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ABSTRACT
Despite the widespread adoption of large language models (LLMs)
for recommendation, we demonstrate that LLMs often exhibit un-
certainty in their recommendations. To ensure the trustworthy
use of LLMs in generating recommendations, we emphasize the
importance of assessing the reliability of recommendations gen-
erated by LLMs. We start by introducing a novel framework for
estimating the predictive uncertainty to quantitatively measure the
reliability of LLM-based recommendations. We further propose to
decompose the predictive uncertainty into recommendation uncer-
tainty and prompt uncertainty, enabling in-depth analyses of the pri-
mary source of uncertainty. Through extensive experiments, we (1)
demonstrate predictive uncertainty effectively indicates the reliabil-
ity of LLM-based recommendations, (2) investigate the origins of un-
certainty with decomposed uncertainty measures, and (3) propose
uncertainty-aware prompting for a lower predictive uncertainty and
enhanced recommendation. Our source code and model weights are
available at https://anonymous.4open.science/r/UNC_LLM_REC
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1 INTRODUCTION
Large language models (LLMs) have recently been widely adopted
for recommendation [2, 19, 79], as they have powerful compre-
hension ability for context [23] and textual features [25]. LLMs,
pre-trained on an enormous corpus, possess a wealth of exter-
nal knowledge for open-domain tasks [4, 6, 70] (e.g., Iron Man
and Spider-Man share the same universe, the red wine goes well
with beef), and can be leveraged for recommendations that re-
quire background information or common sense. Instruction-tuned
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LLMs [4, 29, 62, 64] have shown remarkable performance for the
zero-shot ranking task [23, 25], and can be further fine-tuned with
the user history logged on the system [2, 19, 79]. Recent methods
[10, 68, 77, 78] adopt the retrieval-augmented generation paradigm
[3, 27], where LLMs are employed to generate ranking lists with can-
didates retrieved by candidate generators. This approach exhibits
state-of-the-art recommendation performance over conventional
sequential recommenders [31, 61], facilitating better online updates
and avoiding hallucination.

While LLMs have been widely employed in real-world applica-
tions that can influence human behavior, there is a lack of explo-
ration in assessing the reliability of the LLM-based recommendation.
Indeed, despite their superior performance, we demonstrate recom-
mendations generated by LLMs are highly volatile depending on
the prompting details (e.g., word choice, number of user histories,
number of candidate items), despite using the same user history and
candidates. Moreover, we observe the volatility in generation cor-
relates with the recommendation performance. This newly-arisen
challenge is specific to LLM-based recommendation, which does not
occur with conventional recommender models [22, 38, 56]. There-
fore, we assert the need to assess the reliability of recommendations
generated by LLMs, to support the trustworthy use of the advanced
comprehension capabilities of LLMs. Although significant progress
has been made in estimating the reliability of LLMs primarily in
classification [44, 63, 72, 74] and question-answering [39, 40], there
is a lack of study focused on recommendation generated by LLMs.

Our work fills this gap by attempting to improve our under-
standing of the reliability of LLM-based recommendations. We
start by quantitatively measuring the reliability of LLMs for rec-
ommendation, by embracing the concept of predictive uncertainty
[12, 16, 34]. The predictive uncertainty can be understood as the
entropy of predictive distribution [48], and has been utilized to
indicate the reliability of responses generated by LLMs for vari-
ous tasks [39, 40, 44]. If LLMs generate volatile recommendations
across multiple inferences with given user history and candidates,
the predictive distribution would be smooth and the predictive un-
certainty is high. Conversely, if LLMs consistently produce identical
recommendations across all generations, the predictive distribution
would manifest as a one-hot vector and the predictive uncertainty
is zero. Therefore, the estimated predictive uncertainty helps us
gauge how much we can trust the recommendations made by LLMs.

However, assessing the predictive uncertainty of LLM-based
recommendation raises a challenge as the output space of possi-
ble ranking lists is intractable, compared to more confined output
spaces of classification [12, 20, 44] and multiple-choice question
answering [39, 40]. The output ranking space has a size equal to
the factorial of the number of retrieved candidates, and therefore,
utilizing LLMs’ autoregressive generation probability would be
infeasible to cover the entire output space. To tackle this limita-
tion, we estimate the ranking probability by adopting Plackett-Luce
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model [47, 52] with the top-1 probability of candidate items. By
doing so, we can approximate the predictive distribution for the en-
tire ranking space with a single inference, and obtain the predictive
uncertainty as the entropy of the estimated predictive distribution.

We further propose decomposing the predictive uncertainty to
identify the primary source of uncertainty in LLM-based recommen-
dations. Specifically, we introduce a latent variable representing the
prompt, and decompose the total predictive uncertainty into recom-
mendation uncertainty and prompt uncertainty. The recommenda-
tion uncertainty denotes the intrinsic uncertainty originating from
the recommendation difficulty of the user history and candidates.
On the other hand, the prompt uncertainty denotes the uncertainty
raised from the prompting scheme, which is an additional volatility
when recommendations are generated by LLMs. These decomposed
uncertainty measures serve as a tool for in-depth analyses to gain
a deeper understanding of the various factors influencing the per-
formance of LLM-based recommendations.

Based on our framework for quantifying and decomposing the
uncertainty of LLMs for recommendation, we conduct an extensive
empirical investigation on real-world datasets. We offer our key
findings and contributions throughout this paper as follows:

• Predictive uncertainty indicates reliability of recommenda-
tion (Section 6). We demonstrate the effectiveness of estimated
predictive uncertainty; a recommendationwith lower uncertainty
yields higher recommendation performance. Moreover, our un-
certainty quantification framework shows superiority to existing
methods for other natural language tasks, with less or comparable
inference burden.

• Unveiling origins of uncertainty with uncertainty decom-
position (Section 7).We investigate the effect of various factors
(e.g., fine-tuning, model size, user history, and candidate items) on
the decomposed uncertainty measures, and analyze how it is re-
lated to recommendation performance. Our observations provide
promising explanations for the previously raised LLM-specific
limitations; a larger number of user histories and candidate items
may bring increased uncertainty and thus do not necessarily
improve recommendation performance.

• Enhancing recommendationwith uncertainty-aware prom-
pting (Section 8). Based on our insights above, we support the
best use of LLMs for recommendation. We propose to adjust
the number of user histories and candidate items, for a lower
predictive uncertainty and further enhanced recommendation.
Our uncertainty-aware prompting methods improve recommen-
dation performance with negligible changes in the number of
tokens used.

2 RELATEDWORK
Large Language Models for Recommendation. Large language
models (LLMs) have recently gained widespread adoption in rec-
ommendation systems due to their powerful ability to comprehend
complex contexts and to utilize external knowledge for generation
[11, 71]. Early work [9, 19, 61] adapts the architectures of language
models for the recommendation task and outperforms conventional
matrix factorization architectures [22, 38, 56]. As cutting-edge LLMs
[29, 62, 64], pre-trained on extensive corpora and distributed pub-
licly, show remarkable performance in open-domain tasks [4, 6, 70],

Figure 1: Example prompt for list-wise ranking with LLMs.1

subsequent research highlights their effectiveness for the zero-shot
[18, 23, 25, 68] and few-shot [45, 58] ranking task. Moreover, recent
methods [2, 21, 33, 43, 79] involve fine-tuning LLMs with instruc-
tion on recommendation datasets, to mitigate the disparity between
natural language understanding tasks used to train LLMs and the
recommendation task [2, 35]. Lately, the state-of-the-art methods
[10, 25, 68, 77, 78] adopt a list-wise ranking paradigm with the
retrieval-augmented generation [3, 27]. In this approach, the gen-
eration of ranking lists is conditioned on candidates retrieved by
candidate generators as illustrated in Figure 1, to better facilitate
updates and reduce hallucination [11]. We refer readers to [11, 71]
for a detailed survey.
Uncertainty of Large Language Models. In the era of LLMs,
where human behaviors are influenced by the outputs of these mod-
els, recent research underscores the imperative of evaluating the
reliability of LLM-generated responses [1, 72–74]. The predictive
uncertainty [39, 44], quantified as the entropy of the predictive
distribution, is widely adopted to measure the reliability of LLMs
[12, 16, 34]. Despite significant progress in uncertainty estimation,
with a primary focus on classification [44, 63, 72, 74] and question-
answering [39, 40], there is a scarcity of research on the uncertainty
of recommendations generated by LLMs. The main challenge of
applying the aforementioned uncertainty quantification framework
lies in the vast output space of possible ranking lists, compared
to the more confined output spaces of classification [12, 20, 44]
and multiple-choice question answering [39, 40]. Therefore, the
existing methods requiring access to the entire predictive distribu-
tion cannot directly be applied to the uncertainty quantification of
LLMs for recommendation, and a solution tailored to LLM-based
recommendation is required.
Uncertainty of Recommendation. Uncertainty quantification re-
mains an underexplored area within the recommendation literature.
In the realm of recommendation systems, the uncertainty often
refers to the unpredictable nature of user preferences [14, 30, 53,
66, 75] (e.g., users occasionally click whimsical items far from their
preference). They introduce variance terms to model the variability
inherent in user preferences, with the goal of enhancing recom-
mendation performance using noisy interaction data. On the other
hand, other works focus on the calibration of recommender models’
output scores [20, 41], to select the threshold for the retrieval [7, 67]
or to balance exploration-exploitation trade-off in multi-armed ban-
dits [5, 60]. While a recent work [51] has investigated the variance
of recommender models’ output, this work is limited to simplistic
binary classifiers for predicting click-through rates [80] and cannot
1It is worth noting that the goal of this paper is not to propose a high-performance
prompting scheme; more sophisticated methods [76, 81] can be applied to our work.



UncertaintyQuantification and Decomposition
for LLM-based Recommendation WWW ’25, 28 April - 2 May, 2025, Sydney, Australia

Figure 2: Violin plots describing the user distributions with the coefficient of variation.

Figure 3: Generation volatility and recommendation performance of fine-tuned LLMs. We plot the rank variance of candidate
items for each user group. G1 has the highest average N@20 and G4 has the lowest average N@20.

be extended to the LLMs for the list-wise ranking task. To the best
of our knowledge, uncertainty quantification specifically tailored
for LLM-based recommendation remains unaddressed. We believe
our work fills this gap and has a broad impact, considering the
transformative potential of LLMs in recommendation.

3 PRELIMINARIES
Notations. Let U and I denote a set of users and a set of items,
respectively. For a user 𝑢 ∈ U, H𝑢 = [𝑖𝑢,1, 𝑖𝑢,2, · · · , 𝑖𝑢, |H𝑢 | ] de-
notes the sequential user history logged in chronological order of
interaction time. Each item 𝑖 ∈ I is associated with a representative
text t𝑖 ∈ T , which may serve as a title or description of the item.
Two-Stage Recommendation. Real-world recommender systems
often employ a two-stage recommendation approach for efficient
personalization [32, 67]. The first stage is candidate generation
where heuristics or lightweight models are adopted for fast retrieval.
They generate a small candidate set C𝑢 = {𝑐𝑢,1, 𝑐𝑢,2, · · · , 𝑐𝑢, | C𝑢 | }
from a tremendous number of items (|C𝑢 | ≪ |I|). It is noted that
classic candidate generation approaches do not assign any specific
order for candidate items [8, 25]. In the subsequent stage, referred
to as ranking, sophisticated models are developed to rank the candi-
date items by leveraging both the user historyH𝑢 and fine-grained
features (e.g., T ) to derive the final ranking 𝜋𝑢 ∈ Π𝑢 . Here, Π𝑢 is
the entire ranking space with a size of |Π𝑢 | = |C𝑢 |!.
Large Language Models for List-wise Ranking. Literature on
LLMs for recommendation mainly focuses on the ranking stage,
given that their inference is computationally intensive when ap-
plied to a large candidate set [25]. LLMs generate fine-grained
ranking based on prompts constructed with the representative text
of items inH𝑢 and C𝑢 . In this study, we employ a list-wise ranking
approach [25, 76, 78] as illustrated in Figure 1. The list-wise rank-
ing is more efficient than point-wise [2, 45, 79] and pair-wise [54]
approaches, as these latter approaches require multiple prompts
and model inferences to generate a single ranking list. The position
of candidate items in the prompt is randomly assigned as candi-
date generation models produce unordered sets, as noted earlier

[8, 25]. Additionally, we assign an index to each candidate item
and instruct LLMs to respond with these indices. The generated
output for the list-wise prompt would be the complete ranking list
of indices (e.g.,"C,A,B,..."). Otherwise, semantic parsing with
text-matching algorithms [36] is required to compare the generated
output with the representative texts of candidate items [25].

4 MOTIVATING ANALYSIS
We present our motivating analysis demonstrating that LLMs ex-
hibit volatile recommendation performance even after fine-tuning.
Furthermore, we show that this volatility in generation varies
among users and correlates with the recommendation performance.
Analysis setup.We adopt three popular instruction-tuned LLMs,
including Llama3-8B [64], Gemma-7B [62], and Mistral-7B [29] on
MovieLens 1M dataset2. The candidates are retrieved with BPR-MF
[56]. We set the default prompt as shown in Figure 1 and devise
four additional prompt schemes with slight variations:
• Same Prompt: We use the exact same prompt for five stochastic3
generations, utilizing 20 latest histories and 20 candidates.

• Varying History Size: We use the latest histories of different
sizes from {10, 15, 20, 25, 30} for each deterministic4 generation.

• Varying Candidate Order: We use shuffled candidate orders
for each deterministic generation.

• Slight Edit: We apply minor format changes to the prompt (e.g.,
"Candidate [A]" → "Movie [A]" in Figure 1) for each deter-
ministic generation.

For each user, we generated five recommendations {𝜋𝑛𝑢 }5𝑛=1 for
each prompt scheme. Please refer to Figure 5 in Appendix A for full
prompts.
M1: LLMs exhibit volatile recommendation performance for
individual users. To examine the volatility of LLMs in recom-
mendation performance, we compute the mean and the standard

2https://grouplens.org/datasets/movielens/
3We sample the next token with predicted token probabilities and default temperatures.
4We select the next token with the highest token probability.



WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anonymous Author(s)

deviation of NDCG@20 [28] across the five generated recommen-
dations {𝜋𝑛𝑢 }5𝑛=1 for each user𝑢. We then investigate the coefficient
of variation [42] to understand the performance deviation relative
to the average performance:

𝜎ndcg

𝜇ndcg
=

Var𝑛 [ndcg(𝜋𝑛𝑢 )]0.5
E𝑛 [ndcg(𝜋𝑛𝑢 )]

, (1)

where ndcg(𝜋𝑛𝑢 ) denotes NDCG@20 of ranking list 𝜋𝑛𝑢 . Figure 2
shows the violin plots [24] describing the user distributions with
the coefficient of variation.5 The average coefficient of variation is
around 0.3 for the zero-shot setup, which indicates the recommen-
dation performance may fluctuate by 30%. The fine-tuned LLMs
exhibit a lower coefficient of variation, but still, the recommen-
dation performance fluctuates by 10-20% on average. This result
suggests that even when the same prompt is used across five gen-
erations (‘Same Prompt’), LLMs exhibit significant volatility in
recommendation performance. Moreover, when LLMs generate
recommendations in a deterministic manner (i.e., without any sam-
pling), the volatility in recommendation performance increases
with variations in prompting details (i.e., ‘Varying History Size’,
‘Varying Candidate Order’, ‘Slight Edit’).
M2: Generation volatility correlates with the recommenda-
tion performance.We divide users into four equally-sized groups
based on their recommendation performance 𝜇ndcg. For each user
group 𝐺 , we assess the variation in ranking orders across the five
generated recommendations {𝜋𝑛𝑢 }5𝑛=1:

𝜎2rank = E𝑢∈𝐺 [E𝑖∈C𝑢 [Var𝑛 [rank(𝑖;𝜋
𝑛
𝑢 )]]], (2)

where rank(𝑖;𝜋𝑛𝑢 ) denotes the rank of 𝑖 in 𝜋𝑛𝑢 . Figure 3 illustrates
the generation volatility (i.e., 𝜎2rank) of fine-tuned LLMs for each
user group. We observe that the user group with the highest recom-
mendation performance (G1) demonstrates the lowest generation
volatility in the rank of candidate items. In essence, LLMs consis-
tently produce similar rankings regardless of stochastic generation
or prompt variation when their predictions are relatively accurate.
Measuring generation volatility to indicate the reliability of
LLMs and enhance recommendation. Despite the superiority of
LLMs against conventional sequential recommenders [35, 79], our
in-depth analyses demonstrate that LLMs exhibit large coefficients
of variation in performance. Therefore, we highlight the importance
of a comprehensive understanding of generation volatility to sup-
port the trustworthy use of the advanced capabilities of LLMs for
recommendations. Throughout this paper, we present a systematic
approach for (1) quantifying the generation volatility to indicate
the reliability of LLM-based recommendations, (2) unveiling the
origins of generation volatility, and (3) enhancing recommenda-
tions through prompting schemes that result in lower generation
volatility.

5 UNCERTAINTY QUANTIFICATION AND
DECOMPOSITION FOR RECOMMENDATION

5.1 Overview
We embrace the concept of predictive uncertainty [12, 16] to quan-
titatively measure the reliability of LLM-based recommendations.

5The average performance E𝑢∈U [𝜇ndcg ] is reported in Table 4, Appendix B.

To this end, we present a novel framework to estimate the predic-
tive uncertainty of LLMs for recommendations, with the following
contributions.
• (Sec 5.2) Predictive Uncertainty Quantification: We estimate
the predictive distribution for recommendation with a single
LLM inference and derive the predictive uncertainty from it.

• (Sec 5.3) Uncertainty Decomposition: We further decompose
the predictive uncertainty into prompt uncertainty and recom-
mendation uncertainty, to identify the origins of uncertainty.

The predictive uncertainty (1) serves as an indicator of reliability,
and (2) can be further utilized to enhance recommendations with
lower uncertainty.

5.2 Uncertainty Quantification
The (total) predictive uncertainty for recommendation is quanti-
tatively measured by the entropy of 𝑞(𝜋𝑢 |H𝑢 , C𝑢 ), the predictive
distribution over potential recommendations 𝜋𝑢 forH𝑢 and C𝑢 :

H[𝑞(𝜋𝑢 |H𝑢 , C𝑢 )] = E𝑞 (𝜋𝑢 |H𝑢 ,C𝑢 ) [− log𝑞(𝜋𝑢 |H𝑢 , C𝑢 )] . (3)

If LLMs generate volatile recommendationswithH𝑢 andC𝑢 ,𝑞(𝜋𝑢 |H𝑢 , C𝑢 )
would be smooth and the predictive uncertainty is high. Conversely,
if LLMs consistently produce identical recommendations across all
generations, the predictive distribution 𝑞(𝜋𝑢 |H𝑢 , C𝑢 ) would mani-
fest as a one-hot vector and the predictive uncertainty is 0.

5.2.1 Defining predictive distribution. We introduce a latent
variable P𝑢 representing the prompt constructed withH𝑢 and C𝑢 .
The prompting process 𝑞(P𝑢 |H𝑢 , C𝑢 ) embraces all prompting de-
tails including system instruction, user messages, and orders of
candidates. Then, we define the predictive distribution over poten-
tial prompts constructed withH𝑢 and C𝑢 as follows:

𝑞(𝜋𝑢 |H𝑢 , C𝑢 ) = E𝑞 (P𝑢 |H𝑢 ,C𝑢 ) [𝑞(𝜋𝑢 |P𝑢 )] . (4)

A naive approach for estimating 𝑞(𝜋𝑢 |P𝑢 ) is utilizing LLMs’ au-
toregressive probability for sequentially generating 𝜋𝑢 with P𝑢 :
𝑞(𝜋𝑢 |P𝑢 ) =

∏ | C𝑢 |
𝑘=1 𝑞(𝜋𝑢,𝑘 |P𝑢 , 𝜋𝑢,1, · · · , 𝜋𝑢,𝑘−1). However, gener-

ating all ranking lists in Π𝑢 to obtain 𝑞(𝜋𝑢 |P𝑢 ) would be infeasi-
ble to cover the entire ranking space Π𝑢 with a size of |C𝑢 |! (e.g.,
20! = 2.4 · 1018 inferences when |C𝑢 | = 20).

5.2.2 Estimating predictive distribution. As a workaround, we
approximate the predictive distribution with the top-1 probabilities
for 𝑖 ∈ C𝑢 by adopting Plackett-Luce model [47, 52], which has
been widely adopted to model ranking permutations [37]. First, to
obtain top-1 probabilities for 𝑖 ∈ C𝑢 , we slightly modify our prompt
in Figure 1 by replacing "Rank the candidate movies above"
with "Which movie would I like to watch next most?".
This prompting provides a format guideline and ensures that the
LLMs follow the instruction [69, 82]. The generated output for this
prompt would be an index (e.g.,"B") for an item in C𝑢 . Then, with
the output logit values 𝑧𝑖 ∈ R for 𝑖 ∈ C𝑢 (i.e., 𝑞(𝑖 |P𝑢 ) ∝ exp 𝑧𝑖 ),
we estimate the prompt-conditional generation probability for all
possible ranking lists with a single inference:

𝑞(𝜋𝑢 |P𝑢 ) =
| C𝑢 |∏
𝑘=1

exp(𝑧𝜋𝑢,𝑘 )∑
𝑙∈N𝑘

exp(𝑧𝑙 )
≈

𝐾∏
𝑘=1

exp(𝑧𝜋𝑢,𝑘 )∑
𝑙∈N𝑘

exp(𝑧𝑙 )
, (5)
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where 𝜋𝑢,𝑘 is the 𝑘-th item in 𝜋𝑢 andN𝑘 is the domain for the 𝑘-th
sampling without replacement (N𝑘 = {𝜋𝑢,𝑘 , 𝜋𝑢,𝑘+1, · · · , 𝜋𝑢, | C𝑢 | }).
Since multiplying |C𝑢 | probabilities results in probability vanishing
problem, we multiply the probabilities only for top-𝐾 candidates.
Finally, we estimate the predictive distribution as follows:

𝑞(𝜋𝑢 |H𝑢 , C𝑢 ) = E𝑞 (P𝑢 |H𝑢 ,C𝑢 ) [𝑞(𝜋𝑢 |P𝑢 )] . (6)

In this work, we estimate the expectation by adopting Monte-Carlo
method [57], sampling five prompts from 𝑞(P𝑢 |H𝑢 , C𝑢 ).6

5.2.3 Estimating predictive uncertainty. The next step is es-
timating total predictive uncertainty in Eq.3 with the predictive
distribution estimated with Eq.6:

H[𝑞(𝜋𝑢 |H𝑢 , C𝑢 )] ≈ E𝑞 (𝜋𝑢 |H𝑢 ,C𝑢 ) [− log𝑞(𝜋𝑢 |H𝑢 , C𝑢 )] . (7)

We draw ranking lists from Π𝑢 by simulation based on the sam-
pling probability in Eq.5 and estimate the predictive uncertainty
with Monte-Carlo method. It is worth noting that sampling with-
out replacement can be readily done within a few ms with the
exponential-sort trick [13].

5.3 Uncertainty Decomposition
The total predictive uncertainty encompasses uncertainties stem-
ming from diverse sources. Therefore, investigating the primary
source of uncertainty proves challenging. For instance, in recom-
mendation, uncertainty might arise from the prompting scheme P𝑢
or recommendation difficulty ofH𝑢 and C𝑢 . Literature on Bayesian
neural networks (BNNs) [12, 44] decomposes the total predictive
uncertainty into aleatoric (data) uncertainty and epistemic (model)
uncertainty, by employing an ensemble of multiple models. How-
ever, employing an ensemble of multiple cutting-edge LLMs is
unavailable and inefficient in practice [39].

5.3.1 Uncertainty decomposition through a latent variable.
We decompose the total predictive uncertainty through a latent vari-
able P𝑢 , without any burden from employing multiple LLMs. First,
we measure the uncertainty arising from the prompting scheme by
the mutual information between the prompt and the ranking:

I[P𝑢 , 𝜋𝑢 ] := E𝑞 (P𝑢 ,𝜋𝑢 )

[
log

𝑞(P𝑢 , 𝜋𝑢 )
𝑞(P𝑢 )𝑞(𝜋𝑢 )

]
. (8)

Here, we omit the condition onH𝑢 and C𝑢 for brevity. If the condi-
tional distribution 𝑞(𝜋𝑢 |P𝑢 ) remains the same regardless of prompt
P𝑢 , the mutual information is 0. Conversely, when LLMs generate
volatile recommendations depending on the prompting scheme, the
mutual information would be high. Since the mutual information is
formulated as I[𝑋,𝑌 ] = H[𝑌 ]−E𝑞 (𝑋 ) [H[𝑌 |𝑋 ]], the total predictive
uncertainty can be decomposed as follows:

H[𝑞(𝜋𝑢 |H𝑢 , C𝑢 )]︸                ︷︷                ︸
Total Unc.

= I[P𝑢 , 𝜋𝑢 ]︸     ︷︷     ︸
Prompt Unc.

+E𝑞 (P𝑢 |H𝑢 ,C𝑢 ) [H[𝑞(𝜋𝑢 |P𝑢 )]]︸                                ︷︷                                ︸
Recommendation Unc.

.

(9)
We denote the first term on the right-hand side as prompt uncer-
tainty, measuring the uncertainty raised by the prompting scheme.
This uncertainty is specific to LLM-based recommendation and
does not occur with conventional recommender models [22, 38, 56].
6It is noted that we can sample just one prompt when only obtaining the total uncer-
tainty without uncertainty decomposition.

Algorithm 1: Uncertainty in LLM-based Recommendation
Input :User history H𝑢 , candidate set C𝑢 , prompting scheme

𝑞 (P𝑢 |H𝑢 , C𝑢 )
Output :Total uncertainty, Recommendation uncertainty

1 Draw prompts {P𝑛
𝑢 }5

𝑛=1 from 𝑞 (P𝑢 |H𝑢 , C𝑢 )
2 Generate logits 𝑧𝑛

𝑖
with P𝑛

𝑢

3 Estimate 𝑞 (𝜋𝑢 | P𝑛
𝑢 ) (Eq.5)

/* Total Uncertainty */

4 Estimate 𝑞 (𝜋𝑢 |H𝑢 , C𝑢 ) with {𝑞 (𝜋𝑢 | P𝑛
𝑢 ) }5

𝑛=1 (Eq.6)
5 Estimate total uncertainty with 𝑞 (𝜋𝑢 |H𝑢 , C𝑢 ) (Eq.7)

/* Recommendation Uncertainty */

6 Estimate conditional entropy H[𝑞 (𝜋𝑢 | P𝑛
𝑢 ) ]

7 Estimate recommendation uncertainty with {H[𝑞 (𝜋𝑢 | P𝑛
𝑢 ) ] }5

𝑛=1

We denote the second term as recommendation uncertainty orig-
inating from the recommendation difficulty associated with H𝑢
and C𝑢 . The recommendation uncertainty measures the average
uncertainty in recommendation over potential prompts, thereby
neutralizing the impact of prompting. Uncertainty decomposition
allows us to distinguish whether the uncertainty arises especially
from the prompting scheme or the recommendation difficulty. The
system can acquire a thorough understanding of the volatility in
LLMs’ generation, and deploy various strategies for lower uncer-
tainty and enhanced recommendation. The entire procedure of our
uncertainty quantification framework is described in Algorithm 1.

6 PREDICTIVE UNCERTAINTY INDICATES
RELIABILITY OF RECOMMENDATION

6.1 Experiment Setup
We briefly summarize the experiment setup due to limited space.
Please refer to Appendix A for the experimental details.
Evaluation metrics. It is noted that the uncertainty quantification
does not affect recommendation performance. Instead, our goal
is to yield effective uncertainty measures that should indicate the
reliability of recommendations. We adopt Kendall’s 𝜏 (𝜏@𝐾) [59]
and Concordance Index (C@𝐾) [65] to assess whether a recom-
mendation with lower uncertainty yields higher NDCG@𝐾 (N@𝐾 )
than one with higher uncertainty.
Dataset. We use three real-world datasets, including MovieLens
1M7, Amazon Grocery [49], and Steam [31]. These datasets have
representative text (e.g., title, description) for each item and have
been widely used for LLM-based recommendation [25]. For each
user’s history, we hold out the last item for testing and the penulti-
mate item for validation.
Base large language models.We utilize three popular LLMs from
different generations, including Llama3-8B [64], Gemma-7B [62],
and Mistral-7B [29], which are the largest models that can be fine-
tuned on our single NVIDIA A100-80G GPU. We additionally adopt
GPT-3-Turbo [4] for zero-shot ranking.
Implementation details.We adopt following two scenarios:

7https://grouplens.org/datasets/movielens/
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Table 1: Effectiveness of uncertainty measures estimated by ours and methods compared.

Model Method MovieLens 1M Amazon Grocery Steam
𝜏@5 𝜏@20 C@5 C@20 N@20 𝜏@5 𝜏@20 C@5 C@20 N@20 𝜏@5 𝜏@20 C@5 C@20 N@20

Zero-Shot Ranking on Randomly Retrieved Candidates

Llama3-8B

Label Prob. 0.1276 0.1143 0.5561 0.5341 0.5526
0.1412 0.1326 0.6004 0.5654 0.5134

0.2312 0.2042 0.6517 0.6188 0.6255
Semantic Unc. 0.1162 0.1072 0.5589 0.5387 0.1624 0.1472 0.6137 0.5731 0.2767 0.2381 0.6803 0.6328
Verb. 1S top-1 0.1369 0.1261 0.5594 0.5474 0.1677 0.1463 0.6207 0.5737 0.2161 0.1842 0.6324 0.5991

Ours 0.1512 0.1378 0.5867 0.5737 0.1913 0.1643 0.6286 0.5861 0.3045 0.2811 0.6921 0.6591

Gemma-7B

Label Prob. 0.0926 0.0686 0.5605 0.5354 0.4703
0.1498 0.1144 0.5995 0.5591 0.4754

0.2428 0.1992 0.6508 0.6042 0.5500
Semantic Unc. 0.1046 0.0758 0.5684 0.5391 0.1594 0.1212 0.6059 0.5626 0.2609 0.2145 0.6621 0.6122
Verb. 1S top-1 0.0834 0.0551 0.5471 0.5185 0.1379 0.0926 0.5917 0.5501 0.2393 0.1902 0.6471 0.5906

Ours 0.1524 0.1236 0.5945 0.5641 0.2065 0.1701 0.6306 0.5885 0.3135 0.2777 0.6918 0.6482

Mistral-7B

Label Prob. 0.1004 0.0823 0.5606 0.5431 0.5258
0.0993 0.0781 0.5617 0.5405 0.4884

0.1202 0.1035 0.5733 0.5540 0.5201
Semantic Unc. 0.1088 0.0896 0.5656 0.5469 0.1146 0.0903 0.5712 0.5468 0.1391 0.1197 0.5847 0.5624
Verb. 1S top-1 0.1123 0.0932 0.5617 0.5433 0.1023 0.0818 0.5674 0.5424 0.1417 0.1208 0.5861 0.5635

Ours 0.1491 0.1368 0.5873 0.5720 0.1648 0.1406 0.5999 0.5733 0.1799 0.1646 0.6068 0.5865

GPT-3.5-Turbo

Label Prob. 0.1353 0.1158 0.5687 0.5457 0.5555
0.2200 0.1762 0.6397 0.5914 0.5150

0.2106 0.1873 0.6261 0.5992 0.5980
Semantic Unc. 0.1310 0.1162 0.5660 0.5459 0.2255 0.1821 0.6431 0.5944 0.2106 0.1892 0.6262 0.6002
Verb. 1S top-1 0.1398 0.1227 0.5711 0.5592 0.2176 0.1684 0.6367 0.5877 0.2143 0.1907 0.6294 0.6068

Ours 0.1543 0.1472 0.5893 0.5782 0.2570 0.2227 0.6568 0.6170 0.2242 0.2101 0.6301 0.6138

Fine-Tuned Ranking on Candidate Generation Model

Llama3-8B

Label Prob. 0.2537 0.2291 0.6341 0.6243 
0.5913

0.3304 0.2981 0.6999 0.6612 
0.6562

0.2708 0.2703 0.9541 0.9534 
0.9790

Semantic Unc. 0.2638 0.2391 0.6511 0.6336 0.3267 0.2980 0.6933 0.6506 0.2842 0.2827 0.9523 0.9518
Verb. 1S top-1 0.2682 0.2491 0.6513 0.6362 0.3286 0.2988 0.7035 0.6616 0.2855 0.2834 0.9506 0.9504
MC-Dropout 0.2698 0.2478 0.6587 0.6356 0.3316 0.2931 0.7068 0.6635 0.2921 0.2848 0.9581 0.9558

Ours 0.2738 0.2639 0.6619 0.6423 0.3634 0.3399 0.7189 0.6890 0.2941 0.2934 0.9597 0.9590
BNN* 0.2723 0.2614 0.6617 0.6404 0.5901 0.3649 0.3443 0.7191 0.6883 0.6613 0.2924 0.2917 0.9586 0.9585 0.9813

Gemma-7B

Label Prob. 0.2057 0.1834 0.6207 0.5968 
0.5618

0.2810 0.2489 0.6705 0.6323 
0.5905

0.2702 0.2702 0.9545 0.9539 
0.9762

Semantic Unc. 0.2113 0.1900 0.6239 0.6003 0.2903 0.2573 0.6761 0.6367 0.2801 0.2800 0.9559 0.9552
Verb. 1S top-1 0.2161 0.1907 0.6245 0.6075 0.2746 0.2386 0.6617 0.6193 0.2880 0.2885 0.9602 0.9590
MC-Dropout 0.2214 0.2069 0.6318 0.6094 0.2807 0.2481 0.6696 0.6319 0.2792 0.2780 0.9561 0.9558

Ours 0.2339 0.2183 0.6354 0.6166 0.3277 0.2949 0.6965 0.6599 0.2906 0.2904 0.9593 0.9588
BNN* 0.2198 0.2017 0.6302 0.6039 0.5623 0.3185 0.2892 0.6894 0.6557 0.5927 0.2897 0.2895 0.9579 0.9576 0.9775

Mistral-7B

Label Prob. 0.2404 0.2275 0.6352 0.6164 
0.5769

0.3305 0.3031 0.6976 0.6655 
0.6471

0.2591 0.2590 0.9494 0.9489 
0.9787

Semantic Unc. 0.2367 0.2236 0.6331 0.6142 0.3412 0.3127 0.7049 0.6707 0.2771 0.2770 0.9509 0.9504
Verb. 1S top-1 0.2331 0.2200 0.6305 0.6073 0.3247 0.2925 0.6891 0.6600 0.2736 0.2727 0.9504 0.9501
MC-Dropout 0.2476 0.2307 0.6437 0.6224 0.3448 0.3159 0.7077 0.6722 0.2743 0.2735 0.9566 0.9554

Ours 0.2586 0.2494 0.6508 0.6331 0.3764 0.3516 0.7255 0.6966 0.2802 0.2801 0.9592 0.9588
BNN* 0.2566 0.2443 0.6502 0.6318 0.5782 0.3695 0.3461 0.7199 0.6931 0.6499 0.2794 0.2792 0.9598 0.9595 0.9810

*BNN utilizes an ensemble of five LLMs and thus is not a direct competitor of this work.

• Zero-shot Ranking: We use the pre-trained weights from Hug-
ging Face. The candidates are randomly retrieved, following [25].

• Fine-tuned Ranking: We fine-tune LLMs with the low-rank
adaptation [26]. The candidates are retrieved with BPR-MF [56].

For the inference, we set the maximum number of user history to
20 (MovieLens 1M, Steam) and 10 (Amazon Grocery). The number
of candidates is set to 20 for all datasets, and the leave-one-out
ground-truth item is guaranteed to be included unless we note it
separately. We sample five prompts for each user, and the final
ranking list is generated by sorting the average probability across
the five prompts (i.e., EP𝑢

[𝑞(𝑖 |P𝑢 )] for 𝑖 ∈ C𝑢 ).

Methods compared.We adopt various state-of-the-art and con-
ventional methods to compute the total predictive uncertainty:

• Label Prob. [20]: It uses the probability associated with the
predicted label (i.e., confidence).

• Semantic Unc. [39]: It then counts the proportion of answers
to estimate the predictive distribution, which is utilized for the
predictive uncertainty.

• Verb. 1S top-1 [63]: It constructs prompts for LLMs to explic-
itly produce their confidence (e.g., "Provide the probability
that your answer is correct (0.0 to 1.0).").

• MC-Dropout [16]: It approximates BNNs with a single model
and dropout. We generate five recommendations with dropout
for each prompt.

• BNN [12]: It uses an ensemble of multiple models and conducts
Bayesian inference for generation. In the experiment, we utilize
an ensemble of five independently fine-tuned LLMs and thus it
is not a direct competitor of this research line [39].

MC-Dropout and BNN are adopted only for the fine-tuned ranking
task, as we cannot apply them on zero-shot LLMs.

Inference overhead. Our framework takes a nearly identical
computational burden to Label Probability and Verb. 1S top-1, as
the number of inferences is the same. Semantic Uncertainty, MC-
Dropout, and BNN require five times more inferences than ours.

6.2 Effectiveness of Predictive Uncertainty
Table 1 shows the performance of total predictive uncertainty es-
timated by ours and the methods compared. We observe that the
predictive uncertainty indeed indicates the reliability of recom-
mendation generated by LLMs, with C@20 of over 0.95 in Steam.
Ours and compared methods exhibit higher 𝜏@𝐾 and C@𝐾 for
the fine-tuned ranking task than the zero-shot ranking task, as the
LLMs are aligned with the ranking task via fine-tuning. Notably,
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Figure 4: Analysis of fine-tuned ranking on MovieLens 1M. %Rec. Unc. and %Pro. Unc. represent the proportion of recommen-
dation and prompt uncertainty within the total uncertainty, respectively. For (d), the leave-one-out ground-truth item is not
guaranteed to be included in the candidate set.

our uncertainty measures outperform baselines in 18 out of 21 cells,
demonstrating the superiority in indicating the reliability of LLM-
based recommendations. Moreover, ours achieves comparable or
even better performance compared to BNN, which utilizes an en-
semble of five LLMs. In summary, the predictive uncertainty serves
as an objective criterion for assessing the reliability of LLM-based
recommendations, and can be further leveraged to develop various
strategies aimed at enhancing user satisfaction.

7 UNVEILING ORIGINS OF UNCERTAINTY
WITH UNCERTAINTY DECOMPOSITION

We further conduct thorough analyses for a deeper understanding
on the origins of the uncertainty in LLM-based recommendations.
Specifically, we investigate (a) epochs of fine-tuning, (b) the number
of model parameters, (c) the number of user histories in the prompt,
and (d) the number of candidates in the prompt. We explore how
these factors affect each of the decomposed uncertainty measures
and provide promising insights for the best use of LLMs’ com-
prehension ability. The analyses are conducted in the fine-tuned
ranking scenario on MovieLens 1M and implementation details
are kept as done in Section 6.1. Figure 4 shows the recommenda-
tion performance and decomposed uncertainty for variations in
generation and we emphasize four key observations as follows.
O1: Total uncertainty decreases as the model is aligned with
recommendation. Figure 4a shows results for every five epochs
of fine-tuning. As the model is fine-tuned to follow our instruction,
the model gets aligned with the recommendation task [50], and
therefore, the recommendation performance (N@20) is increasing.
Since the total uncertainty indicates the reliability of the recom-
mendation, it decreases as N@20 increases. Moreover, as the model
is aligned with recommendation tasks, the proportion of recom-
mendation uncertainty within the total uncertainty decreases as
epochs progress. Lastly, we observe that predictive uncertainty is a

relative measure within the same model family, as Llama3-8B ex-
hibits higher total uncertainty despite achieving a superior N@20
compared to the other models.
O2: Larger models are more robust to the prompting scheme.
Figure 4b shows results for models with various numbers of pa-
rameters. We additionally adopt LLMs with various sizes, including
Llama3-70B, Gemma-2B, and Mixtral-8x7B, and fine-tune these
models on MovieLens 1M with LoRA. We observe that the recom-
mendation performance (N@20) increases with the model size, as
models with more training parameters have a higher ability to adapt
to the given task [26, 44]. Accordingly, the total predictive uncer-
tainty decreases, indicating the higher reliability of the generated
recommendations. Moreover, the proportion of prompt uncertainty
within the total uncertainty also decreases with the model size,
demonstrating the larger models are more robust to the prompting
scheme as observed in text classification [17].
O3: Number of user histories affects recommendation un-
certainty. Figure 4c shows results for various numbers of user
histories in prompts. It is obvious that more historical items can
offer more information about the user preference, and hence, result
in increased recommendation performance. However, the recom-
mendation performance decreases with the user history larger than
25 items. This result is consistent with existing work on zero-shot
ranking [23, 25] which demonstrates LLMs have difficulty under-
standing a long user history [78]. A large volume of user histories
with congested tastes may complicate the assessment of user pref-
erences, resulting in increased recommendation uncertainty. Our
analysis stands as evidence that this phenomenon also occurs in
fine-tuned LLMs, and our uncertainty decomposition framework
offers a systematic way to gauge this adverse effect. We observe
that LLMs tend to achieve higher recommendation performance
when the number of user histories is associated with lower recom-
mendation uncertainty. On the other hand, the prompt uncertainty
remains almost unchanged, indicating that adjusting the number of
chronologically ordered user histories has a marginal impact on it.
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O4: Number of retrieved candidates affects the proportion of
prompt uncertainty. Figure 4d shows results for various numbers
of candidate items in prompts. We investigate the proportion of
prompt uncertainty within the total uncertainty, since the abso-
lute value of entropy increases with the dimension of output space
(i.e., the number of candidates). In this analysis, the leave-one-out
ground-truth item is not guaranteed to be included in the candidate
set. As the number of candidates increases, the ground-truth item
is more likely to be included in the candidate set, and thus the
recommendation performance increases. On the other hand, we
observe the recommendation performance decreases as the number
of candidates gets larger than 20, which aligns with previous find-
ings [55]. We provide a promising rationale for this issue from the
perspective of prompt uncertainty; the number of possible permu-
tations for candidate positions in prompts grows exponentially, and
accordingly, the prompt uncertainty rapidly increases with large
candidate size [15]. This increased prompt uncertainty cancels out
the benefits of a larger candidate size (i.e., more likely to include the
target item). We observe that the proportion of prompt uncertainty
may serve as a barometer for balancing the trade-off between the
benefits and detriments of increasing the number of candidates.
Remarks. Our analyses provide in-depth insights to support the
best use of LLMs for recommendation. Specifically, we demonstrate
adopting fine-tuning (O1) and larger models (O2) are beneficial to
achieve lower predictive uncertainty and enhanced recommenda-
tion. Furthermore, our findings offer a promising explanation from
the perspective of uncertainty; a larger number of user histories
(O3) and candidate items (O4) may bring increased uncertainty and
thus does not necessarily improve recommendation performance.
In the following section, we demonstrate that the system can further
enhance recommendations by constructing personalized prompts
based on predictive uncertainty.

8 ENHANCING RECOMMENDATIONWITH
UNCERTAINTY-AWARE PROMPTING

Based on the previous analyses, we propose personalized prompts
that adapt the number of histories and candidates to reduce the
predictive uncertainty, thereby leading to enhanced recommenda-
tions. Due to a lack of space, we present experimental evidence
on MovieLens 1M dataset. Results for Amazon Grocery and Steam
datasets are present in Table 5, Appendix B.
P1: Adjust the number of user histories in prompt based on
recommendation uncertainty. From O3 in Section 7, we observe
that the number of user histories affects the recommendation uncer-
tainty.We construct promptswith varying numbers of user histories
from {10, 15, 20, 25, 30}. Then, for each user, we choose the number
of user histories that yields the minimum recommendation uncer-
tainty. Table 2 shows the effectiveness of the uncertainty-aware
user history adjusting for users with the top-5% recommendation
uncertainty. The total/recommendation uncertainty decreases and
the prompt uncertainty remains almost unchanged as shown in
Figure 4c. Moreover, we emphasize that the average number of user
histories used in prompts shows negligible change, as the selected
number of user histories may decrease or increase from the default
number.

Table 2: Enhanced recommendation with uncertainty-aware
prompting for fine-tuned LLMs on MovieLens 1M. #avg. de-
notes the average number of histories and candidates used.

Model Prompt N@20 TU RU PU #avg.

Uncertainty-aware User History Adjusting

Llama3-8B default 0.4231 2.485 2.016 0.469 20
unc.-aware 0.4965 1.945 1.498 0.447 20.23

Gemma-7B default 0.3998 3.041 1.570 1.471 20
unc.-aware 0.4717 2.034 0.837 1.196 20.86

Mistrial-7B default 0.4001 2.914 1.568 1.347 20
unc.-aware 0.4843 1.956 0.573 1.383 19.41

Uncertainty-aware Candidate Set Adjusting

Llama3-8B default 0.0658 2.371 0.853 64.01% 20
unc.-aware 0.0704 1.694 0.929 45.17% 20.46

Gemma-7B default 0.0574 2.175 0.854 60.76% 20
unc.-aware 0.0671 1.489 0.789 47.01% 19.15

Mistrial-7B default 0.0612 1.989 0.790 60.27% 20
unc.-aware 0.0669 1.300 0.751 42.22% 19.78

*For candidate set adjusting, PU represents the proportion within TU.
Results for other datasets are present in Table 5, Appendix B.

P2: Adjust the number of candidate items in prompts based
on the proportion of prompt uncertainty. From O4 in Section
7, we observe that the number of candidates affects the proportion
of prompt uncertainty. Similar to P1, we construct prompts with
varying numbers of candidate items from {10, 15, 20, 25, 30}. It is
noted that the leave-one-out ground-truth item is not guaranteed to
be included in the candidate set for this analysis. Then, for each user,
we choose the number of candidate items that yields the minimum
proportion of prompt uncertainty. Table 2 shows the effectiveness of
the uncertainty-aware candidate set adjusting for users with the top-
5% prompt uncertainty proportion. We observe that uncertainty-
aware candidate set adjusting yields enhanced recommendations
with a lower proportion of prompt uncertainty and a lower total
uncertainty. We also observe that the average number of candidate
items used in prompts shows negligible change.

9 CONCLUSION
We highlight the need to improve our understanding of the reliabil-
ity of LLM-based recommendations, considering a distinct challenge
with the generation volatility of LLMs. We embrace the concept of
predictive uncertainty as a quantitative measure of reliability, and
introduce a novel framework to estimate it with a single inference.
The estimated predictive uncertainty indicates the trustworthiness
of LLM-based recommendations and is divided into recommenda-
tion uncertainty and prompt uncertainty. Through our in-depth
analysis, we reveal key insights into how prompting details affect
predictive uncertainty and recommendation performance. We fur-
ther provide compelling explanations for the limitations of LLMs
regarding a larger number of user histories and candidate items.
Based on these insights, we propose to enhance recommendation
performance with uncertainty-aware prompting approaches. We
anticipate our work will aid efforts in improving the interpretability
and explainability of LLM-based recommendations.
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Appendix

A EXPERIMENTAL DETAILS
Our source code andmodel weights are available at https://anonymous.
4open.science/r/UNC_LLM_REC
Evaluation metrics. Literature on the uncertainty of classifiers
[39, 63] adopts AUROC to measure the probability that a ran-
domly chosen correct prediction has a lower uncertainty than a
randomly chosen incorrect prediction. In this work, similarly, we
adopt Kendall’s 𝜏 (𝜏@𝐾) [59] and Concordance Index (C@𝐾 ) [65]
to assess whether a recommendation with lower uncertainty yields
higher NDCG@𝐾 (N@𝐾 ) than one with higher uncertainty.

𝜏@𝐾 =
1

|U|(|U| − 1)
∑︁
(𝑖, 𝑗 )

sgn(−Unc𝑖 + Unc𝑗 ) · sgn(N@𝐾𝑖 − N@𝐾𝑗 ),

C@𝐾 =
1

|U|(|U| − 1)
∑︁
(𝑖, 𝑗 )

1(−Unc𝑖 + Unc𝑗 ) · 1(N@𝐾𝑖 − N@𝐾𝑗 ).

(10)
For a user 𝑖 , Unc𝑖 and N@𝐾𝑖 denotes the estimated predictive un-
certainty and NDCG@𝐾 , respectively. sgn(·) and 1(·) denote the
sign function and the indicator function, respectively.

Dataset.We adopt the 20-core setting for MovieLens 1M and Steam,
and the 10-core setting for Amazon Grocery. For each user’s history,
we hold out the last item for testing and the penultimate item for
validation. The remaining items are used to construct H𝑢 . Data
statistics after the preprocessing are presented in Table 3.

Table 3: Data statistics after the preprocessing.

Dataset #Users #Items #Interactions Sparsity
MovieLens 1M 6,040 3,883 1,000,207 95.74%
Amazon Grocery 21,027 18,857 358,602 99.91%

Steam 38,503 6,267 1,722,038 99.29%

Prompts. The prompting scheme 𝑞(P𝑢 |H𝑢 , C𝑢 ) can be designed
readily upon the interface of real-world applications. In this paper,
we adopt the prompt in Figure 1 and randomly assign the position
for candidate items. We modify verbs and nouns for each dataset
(e.g., "watch" → "play" and "movie" → "game" in Figure 1 for
Steam). We sample five prompts for each user, randomly assigning
positions to candidate items for each of the five prompts. For the
motivating analysis in Section 4, we devise four additional prompts
in Figure 5 by slightly modifying the default prompt in Figure 1.

Fine-tuning of base LLMs. For each dataset, we fine-tune LLMs
with the low-rank adaptation (LoRA) [26] for 20 epochs (MovieLens
1M and Amazon Grocery) and 10 epochs (Steam). For the fine-
tuning, the prompt described in Section 5.2.2 is adopted, since we
do not have ground-truth complete ranking lists. The number of
user histories is sampled from {10, 15, 20, 25, 30} for MovieLens 1M
and Steam, {6, 8, 10, 12, 14} for Amazon Grocery. The number of
candidate items is sampled from {10, 15, 20, 25, 30} for all datasets.
The learning objective is the next token prediction for the ground-
truth item’s index (e.g.,"B"). We adopt AdamW optimizer [46] and
the learning rate is set to 2e-5 and the weight decay is set to 1e-2.
For LoRA, we configure 𝑟 = 16, 𝛼 = 16, and set the dropout rate

(a) "Candidate [A]"→ "Movie [A]"

(b) "Candidate [A]" → "Candidate [1]"

(c) "Candidate [A]"→ "Candidate A"

(d) "‘{item}’" → "{item}"
Figure 5:Modified prompts formotivating analysis in Section
4. {item} denotes the representative texts of an item.

to 5e-2. We adopt 4-bit quantization for larger models (Llama3-
70B and Mixtral-8x7B). All experiments are conducted on a single
NVIDIA A100-80G GPU.

Methods compared.We adopt various state-of-the-art and con-
ventional methods to compute the total predictive uncertainty:
• Label Probability [20]: It uses the probability associated with
the predicted label (i.e., confidence) EP𝑢

[𝑞(𝜋∗𝑢 |P𝑢 )].
• Semantic Uncertainty [39]: It stochastically generates multiple
answers with a single prompt and obtains 𝑞(𝜋𝑢 |P𝑢 ) by counting
the proportion of answers. We compute H[EP𝑢

[𝑞(𝜋𝑢 |P𝑢 )]] with
five answers for each prompt (i.e., total 25 inferences).

• Verb. 1S top-1 [63]: It constructs prompts for models to explic-
itly produce their confidence (e.g., "Provide the probability
that your answer is correct (0.0 to 1.0)."). We use an
average confidence of five prompts as reversed uncertainty.

https://anonymous.4open.science/r/UNC_LLM_REC
https://anonymous.4open.science/r/UNC_LLM_REC
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Table 4: Average recommendation performance of each prompting scheme used in the motivating analysis on MovieLens 1M.

Prompting Scheme Llama3-8B Gemma-7B Mistral-7B
N@10 N@20 N@10 N@20 N@10 N@20

Same Prompt zero-shot 0.2145 0.3448 0.2100 0.3415 0.1889 0.3298
fine-tuned 0.3958 0.4814 0.4058 0.4731 0.4402 0.5028

Varying History Size zero-shot 0.2268 0.3569 0.2132 0.3433 0.1847 0.3272
fine-tuned 0.5072 0.5717 0.4951 0.5485 0.5005 0.5553

Varying Candidate Order zero-shot 0.2213 0.3533 0.2104 0.3414 0.1832 0.3257
fine-tuned 0.5140 0.5769 0.5011 0.5538 0.5058 0.5591

Slight Edit zero-shot 0.2221 0.3521 0.2109 0.3404 0.1912 0.3289
fine-tuned 0.4641 0.5425 0.4374 0.5066 0.4496 0.5194

Table 5: Enhanced recommendation performance with uncertainty-aware prompting for fine-tuned LLMs. TU and RU represent
total uncertainty and recommendation uncertainty, respectively. PU denotes prompt uncertainty for user history adjusting
and the proportion of prompt uncertainty for candidate set adjusting. #avg. denotes the average number of user histories and
candidate items used for prompts. The ground-truth item is not guaranteed to be included in the candidate set for candidate set
adjusting.

Model Prompt MovieLens 1M Amazon Grocery Steam
N@20 TU RU PU #avg. N@20 TU RU PU #avg. N@20 TU RU PU #avg.

Uncertainty-aware User History Adjusting

Llama3-8B default 0.4231 2.485 2.016 0.469 20 0.3748 3.852 2.715 1.137 10 0.7202 1.804 1.250 0.554 20
unc.-aware 0.4965 1.945 1.498 0.447 20.23 0.4582 2.378 1.173 1.205 9.97 0.7353 1.372 0.807 0.565 19.79

Gemma-7B default 0.3998 3.041 1.570 1.471 20 0.4079 3.204 2.674 0.530 10 0.7274 1.553 1.119 0.434 20
unc.-aware 0.4717 2.034 0.837 1.196 20.86 0.4341 1.798 1.314 0.484 9.81 0.7404 1.190 0.743 0.448 19.82

Mistrial-7B default 0.4001 2.914 1.568 1.347 20 0.3965 3.968 3.207 0.760 10 0.7508 1.496 1.041 0.455 20
unc.-aware 0.4843 1.956 0.573 1.383 19.41 0.4498 2.502 1.304 1.198 10.02 0.7605 0.981 0.597 0.384 19.91

Uncertainty-aware Candidate Set Adjusting

Llama3-8B default 0.0658 2.371 0.853 64.01% 20 0.0517 2.707 0.844 68.82% 20 0.0606 1.845 0.886 51.98% 20
unc.-aware 0.0704 1.694 0.929 45.17% 20.46 0.0632 2.317 0.959 58.61% 20.01 0.0714 1.848 1.031 44.21% 19.61

Gemma-7B default 0.0574 2.175 0.854 60.76% 20 0.0506 3.091 1.470 52.45% 20 0.0621 1.639 0.751 54.20% 20
unc.-aware 0.0671 1.489 0.789 47.01% 19.15 0.0602 2.726 1.344 50.70% 20.07 0.0724 1.656 0.898 45.77% 20.14

Mistrial-7B default 0.0612 1.989 0.790 60.27% 20 0.0559 2.502 1.641 34.42% 20 0.0641 1.526 0.638 58.21% 20
unc.-aware 0.0669 1.300 0.751 42.22% 19.78 0.0670 1.900 1.592 16.19% 19.61 0.0762 1.525 0.769 49.59% 19.83

• MC-Dropout [16]: It approximates BNNs with a single model
and dropout. We obtain 𝑞(𝜋𝑢 |P𝑢 ) with five dropouts for each
prompt and computeH[EP𝑢

[𝑞(𝜋𝑢 |P𝑢 )]] (i.e., total 25 inferences).
• BNN [12]: It uses an ensemble of multiple models and conducts
Bayesian inference for generation. In the experiment, we utilize
an ensemble of five independently fine-tuned LLMs and thus it
is not a direct competitor of this research line [39].

B ADDITIONAL EXPERIMENTAL RESULT
Motivating analysis (Section 4).Table 4 shows the average recom-
mendation performance (E𝑢∈U [𝜇ndcg]) of each prompting scheme
used in the motivating analysis.
Uncertainty-aware personalized prompting (Section 8). Table
5 shows the effectiveness of our uncertainty-aware prompting for
users with the top-5% recommendation uncertainty (User History

Adjusting) and users with the top-5% prompt uncertainty propor-
tion (Candidate Set Adjusting). For user history adjusting, we con-
struct prompts with varying numbers of user histories: {10, 15, 20,
25, 30} for MovieLens 1M and Steam, {6, 8, 10, 12, 14} for Amazon
Grocery. For candidate set adjusting, we construct prompts with
varying numbers of candidate items from {10, 15, 20, 25, 30}. Our
uncertainty-aware personalized prompting decreases the predictive
uncertainty and increases the recommendation performance, with
negligible changes in the average number of user histories and
candidates.
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