RL.

Acknowledgements

We would like to thank Martha White, Dale Schuurmans, and Michael Bowling for providing valuable
feedback and for their helpful discussions. We would like to thank Martha White for also providing access
to additional computational resources. We would like to thank Vincent Liu for providing feedback on
the derivations presented in this paper. The research is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Canada CIFAR AI Chair Program, the University
of Alberta, Google Cloud Incubator, TPU Research Cloud Program, and the Digital Research Alliance of
Canada.

References
Yaroslav Aksenov, Nikita Balagansky, Sofia Lo Cicero Vaina, Boris Shaposhnikov, Alexey Gorbatovski, and

Daniil Gavrilov. Linear transformers with learnable kernel functions are better in-context models. In
Association for Computational Linguistics, 2024.

Bakker. Reinforcement learning with long short-term memory. In Neural Information Processing Systems,
2001.

Andrew G Barto, Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 1983.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

Blelloch. Prefix sums and their applications. Technical report, 1990.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018.

Brand. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and its Appli-
cations, 2006.

Matthew Brand. Incremental singular value decomposition of uncertain data with missing values. In European
Conference on Computer Vision, 2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Neural Information Processing Systems, 2020.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In Neural Information
Processing Systems, 2022.

Changgu Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv:2202.09481, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In
Neural Information Processing Systems, 2021.

13

Published in Transactions on Machine Learning Research (10/2024)

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation. arXiv:1406.1078, 2014.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger,
Lucy J Colwell, and Adrian Weller. Rethinking attention with performers. In International Conference
on Learning Representations, 2021.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (ELUs). In International Conference on Learning Representations, 2016.

Tim Cooijmans and James Martens. On the variance of unbiased online recurrent optimization.
arXiv:1902.02405, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. arXiv:1901.02860, 2019.

Devlin, Chang, Lee, and Toutanova. BERT: Pre-training of deep bidirectional transformers for language
understanding. arXiv:1810.04805, 2018.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, 2016.

DI engine Contributors. DI-engine: OpenDILab decision intelligence engine. https://github.com/
opendilab/DI-engine, 2021.

Yuan Gao and Dorota Glowacka. Deep gate recurrent neural network. In Asian Conference on Machine
Learning, 2016.

Raj Ghugare, Santiago Miret, Adriana Hugessen, Mariano Phielipp, and Glen Berseth. Searching for high-
value molecules using reinforcement learning and transformers. In International Conference on Learning
Representations, 2024.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations, 2021.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780, 2021.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with discrete
world models. In International Conference on Learning Representations, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv:2301.04104, 2023.

Hausknecht and Stone. Deep recurrent Q-learning for partially observable MDPs. In Association for the
Advancement of Artificial Intelligence Fall Symposia, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Computer Vision and Pattern Recognition, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond linear transformers
with recurrent fast weight programmers. Neural information processing systems, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs: Fast
autoregressive transformers with linear attention. In International Conference on Machine Learning, 2020.

Khandelwal, He, Qi, and Jurafsky. Sharp nearby, fuzzy far away: How neural language models use context.
In Association for Computational Linguistics, 2018.

14

https://github.com/opendilab/DI-engine
https://github.com/opendilab/DI-engine

Published in Transactions on Machine Learning Research (10/2024)

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv:2001.04451,
2020.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu Sahni,
Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm distillation. In
International Conference on Learning Representations, 2023.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian
Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers. In Neural
Information Processing Systems, 2022.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforcement
learning via supervised pretraining. In International Conference on Learning Representations, 2024.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and Feryal
Behbahani. Structured state space models for in-context reinforcement learning. Advances in Neural
Information Processing Systems, 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson, Samuel Cow-
ard, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended reinforcement learning. In
International Conference on Machine Learning, 2024.

Andrew Kachites McCallum. Learning to use selective attention and short-term memory in sequential tasks.
In International Conference on Simulation of Adaptive Behavior, 1996.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Neural
Information Processing Systems, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Inter-
national Conference on Machine Learning, 2016.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POPGym: Bench-
marking partially observable reinforcement learning. In International Conference on Learning Represen-
tations, 2022.

Steven Morad, Chris Lu, Ryan Kortvelesy, Stephan Liwicki, Jakob Foerster, and Amanda Prorok. Revisiting
recurrent reinforcement learning with memory monoids. arXiv, 2024.

Yann Ollivier, Corentin Tallec, and Guillaume Charpiat. Training recurrent networks online without back-
tracking. arXiv:1507.07680, 2015.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. Resurrecting recurrent neural networks for long sequences. In International Conference on
Machine Learning, 2023.

Yangchen Pan, Adam White, and Martha White. Accelerated gradient temporal difference learning. In
Association for the Advancement of Artificial Intelligence, 2017.

Emilio Parisotto and Ruslan Salakhutdinov. Efficient transformers in reinforcement learning using actor-
learner distillation. In International Conference on Learning Representations, 2021.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar, Max
Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew Botvinick, Nicolas Heess, and
Raia Hadsell. Stabilizing transformers for reinforcement learning. In International Conference on Machine
Learning, 2020.

Jurgis Pašukonis, Timothy P Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3D mazes. In
International Conference on Learning Representations, 2023.

15

Published in Transactions on Machine Learning Research (10/2024)

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon,
Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi
Saito, Xiangru Tang, Bolun Wang, Johan S Wind, Stansilaw Wozniak, Ruichong Zhang, Zhenyuan Zhang,
Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing RNNs for the transformer era.
arXiv:2305.13048, 2023.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong. Random
feature attention. In International Conference on Learning Representations, 2021.

Olivier Petit, Nicolas Thome, Clement Rambour, Loic Themyr, Toby Collins, and Luc Soler. U-Net trans-
former: Self and cross attention for medical image segmentation. In International Workshop on Machine
Learning in Medical Imaging, 2021.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun. Sample factory:
Egocentric 3D control from pixels at 100000 FPS with asynchronous reinforcement learning. In Interna-
tional Conference on Machine Learning, 2020.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory Gym: Partially observable
challenges to memory-based agents. In International Conference on Learning Representations, 2023.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov, Gabriel Barth-
maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali
Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and
Nando de Freitas. A generalist agent. Transactions on Machine Learning Research, 2022.

Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Mastering memory
tasks with world models. The Twelfth International Conference on Learning Representations, 2024.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In International Conference on Learning Representations, 2014.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight program-
mers. In International Conference on Machine Learning, 2021.

Schulman, Wolski, Dhariwal, Radford, and Klimov. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning, 2015.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for sequence
modeling. In International Conference on Learning Representations, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations, 2021.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov.
Transformer dissection: A unified understanding of transformer’s attention via the lens of kernel. In
Conference on Empirical Methods in Natural Language Processing and the International Joint Conference
on Natural Language Processing, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems, 2017.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A new challenge
for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

16

Published in Transactions on Machine Learning Research (10/2024)

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

Eric W Weisstein. Fourier series. From MathWorld–A Wolfram Web Resource.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, 1989.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region method for
deep reinforcement learning using Kronecker-factored approximation. In Neural Information Processing
Systems, 2017.

Huasong Zhong, Jingyuan Chen, Chen Shen, Hanwang Zhang, Jianqiang Huang, and Xian-Sheng Hua. Self-
adaptive neural module transformer for visual question answering. IEEE Transactions on Multimedia,
2020.

Nicolas Zucchet, Robert Meier, Simon Schug, Asier Mujika, and João Sacramento. Online learning of long-
range dependencies. Advances in Neural Information Processing Systems, 2023.

17

Published in Transactions on Machine Learning Research (10/2024)

A Gated Linear Transformers (GaLiTe)

Algorithm 3 formalizes the self-attention mechanism introduced in GaLiTe. The algorithm introduces a
hyperparameter, η, and a few learnable parameters, Wβ , Wγ ∈ Rd×dh , and Wp1 , Wp2 , Wp3 ∈ Rd×η. The
hyperparameter η controls the size of the recurrent states, Ct and st, and of the key and the query vectors.

Algorithm 3 Gated Linear Transformer (GaLiTe) Self-Attention
Input: xt ∈ Rd, Ct−1 ∈ Rdh×ηdh , st−1 ∈ Rηdh

Hyperparameters: η
Parameters: WK , WQ, WV , Wβ , Wγ ∈ Rdh×d and Wp1 , Wp2 , Wp3 ∈ Rη×d

1: if t = 0 then
2: s0 ← 0, C0 ← 0.
3: end if

{Calculate Key}
4: kt ← f(relu(Wp1xt)⊗ relu(WKxt))

{Calculate Query}
5: qt ← f(relu(Wp2xt)⊗ relu(WQxt))

{Calculate Value}
6: vt ←WV xt

{Generate Gating Vectors}
7: βt ← σg(Wβxt)
8: γt ← f(σg(Wp3xt)⊗ σg(Wγxt))

{Update Memory}
9: Ct ←

(
(1− βt)⊗ (1− γt)

)
⊙Ct−1 +

(
βt⊙vt

)
⊗
(
γt⊙kt

)
10: st ← (1− γt)⊙st−1 + γt⊙kt

{Calculate Attention Vector}
11: at ← (Ctqt)/(stqt)

Output: at ∈ Rdh , Ct ∈ Rdh×ηdh , st ∈ Rηdh

B Derivation of AGaLiTe

In this section, we walk through the derivations to approximate the GaLiTe self-attention mechanism. We
first start with deriving an approximation for the Kronecker Delta Function and then use these approximation
results to derive the AGaLiTe’s self-attention mechanism.

B.1 Approximation of Kronecker Delta Function

In this section we derive an approximation of the Kronecker delta function. The Kronecker delta function,
δmn is defined for integers m and n as 1 if m = n and 0 if m ̸= n.

We use a trigonometric identity that is used in computing Fourier series by relating the Kronecker delta
function to an integral of a product of two cosine functions (Weisstein). It is given by:

δmn = 1
π

∫ 2π

0
cos(mx) cos(nx) dx. (16)

18

Published in Transactions on Machine Learning Research (10/2024)

We use the Trapezoidal rule to approximate the integral in Equation 16. The trapezoidal rule is a numerical
integration method that approximates the integral of a function by dividing the interval into sub-intervals
and approximating the function in each sub-interval with a straight line connecting the endpoints. For a
function f(x) that is integrable on the interval [a, b], it is given by:∫ b

a

f(x) dx ≈
r∑

k=1

f(xk−1) + f(xk)
2 ∆x, (17)

where ∆x = b− a

r
, xk = a + k∆x, and r is the number of sub-intervals used for the integral and it controls

the degree of approximation. As r → ∞, the approximation becomes exact. Let δ̃mn be the Trapezoidal
approximation of the integral defined in Equation 16. We then write δ̃mn as:

δ̃mn = 1
r

r−1∑
i=0

cos
(

2πi

r
m

)
cos
(

2πi

r
n

)
+ 1

r

r∑
i=1

cos
(

2πi

r
m

)
cos
(

2πi

r
n

)
(18)

Further, in the limit we have: limr→∞ δ̃mn = δmn.

Next, we will simplify the above equation to combine the two summations above into a single one:

δ̃mn = 1
r

r−1∑
i=0

cos
(

2πi

r
m

)
cos
(

2πi

r
n

)
+ 1

r

r∑
i=1

cos
(

2πi

r
m

)
cos
(

2πi

r
n

)

Adding and subtracting 1
r

(cos(0) cos(0) + cos(2πm) cos(2πn)):

δ̃mn =
(

1
r

r−1∑
i=0

cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
+ cos(2πm) cos(2πn)

+
(

1
r

r∑
i=1

cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
+ cos(0) cos(0)

− 1
r

(cos (0) cos (0) + cos (2πm) cos (2πn))

=
(

1
r

r−1∑
i=0

cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
+ cos

(
2πr

r
m

)
cos
(

2πr

r
n

)

+
(

1
r

r∑
i=1

cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
+ cos(0) cos(0)

− 1
r

(cos(0) cos(0) + cos(2πm) cos(2πn))

= 2
r

r∑
i=0

(
cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
− 1

r
(cos(0) cos(0) + cos(2πm) cos(2πn))

Since m and n are integers:

δ̃mn = 2
r

r∑
i=0

(
cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
− 2

r
. (19)

In fact, in the limit, r → ∞, only the first term in the right hand side of Equation 19 matters in our
approximation. Let

δ̂mn
.= 2

r

r∑
i=0

(
cos
(

2πi

r
m

)
cos
(

2πi

r
n

))
, (20)

19

Published in Transactions on Machine Learning Research (10/2024)

we then have

lim
r→∞

δ̃mn = lim
r→∞

δ̂mn − lim
r→∞

2
r

= lim
r→∞

δ̂mn − 0, (21)

and consequently

lim
r→∞

δ̂mn = δmn. (22)

B.1.1 Using The Kronecker Delta Function to approximate GaLiTe

We start with the GaLiTe recurrent state update which we will then approximate using the Kronecker delta
approximation introduced above. GaLiTe recurrent state update is expressed as follows:

Ct =
(
(1− βt)⊗ (1− γt)

)
⊙Ct−1 +

(
βt ⊙ vt

)
⊗
(
γt ⊙ kt

)
. (23)

We use the approximation of the Kronecker delta function in Equation 20 to approximate the update in
Equation 23. We will start by representing the recurrent state Ct as a sum of outer products. We will do so
by recursively expanding using the definition of Ct. Following the recursive definition we have:

Ct =
(
(1− βt)⊗ (1− γt)

)
⊙Ct−1 +

(
βt ⊙ vt

)
⊗
(
γt ⊙ kt

)
=
(

(βt ⊙ vt)⊗ (γt ⊙ kt)
)

+
(

(1− βt)⊗ (1− γt)
)
⊙
(

(βt−1 ⊙ vt−1)⊗ (γt−1 ⊙ kt−1) +
(
(1− βt−1)⊗ (1− γt−1)

)
⊙Ct−2

)
=

(
(βt ⊙ vt)⊗ (γt ⊙ kt)

)
+
(

(1− βt)⊗ (1− γt)
)
⊙
(

(βt−1 ⊙ vt−1)⊗ (γt−1 ⊙ kt−1)
)

+
(

(1− βt)⊗ (1− γt)
)
⊙
(

(1− βt−1)⊗ (1− γt−1)
)
⊙Ct−2

Using the fact that (a ⊗ b)⊙ (c⊗ d) = (a ⊙ c)⊗ (b⊙ d) for arbitrary vectors a, b, c, d, we have:

Ct =
(

(βt ⊙ vt)⊗ (γt ⊙ kt)
)

+
((

(1− βt)⊙ βt−1 ⊙ vt−1
)
⊗
(
(1− γt)⊙ γt−1 ⊙ kt−1

))
+
((

(1− βt)⊙ (1− βt−1)
)
⊗
(
(1− γt)⊙ (1− γt−1)

))
⊙Ct−2

Recursively expanding it further and regrouping the terms similar to above:

=
(

(βt ⊙ vt)⊗ (γt ⊙ kt)
)

+
((

(1− βt)⊙ βt−1 ⊙ vt−1
)
⊗
(
(1− γt)⊙ γt−1 ⊙ kt−1

))
+

+
((

(1− βt)⊙ (1− βt−1)⊙ βt−1 ⊙ vt−2
)
⊗
(
(1− γt)⊙ (1− γt−1)⊙ γt−2 ⊙ kt−2

))
+ Ct−3

Next, we rewrite the recursive expansion as a single summation term of outer product. This is possible
because upon following the recursive definition, we can see above that each term of the expansion could be
written as an outer product of vectors. The vectors used to calculate the outer product at each timestep
consists of element-wise vector product involving either the value or key, and their corresponding gating
vectors. We show the expansion for only until t − 3, but the same steps could be followed until t = 0.
We define product operation

∏
such that:

∏j
i (ai)

.= 1 if j > i, and
∏j

i (ai)
.= ai ⊙ ai+1 ⊙ . . . aj . We

introduce variables li and mi to represent the left and right terms of the outer-product at a given timestep,

20

Published in Transactions on Machine Learning Research (10/2024)

for i = 0, 1, . . . , t. We then define Ct in terms of these variables to simplify the equation above:

Ct =
t∑

i=0
li ⊗mi (24)

li =
t∏

j=i+1
(1− βj)⊙ βi ⊙ vi (25)

mi =
t∏

j=i+1
(1− γj)⊙ γi ⊙ ki (26)

Next, we use the approximate Kronecker delta function in Equation 20 to approximate the sum of outer
products in Equation 24. We start by introducing the Kronecker delta function δmn into the expression of
Ct above by introducing a double summation:

Ct =
t∑

i=0
li ⊗mi =

t∑
j=0

t∑
i=0

δijli ⊗mj

Then we replace the Replacing δi,j with δ̂i,j we obtain an approximation C̃t of Ct as follows:

Ct ≈ C̃t =
t∑

j=0

t∑
i=0

δ̂ijli ⊗mj

= 2
r

t∑
j=0

t∑
i=0

r∑
k=0

cos
(

2πk

r
i

)
cos
(

2πk

r
j

)
li ⊗mj

= 2
r

r∑
k=0

t∑
j=0

t∑
i=0

cos
(

2πk

r
i

)
cos
(

2πk

r
j

)
li ⊗mj ,

where we first applied Equation 20 followed by rearranging the order of the summations. Let ωk
.= cos

(2πk
r

)
,

we then have:

C̃t = 2
r

r∑
k=0

t∑
j=0

t∑
i=0

cos (ωki) cos (ωkj) li ⊗mj .

Because (ab)(c⊗ d) = (ac)⊗ (bd) for scalars a, b and vectors c, d, this allows us to seperate the two cosine
terms in the summation:

C̃t = 2
r

r∑
k=0

t∑
j=0

t∑
i=0

(cos (ωki) li)⊗ (cos (ωkj) mj) .

Next, we will use the distributive property: (
∑m

i=0 ai)⊗ (
∑n

j=0 bj) =
∑m

i=0
∑n

j=0(ai⊗bj), where a0, . . . , am

and b0, . . . , bn are arbitrary vectors. We will use it to rewrite the above equation as a single summation of
outer products, where the summation is defined only over r. This is a key operation that allows us to write
the approximation to be written temporally iterative manner. Applying the distributive property from right

21

Published in Transactions on Machine Learning Research (10/2024)

to left into the equation above, and then using Equations 25 and 26, we have:

C̃t = 2
r

r∑
k=0

t∑
j=0

t∑
i=0

(cos (ωki) li)⊗ (cos (ωkj) mj) .

= 2
r

r∑
k=0

(
t∑

i=0
cos (ωki) li

)
⊗

(
t∑

i=0
cos (ωki) mi

)

= 2
r

r∑
k=0

 t∑
i=0

cos (ωki)
t∏

j=i+1
(1− βj)⊙ βi ⊙ vi

⊗
 t∑

i=0
cos (ωki)

t∏
j=i+1

(1− γj)⊙ γi ⊙ ki

 . (27)

Next, we simplify the above equation and rewrite it in a recurrent form. Let ṽk
t and k̃k

t be defined as:

ṽk
t

.=
t∑

i=0
cos (ωki)

t∏
j=i+1

(1− βj)⊙ βi ⊙ vi, (28)

k̃k
t

.=
t∑

i=0
cos (ωki)

t∏
j=i+1

(1− γj)⊙ γi ⊙ ki. (29)

C̃t could then then written in terms of ṽk
t and k̃k

t as:

C̃t = 2
r

r∑
k=0

ṽk
t ⊗ k̃k

t , (30)

We regroup the terms and derive a recursive relationship of ṽk
t and k̃k

t with respect to ṽk
t−1 and k̃k

t−1. First,
we separate the term in the summation when i = t. Next, we factorize (1 − βt) from the summation term.
Finally, following the definition in Equation 28, we replace the second term with ṽi

t−1.

ṽk
t =

t∑
i=0

cos(ωki)
t∏

j=i+1
(1− βj)⊙ βi ⊙ vi

= cos(ωkt)βt ⊙ vt +
t−1∑
i=0

cos(ωki)
t∏

j=i+1
(1− βj)⊙ βi ⊙ vi

= cos(ωkt)βt ⊙ vt + (1− βt)
t−1∑
i=0

cos(ωki)
t−1∏

j=i+1
(1− βj)⊙ βi ⊙ vi

= cos(ωkt)βt ⊙ vt + (1− βt)⊙ ṽk
t−1 (31)

Similarly, we apply the same operations to k̃i
t:

k̃k
t =

t∑
i=0

cos(ωki)
t∏

j=i+1
(1− γj)⊙ γi ⊙ ki

= cos(ωkt)γt ⊙ kt +
t−1∑
i=0

cos(ωki)
t∏

j=i+1
(1− γj)⊙ γi ⊙ ki

= cos(ωkt)γt ⊙ kt + (1− γt)
t−1∑
i=0

cos(ωki)
t−1∏

j=i+1
(1− γj)⊙ γi ⊙ ki

= cos(ωkt)γt ⊙ kt + (1− γt)⊙ k̃k
t−1 (32)

22

Published in Transactions on Machine Learning Research (10/2024)

Using the recursive relationships in Equation 31 and 32, we can now present the final approximation. For a
given r, we maintain recurrent states ṽk

t−1 and k̃k
t−1 for k = 0, 1, 2, . . . , r. For ωk

.= 2πk
r , and assuming ṽi

0
and k̃i

0 are initialized as zeros, the recurrent updates to ṽi
t and k̃i

t and further the approximation to Ct are
given by:

Ct ≈ C̃t = 2
r

r∑
k=0

ṽk
t ⊗ k̃k

t (33)

where, for k = 0, 1, 2, . . . , r we have:

ṽk
t

.= cos(ωkt)βt ⊙ vt + (1− βt)⊙ ṽk
t−1 (34)

k̃k
t

.= cos(ωkt)γt ⊙ kt + (1− γt)⊙ k̃k
t−1 (35)

Since limr→∞ δ̂mn = δmn, it follows that limr→∞ C̃t = Ct. Unlike Equation 23, Equation 34 and 35 define
a recurrence over vectors instead of matrices, and if r ≪ d, the recurrence is much more efficient in space
than the recurrence in Equation 23. We leave it to future work to formally derive the approximation error.
In Section E we show the approximation error with a synthetic error under different values of r.

Lastly, since the current state C̃t could be represented as a sum of outer products in a non-recurrent manner,
we can avoid explicitly calculating C̃t and instead calculate the attention output at as follows:

at
.=

∑r
k=0 ṽk

t

((
k̃k

t

)⊤ qt

)
2r(s⊤

t qt)
(36)

23

Published in Transactions on Machine Learning Research (10/2024)

C Approximate Gated Linear Transformer (AGaLiTe)

Algorithm 4 shows the Approximate Gated Linear Transformer (AGaLiTe). We highlight changes from
Algorithm 3 in blue. The algorithm maintains a set of vectors k̃0

t−1, ..., k̃r
t−1 ∈ Rηdh , ṽ0

t−1, ..., ṽr
t−1 ∈ Rdh ,

and st−1 ∈ Rηdh as the recurrent state at a given time-step t. The number of vectors stored could be
controlled by modifying the hyperparameter r, which should ideally be set to a small value. The key, query,
and value vectors are calculated similarly to GaLiTe. The recurrent state update is modified to use the
approximation in Equation 33. At each time step, the recurrent vectors are updated using element-wise
vector multiplication and addition operations (lines 10-14). The operation on each recurrent vector could be
executed in parallel. The attention output is calculated without ever explicitly calculating C̃t (lines 16-18).

Algorithm 4 Approximate Gated Linear Transformer (AGaLiTe) Self-Attention (Streaming Data)
Input: xt ∈ Rd, k̃0

t−1, ..., k̃r
t−1 ∈ Rηdh , ṽ0

t−1, ..., ṽr
t−1 ∈ Rdh , and st−1 ∈ Rηdh

Hyperparameters: η and r.
Parameters: WK , WQ, WV , Wβ , Wγ ∈ Rdh×d and Wp1 , Wp2 , Wp3 ∈ Rη×d

1: Assume s0 ← 0, C0 ← 0.
{Calculate Key}

2: kt ← f(relu(Wp1xt)⊗ relu(WKxt))
{Calculate Query}

3: qt ← f(relu(Wp2xt)⊗ relu(WQxt))
{Calculate Value}

4: vt ←WV xt

{Generate Gating Vectors}
5: βt ← σg(Wβxt)
6: γt ← f(σg(Wp3xt)⊗ σg(Wγxt))

{Update Memory}
7: for i← 0 to r in parallel, do
8: ωi ← (2πi)/r
9: ṽi

t ← ṽi
t−1 ⊙ (1− βt) + cos (ωit) (βt ⊙ vt)

10: k̃i
t ← k̃i

t−1 ⊙ (1− γt) + cos (ωit) (γt ⊙ kt)
11: end for
12: st ← (1− γt)⊙ st−1 + γt ⊙ kt

{Calculate Attention Vector}
13: a←

∑r
i=0 ṽi

t

(
k̃i⊤

t qt

)
14: b← 2r(s⊤

t qt)
15: at ← a/b
Output: at ∈ Rdh , k̃0

t , ..., k̃r
t ∈ Rηdh , ṽ0

t , ..., ṽr
t ∈ Rdh , and st ∈ Rηdh

D Results in Long Range Arena

We additionally evaluate on the ListOps and Text (IMDB) from the Long Range Arena (Tay et al., 2021) as
to evaluate the architecture’s ability to learn long-range dependencies in a supervised learning scenario. The
performance of AGaLiTe (η = 8, r = 1) is compared with the transformer’s and linear transformer’s in Table
2. The exact hyperparameters for AGaLiTe are listed in Table 4. We found that AGaLiTe outperforms the
previously reported results of the transformer and linear transformer architecture (Tay et al., 2021) in both
of these tasks.

24

Published in Transactions on Machine Learning Research (10/2024)

Table 2: Results in Long Range Arena. Reported as mean ± std error over 10 seeds.
.

(a) ListOps Task

Model Params Score
Linear Transformer 8.9M 16.13

Transformer 8.9M 36.37
AGaLiTe 1.7M 39.33± 0.34

(b) Text (IMDB) Task

Model Params Score
Linear Transformer 3.4M 65.9

Transformer 3.4M 64.27
AGaLiTe 1.7M 79.83± 1.3

E Effect of r on the Quality of Approximation in AGaLiTe

We empirically evaluate the effect of r on the quality of the approximation of the current state matrix Ct.
Ideally, we want to set r to a small value as the space complexity of AGaLiTe is directly proportional to
r. We consider a synthetic example where the value vt and key kt at each time step are sampled randomly
from a normal distribution. We set the embedding dimension d to 128 and randomly sample values and keys
for 100 timesteps. Instead of using vectors γt and βt for gating at every timestep, we use a constant value
c. We then compare the difference between the current state matrix Ct computed using the exact method
in Equation 5, with the current state matrix C̃t computed using the approximate method in Equation 33
at the 100th time-step. We use the Frobenius norm to measure the difference between the two matrices.
We repeat the experiment for different values of r and c. For each configuration, we report the mean error
across 50 independent runs. Figure 7 shows the results of this experiment. We observe that the error in
approximation decreases with increasing value of r. For most values of r and c, the approximation error is
low. This is useful since it allows us to set r to a small value, thereby reducing the space complexity of the
model. In fact, in the largest experiments described in this thesis, we set r to 7. Interestingly, we observe
periodic bands in the error plot. It is possible that this is due to the periodicity of the cosine functions
used in the attention mechanism. We leave further exploration around the theoretical nature of the error in
approximation for future work.

1 8 16 24 32
Approximation hyperparameter (r)

0.0

0.2

0.4

0.6

0.8

1.0

G
at

in
g

va
lu

e
(c

)

0

100

200

300

Figure 7: Error in approximating the current state Ct for different values r and gating at t = 100 for
randomly sampled values and keys.

25

Published in Transactions on Machine Learning Research (10/2024)

F Parallelization over an Input Sequence

Transformers are naturally designed for parallelism over a sequence of input data, as the self-attention oper-
ation does not have dependencies between different parts of the input sequence. It is essential to consider the
parallelizability of transformer architectures, when the input sequence is presented in a batched fashion. Such
a scenario is common in practice, as most existing actor-critic approaches such as PPO and A2C (Schulman
et al., 2017; Mnih et al., 2016) estimate gradient updates to the actor and critic using batches of trajectories
collected through agent-environment interactions. Furthermore, most modern hardware accelerators, such
as GPUs and TPUs, excel in handling parallelizable algorithms, and parallelization is vital for effectively
training large models.

Extension of Algorithm 3 and 4 to accommodate parallelization over a sequence of inputs is straightforward,
depending on whether the computation has dependencies on the previous state or not. The majority of the
computations in both algorithms, which involve calculating keys, queries, values, gating vectors, and the
attention vector, do not depend on the previous state and can be parallelized over the sequence. The only
part of the algorithm that depends on the previous state is the update of the current state. In Algorithm 3,
this is done from lines 13-14, and in Algorithm 4, from lines 10-15. The update of the current state in both
algorithms is implemented as a first order recurrence. This operation is parallelizable as such recurrences
could be expressed as an associtiave binary operations (see Blelloch, 1990). In our implementation, we used
the associative_scan operation in Jax to parallelize GaLiTe and AGaLiTe over an input sequence.

26

Published in Transactions on Machine Learning Research (10/2024)

G Additional Experiment Details

G.1 T-Maze

Environment Description: The T-Maze environment considered in this paper is similar to the one pro-
posed by Bakker (2001). Figure 8 shows two possible episodes in the T-Maze environment. At each timestep,
the agent receives a 16-bit binary observation. The first two bits correspond to the cue signal which is either
01 or 10 at the first timestep of an episode, depending on whether the reward is located at the left or right
turn at the intersection, respectively. The cue bits are zero in all other timesteps. We consider the largest
possible corridor length as 200. To encode the corridor information, the agent additionally receives 8-bit
gray code encoding of its current location. The gray code encoding is zero at the beginning of an episode
and is updated at each timestep. To make the problem more challenging, we added 6 noisy distractor bits
to the observation. The distractor bits are sampled uniformly at random at each timestep. The agent can
take one of the four possible discrete actions at each timestep: up, down, left, or right. The agent receives a
reward of -0.1 at each non-terminal timestep. At termination, the agent receives a reward of +4 for taking
the correct turn and a reward of -1 for taking an incorrect turn. The reward of +4 is chosen to encourage
the agent to take the correct turn at the intersection. The difficulty of this environment can be increased by
increasing the corridor length. Increasing the corridor length requires the agent to remember the signal for
a longer number of timesteps. Since the agent’s observations include distractor bits, the agent also needs to
learn to ignore the distractor bits and focus on the cue signal.

+4 -1 +4-1

01 10

-1

Corridor
Length

Episode A Episode B

Figure 8: The T-Maze environment. The agent has to remember a binary cue (denoted by green text),
shown only at the beginning of the episode, in order to take the correct turn at the intersection and receive
a positive reward. The figure shows two possible episodes and the optimal path an agent must take. The
agent’s current location is provided as gray code encoding in the observation, along with distractor signals.
The corridor length could be varied to increase the difficulty of the problem.

Hyperparameters and Tuning Strategy: We include the architecture configuration for each of the 5
architectures in Table 4. Our hyperparameter tuning strategy is as follows: We train 5 seeds per architecture
for each corridor length in 120-200 and hyperparameter configuration for 5M steps. We identify the best
hyperparameter configuration according to the best mean success rate in the last 100K steps across all
corridor lengths.

A few additional details are worth reporting for the purposes of reproducibility. We conducted all experiments
using Python and implemented the agents using the Jax library (Bradbury et al. (2018)). We used the GTrXL
implementation from the DIEngine library (engine Contributors, 2021). Each agent is trained using 16-core
machine with 12GB RAM. The network weights are initialized using orthogonal initialization (Saxe et al.
(2014)). A single run using the slowest architecture takes around 20 hours to complete.

G.2 Partially Observable CartPole

Table 5 shows PPO hyperparameters used for CartPole experiments. We show additional results for the
partially observable CartPole environment when no noise is added to the observation vector in figure 9

27

Published in Transactions on Machine Learning Research (10/2024)

Table 3: Hyperparameters and sweeps for the T-Maze experiments.

Hyperparameter Value
Learning Rate [0.001, 0.0001 0.0005, 0.00001, 0.00005]
Discount Factor (γ) 0.99
Advantage Estimation Coefficient (λ) 0.95
Entropy Coefficient [0.1, 0.01, 0.001, 0.0001, 0.00001]
Value Loss Coefficient 0.5
Rollout Len 256
Num of Envs 8
Batch Size (Rollout Len × Num of Envs) 2048
Actor Layer Dimension 128
Critic Layer Dimension 128

Table 4: Architecture configuration for LSTM, GRU, GTrXL, GaLiTe, and AGaLiTe for T-Maze, Mystery-
Path experiments, and Craftax experiments.

Hyperparameter LSTM GRU GTrXL GaLiTe AGaLiTe
Embedding Dimension (d) 600 680 128 128 128
Hidden Dimension 1200 1360 N/A N/A N/A
Num Heads N/A N/A 4 4 4
Head Dim (dh) N/A N/A 64 64 64
Num Layers (L) 1 1 4 4 4
Memory Size (M) N/A N/A [128, 256] N/A N/A
Projection Hyperparameter (η) N/A N/A N/A 4 [4,8]
Approximation Hyperparameter (r) N/A N/A N/A N/A 1
Actor Layer Dimension 128 - - - -
Critic Layer Dimension 128 - - - -

Table 5: Hyperparameters and sweeps for the CartPole experiments.

Hyperparameter Value
Learning Rate [0.01, 0.001, 0.0001, 0.00001]
Discount Factor (γ) 0.99
Advantage Estimation Coefficient (λ) 0.9
Entropy Coefficient 0.0
Value Loss Coefficient 1.0
Rollout Len 1024
Num of Envs 1
Batch Size (Rollout Len × Num of Envs) 1024
Number of Epochs 10
PPO Clip Ration 0.2
Max Gradient Norm 0.5

G.3 Mystery Path

Environment Description: Pleines et al. (2023) introduced the Mystery Path environment as part
of the Memory Gym benchmark, which aimed to test agents’ abilities to memorize many events over an
episode. The Mystery Path is a 7 × 7 grid environment with pixel-based observations. At the beginning
of each episode, the start position of the agent, the origin, is sampled from the grid’s borders. Then, the
target position is sampled from the grid’s borders on the opposite side of the origin. A randomly generated
path then connects both the origin and the goal. Figure 10a shows an example of a generated origin, goal,
and path. The agent’s observation, shown in Figure 10b, is a 64 × 64 RGB image containing the origin,

28

Published in Transactions on Machine Learning Research (10/2024)

Figure 9: Non-noisy Partially Observable CartPole

the target, and the agent. The agent gets a +1 reward when it reaches the goal and a 0.1 reward when
visiting a new tile on the path to the goal. If the agent falls off the path, as in Figure 10c, a red cross
appears as visual feedback, and the agent returns to the origin. The reward is zero in all other timesteps.
We consider two variants of this environment, MPGrid and MP. MPGrid has maximum episode length of
128, uses grid-like movements and 4 possible actions (left, right, up and down). On the other hand, MP has
a maximum episode length of 512, has smoother movements, and a larger action space that allows diagonal
movements.

Agent

Start

FeedbackGoal

(a) (b) (c)

Path

Figure 10: A visualization of the Mystery Path environment.

Hyperparameters and Tuning Strategy: The architecture sizes used for Mystery Path experiments are
kept same as in Table 4, however, we used actor and critic layer dimension of 256. We detail the hyperparam-
eters used for the PPO algorithm that used for training the agents in the Mystery Path environment in Table
6. We tune learning rate and entropy coefficient for the sweeps mentioned in Table 6. Our hyperparameter
tuning strategy is as follows: we train 3 seeds per architecture for each the hyperparameter configuration for
60M steps in the Mystery Path Grid environment. Finally, we identify the best hyperparameter configuration
according to the best episodic reward in the last 1M training steps.

29

Published in Transactions on Machine Learning Research (10/2024)

Table 6: Hyperparameters and sweeps for Mystery Path experiments.

Hyperparameter Value
Learning Rate [0.0025, 0.00025, 0.000025]
Discount Factor (γ) 0.99
Advantage Estimation Coefficient (λ) 0.95
Entropy Coefficient [0.03, 0.003, 0.0003, 0.00003]
Number of Epochs 3
Rollout Length 128
Sequence Length 128
Number of Env 128
Batch Size (Sequence Length × Number of Env) 16384
Number of Mini Batches 8
PPO Clip Ratio 0.2
Max Gradient Norm 4
Value Function Coefficient 0.5

G.4 Memory Maze

9x9 11x11

15x15

Top down view of the maze layout

The border indicates the
object the agent must

collect next

The border changes
after the agent collects

the matching object

Objects are placed
randomly around the

maze
13x13

Figure 11: The Memory Maze environment. On the left, we show a possible maze layout for all four Memory
Maze configurations. The maze layout is randomized at each episode. On the right, we show two sample
observations that the agent receives. The agent’s observation at each time-step is 64×64 RGB pixels and the
action space is discrete. The border color of the observation image indicates the target object color which
the agent needs to find to receive a reward. After collecting the object, the border color changes, indicating
the next target object. The episode lengths are fixed depending on the Memory Maze configuration, with
larger configurations having longer episodes.

Environment Description: The Memory Maze environment evaluates an agent’s long-term memory capa-
bilities in a partially observable RL setting. Figure 11 illustrates this environment. The agent’s observation
at each time-step is an image with 64 × 64 RGB pixels, and the action space is discrete. In each episode,
the agent starts in a randomly generated maze containing several objects of different colors. The agent’s
objective is to find the target object of a specific color, indicated by the border color in the observation
image. Upon successfully touching the correct object, the agent receives a +1 reward, and the next random
object is chosen as the new target. If the agent touches an object of the wrong color, there is no effect on the
environment. The maze layout and object locations remain constant throughout the episode. Each episode
lasts for a fixed amount of time. Since the maze layout is randomized at each episode, the agent must learn
to quickly remember the maze layout, the target object locations, and the paths leading to them.

30

Published in Transactions on Machine Learning Research (10/2024)

Hyperparameters and Tuning Strategy: We include the details of the Memory Maze experiments. All
of the experiments in that section were implemented using asynchronous PPO implementation from Sample
Factory library (Petrenko et al. (2020)). We started with the default hyperparameters for the DMLab lab
experiments in Schulman et al. (2015), and finetuned the learning rate and entropy coefficient. For each of
LSTM, GTrXL and AGaLiTe, to tune the learning rate and entropy coefficient, we run a sweep for three
seeds for 15M steps in the Memory Maze 11× 11 environment. We average the results for the last 1M steps
across the three seeds and select the best hyperparameter according to total episodic reward. Using the
best-identified hyperparameter, we generate the final results for 100M steps for each of the three seeds. We
detail the hyperparameters along with the sweeps for the learning rate and entropy coefficient in Table 7.
We include the architecture configuration for each of the 3 architectures in Table 8.

Table 7: Hyperparameters and sweeps for Memory Maze experiments.

Hyperparameter Value
Learning Rate [0.0025, 0.00025, 0.000025]
Discount Factor (γ) 0.99
Advantage Estimation Coefficient (λ) 0.95
Entropy Coefficient [0.03, 0.003, 0.0003]
Number of Epochs 1
Rollout Length 200
Sequence Length 100
Batch Size 3200
PPO Clip Ratio 0.1
PPO Clip Value 1
Max Gradient Norm 4
Value Function Coefficient 0.5
Number of Workers 32
Number of Envs per Worker 2

Table 8: Architecture configuration for GTrXL and AGaLiTe for Memory Maze experiments.

Hyperparameter GTrXL AGaLiTe
Embedding Dimension (d) 512 512
Num Heads 8 8
Head Dim (dh) 64 64
Num Layers (L) 4 4
Memory Size (M) 256 N/A
Projection Hyperparameter (η) N/A 4
Approximation Hyperparameter (r) N/A 7

G.5 Craftax

Hyperparameters and Tuning Strategy: The architecture sizes used for Craftax experiments are kept
same as in Table 4. We detail the hyperparameters used for the PPO algorithm that used for training the
agents in the Craftax environment in Table 9. We tune learning rate and entropy coefficient for the sweeps
mentioned in Table 9. Our hyperparameter tuning strategy is as follows: we train 5 seeds per architecture
for each the hyperparameter configuration for 100M steps in the Craftax symbolic environment. Finally, we
identify the best hyperparameter configuration according to the best episodic reward in the last 1M training
steps.

31

Published in Transactions on Machine Learning Research (10/2024)

Table 9: Hyperparameters and sweeps for Craftax experiments.

Hyperparameter Value
Learning Rate [0.0002, 0.0003, 0.0004]
Discount Factor (γ) 0.999
Advantage Estimation Coefficient (λ) 0.8
Entropy Coefficient [0.0, 0.01, 0.001]
Number of Epochs 4
Rollout Length 128
Sequence Length 128
Number of Env 1024
Batch Size (Sequence Length × Number of Env) 130944
Number of Mini Batches 8
PPO Clip Ratio 0.2
Max Gradient Norm 1.0
Value Function Coefficient 0.5

32

Published in Transactions on Machine Learning Research (10/2024)

H Additional Learning Curves on Smaller Memory Maze Configurations

GTrXL-256
AGaLiTe

GTrXL-256
AGaLiTe

Oracle

GTrXL-256
AGaLiTe

Oracle

Oracle

GTrXL-256
AGaLiTe

Oracle

Figure 12: Learning curves of GTrXL and AGaLiTe agents in the Memory Maze environment. The x-axis
represents the number of environment steps, and the y-axis represents the total reward in an episode. Each
agent is trained with 3 different random seeds. The bold lines represent the mean return across the 3 seeds,
and the blurred lines represent the individual seeds. Each point is the average episodic reward over 1M
environment steps. The dotted grey line represents the performance of an oracle agent that has access to
the entire maze layout, target object locations and paths leading to them.

I Evaluating Impact of GTrXL’s Context in Memory Maze

This experiment evaluates the impact of GTrXL’s context length in the Memory Maze environment. We
showed earlier that GTrXL’s performance is bottlenecked by the memory size in T-Maze. Our hypothesis
is that a similar conclusion should hold in the Memory Maze environment. We expect that GTrXL with a
larger memory size would outperform GTrXL with a smaller memory size. We should also be able to show
that an AGaLiTe would outperform a GTrXL with a small memory size. To investigate this, we train two
additional GTrXL agents with memory sizes of 64 and 128 in the Memory Maze 13× 13 environment.

The learning curves of training the three memory sizes of GTrXL and AGaLiTe in the Memory Maze
13 × 13 environment is shown in Figure 13. Asymptotically, all four agents achieve similar performance.
The individual learning curves, however, indicate that the GTrXL-64 agent is slower to converge than the
GTrXL-128 and GTrXL-256 agents.

The results failed to provide sufficient evidence to support our hypothesis. The performance obtained by
the three agents does not appear to be different. This observation leads us to the following speculation:

33

Published in Transactions on Machine Learning Research (10/2024)

the Memory Maze environment is too difficult for the agents to be able to utilize their long-term memory
capabilities. The reward signal is sparse, which might make it difficult for the agent to learn long-term
dependencies. It is also possible that learning long-term dependencies in navigation tasks is harder, in
general, and longer training is necessary for the benefits of long-term memory to show.

GTrXL-256
GTrXL-128

GTrXL-64
AGaLiTe

Figure 13: Learning curves of GTrXL agents with different memory sizes in the Memory Maze 13 × 13
environment. The x-axis represents the number of environment steps, and the y-axis represents the total
reward in an episode. Each agent is trained with 3 different random seeds. The bold lines represent the mean
return across the 3 seeds, and the blurred lines represent the individual seeds. Each point is the average
episodic reward over 1M environment steps.

34

Published in Transactions on Machine Learning Research (10/2024)

J Learning curves for various achievements in Craftax Symbolic

In Figure 14, we plot the various achievements in the Craftax environement. Detailed description of these
achievements could be found in Hafner (2021).

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

fin
d

bo
w

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

en
te

r
du

ng
eo

n

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
te

r
ic

e
re

al
m

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

m
ak

e
w

oo
d

pi
ck

ax
e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

m
ak

e
st

on
e

pi
ck

ax
e

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
de

ep
th

in
g

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

m
ak

e
iro

n
sw

or
d

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
te

r
va

ul
t

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
ch

an
t

sw
or

d

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
fir

e
el

em
en

ta
l

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

co
lle

ct
st

on
e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

pl
ac

e
st

on
e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0.00

0.02

0.04

0.06

m
ak

e
di

am
on

d
ar

m
ou

r

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
ko

bo
ld

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

le
ar

n
fir

eb
al

l

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

80

de
fe

at
zo

m
bi

e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0.00

0.05

0.10

0.15

de
fe

at
gn

om
e

w
ar

rio
r

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

5

10

15

20
co

lle
ct

sa
pp

hi
re

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

5

10

15

20

co
lle

ct
ru

by

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

pl
ac

e
to

rc
h

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

ca
st

ic
eb

al
l

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

op
en

ch
es

t

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

10

20

co
lle

ct
di

am
on

d

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
te

r
tro

ll
m

in
es

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

m
ak

e
ar

ro
w

0.00 0.25 0.50 0.75 1.00

Steps ×109

20

40

60

80

100

pl
ac

e
pl

an
t

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
tro

ll

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

m
ak

e
iro

n
pi

ck
ax

e

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
ar

ch
er

0.00 0.25 0.50 0.75 1.00

Steps ×109

60

80

100

co
lle

ct
sa

pl
in

g

0.00 0.25 0.50 0.75 1.00

Steps ×109

0.00

0.05

0.10

0.15

0.20

ea
t

ba
t

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
liz

ar
d

0.00 0.25 0.50 0.75 1.00

Steps ×109

0.00

0.02

0.04

0.06

0.08

de
fe

at
gn

om
e

ar
ch

er

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

80

de
fe

at
or

c
so

lid
er

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

80

co
lle

ct
iro

n

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
ne

cr
om

an
ce

r

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

80

de
fe

at
sk

el
et

on

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
pi

gm
an

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

m
ak

e
w

oo
d

sw
or

d

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
te

r
fir

e
re

al
m

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

1

2

3

m
ak

e
di

am
on

d
sw

or
d

0.00 0.25 0.50 0.75 1.00

Steps ×109

60

80

100

w
ak

e
up

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

co
lle

ct
co

al

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

ca
st

fir
eb

al
l

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

80

de
fe

at
or

c
m

ag
e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

ea
t

co
w

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

1

2

en
te

r
gn

om
is

h
m

in
es

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

pl
ac

e
fu

rn
ac

e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

20

40

60

80

dr
in

k
po

tio
n

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
te

r
gr

av
ey

ar
d

0.00 0.25 0.50 0.75 1.00

Steps ×109

40

60

80

100

co
lle

ct
w

oo
d

0.00 0.25 0.50 0.75 1.00

Steps ×109

0.0

2.5

5.0

7.5

m
ak

e
iro

n
ar

m
ou

r

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

le
ar

n
ic

eb
al

l

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

m
ak

e
to

rc
h

0.00 0.25 0.50 0.75 1.00

Steps ×109

20

40

60

80

100

co
lle

ct
dr

in
k

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
fro

st
tro

ll

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
ch

an
t

ar
m

ou
r

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

en
te

r
se

w
er

s

0.00 0.25 0.50 0.75 1.00

Steps ×109

20

40

60

80

100

pl
ac

e
ta

bl
e

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

da
m

ag
e

ne
cr

om
an

ce
r

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

fir
e

bo
w

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

100

m
ak

e
st

on
e

sw
or

d

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

1

2

3

m
ak

e
di

am
on

d
pi

ck
ax

e

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

25

50

75

ea
t

sn
ai

l

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
ic

e
el

em
en

ta
l

0.00 0.25 0.50 0.75 1.00

Steps ×109

−0.050

−0.025

0.000

0.025

0.050

de
fe

at
kn

ig
ht

0.00 0.25 0.50 0.75 1.00

Steps ×109

0

5

10

ea
t

pl
an

t

Figure 14: Learning curve for various achievements in Craftax Symbolic. Results are reported over 15 seeds
± 95% bootstrapped CI. AGaLiTe: brown, GTrXL-128: blue.

35

Published in Transactions on Machine Learning Research (10/2024)

K Latency Measurements

In this section we provide additional empirical evidence of the computational efficiency of our proposed
approach, by comparing the latency of forward pass using GTrXL and AGaLiTe. We measure the time
required in milliseconds (ms) to do a forward pass in two scenarios: (1) processing single element in streaming
sequence, (2) processing an entire sequence in parallel. We configure the architecture sizes of GTrXL and
AGaLiTe according to the values used by Parisotto et al. (2020): 12 layers, 8 heads, dh = 64, d = 256. We
collected all data in a single Google Cloud instance with NVIDIA A100 GPU, 12 CPUs and 80GB RAM.

First, we compare the time required in milliseconds (ms) to do a forward pass using a single element in
streaming sequence. We present the results of these comparisons in Figure 15a. According to Dai et al.
(2019), XL attention used in the GTrXL architecture has a limited context. The context length of XL
attention, how far back in time the transformer architecture can remember, is O(ML), where L is the
number of layers and M is the memory size. We measure the impact of increasing the context length
(varying M) of GTrXL (x-axis) on the latency to do a single forward pass (y-axis). AGaLiTe does not
explicit hyper-parameter that allows controlling the context length, and the use of a recurrent hidden state
allows for a potentially unlimited context. Therefore, we consider three AGaLiTe architectures with feature
map hyper-parameter η ∈ [4, 8, 16], and plot it as a straight line. We observe that the gap between GTrXL
and AGaLiTe increases dramatically with increasing context length.

Next, we measure the time required to do a forward pass over a batch, that is process an entire input
sequence in parallel. We present the results of these comparisons in Figure 15b. We vary the length of
the input sequence (x-axis) and measure the time required to do a forward pass over the entire sequence
(y-axis). We consider two GTrXL architectures with memory size M ∈ [128, 512]. We consider three
AGaLiTe architectures with η ∈ [4, 8, 16]. We observe that the gap between GTrXL and AGaLiTe increases
dramatically with increasing sequence length.

24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28

8
24

57
6

49
15

2
98

30
4

19
66

08
39

32
16

78
64

32
15

72
86

4

Context Length

10

20

30

Ti
m

e
(m

s)

Single-Step Latency
GTrXL
AGaLiTe (η = 4)
AGaLiTe (η = 8)
AGaLiTe (η =16)

(a) Time (ms) for processing a single element in sequence.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Sequence Length

0

100

200

300

Ti
m

e
(m

s)

Batch Latency
GTrXL (M = 128)
GTrXL (M = 512)
AGaLiTe (η = 4)
AGaLiTe (η = 8)
AGaLiTe (η =16)

(b) Time (ms) for processing an entire sequence in paral-
lel.

Figure 15: Latency measurements for GTrXL and AGaLiTe. Each point is averaged over 100 independent
runs, and the shaded region is the standard error.

36

	Introduction
	Preliminaries
	Canonical Transformer Architecture
	Recurrent Attention with Linear Transformers

	Gated Linear Transformers (GaLiTe)
	Gating Mechanism to Control the Flow of Information
	Learnable Feature Map for Self-Attention

	Approximate Gated Linear Transformer (AGaLiTe)
	Empirical Evaluation
	Ablation Study
	Related Work
	Conclusion and Future Work
	Gated Linear Transformers (GaLiTe)
	Derivation of AGaLiTe
	Approximation of Kronecker Delta Function
	Using The Kronecker Delta Function to approximate GaLiTe

	Approximate Gated Linear Transformer (AGaLiTe)
	Results in Long Range Arena
	Effect of r on the Quality of Approximation in AGaLiTe
	Parallelization over an Input Sequence
	Additional Experiment Details
	T-Maze
	Partially Observable CartPole
	Mystery Path
	Memory Maze
	Craftax

	Additional Learning Curves on Smaller Memory Maze Configurations
	Evaluating Impact of GTrXL's Context in Memory Maze
	Learning curves for various achievements in Craftax Symbolic
	Latency Measurements

