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Abstract

Instruction tuning enhances the capability of001
Large Language Models (LLMs) to interact002
with humans. Furthermore, recent instruction-003
following datasets include images as visual in-004
put, collecting responses for image-based in-005
structions. However, current visual instruction-006
tuned models cannot comprehend textual de-007
tails within images well. This work enhances008
the current open-source visual instruction tun-009
ing models with text-rich images (e.g., movie010
posters, book covers, etc.). Specifically, we011
first used publicly available OCR tools to col-012
lect results on 422K text-rich images from013
the LAION dataset. Furthermore, we prompt014
text-only GPT-4 with recognized text and im-015
age captions to generate 16K conversations,016
each containing question-answer pairs for text-017
rich images. Using the above-collected data,018
we substantially improve (up to 20% accu-019
racy improvement) the zero-shot capability of020
two open-source backbone models on seven021
datasets (text-based VQA, Information Ex-022
traction, ChartQA, etc.). The GPT-4-based023
instruction-following evaluation also demon-024
strates the improvement of our model on both025
natural images and text-rich images. We will026
make our code/data/models publicly available.027

1 Introduction028

Instruction tuning (Ouyang et al., 2022; Chung029

et al., 2022) improves generalization to unseen030

tasks by formulating various tasks into instructions.031

Such open-ended question-answering capability032

fosters the recent chatbot boom since ChatGPT. Re-033

cently, visual instruction-tuned models (Liu et al.,034

2023b; Li et al., 2023a; Li, 2023) further augment035

conversation agents with visual encoders such as036

CLIP-ViT (Dosovitskiy et al., 2020; Radford et al.,037

2021), enabling human-agent interaction based on038

images. However, possibly due to the dominance039

of natural images in training data (e.g., Concep-040

tual Captions (Changpinyo et al., 2021) and COCO041

(Lin et al., 2015)), they struggle with understanding 042

texts within images (Liu et al., 2023d). However, 043

textual understanding is integral to visual percep- 044

tion in everyday life. 045

Fortunately, tools such as Optical Character 046

Recognition (OCR, Mori et al., 1992) allow us 047

to recognize text in images. One naive way to uti- 048

lize this is to add recognized texts to the input of 049

visual instruction-tuned models (Gao et al., 2023). 050

However, such an approach significantly increases 051

the computation (longer context lengths) and might 052

not fully leverage the encoding capability of vi- 053

sual encoders. To this end, we propose to enhance 054

the end-to-end visual instruction-tuned model by 055

collecting instruction-following data that require 056

understanding texts within images. 057

Specifically, we first collect 422K noisy 058

instruction-following data using text-rich1 images 059

by combining manually written instructions (e.g., 060

“Identify any text visible in the provided image.”) 061

and the OCR results. Such large-scale noisy- 062

aligned data effectively improve feature alignment 063

between visual features and the language decoder. 064

Furthermore, we prompt text-only GPT-4 (OpenAI, 065

2023) with OCR results and image captions to gen- 066

erate 16K conversations, where each conversation 067

can be multiple turns of question & answer pairs, as 068

high-quality instruction-following examples. This 069

process requires GPT-4 to de-noise the OCR results 070

and develop specific questions to create complex 071

instructions based on the input (Figure 1). 072

We evaluate the effectiveness of the collected 073

data based on two backbones (LLaVA, Liu et al. 074

2023b and mPLUG-Owl, Ye et al. 2023) and seven 075

datasets (including text-based VQA, Furkan Biten 076

et al. 2019; Mishra et al. 2019; Singh et al. 2019; 077

Mathew et al. 2020, OCR, Risnumawan et al. 078

1In this work, we use the phrase “text-rich images” to
describe images with text in them, such as posters and book
covers. In contrast, we refer to images without text as “natural
images”.
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Figure 1: The process of collecting high-quality instruction-following data.

2014a, Information Extraction, Kuang et al. 2023,079

and ChartQA, Masry et al. 2022) following the080

evaluation protocol from Liu et al. (2023d). We081

also demonstrate that our data leads to more signifi-082

cant improvements when the visual encoder accepts083

higher-resolution images. Moreover, GPT-4-based084

evaluation favors models trained with our data on085

following free-style instructions based on images086

from COCO (Lin et al., 2015; Liu et al., 2023b)087

and LAION (Schuhmann et al., 2022). To sum up,088

our contributions are as follows:089

• We collected 422K noisy instruction-090

following data and 16K high-quality091

instruction-following data to enhance092

text-rich image understanding.093

• Our data significantly enhances the model’s094

performance across seven datasets (text-based095

VQA, Information Extraction, ChartQA, etc.)096

and GPT-4 instruction-following evaluations.097

• We open source the training and evaluation098

data together with the model checkpoints2.099

2 Related Work100

Instruction Tuning Following natural language101

instructions is the key capability for an agent to102

interact with real-world users. Instruction tun-103

ing starts from collecting human-preferred feed-104

back for human written instructions (Ouyang et al.,105

2022) or formulating multi-task training in a multi-106

task instruction-following manner (Chung et al.,107

2The release of data and models are subject to OpenAI
Terms of Use and the original license of used models.

2022; Wang et al., 2022b). However, large, ca- 108

pable instruction-tuned models are usually closed- 109

sourced and serve as commercial APIs only. Re- 110

cently, Alpaca (Wang et al., 2022a; Taori et al., 111

2023), Vicuna (Chiang et al., 2023), and Baize 112

(Xu et al., 2023) start the trend of generating high- 113

quality instruction-following data based on LLMs 114

such as GPT-3.5 / ChatGPT / GPT-4 and finetun- 115

ing the open source LLaMA model (Touvron et al., 116

2023). However, evaluating the ability to follow 117

instructions remains a challenge. While GPT-4 118

has demonstrated superior evaluation capabilities 119

(Liu et al., 2023c), there are still a number of con- 120

cerns, such as bias toward response length (Xu 121

et al., 2023) and lack of robustness to the order 122

of examples (Wang et al., 2023). Following Chi- 123

ang et al. (2023); Liu et al. (2023b); Dubois et al. 124

(2023), we use GPT-4-based instruction-following 125

evaluation in this work. 126

Multimodal Instruction Tuning Recently, in- 127

struction tuning has been expanded to the multi- 128

modal setting, including image, video (Zhang et al., 129

2023b; Maaz et al., 2023), and audio (Huang et al., 130

2023; Zhang et al., 2023a). For image-based in- 131

struction tuning, MiniGPT-4 (Zhu et al., 2023) em- 132

ploys ChatGPT to curate and improve detailed cap- 133

tions for high-quality instruction-following data. 134

LLaVA (Liu et al., 2023b) generates multimodal 135

instruction-following data by prompting text-only 136

GPT-4 with captions and object’s bounding boxes. 137

LLaMA-Adapter (Zhang et al., 2023c; Gao et al., 138

2023) uses COCO data for text-image feature align- 139

ment and utilizes textual data only for instruction 140

tuning. mPLUG-owl (Ye et al., 2023) combines 141

more than 1000M image-text pairs for pretrain- 142
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ing and a 400K mixture of text-only/multimodal143

instruction-following data for finetuning. However,144

according to Liu et al. (2023d), most of these mod-145

els struggle to accomplish tasks requiring OCR146

capability. InstructBLIP (Dai et al., 2023) trans-147

forms 13 vision-language tasks (including OCR-148

VQA (Mishra et al., 2019)) into the instruction-149

following format for instruction tuning. Cream150

(Kim et al., 2023) applies multi-task learning that151

includes predicting masked texts in images. A152

more comprehensive survey can be found in Li153

et al. (2023b). In this work, we select LLaVA as154

our baseline, which is the most data-efficient and155

powerful model, and demonstrate the effectiveness156

of our proposed pipeline.157

3 Data Collection158

Starting from the LAION-5B (Schuhmann et al.,159

2022) dataset 3, our goal is only to keep images that160

are text-rich. Considering that documents usually161

contain plenty of text, we first obtained a binary162

classification dataset by combining natural images163

and document data. Subsequently, we trained an164

image classifier using a DiT (Li et al., 2022)-base165

backbone, which was fine-tuned on the RVL-CDIP166

dataset (Harley et al., 2015). Hopefully, such a167

classifier can predict whether an image contains168

text or not. We first build a subset by selecting169

images with a predicted probability greater than170

0.8 while also satisfying p(watermark) < 0.8 and171

p(unsafe) < 0.5 4. The derived subset is noisy due172

to the limitation of the classifier. To further clean173

up the data and incorporate human judgment,174

We randomly sampled 50K images and clustered175

them into 100 clusters based on CLIP-ViT-B/32176

visual features. After inspecting the clustering re-177

sults, we carefully select 14 clusters (see Figure178

11 in the Appendix for examples) containing di-179

verse text-rich images ranging from posters, covers,180

advertisements, infographics, educational materi-181

als, and logos. The cluster model is then used182

as the filter to collect images for constructing our183

instruction-following examples. As a reference, we184

provide a CLIP (Radford et al., 2021)-based catego-185

rization (see Appendix A for details.) to illustrate186

the distribution of images for both two types of data187

we collected in Figure 2. We provide a comparison188

between our collected data and LLaVA’s data in189

3https://huggingface.co/datasets/laion/
laion-high-resolution

4Both are from the LAION dataset’s metadata.

Figure 2: CLIP-based categorization of our collected
images. The left refers to images used to collect noisy
data, and the right refers to images used in the GPT-4
prompting. Both pie charts are based on 10K sampled
images from the corresponding datasets.

Table 1. 190

Noisy Instruction-following Data Using the 191

clustering model as a filter, we collect 422K dedu- 192

plicated images that belong to the 14 preferred 193

clusters. To balance the examples from different 194

categories, we keep at most 52K examples for one 195

cluster. We run all images through PaddleOCR 5. 196

Note that running OCR at the original resolution 197

(e.g.,10242) might recognize small fonts that are 198

not visible by visual encoders like CLIP ViT (Doso- 199

vitskiy et al., 2020; Radford et al., 2021, resolution 200

up to 3362). To ensure the recognition of visible 201

fonts while maintaining OCR accuracy, we perform 202

OCR on the image after downsampling (the short 203

edge is resized to 384 pixels if longer than that.) to 204

extract the text. Then, based on the geometric rela- 205

tionships between the recognized words, we merge 206

them into paragraphs before concatenating them. 207

As a robust instruction-following model should re- 208

act similarly to instructions with similar meanings, 209

we reword “Identify any text visible in the provided 210

image.” into ten distinct instructions (Table 5 in 211

Appendix). We then create a single-turn conversa- 212

tion for a given image by (i) randomly sampling 213

an input instruction and (ii) using recognized texts 214

as the desired output response. Such instruction- 215

following data is noisy because of the relatively 216

limited performance of OCR tools on diverse fonts 217

and colorful backgrounds. 218

GPT-4-based Instruction-following Data Com- 219

pared to high-quality instruction-following data, 220

there are mainly two issues for the noisy data col- 221

lected above. (i) Responses should contain orga- 222

5https://github.com/PaddlePaddle/PaddleOCR
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Data Image Instruction # Conv Avg Ins Len Avg Res Len

LLaVA pretraining CC3M Caption 595K 15.9 15.4
Rpretraining (Ours) LAION PaddleOCR 422K 17.2 48.8
LLaVA finetuning COCO GPT-4 158K 15.9 93.1
Rfinetuning (Ours) LAION GPT-4 16K 15.1 40.5

Table 1: Compairson between our data and LLaVA data. Rpretraining and Rfinetuning denote the additional pre-training /
finetuning data we collected. The average instruction and response length are calculated after LLaMA tokenization.

nized sentences instead of raw OCR results with223

missing words and grammar errors. (ii) Instruc-224

tions should be diverse, suitable and specific to the225

given image instead of monotonously asking for226

all visible texts. To address these issues, we follow227

Liu et al. (2023b) to generate instruction-following228

data by prompting text-only GPT-4 (OpenAI, 2023)229

with OCR results and captions.230

It is challenging to prompt GPT-4 with frag-231

mented OCR results in a few words to generate232

non-trivial instructions. To this end, we carefully233

select 4 of the 14 previously mentioned clusters234

(the 3rd, 4th, 6th and 9th clusters in Figure 11) to235

collect images with enough visible and coherent236

sentences. As shown in Figure 2, such filtering dra-237

matically increases the percentage of book covers238

and quote images. We randomly selected 4K ex-239

amples from each cluster (no overlap with images240

used for noisy instruction-following data), yielding241

a total of 16K images. Following prior work (Wang242

et al., 2022a; Taori et al., 2023; Liu et al., 2023b),243

we provide the visualization of verb-noun pairs for244

instructions generated by GPT-4 in Appendix Fig-245

ure 12. For those instructions without a verb-noun246

pair, we demonstrate the frequency of objects being247

asked in Appendix Figure 13.248

Furthermore, based on the system message and249

two in-context few-shot examples (shown in Ap-250

pendix B), we ask GPT-4 to generate conversational251

data based on OCR results and image captions (Fig-252

ure 1). The generated questions are used as input253

instructions, and answers are used as output re-254

sponses. Concretely, for a given image, we first255

provide two OCR results from EasyOCR6 and Pad-256

dleOCR, which can complement each other. To257

illustrate visual elements other than texts within the258

image, we also provide the result of BLIP-2 image259

captioning (Li et al., 2023c). To prevent the caption260

from focusing on the text, we use OCR bounding261

boxes to mask the text and then use the inpaint-262

6https://github.com/JaidedAI/EasyOCR

ing (Telea, 2004) to refill the mask before using 263

generation captions. Note that captioning models 264

might suffer from hallucinations (Rohrbach et al., 265

2018). We mention this unreliability in our system 266

message and ask GPT-4 only to generate questions 267

with sure answers. We leave the generation of more 268

detailed captions (Rotstein et al., 2023; Hu et al., 269

2022) for future work. 270

4 Experiments 271

4.1 Models 272

We finetune7 LLaVA and mPLUG-Owl as they 273

have shown promising instruction-following capa- 274

bility compared to other baselines. Please refer to 275

Appendix E for hyperparameters. 276

LLaVA (Liu et al., 2023b) connects a visual 277

encoder CLIP (Radford et al., 2021) to a lan- 278

guage decoder Vicuna-13B (Chiang et al., 2023) 279

by a transformation matrix. Specifically, we 280

use CLIP-ViT-L/14 for 2242 resolution and 281

CLIP-ViT-L/14-336 for 3362 resolution. The 282

original LLaVA follows a two-stage procedure (See 283

Appendix 5 for details). To augment LLaVA, we 284

combine our noisy instruction-following data with 285

the LLaVA pretraining data and our high-quality 286

instruction-following data with the LLaVA fine- 287

tuning data. We name the augmented version 288

LLaVAR. 289

mPLUG-Owl (Ye et al., 2023) leverages 290

CLIP-ViT-L/14 and LLaMA-7B (Touvron et al., 291

2023) while connecting them visual abstractor 292

module. Different from LLaVA, mPLUG-Owl 293

is pretrained on over 1000M captions, including 294

LAION-400M (Schuhmann et al., 2021), COYO- 295

700M (Byeon et al., 2022), Conceptual Captions 296

(Sharma et al., 2018) and MSCOCO (Lin et al., 297

7Note that the released checkpoints might output unin-
tended harmful and offensive content, which is subject to
the base language model and the fact that finetuning might
compromise safety (Qi et al., 2023).

4

https://github.com/JaidedAI/EasyOCR


2015) and then finetuned on a mixture of language-298

only instruction-following data (242K) and visual299

instruction-following data from LLaVA (158K).300

Due to the magnitude gap, instead of combining301

our data with the training data of mPLUG-Owl,302

we further finetune the released checkpoint on our303

high-quality instruction-following data. We name304

the augmented version mPLUG-OwlR.305

4.2 Settings306

The GPT-4 model refers to the gpt-4-0314 ver-307

sion, while the cost to collect finetuning data is308

around $300. The temperature used to sample GPT-309

4 is set to 1.0 for the generation of training data,310

0.7 for the generation of evaluation data, and 0.2311

for the evaluation based on GPT-4. All experiments312

are run on NVIDIA A100 80GB GPUs. During the313

evaluation, the temperature used to sample from314

our model is set at 0.9 for text-based VQA, 0.7 for315

GPT-4-based instruction-following evaluation, and316

0.2 for other qualitative demonstrations.317

Following the evaluation protocol in Liu et al.318

(2023d), we evaluate the performance of aug-319

mented models on seven datasets: ST-VQA320

(Furkan Biten et al., 2019), OCR-VQA (Mishra321

et al., 2019), TextVQA (Singh et al., 2019), and322

DocVQA (Mathew et al., 2020), CT80 (Risnu-323

mawan et al., 2014b), POIE (Singh et al., 2019),324

ChartQA (Masry et al., 2022) representing various325

domains (see Appendix C for more details). In326

the main paper, we use the VQA accuracy as our327

main metric, while we provide a comparison using328

more metrics Appendix D. Note that InstructBLIP329

(Dai et al., 2023) and LLaVA 1.5 (Liu et al., 2023a)330

includes OCR-VQA in its training sets, making it331

incomparable with our settings.332

4.3 Results333

We present the results of the baseline models334

and our models in Table 2. In 2242 resolution,335

LLaVAR and mPLUG-OwlR substantially improve336

the LLaVA and mPLUG-Owl baseline, demonstrat-337

ing that our collected data can bring about a ro-338

bust improvement. Specifically, the improvement is339

more significant on LLaVA, making it comparable340

to mPLUG-Owl, which has a much larger scale of341

training data. We believe this highlights the effec-342

tiveness and data efficiency of collected examples.343

Furthermore, our best model, 3362-based LLaVAR,344

performs best in 3 out of 4 evaluated datasets. Note345

that this is not a fair comparison. Some key factors346

include different language decoders, resolutions,347

and magnitudes of text-image training data. In the 348

following paragraphs, we conduct ablation studies 349

on our best model, 3362-based LLaVAR, by using 350

four datasets in Table 2. 351

Ablation Study on pretraining/finetuning data 352

We report the result in Table 3 and Figure 3. (i) 353

Based on variants (2) and (3), we find that the col- 354

lected data can benefit the pretraining stage (Rp) 355

and finetuning stage (Rf) separately while being 356

complementary to each other in most cases. More 357

importantly, enhancing the pretraining stage alone 358

achieves the second-best overall performance, in- 359

dicating the potential to boost textual detail under- 360

standing without dependence on GPT-4-generated 361

high-quality data. (ii) Using pretraining images, 362

we obtain Cp by replacing the pretraining instruc- 363

tions with questions & captions, the same pattern as 364

LLaVA. Surprisingly, variant (4) largely improves 365

the (1) baseline, suggesting training on captions 366

of text-rich images also helps. However, as vari- 367

ant (4) is not as good as (2), we can conclude that 368

OCR is more advantageous than captions. (iii) We 369

further validate the value of GPT-4 generated data 370

by generating noisy finetuning data (Nf), similar 371

to pretraining data. Variant (5) achieves compa- 372

rable accuracy as variant (3). However, as shown 373

in Figure 3, such noisy finetuning data hurts the 374

instruction-following capability: (5) responds with 375

all recognized texts while ignoring the questions. 376

Recognizable Font Size We collect 825 exam- 377

ples from OCR-VQA, which have answers directly 378

presented in the image and are detectable by the 379

OCR tool. This guarantees that answering such 380

questions requires recognizing the answer in the 381

image without complex reasoning. By rescaling 382

the images, we test the model’s performance in an- 383

swering these questions while the vertical heights 384

of answers range from 3 pixels to 19 pixels. We 385

report the result in Fig 4. (i) For the baseline model 386

LLaVA, it struggles to provide correct answers in 387

all scenarios for both 2242-based and 3362-based 388

versions. (ii) Our model LLaVAR achieves sig- 389

nificantly better results in all scales. We observe 390

a threshold for recognizable texts for both 2242- 391

based and 3362-based versions as the accuracy 392

sharply decreases when the height is smaller than 7 393

pixels. More interestingly, the 2242-based version 394

performs better on small texts with 3 pixels height, 395

while the 3362-based version performs better on 396

large texts with more than 7 pixels. We assume the 397

extra training stage of CLIP 3362 makes it better 398
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Res. ST-VQA OCR-VQA TextVQA DocVQA CT80 POIE ChartQA

BLIP-2 (2023c) †
2242

21.7 30.7 32.2 4.9 80.9 2.5 7.2

OpenFlamingo (2023) † 19.3 27.8 29.1 5.1 67.7 2.1 9.1

MiniGPT4 (2023) † 14.0 11.5 18.7 3.0 57.3 1.3 4.3

LLaVA (2023b) ‡
2242

22.1 11.4 28.9 4.5 61.1 2.1 7.3

LLaVAR 30.2 23.4 39.5 6.2 81.6 5.7 10.2

mPLUG-Owl (2023) †
2242

29.3 28.6 40.3 6.9 81.9 3.3 9.5

mPLUG-OwlR 29.6 31.2 40.8 7.0 84.7 3.7 10.2

LLaVA (2023b) ‡
3362

28.9 11.0 36.7 6.9 64.9 2.5 10.2

LLaVAR 39.2 23.8 48.5 11.6 83.0 8.7 13.5

Table 2: Results (accuracy %) on text-based VQA. We use † to refer to the results obtained from Liu et al. (2023d)
and ‡ to refer to our reproduced results. The accuracy metric used by Liu et al. (2023d) only counts for whether the
ground truth appears in the response.

Question: Who wrote this book?

GT Sandra Boynton
(1) The book was written by Sandra Boynton.
(2) The book was written by Sandra Boyton. It is a children’s book

that features a family calendar with an accompanying activity
guide. The book provides information (...) The cover of the book
displays a picture of the family from the calendar, which helps
to visually represent the topic of the book.

(3) The book is written by Sandra Byington.
(4) The book was written by Sandra Boynton.
(5) With 500+ Nity StickerS &aSwEllMagnetic Phone List! Moms

291573016171800 FAMII (Pocket) Calendar (...) 2016 SAN-
DRA BOYNTON

(6) The book was written by Sandra Boynton.

Figure 3: Ablation study based an example from OCR-VQA. GT refers to ground truth, and (1) - (6) are different
model variants from Table 3. We replace the excessively long response with (...).

ST-VQA OCR-VQA TextVQA DocVQA

(1) LLaVA 28.9 11.0 36.7 6.9

(2) + Rp 36.7 26.1 46.5 9.6
(3) + Rf 34.1 21.6 43.6 9.5

(4) + Cp 35.4 27.0 45.6 9.2
(5) + Nf 34.1 25.9 43.3 10.2

(6) + Rp + Rf 39.2 23.8 48.5 11.6

Table 3: Ablation Study on pretraining/finetuning data.
All results are from 3362-based models. Rp and Rf
denote the extra pretraining/finetuning data we collected.
Cp refers to using captions instead of OCR results as
responses during pretraining. Nf refers to using written
questions + raw OCR results instead of GPT-generated
QA for finetuning.

on the larger scale but worse on the smaller scale.399

Ablation Study on visual encoders We report400

the average accuracy on four datasets for models401

trained with or without our data in Figure 5. Since402

we have already shown that font size can be a bot-403

tleneck to the performance of text-rich image un- 404

derstanding, we further test two visual encoders 405

with higher resolution input: (i) Pix2Struct-base 406

(Lee et al., 2022) is a visual encoder trained on 407

screenshot to HTML transformation. It supports 408

up to 2048 patches with size 162, equivalent to 409

1024 ∗ 512. (ii) ConcatCLIP refers to using 16 410

CLIP-ViT-L/14 models to encode the 4 ∗ 4 grids 411

of images separately and then concatenate the ex- 412

tracted features together, supporting 8962 resolu- 413

tion. Instead of adding transformed features to the 414

context, we add cross-attention modules to the lan- 415

guage decoder to attend to such high-res features. 416

(For more details and results on the high-res en- 417

coder, please refer to Appendix E.) We find that 418

using a better visual encoder with higher resolu- 419

tion without changing the data will not improve 420

the performance. However, higher-resolution vi- 421

sual encoders benefit more from our collected data, 422

suggesting our data can be better utilized by higher- 423

resolution visual encoders. 424
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Figure 4: Case study of the recognizable font size, in which the x-axis refers to the height of ground truth answers in
the image and the y-axis stands for the answer accuracy of models. We plot the results for both 2242-based models
and 3362-based models.

Res Conversation Detail Complex Read

LLaVA (Original) 2242 83.1 75.3 96.5 -
LLaVA 3362 83.9 78.2 95.3 87.9
LLaVAR 3362 84.5 78.9 96.5 91.7

Table 4: Relative scores (w.r.t. text-only GPT-4) for instruction-following questions, where the first three dimensions
are based on natural images, the last dimension (“Read”) is based on text-rich images. In the first row, we show the
original results (2242-based) fetched from Liu et al. (2023b). We report our reproduced LLaVA on 3362 resolution
for a fair comparison.

Figure 5: Ablation Study on visual encoders. We
report the average accuracy of ST-VQA, OCR-VQA,
TextVQA, and DocVQA and show the performance
gain of using our data.

4.4 GPT-4-based instruction-following425

evaluation426

We also report the GPT-4 evaluation results on427

instruction-following questions in Table 4. Specif-428

ically, we provide text-only GPT-4 with detailed429

descriptions of the image (human-written captions,430

OCR results) and collect feedback as oracles on431

related questions. To calculate the score, we pro-432

vide text-only GPT-4 with the detailed description433

again, together with one question and two answers434

(one from text-only GPT-4, one from the model435

we want to test), and ask GPT-4 to give scores to 436

the two answers (from 1 to 10). The final score is 437

the ratio between the average score of the tested 438

model and the average score of GPT-4. (i) Nat- 439

ural Images: 90 questions based on 30 COCO 440

validation images from Liu et al. (2023b), includ- 441

ing three aspects: conversation, detail description, 442

and complex reasoning. This aims to test whether 443

our collected data will hurt, maintain, or improve 444

the model’s performance on natural images. First 445

of all, using a higher resolution brings improve- 446

ment (+2.9) in the performance of detail descrip- 447

tion, which is intuitive. Furthermore, LLaVAR 448

achieves a better trade-off and increases the per- 449

formance of all three aspects (+1.6 on average). 450

More details are in Appendix G. (ii) Text-Rich 451

Images: Similar to collecting the finetuning data, 452

we leverage 50 text-rich images from LAION to 453

collect instruction-following questions based on 454

OCR results and human-annotated captions. We 455

then collect responses from our trained model and 456

use GPT-4 to calculate the relative score w.r.t GPT- 457

4 responses. We add this as an extra dimension 458

“Read” to Table 4, where our model demonstrates 459

a significant (+3.8) improvement. The Appendix 460

provides an example in Table 12. 461
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H: When will this movie be released?
L: The movie "The Call of the Ottoman" starring Daniel Craig is
expected to be released on February 14th, 2023.
R: The movie will be released on January 13.
H: Who starred in the movie?
L: The movie stars Tom Cruise and Cobie Smulders.
R: Tom Hanks starred in the movie.
H: What is this movie about?
L: The movie "A Man Called Ove" is a comedy-drama film directed
by Hannes Holm. (...)
R: The movie is about Tom Hanks, who is called Ottol, and it is an
international bestseller based on a true story. (...)
H: Can you describe the given image?
L: The image is a movie poster featuring a man and a cat. The man,
who appears to be a character from the movie “The Ugly Truth,” (...)
R: The image features a man standing in front of a house with a cat
beside him.
H: Who directed the film?
L: The film was directed by Florian Henckel von Donnersmarck.
R: The film was directed by Tom Hanks, who made his directorial
debut with this movie.

Figure 6: Qualitative Comparison. We color the human inputs (H) in blue, LLaVA’s responses (L) in pink, and
LLaVAR’s responses (R) in green. Both are 3362-based models. We replace the excessively long response with (...).

4.5 Case Study462

We use a recent movie poster 8 to demonstrate the463

difference between LLaVA and LLaVAR when in-464

teracting with humans based on text-rich images.465

LLaVA, without augmenting textual understanding466

within images, suffers from hallucinations when an-467

swering these questions. Some mentioned movies,468

like “A Man Called Ove” and “The Ugly Truth”,469

are real movies, suggesting that the language de-470

coder is hallucinating its internal knowledge, while471

the visual encoder cannot encode helpful informa-472

tion. Alternatively, LLaVAR can correctly answer473

many of the provided questions with faithful infor-474

mation clearly grounded in the image. However,475

some limitations remain, such as the spelling er-476

ror “ottol” (We provide more statistics related to477

such spelling errors in Appendix F). Also, the final478

question asks for information that is not observable479

from the given poster, where an expected response480

should express such uncertainty instead of giving481

concrete answers. Nevertheless, neither model cor-482

rectly answers the question.483

4.6 Transferred Instruction-following484

Capability485

According to the dataset statistics (Table 1) and the486

visualization (Figure 12), our collected instruction-487

following data is not as diverse and substantial488

as LLaVA. This can be attributed to the relatively489

8https://www.imdb.com/title/tt7405458/

limited information given GPT-4, as the content of 490

text-rich images is less diverse than that of natural 491

images. In Appendix Figure 10, we demonstrate 492

the transferred instruction-following capability of 493

LLaVA, potentially from both the LLaVA data and 494

the Vicuna backbone. While the extra data we 495

add mainly focuses on understanding the visible 496

texts within images, LLaVAR manages to build its 497

reasoning, writing, and elaboration skills based on 498

the top of its text recognition capability in an end- 499

to-end manner. This allows users to interact with 500

various online content based on simple screenshots. 501

5 Conclusion 502

In this work, we enhance visual instruction-tuned 503

models in terms of their capability to read texts 504

in images. Using text-rich images from the 505

LAION dataset, we collect 422K noisy instruction- 506

following examples using OCR results only and 507

16K high-quality instruction-following data based 508

on text-only GPT-4. These examples are leveraged 509

to augment LLaVA and mPLUG-Owl, where our 510

augmented version demonstrates superior perfor- 511

mance in understanding texts within images and 512

following instructions on prior benchmarks. More- 513

over, our analysis shows that font size is the bottle- 514

neck for models to understand texts, while the same 515

augmentation data is more effective with higher- 516

resolution visual encoders. For future work, we 517

encourage further incorporation of the spatial infor- 518

mation of OCR results into instruction generation. 519
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Limitation520

From the dataset creation perspective, we collect521

examples from text-only GPT-4 instead of multi-522

modal models like GPT-4V (OpenAI, 2023) and523

Gemini (Team et al., 2023). However, we demon-524

strate that such multimodal capabilities (under-525

standing text within images) can be achieved at526

a moderate cost with existing human annotation ef-527

forts and text-only language models, both of which528

have many open-sourced alternatives. We believe529

our data collection and analysis can shed light on530

building open-sourced multimodal models that are531

competitive to proprietary models.532
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A856

CLIP-based categorization Based on the obser-857

vation of selected clusters, we divide the images858

used into 8 categories. For each category, we use859

one or multiple words as labels.860

• Quote & Meme: “quote”, “internet meme”.861

• Poster: “movie poster”, “podcast poster”,862

“TV show poster”, “event poster”, “poster”,863

• Book Cover: “book cover”, “magazine864

cover”.865

• Game Cover: “game cover”.866

• Ad & Product Packaging: “ad”, “advertise-867

ment”, “food packaging”, “product packag-868

ing”.869

• Infographic: “chart”, “bar chart”, “pie chart”,870

“scatter plot”.871

• Educational Material: “exam paper”, “quiz”,872

“certificate”, “book page”.873

• Logo: “logo”.874

For each word, we use the following templates875

to achieve embedding-space ensembling (Radford876

et al., 2021):877

• “a photo of a {}.”878

• “a blurry photo of a {}.”879

• “a black and white photo of a {}.”880

• “a low contrast photo of a {}.”881

• “a high contrast photo of a {}.”882

• “a bad photo of a {}.”883

• “a good photo of a {}.”884

• “a photo of a small {}.”885

• “a photo of a big {}.”886

For each image, we calculate the similarity be-887

tween the image and all words mentioned above888

using CLIP-ViT-L/14. If the highest similarity889

is less than 0.15, we then classify the image into890

Other, otherwise we classify into the “super class”891

(e.g., Poster) of the word (e.g., “movie poster”)892

with the highest similarity.893

B 894

System Message adapted from Liu et al. 895

(2023b): 896

You are an AI visual assistant, and you are seeing a 897

single image. What you see is provided with two 898

OCR results and one image caption describing the 899

information within the same image you are looking 900

at. Image captions might include hallucinations, 901

while OCR results are more accurate. Answer all 902

questions with definite answers as you are seeing 903

the image. 904

Design a conversation between you and a person 905

asking about this photo. The answers should be in 906

a tone that a visual AI assistant is seeing the image 907

and answering the question. Ask diverse questions 908

and give corresponding answers. 909

Include questions asking about the visual content 910

of the image (e.g., the man, the sunset, the ocean.) 911

and the texts contained in the image. Only include 912

questions that have definite answers: 913

(1) one can see the content in the image that the 914

question asks about and can answer confidently; 915

(2) one can determine confidently from the image 916

that it is not in the image. Do not ask any questions 917

that cannot be answered confidently; 918

(3) DO NOT mention OCR or image caption in 919

your questions and answers; 920

(4) DO NOT ask about information from captions 921

while it looks unrelated to or contradicts OCR re- 922

sults. 923

Also include complex questions that are relevant 924

to the content in the image, for example, asking 925

about background knowledge of the texts in the 926

image, asking to discuss about the design of the im- 927

age, etc. Again, do not ask about uncertain details. 928

Provide detailed answers when answering complex 929

questions. For example, give detailed examples or 930

reasoning steps to make the content more convinc- 931

ing and well-organized. You can include multiple 932

paragraphs if necessary. 933

Few-shot Examples used for GPT-4 prompting: 934

Human: 935

WHAT F YOUR BLESSINGS COME THROUGH 936

RAINDROPS PDf Induded LAURASTOR Y DE- 937

VOHONAL BASED ON THE GRAAAMY VARD 938

WIN ISONG mAT HAS INSEIRED MILLION 939

WHATIFYOUR BLESSINGS 940

COMETHROUGHRAINDROPS PDF In- 941

cluded LAURASTORY A DEVOTIONAL 942

BASEDON THE GRAMMY AWARD WINNI 943

PISONGTHATHASINSPIREDMILLIONSE 944
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Instructions

Identify any text visible in the image provided.
List all the text you can see in the given image.
Enumerate the words or sentences visible in the picture.
Describe any readable text present in the image.
Report any discernible text you see in the image.
Share any legible words or sentences visible in the picture.
Provide a list of texts observed in the provided image.
Note down any readable words or phrases shown in the photo.
Report on any text that can be clearly read in the image.
Mention any discernable and legible text present in the given picture.

Table 5: Ten instructions asking for OCR results.

a girl is standing in a field with a rainbow945

GPT:946

Question: What is the name of the devotional men-947

tioned in the image?948

Answer: The devotional is called “What If Your949

Blessings Come Through Raindrops” by Laura950

Story.951

Question: What is special about the song men-952

tioned in the image?953

Answer: The song is special because it’s a Grammy954

Award-winning song that has inspired millions of955

people."956

Human:957

One of the hardest things in life to accept is a called958

third strike Robert Frost te959

One of the hardest things in life to accept is a called960

third strike Robert Frost quotefancy961

a close up of a baseball glove962

GPT:963

Question: Why is the third strike hard to accept?964

Explain the quote to me.965

Answer: The quote Öne of the hardest things in966

life to accept is a called third strikeättributed to967

Robert Frost is a metaphor for life situations. In968

baseball, a called third strike is when the umpire969

determines that a pitch was a strike, but the batter970

did not swing. This can be frustrating for the batter971

because they missed an opportunity to hit the ball972

due to either a lack of confidence or misjudgment.973

In life, this metaphor refers to difficult moments974

where we might miss opportunities or face setbacks975

because of our own inaction or hesitation. The976

quote suggests that it is hard to accept these missed977

opportunities or challenges, especially when they978

result from our own choices or lack of action.979

C 980

Details of evaluation datasets used in the main pa- 981

per: 982

• ST-VQA (Furkan Biten et al., 2019) contains 983

31791 questions that require understanding 984

the scene text, based on images from COCO 985

(Lin et al., 2015), Visual Genome (Krishna 986

et al., 2016), ImageNet (Deng et al., 2009), 987

etc. 988

• TextVQA (Singh et al., 2019) contains 45,336 989

questions that need reading and reasoning 990

about the text in images to answer, based 991

on images from OpenImages (Krasin et al., 992

2017). 993

• OCR-VQA (Mishra et al., 2019) contains 994

more than 1 million questions asking about 995

information from book cover images (Iwana 996

et al., 2016). 997

• DocVQA (Mathew et al., 2020) contains 998

50000 questions based on document images. 999

• CT80 (Risnumawan et al., 2014b) contains 80 1000

images for curved text OCR evaluation. The 1001

formats of questions are: (1) “What is written 1002

in the image?" for English words. (2) “What 1003

is the number in the image?" for digit string. 1004

• POIE (Singh et al., 2019) contains 3000 cam- 1005

era images collected from the Nutrition Facts 1006

label of products, together with 111,155 text 1007

instances. The format of questions is “What 1008

is {entity name} in the image?". 1009

• ChartQA (Masry et al., 2022) includes 4,804 1010

charts with 9608 human-written questions. 1011
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D1012

Res. METEOR ROUGE-L CIDEr

LLaVA
2242

7.0 8.2 15.3
LLaVAR 10.0 11.4 24.5
LLaVA

3362
8.4 9.9 19.1

LLaVAR 12.8 14.3 30.9

Table 6: Results on ST-VQA using text-matching met-
rics.

Res. METEOR ROUGE-L CIDEr

LLaVA
2242

8.7 10.5 12.2
LLaVAR 12.5 14.9 21.4
LLaVA

3362
9.9 12.1 15.3

LLaVAR 14.8 17.4 27.0

Table 7: Results on textVQA using text-matching met-
rics.

Res. METEOR ROUGE-L CIDEr

LLaVA
2242

0.2 0.1 0.0
LLaVAR 0.3 0.1 0.0
LLaVA

3362
0.3 0.1 0.0

LLaVAR 0.2 0.1 0.0

Table 8: Results on OCR-VQA using text-matching
metrics.

Results of other metrics The metric used for1013

text-based VQA in the main paper is the stan-1014

dard practice in VQA benchmarks (Antol et al.,1015

2015). For STVQA and DocVQA, previous works1016

use ANLS (Average Normalized Levenshtein Sim-1017

ilarity) as the metric (Furkan Biten et al., 2019;1018

Mathew et al., 2020), which calculates the average1019

normalized edit distance and only works for super-1020

vised models trained to output short and precise1021

answers. It works badly for instruction-following1022

models that usually output long sequences instead1023

of brief answers. For reference, we provide more1024

text-matching metrics 9 (METEOR, Banerjee and1025

Lavie, 2005, ROUGE-L, Lin, 2004, CIDEr, Vedan-1026

tam et al., 2014) to demonstrate the improvement1027

of our model (Table 6, 7, 8, 9), which works well1028

except for OCR-VQA. We assume these metrics1029

are not valuable for OCR-VQA since the ground1030

truth answers are usually too short.1031

Res. METEOR ROUGE-L CIDEr

LLaVA
2242

3.8 4.8 6.3
LLaVAR 5.6 6.9 12.7
LLaVA

3362
4.6 5.6 8.7

LLaVAR 8.6 10.0 21.5

Table 9: Results on DocVQA using text-matching met-
rics.

E 1032

E.1 LLaVA Architecture and Training 1033

Architecture For the visual encoder V , we 1034

use CLIP-ViT-L/14 for 2242 resolution and 1035

CLIP-ViT-L/14-336 for 3362 resolution. The grid 1036

features before the last transformer layer are then 1037

transformed into the word embedding space of the 1038

language decoder through a trainable projection 1039

matrix W . We use Vicuna-13B (Chiang et al., 1040

2023), a LLaMA-based (Touvron et al., 2023) 1041

instruction-tuned language model, as the language 1042

decoder D. 1043

Settings We use the same training hyperparam- 1044

eters as LLaVA10, except that (i) We set the maxi- 1045

mum sequence length to 1024 during pre-training. 1046

(ii) We first pad any given image to a square shape 1047

before resizing it to the desired input size, pre- 1048

venting some image content from cropping during 1049

preprocessing. 1050

Training We follow the two-stage training de- 1051

sign of LLaVA (Figure 7). The training objec- 1052

tives of both stages are the same: generate out- 1053

put responses (<res>) for the input instructions 1054

(<ins>). The transformed image tokens (<img>) 1055

are added before or after the first input instruction. 1056

(i) During the first pre-training stage, only the pro- 1057

jection matrix W is trained for feature alignment. 1058

Since the decoder D is frozen, training tolerates 1059

noisy data. In the pre-training stage, we combine 1060

the 595K pre-training data from LLaVA with our 1061

422K noisy instruction-following data. (ii) Both 1062

the projection matrix W and the language decoder 1063

D are trained during the finetuning stage, where 1064

we merge our 16K instruction-following data into 1065

the 158K instruction-following data from LLaVA 1066

as the training set. Note that the visual encoder is 1067

frozen throughout the training period, which might 1068

restrict text recognition performance, as CLIP is 1069

trained for general-purpose text-image alignment. 1070

9https://github.com/salaniz/pycocoevalcap
10https://github.com/haotian-liu/LLaVA

15

https://github.com/salaniz/pycocoevalcap
https://github.com/haotian-liu/LLaVA


Figure 7: The model training process for the visual encoder V , projection matrix W , and language decoder D.
Blue blocks denote frozen modules and yellow blocks denote trainable modules. The training input is image

tokens (<img>) and instruction tokens (<ins>), while the target is response tokens (<res>).

Better choices of the visual encoder (Tschannen1071

et al., 2022) or CLIP-ViT finetuning (Ye et al.,1072

2023) may further benefit the visual understand-1073

ing capability, which we leave for future work.1074

E.2 mPLUG-Owl finetuning1075

Settings We finetune the mPLUG-Owl check-1076

point using batch size 256 and learning rate1077

1e − 5 for 3 epochs on the collected high-quality1078

instruction-following data.1079

E.3 High-Resolution LLaVA Architecture and1080

Training1081

The original version of LLaVAR only supports up1082

to 3362 resolution, while our case study has also1083

shown the threshold for the recognizable font size.1084

Both suggest the difficulty of processing real-world1085

high-res images without scaling and cutting. To1086

this end, we test a dual visual encoder system for1087

the high-res variant of LLaVAR, where a high-res1088

visual encoder is added to work with the standard1089

one. Ideally, the standard visual encoder extracts1090

general, high-level information, while the high-res1091

one specifically helps with detailed information.1092

Architecture A high-res visual encoder usually1093

outputs thousands of visual features. Simply fol-1094

lowing LLaVA to feed the transformed visual fea-1095

tures into the context of the language decoder is1096

impractical, as the maximum sequence length of1097

the language decoder is usually 2048/4096. To this1098

end, we propose handling high-res visual features1099

with cross-attention modules and standard visual1100

features by feature transformation. We depict the1101

proposed system in Figure 8.1102

Specifically, given a standard visual encoder V1,1103

the extracted features are transformed into the word1104

embedding space of the language decoder through a1105

trainable projection matrix W . These transformed1106

features are then concatenated with the word em- 1107

beddings to build the input embeddings of the lan- 1108

guage decoder D as Equation 1, where I is the 1109

input image, V1 denotes extracting the grid features 1110

before the last transformer layer. 1111

At the same time, we use the high-res visual en- 1112

coder V2 to extract high-res visual features, which 1113

are then transformed into keys/values as the inputs 1114

of the cross-attention module in transformer lay- 1115

ers. Given hj as the hidden state before the cross- 1116

attention module in layer j, we calculate the cross- 1117

attention using Equation 2, where Qj ,Kj , V j de- 1118

notes the query/key/value projection matrix in the 1119

j-th transformers layer. In practice, there is a pre- 1120

attention LayerNorm before calculating the atten- 1121

tion and another output projection matrix Oj to 1122

project the aggregated values back to the hidden 1123

space. 1124

As the pretrained language decoder D might 1125

only have self-attention modules, we manually add 1126

another cross-attention module after the original 1127

self-attention module in every transformer layer. 1128

Considering the random initialization of cross- 1129

attention modules might hurt the original language 1130

generation capability, we initialize the value pro- 1131

jection matrix V j as a zero matrix and the output 1132

projection matrix Oj as an identity matrix. 1133

Implementation We use CLIP-ViT-L/14 as the 1134

standard visual encoder. For the high-resolution en- 1135

coder, we test two models: (i) Pix2Struct-base 1136

(Lee et al., 2022) is a visual encoder trained on 1137

screenshot to HTML transformation. It supports 1138

up to 2048 patches with size 162, equivalent to 1139

1024 ∗ 512. (ii) ConcatCLIP refers to using 16 1140

CLIP-ViT-L/14 models to encode the 4 ∗ 4 grids 1141

of images separately and then concatenate the ex- 1142

tracted features together. In other words, it supports 1143

8962 resolution. 1144
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Figure 8: Illustration of the dual visual encoder system. Given an image, it is simultaneously processed by visual
encoders V1 and V2. V1 features are transformed by transformation matrix W and directly used as input embeddings
to the language model. For V2 features, they are transformed by transformation matrix K and V and used as keys
and values to calculate the cross attention in every transformer layer (assume there are N layers), which uses the
transformed hidden states (through Q) from the self-attention module as queries. For the language decoder D, the
input is image tokens (<img>) and instruction tokens (<ins>), while the target is response tokens (<res>).

emb(⟨img1⟩), · · · , emb(⟨imgm⟩) = WV1(I)

input_emb = concat([emb(⟨img1⟩), · · · , emb(⟨imgm⟩), emb(⟨ins1⟩), · · · , emb(⟨insn⟩)])
(1)

CrossAttention(h, V2, I) = softmax(
Qjhj(KjV2(I))

T

√
d

)V jV2(I) (2)

Training Only cross-attention modules and the1145

projection matrix W are trained during pretraining,1146

while visual encoders and the language decoder1147

are frozen. Cross-attention modules, the projection1148

matrix W , and the language decoder D are trained1149

during finetuning.1150

Data To fully unlock the potential of the aug-1151

mented visual encoder, we also double the num-1152

ber of pretraining examples using the same criteria1153

mentioned in Section 3.1154

F1155

The impact of OCR spelling errors We study1156

such OCR errors by studying 1673 examples from1157

OCR-VQA, which have ground truth answers with1158

more than ten characters. We (i) define “correct”1159

as the ground truth answers that are exactly in the1160

predictions, and (ii) define “partially correct” as1161

there exists a substring in the prediction that has1162

Res. Correct % Partially Correct%

LLaVA
2242

1.6% 8.7%
LLaVAR 6.8% 22.8%
LLaVA

3362
2.2% 11.2%

LLaVAR 9.0% 26.8%

Table 10: Statistics of correct answers and partially
correct answers on OCR-VQA.

high enough similarity with the ground truth but 1163

not the same. Specifically, we look at all substrings 1164

with the same length of the ground truth in the 1165

prediction to calculate ANLS (Average Normalized 1166

Levenshtein Similarity) and regard the prediction 1167

as “partially correct” if the highest ANLS is greater 1168

or equal to 0.5 but smaller than 1. 1169

We find that many predictions can be considered 1170

partially correct, indicating the actual performance 1171

of tested models is better than the reported accu- 1172

racy numbers. However, the percentage of partially 1173
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Conversation Detail Complex

LLaVA 83.6 78.1 95.2
LLaVA + Rpretrain 86.7 79.3 95.1
LLaVA + Rfinetune 79.0 79.4 98.0
LLaVAR 84.4 78.9 96.6

Table 11: Ablation Study on GPT-4-based Instruction-
following Evaluation from LLaVA (Liu et al., 2023b).

correct predictions is highly correlated with the1174

percentage of correct predictions. Therefore, we1175

believe that the current metrics can effectively com-1176

pare the performance of different models.1177

G1178

Ablation Study on Instruction-following Evalu-1179

ation To provide a more detailed understanding1180

of our data, we provide the ablation study results1181

on 90 instruction-following questions from LLaVA1182

(Liu et al., 2023b). We find that including pre-1183

training data improves the conversation capability,1184

probably because longer training data leads to gen-1185

erating longer responses (Table 1), which is favored1186

by GPT-4 (Xu et al., 2023). On the other hand, in-1187

cluding only finetuning data hurts the conversation1188

capability but increases complex reasoning. Com-1189

bining pretraining and finetuning data improves1190

the trade-off between conversation and complex1191

reasoning. Such results prove that incorporating1192

our data will at least not harm the performance of1193

interacting with natural images.1194
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Question: Based on the title and the image on the cover, what can be inferred about
the content of "Bo’s Lasting Lessons" and its potential target audience?

Relative
Score

GPT-4
(Text-Only)

From the title and image, it can be inferred that "Bo’s Lasting Lessons"
is a book about leadership lessons taught by a legendary coach, likely
in the context of sports. The image of men running suggests that the
book might be focused on a specific sport, such as football or track and
field. The target audience could be individuals interested in coaching,
sports, or leadership in general, looking to learn from the experiences
and teachings of a successful coach.

-

LLaVA

The book "Bo’s Lasting Lessons: The Timeless Teachings of Bo Schem-
bechler" is written by Bo Schembechler and Jim Harshaw. Given the
title and the image on the cover, which shows a football coach running
across the field with his players in pursuit, it can be inferred that the
content of the book is likely focused on football and the strategies, tech-
niques, or principles that can help players improve their performance
and achieve success in the sport. The potential target audience for this
book could be football players, coaches, and fans who are interested
in learning more about the game and the experiences and insights of a
seasoned coach like Bo Schembechler.

75%

LLaVAR

"Bo’s Lasting Lessons" appears to be a book that shares the legacy
coach Bo Schembechler’s teachings on leadership and timeless funda-
mentals. The image on the cover, featuring a football coach leading
his team, further supports this inference. The book might be targeted
towards sports enthusiasts, particularly fans of football, and people
interested in learning about leadership principles and fundamentals
from a renowned coach’s perspective. The audiobook, read by John H.
Mayer and featuring a foreword and conversation with John U. Bacon,
suggests that it could also appeal to audiences who prefer listening to
books or want to gain more insights from the author and other experts.

129%

Table 12: An example for our collected evaluation data, corresponding to the “Read” dimension of GPT-4-based
instruction-following evaluation. The corresponding image is Figure 9 in Appendix.
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Figure 9: An example for the Read dimension of GPT-4-based instruction-following evaluation.
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Figure 10: Transferred instruction-following capability of LLaVAR.
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Figure 11: All 14 clusters we selected as text-rich images. Each row corresponds to one cluster, where we show ten
randomly sampled examples before de-duplication.
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Figure 12: Visualization of collected instructions.
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Figure 13: Visualization of collected instructions.
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