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Abstract

The Burer-Monteiro method is one of the most widely used techniques for solving
large-scale semidefinite programs (SDP). The basic idea is to solve a nonconvex
program in Y , where Y is an n×p matrix such that X = Y Y T. We show that
this method can solve SDPs in polynomial time in a smoothed analysis setting.
More precisely, we consider an SDP whose domain satisfies some compactness and
smoothness assumptions, and slightly perturb the cost matrix and the constraints.
We show that if p ≳

√
2(1+η)m, where m is the number of constraints and

η > 0 is any fixed constant, then the Burer-Monteiro method can solve SDPs to
any desired accuracy in polynomial time, in the setting of smooth analysis. The
bound on p approaches the celebrated Barvinok-Pataki bound in the limit as η goes
to zero, beneath which it the nonconvex program can be suboptimal. Our main
technical contribution, which is key for our tight bound on p, is to connect spurious
approximately critical points of the nonconvex program to tubular neighborhoods
of certain algebraic varieties, and then estimate the volume of such tubes.

1 Introduction

Let Sn be the set of n×n symmetric matrices. Given matrices A1, . . . , Am, C ∈ Sn and a vector
b∈Rm, consider the semidefinite program (SDP):

min
X∈Sn

C •X s.t. A(X) = b, X ⪰ 0, (SDP)

where A : Sn→Rm, X 7→ (A1•X, . . . , Am•X) is a linear map and the notation X ⪰ 0 in indicates
that X is a positive semidefinite (PSD) matrix. Also consider the least squares SDP

min
X∈Sn

∥A(X)− b∥2 s.t. X ⪰ 0, (SDPls)

Though interior point methods solve (SDP) and (SDPls) in polynomial time, they often have memory
problems for large values of n. The Burer-Monteiro method [11, 12] is one of the most widely used
procedures for large scale problems. Several papers have worked in understanding the practical
success of this method, e.g., [9, 10, 12]. Although various results have been shown, they all fall short
of showing that one can reach an approximately optimal solution of (SDP)/(SDPls) in polynomial
time. This paper provides the first polynomial time guarantees for the Burer-Monteiro method.

The Burer-Monteiro method consists in writing X = Y Y T for some Y ∈ Rn×p, and solving a
nonconvex optimization problem in terms of Y . For (SDP) we get the problem

min
Y ∈M

C • Y Y T , M := {Y ∈ Rn×p : A(Y Y T ) = b}, (BM)
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and for (SDPls) we get the unconstrained problem

min
Y ∈Rn×p

∥A(Y Y T )− b∥2. (BMls)

We focus now on problem (SDP), though our results apply to (SDPls) as well. Let τ(k) :=
(
k+1
2

)
be the k-th triangular number. It is known that problems (SDP) and (BM) have the same optimal
value for any p such that τ(p)≥m; this is known as the Barvinok-Pataki bound [3, 29]. But due
to nonconvexity, local optimization methods may converge to a critical point of (BM) which is not
globally optimal [34]. In this paper we are mainly interested in 2nd-order critical points (abbreviated
as 2-critical points).

Problem (BM) has been well studied, most remarkably in the sequel of papers [5, 9, 10, 30]. Boumal
et al. [9, 10] showed that (BM) has no spurious 2-critical points when τ(p)>m, assuming that the
feasible set M is a smooth manifold and that the cost matrix C is generic. Hence, the Burer-Monteiro
method converges to the global optimal solution as long as the cost C is outside a certain “bad”
set, which has measure zero. However, this analysis only applies to the limit points. The follow
up works [5] and [30] provide finite-iteration guarantees, though for values of p larger than the
Barvinok-Pataki bound. They introduce a smoothed analysis [32] setting in which the cost matrix
C is subject to a small random perturbation of magnitude σ. Such a perturbation ensures that
C stays outside the “bad” region, so the limit points are globally optimal. They then argue that
certain notions of approximate criticality for (BM) guarantee approximate optimality for (SDP) when
τ(p) ≳ 9

2m log(Ω(
√
n/σ)).

Despite the earlier work, the question of whether the Burer-Monteiro method can be used to com-
pletely solve problem (SDP) in polynomial time has not been yet resolved. The works [5, 30] do not
provide end-to-end polynomial time guarantees and make structural assumptions on the problem, as
will be further discussed in the related work section. In particular, finding a feasible solution to (SDP)
that could serve as initial point is a complicated and practically relevant problem, but it has not been
addressed before. In addition, the lower bound on p is qualitatively wrong, as it is not only larger than
the Barvinok-Pataki bound, but also gets worse as the magnitude σ of the perturbation decreases.

In order to fully solve (SDP), we propose a 2-stage procedure. First, solve (BMls) to either get a
point Y0 that is approximately feasible, i.e,. A(Y0Y

T
0 ) ≈ b, or to prove that no such point exists.

Second, solve (BM) to get an approximately optimal point, starting with point Y0 from the first stage.
We prove that this scheme is successful when τ(p) > (1+η)m, for an arbitrary constant η > 0.

The next theorem provides polynomial time guarantees for the second stage. The complexity is with
respect to the setting of a smoothed analysis, in which the cost matrix C is perturbed.

Theorem 1 ((SDP) in polytime). Let p such that τ(p) > (1+η)m, for a fixed η > 0. Apply a
random perturbation of magnitude σ to the cost matrix C. Assume that M is compact and smooth
(LICQ holds). Solve (BM) using a constrained optimization method with 2nd-order guarantees
(e.g., Theorem 4) initialized at an approximately feasible point Y0. Then, after poly(n, σ−1) iterations,
we get a point Y such that Y Y T is approximately optimal for (SDP) with high probability. A more
detailed version of this result, with explicit optimality and complexity constants, appears in Theorem 9.

Note that our bound on p does not depend on the magnitude σ of the perturbation, as opposed
to earlier works. This improved bound relies on a technical novelty of this paper, namely, using
sophisticated tools from real algebraic geometry for concentration bounds. Indeed, we characterize
the presence of spurious approximately critical points through tubular neighborhoods of algebraic
varieties, and make use of effective bounds for the volume of such tubes [4, 23, 27]. On the other
hand, [9, 10] uses simple dimension arguments, while [5, 30] rely on random matrix theory.

The following theorem provides polynomial time guarantees for the first stage. We again consider a
smoothed analysis setting, but this time perturbing the matrices Ai that define the linear map A.

Theorem 2 ((SDPls) in polytime). Let p such that τ(p) > (1+η)m, for a fixed η > 0. Apply
a random perturbation of magnitude σ to the constraint map A. Assume that the sublevel sets
{Y : ∥A(Y YT)−b∥≤α} are compact. Solve (BMls) using an unconstrained optimization method
with 2nd-order guarantees (e.g., [15,16]). Then, after poly(n, σ−1) iterations, we get a point Y such
that Y Y T is approximately optimal for (SDPls) with high probability. A more detailed version of
this result, with explicit optimality and complexity constants, appears in Theorem 10.
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Theorems 1 and 2 together provide end-to-end guarantees for solving (SDP), with polynomial
smoothed analysis complexity. The main assumptions are that p is slightly above the Barvinok-Pataki
bound, while the feasible set is compact and smooth. In the general case, we require that both C,A
are slightly perturbed. If a feasible point of the (SDP) is known, then Theorem 1 alone is enough.

We point out that problem (SDPls) is a matrix sensing problem which is of interest in its own right,
independent of its connection to SDP feasibility. The guarantees from Theorem 2 apply even if the
optimal value of (SDPls) is strictly positive (i.e., there is no X⪰0 with A(X)=b). There are earlier
works [6, 22, 26] proving global optimality guarantees for the nonconvex problem (BMls), but they
all rely on the restricted isometry property (RIP). To the best of our knowledge, Theorem 2 provides
the first global guarantees for (BMls) that do not rely on RIP.

Related work

We first discuss (SDP). Early work by Burer and Monteiro [12] and by Journée et al. [25] gave
strong indications that (BM) has no spurious critical points above the Barvinok-Pataki bound. A
formal proof was given by Boumal et al. [5, 9] under a genericity assumption. Subsequent work by
Bhojanapalli et al. [5] and Pumir et al. [30] investigated the case of approximately critical points
under smoothed analysis. The Barvinok-Pataki bound was recently shown to be optimal up to lower
order terms for general SDPs [34], though for structured families of SDPs a smaller rank might
suffice [2, 28]. The paper [19] extended the results from [9] to SDPs with multiple PSD constraints.

The works [5, 30] are the closest to this paper, but they do not provide end-to-end polynomial
guarantees for solving general SDPs (nor it is claimed). In particular, neither of them discuss
initialization or feasibility. The paper [30] relies on Riemannaian optimization, which is only
practical for very special SDPs (like the maxcut SDP). In the general case, the retraction operator is
computationally intractable. The paper [5] relies on a penalized version of (SDP). It has the crucial
catch that they require a preprocessing step that in general is as hard as solving another SDP. Since
solving an auxiliary SDP is required, it fails to explain why the BM method improves over general
SDP solvers. In addition, the optimality guarantees in [5] are with respect to the solution of the
penalized problem. Translating their results into polynomial time guarantees with respect to the
original SDP is nontrivial due to interdependence between the penalty parameter, the perturbation
magnitude, and the target precision1. In contrast, our paper does provide end-to-end polynomial time
guarantees, and even better, our results hold down to the Barvinok-Pataki bound.

Problem (SDPls) has been well studied in the matrix sensing community. Bhojanapalli et al. [6]
showed that (BMls) has no spurious local minima under the RIP condition, and they also provided
polynomial time guarantees. Similar results have been derived later, e.g., [22, 26]. Note that RIP
is a very strong assumption about the condition number of the linear map A, particularly since the
RIP constant needs to be small [35]. In contrast, our result in Theorem 2 simply assumes a small
perturbation around a worst-case instance A. The comparison of smoothed analysis with RIP is akin
to assuming that a matrix has a nonzero smallest singular value (and getting bounds that depend on
inverse polynomials on this quantity), rather than assuming its condition number is close to one.

2 Critical points in nonlinear programming

Unconstrained case. Consider the optimization problem

min
y∈Rn

f(y), (Pun)

with f : Rn→R twice continuously differentiable. A vector y ∈ Rn is a 2nd-order critical point
for (Pun), abbreviated 2-critical, if ∇f(y) = 0, ∇2f(y) ⪰ 0. Practical optimization algorithms
cannot obtain a solution satisfying these equations exactly. Hence, we relax these conditions.
Definition 1. Given ε1, ε2 ∈ R+, a vector y is (ε1, ε2)-approximately 2-critical (AC) for (Pun) if:

∥∇f(y)∥ ≤ ε1, ∇2f(y) ⪰ −ε2In. (1)
1Translating optimality guarantees of the penalized problem to the original SDP requires tuning the penalty

parameter µ. The straightforward choice is µ = Ω(ϵ−2), where ϵ is the target precision. This leads to high
Lipschitz numbers, complicating the complexity analysis (e.g., Theorem 3 does not apply). In addition, [5,
Thm 13] constraints the perturbation magnitude by σ2 ≥ Ω(µϵ3/2γ−1) ≥ Ω(ϵ−1/2γ−1). Hence, the results
seem to require large perturbations, while in smoothed analysis we are interested in small perturbations.
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Several algorithms for unconstrained optimization with provable convergence guarantees are known.
Recent work has focused on deriving algorithms with finite-time guarantees. In particular, the trust
region method computes an (ε1, ε2)-AC point in O(max{ε−2

1 ε−1
2 , ε−3

2 }) iterations [16], and the
adaptive regularization with cubics (ARC) method takes O(max{ε−2

1 , ε−3
2 }) iterations [15]. We

formally state the result for the ARC method.
Theorem 3 ( [15]). Assume that there exists α > 0 such that a point y0 with f(y0) ≤ α is known, and
the functions f,∇f,∇2f are uniformly bounded and Lipschitz continuous on the set {y : f(y) ≤ α}.
The ARC method initialized at y0 requires O(max{ε−2

1 , ε−3
2 }) iterations to produce an (ε1, ε2)-AC

point y. Furthermore, each iteration requires O(1) evaluations of f and its derivatives.

Constrained case. Consider the nonlinear program

min
y∈M

f(y), M := {y ∈ Rm : h(y) = 0}, (Pcon)

with f : Rn → R, h : Rn → Rm twice continuously differentiable. The Lagrangian function is
L(y, λ)=f(y)+λ·h(y). A vector y∈Rn is a 2-critical point if there are multipliers λ∈Rm satisfying
some first order and second order optimality conditions. As before, for practical optimization we
need to consider a notion of approximate criticality.
Definition 2. Given ε = (ε0, ε1, ε2) ∈ R3

+, γ ∈ R+, a pair (y, λ) is (ε, γ)-approximately feasible
approximately 2-critical (AFAC) for (Pcon) if:

∥h(y)∥ ≤ ε0, ∥∇yL(y, λ)∥ ≤ ε1, (2a)

uT∇2
yyL(y, λ)u ≥ −ε2 (∀u : ∥u∥=1, ∥∇h(y)u∥≤γ). (2b)

In the constrained case, for a local minima to be a critical point we need some regularity conditions.
One such condition is the linear independence constraint qualification (LICQ), that states that ∇h(y)
is full rank. This is equivalent to M being smooth at y for the case of complete intersections (i.e.,
codimM = m). We next introduce a quantitative version of LICQ.
Definition 3. For ϱ>0, say that ϱ-LICQ holds at y if the singular values of ∇h(y) are at least ϱ.

Several local optimization methods for (Pcon) with provable convergence guarantees are known. In
particular, augmented Lagrangians [1] and trust-region methods [20, §15.4] converge to 2-critical
points. Recent work has focused on finding algorithms with finite-time guarantees. The complexity
of computing approximately 1-critical points was studied in, e.g., [7, 17, 18, 21].

As for approximately 2-critical points, we are only aware of [14, 31]. But both papers use a different
2nd-order condition, which is not easy to translate into our setting. Nonetheless, in Theorem 4 below
we show that AFAC points can be computed in polynomial time. The proof of this theorem is in
Appendix A, and relies on a variant of the method from [14]. To the best of our knowledge, this is the
first polynomial time bound for computing 2-critical points using the standard notions of criticality.
Theorem 4. Assume that there exist β, ϱ ∈ R+ such that a point y0 in the set Mβ := {y : ∥h(y)∥≤β}
is known, the functions f,∇f,∇2f , ∇hi,∇2hi (i ∈ [m]) are uniformly bounded and Lipschitz
continuous on Mβ , and ϱ-LICQ holds at all y ∈ Mβ . Let ε = (ε0, ε1, ε2) ∈ R3

+, γ ∈ R+ such that

ε0 ≤ β, ε1 ≤ 1, ε21 ≤ 1
16R

−1
λ ε0 ε2, γ2 ≤ 1

16R
−3
λ ε0 ε2, (3)

where Rλ := 2+2 ϱ−1Lf , Lf := maxy ∥∇f(y)∥. There is an algorithm that, when initialized
at y0, requires O(max{ε−2

0 ε−2
1 , ε−3

0 ε−3
2 }) evaluations of f, h and their derivatives to produce an

(ε, γ)-AFAC pair (y, λ), with ∥λ∥ ≤ Rλ.

Remark. Theorem 4 assumes that ϱ-LICQ holds everywhere in Mβ , an assumption which can only
be guaranteed when β is very small. Hence the initial point y0 must be approximately feasible.

3 Optimality of critical points of (BM)

In this section we will show that problem (BM) has no spurious approximately feasible approxi-
mately critical (AFAC) points with high probability. This means that any AFAC point of (BM) is
approximately optimal for (SDP). We consider a smoothed analysis setting in which the constraint
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variables A, b are fixed, and the cost matrix C is subject to a small random perturbation. We will
restrict our attention to AFAC pairs (Y, λ) of bounded norm. Hence, we assume that ∥Y ∥≤RY and
∥λ∥≤Rλ for some fixed constants RY , Rλ.

A crucial step toward our theorem is a geometric characterization of the spurious AFAC points in
terms of tubes around algebraic varieties. We then take advantage of known effective bounds for the
volume of such tubes [4, 27].

From now on, we use the Frobenius norm for all matrices.

3.1 Spurious approximately critical points

The optimality conditions for (SDP) are well known: A(X)=b, S(λ)X=0, X⪰0, S(λ)⪰0, where
S(λ) is the following slack matrix

S(λ) := C −A∗(λ) ∈ Sn,

and A∗ : Rm→Sn, λ 7→
∑
i λiAi is the adjoint of A. We now relax the optimality conditions.

Definition 4. Let ε=(ε0, ε1, ε2)∈R3
+. A pair (X,λ) is ε-approximately optimal for (SDP) if:

∥A(X)− b∥ ≤ ε0, ∥S(λ)X∥ ≤ ε1, X ⪰ 0, S(λ) ⪰ −ε2 In. (4)

It is known that an ε-approximately optimal solution is at distance O(∥ε∥) from an optimal solution
under nondegeneracy assumptions [33]. We can also give a simple bound on the optimality gap.

Lemma 1. If (X̄, λ̄) is ε-approximately optimal for (SDP) then

C • X̄ ≤ C •X + ε0∥λ̄∥+ ε1
√
n+ ε2∥X∥

√
n ∀ feasible X.

Proof. The lemma follows from the following equations:

C •X = λ̄ · A(X) + S(λ̄) •X ≥ λ̄ · b− (ε2In) •X = λ̄ · b− ε2∥X∥
√
n,

λ̄ · b ≥ λ̄ · A(X̄)− ∥λ̄∥ ∥b−A(X̄)∥ ≥ λ̄ · A(X̄)− ε0∥λ̄∥,
λ̄ · A(X̄) ≥ λ̄ · A(X̄) + S(λ̄) • X̄ − ∥S(λ̄)X̄∥∗ ≥ C • X̄ − ε1

√
n.

We proceed to problem (BM). This is a special instance of the nonlinear program (Pcon) with f(Y ) =
C • Y Y T and h(Y ) = A(Y Y T ) − b. The Lagrangian function is L(y, λ) = S(λ) • Y Y T + bTλ.
The criticality conditions for (BM) are obtained by specializing (2).

Definition 5. Let ε=(ε0, ε1, ε2)∈R3
+, γ∈R+. A pair (Y, λ) is (ε, γ)-AFAC for (BM) if:

∥A(Y Y T )− b∥ ≤ ε0, ∥S(λ)Y ∥ ≤ ε1, (5a)

S(λ) • UUT ≥−ε2 (∀U ∈Rn×p : ∥U∥=1, ∥A(UY T )∥≤γ). (5b)

We are ready to formalize the concept of spurious critical points.

Definition 6. Let RY , Rλ∈R+ be fixed and let (Y, λ) such that ∥Y ∥ ≤ RY and ∥λ∥ ≤ Rλ. Given
ε= (ε0, ε1, ε2) ∈R3

+, γ ∈R+, (Y, λ) is spurious (ε, γ)-AFAC if (Y, λ) is (ε, γ)-AFAC for (BM)
but (Y Y T, λ) is not ε′-approx. optimal for (SDP) for ε′ :=(ε0, RY ε1, ε2). A pair (Y, λ) is spurious
exactly critical if the above holds for ε = 0, γ = 0.

3.2 Statement of the theorem

We present the main result of this section. Let A, b be fixed, and let C be obtained from a random
perturbation of magnitude σ around some fixed C̄. Concretely, C is uniformly distributed on the
Frobenius ball Bσ(C̄) ⊂ Sn of radius σ centered at C̄. Consider the set Cε,γ ⊂ Sn, consisting of all
cost matrices for which there is a spurious AFAC point:

Cε,γ := {C ∈ Sn : ∃(Y, λ) an spurious (ε, γ)-AFAC pair} .

We show that if τ(p) > m, then the probability Pr[C ∈ Cε,γ ] → 0 as the ratio ε1/γ → 0.
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Theorem 5 (critical ⇒ optimal). Let p such that τ(p)>m. Let ε∈R3
+, γ∈R+. Let C be uniformly

distributed on the Frobenius ball Bσ(C̄). Then

Pr[C ∈ Cε,γ ] ≤ 4e δτ(p)−m (3κ)m (4n3/σ)τ(p),

where δ := ε1∥A∥/γ and κ := Rλ∥A∥, provided that δ < σ/4n3.

The following corollary shows that when the stronger condition τ(p) > (1+η)m holds, where η
is a fixed constant, then we can derive a high probability bound while maintaining δ polynomially
bounded. Its proof is a straightforward manipulation.

Corollary 1. Consider the setup from Theorem 5. Assume that τ(p) ≥ (1+η)m + ηt and δ ≤
(1/3κ)1/η(σ/4n3)1+1/η for some η, t > 0. Then Pr[C ∈ Cε,γ ] ≤ 4e (σ/12κn3)t.

3.3 Tubes around varieties

Our proof of Theorem 5 relies on a geometric characterization of the set Cε,γ . Such characterization
is known for the case ε = 0, γ = 0, corresponding to exactly critical points. It was shown in [10],
see also [19], that the existence of a spurious exactly critical point implies that C lies in a certain
algebraic variety of Sn, as follows:

∃ (spurious exactly critical point) =⇒ C ∈ Snn−p + ImA∗,

where Snn−p := {X : rankX ≤ n−p} is a variety of bounded rank matrices, and ImA∗ is the linear
space spanned by A1, . . . , Am. Hence, we have that C0,0 ⊂ Snn−p + ImA∗. When τ(p)>m, the
variety Snn−p+ImA∗ is properly contained in Sn. It follows that C0,0 has measure zero and hence,
for generic C, there are no spurious exactly critical points.

We show below that for approximately critical points the situation is analogous, except that we need
to consider a tubular neighborhood around the variety Snn−p+ImA∗.

Definition 7. Given W ⊂ Sn, δ ∈ R+, let tubeδW := {X ∈ Sn : ∃W ∈ W s.t. ∥X−W∥ ≤ δ}.
Proposition 1. Let δ := ε1∥A∥/γ and Bλ := {λ∈Rm : ∥λ∥≤Rλ}. Then

Cε,γ ⊂ tubeδ(Snn−p) +A∗(Bλ).

The next lemma is the key ingredient for Proposition 1. It shows that if Y is a spurious AFAC point,
then its smallest singular value σp(Y ) is bounded from below. This is a generalization of a previous
result by Burer and Monteiro [12] about exactly critical points. An analogue of this lemma is found
in [30, Lem.3.2] for the case where ε0 = 0.

Lemma 2. Let Y be an (ε, γ)-AFAC point of (BM). If σp(Y ) ≤ γ/∥A∥, then Y Y T is ε′-
approximately optimal for (SDP), with ε′ := (ε0, RY ε1, ε2).

Proof. Let (Y, λ) satisfy (5), and let us show that (Y Y T , λ) satisfies (4). The first three conditions
in (4) are easy to check. We proceed to show the last one: S(λ)⪰−ε2In. Given a unit vector u∈Rn,
we need to show that uTS(λ)u≥−ε2. There is a unit vector z∈Rp such that ∥Y z∥ = σp(Y ). The
matrix U :=uzT satisfies ∥U∥=1 and

∥UY T ∥ ≤ ∥u∥∥Y z∥ = σp(Y ) ≤ γ/∥A∥.

Then ∥A(UY T )∥≤γ, so by (5b) we have

−ε2 ≤ S(λ)•UUT = ∥z∥2(uTS(λ)u) = uTS(λ)u.

Proof of Proposition 1. Let C ∈ Cε,γ , so there is a spurious (ε, γ)-AFAC pair (Y, λ). By Lemma 2,
we must have σp(Y )>γ/∥A∥. Let S := S(λ), and note that ∥S Y ∥≤ε1=γ δ/∥A∥ by (5a). Then

dist(S, Snn−p) =
√∑p

i=1 σ
2
n−i+1(S) ≤ ∥S Y ∥/σp(Y ) < δ, (6)

so that C = S(λ)+A∗(λ) ∈ tubeδ(Snn−p)+A∗(Bλ).
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By Proposition 1, the set of “bad” cost matrices Cε,γ is contained in a tube around a variety. To
prove Theorem 5, we need an upper bound on the probability mass of this tube. The computation
of integrals over tubes has a long history in differential geometry [23]. Effective bounds for these
integrals were shown in [4, 13, 27]; they were used for smooth analysis in the first reference. We will
use the following recent bound.
Theorem 6 ( [4, Thm.1.1]). Let V ⊂ Rk be a real variety of codimension c defined by polynomials
of degree at most D. Let x be uniformly distributed on the Euclidean ball Bσ(x̄) ⊂ Rk. If the ratio
σ/δ ≥ (4D+1)(k−c), then we have that Pr[x ∈ tubeδ(V )] ≤ 4e(4kDδ/σ)c,

Proof of Theorem 5. Let Bλ ⊂ Rm be the ball of radius Rλ centered at zero. Consider an ϵ-net N
of Bλ, where ϵ := δ/∥A∥. It is known that (3Rλ/ϵ)m = (3κ/δ)m points suffices. Observe that

A∗(Bλ) ⊂ A∗(tubeϵ(N )) ⊂ tubeδ(A∗(N )), (7a)
Cε,γ ⊂ tubeδ(Snn−p)+A∗(Bλ) ⊂ tube2δ(Snn−p)+A∗(N ). (7b)

Recall that Snn−p is a variety of codimension τ(p) defined by equations of degree n−p+1. For any
ℓ ∈ N , Theorem 6 gives

Pr[C−A∗(ℓ) ∈ tube2δ(Snn−p)] < 4e
(
8τ(n)(n−p+1)δ/σ

)τ(p)
< 4e

(
4n3δ/σ

)τ(p)
.

Finally, the union bound gives

Pr[C ∈ Cε,γ ] ≤ #N · Pr[C ∈ tube2δ(Snn−p)+A∗(ℓ)] < (3κ/δ)
m · 4e

(
4n3δ/σ

)τ(p)
.

4 Optimality of critical points of (BMls)

In this section we will show that (BMls) has no spurious approximately critical (AC) points with
high probability. This means that any AC point of (BMls) is approximately optimal for (SDPls).
Hence, we can solve the least squares problem (SDPls) to global optimality using the Burer-Monteiro
method. Note that if (SDP) is feasible, then the optimal value of (SDPls) is zero. Nevertheless, the
results of this section apply to an arbitrary instance of (SDPls), even if the optimal value is nonzero.
Appendix B contains the proofs of the lemmas, propositions, and theorems from this section.

We proceed to formalize the notion of spurious critical points. The optimality conditions for the
convex problem (SDPls) are: S(X)X = 0, X ⪰ 0, S(X) ⪰ 0, where S(X) is the gradient of the
least squares objective function f(X) = ∥A(X)−b∥2:

S(X) := ∇f(X) = 2A∗(A(X)−b) ∈ Sn.
We call X approximately optimal if either A(X) ≈ b or the above conditions are almost satisfied.
Definition 8. Let ε=(ε0, ε1, ε2)∈R3

+. A matrix X ⪰ 0 is ε-approximately optimal for (SDPls) if

∥A(X)−b∥ ≤ ε0 or ( ∥S(X)X∥ ≤ ε1 and S(X) ⪰ −ε2 In ) . (8)

The following lemma bounds the optimality gap for the second case in (8).
Lemma 3. Let X̄∈Sn+ such that ∥S(X̄)X̄∥ ≤ ε1, S(X̄) ⪰ −ε2In. Then

f(X̄) ≤ f(X) + ε1
√
n+ ε2∥X∥

√
n ∀ X ∈ Sn+.

The Burer-Monteiro problem (BMls) is a special instance of the unconstrained optimization prob-
lem (Pun). The criticality conditions for (BMls) are obtained by specializing (1).
Definition 9. Let (ε1, ε2)∈R2

+. Y ∈Rn×p is (ε1, ε2)-approximately 2-critical (AC) for (BMls) if

∥S(Y Y T )Y ∥ ≤ ε1, (9a)

S(Y Y T ) • UUT + 4∥A(UY T )∥2≥−ε2 (∀U ∈Rn×p : ∥U∥=1) (9b)

We are ready to formalize the concept of spurious critical points.
Definition 10. Let RY ∈R+ be fixed and let Y with ∥Y ∥ ≤ RY . Given ε=(ε0, ε1, ε2)∈R3

+, Y
is spurious ε-AC if Y is (ε1, ε2)-AC for (BMls) but Y Y T is not ε′-approx. optimal for (SDPls) for
ε′ := (ε0, RY ε1, 5ε2). Y is spurious exactly critical if the above holds for ε = 0.
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We assume here that b ∈ Rm is fixed, and we vary the linear map A. We identify A with the tuple of
matrices (A1, . . . , Am), and hence view it as an element of the Euclidean space (Sn)m. We assume
that A is uniformly distributed on the Euclidean ball Bσ(Ā) ⊂ (Sn)m of radius σ centered at Ā.
Consider the set Aε ⊂ (Sn)m, consisting of all A for which there is a spurious AC point:

Aε := {A ∈ (Sn)m : ∃Y a spurious ε-AC point} .
We show that if τ(p) > m, then the probability Pr[A ∈ Aε] → 0 as the ratio ε1/

√
ε2 → 0.

Theorem 7 (critical ⇒ feasible). Let p such that τ(p)>m, and ε∈R3
+. Let A be uniformly distributed

on the Euclidean ball Bσ(Ā). Then

Pr[A ∈ Aε] ≤ 4e δτ(p)−m (3κ)m (2n3m/σε0)
τ(p),

where δ := ε1RA/
√
ε2, κ := 2(RAR

2
Y+∥b∥)RA, andRA := ∥Ā∥+σ, provided that δ < σε0/4n

3m.

As before, we can derive a high probability bound when τ(p) > (1+η)m.
Corollary 2. Consider the setup from Theorem 7. Assume that τ(p) ≥ (1+η)m+ ηt, ε0 ≥ ρσ and
δ ≤ (1/3κ)1/η(ρσ2/2n3m)1+1/η for some η, t, ρ > 0. Then Pr[A ∈ Aε] ≤ 4e (ρσ2/6κn3m)t.

As in Section 3, our proof of Theorem 5 relies on a geometric characterization of the spurious AC
points. First consider the simpler case of spurious exactly critical points (ε = 0). The following
equation is a consequence of our analysis:

∃ (spurious exactly critical point) =⇒ Snn−p ∩ ImA∗ is nontrivial.

This implies that the set A0 has measure zero when τ(p)>m. In order to handle the case ε > 0 we
rely again on tubular neighborhoods, as stated next.
Proposition 2. Let δ := ε1RA/

√
ε2, Dλ := {λ∈Rm : 2ε0≤∥λ∥≤Rλ}, Rλ := 2(RAR

2
Y +∥b∥).

Then for A ∈ Aε we have that tubeδ(Snn−p) ∩ A∗(Dλ) ̸= ∅.

5 Polynomial time guarantees

We are ready to derive polynomial time guarantees for the Burer-Monteiro method. The proof of
Theorem 1 relies on two facts: (i) the method from Theorem 4 finds an AFAC point of (BM) in
polynomial time; (ii) Corollary 1 shows that an AFAC point of (BM) is approximately optimal for
(SDP) with high probability. Hence, the Burer-Monteiro method solves (SDP) in polynomial time
in the setting of smooth analysis. The proof of Theorem 2 is analogous, except that it relies on
Theorem 3 and corollary 2.

Appendix C provides explicit complexity estimates for solving (SDP) and (SDPls) using the Burer-
Monteiro method, indicating the precise optimality guarantees of the output.

6 Experiments

We present some experimental results to complement our theorems. We rely on the library NLopt [24]
(MIT license) to solve the nonlinear problem (BM). Concretely, we use the augmented Lagrangian
method (ALM) implemented in NLopt (which is based on [8]), and we use the preconditioned
truncated Newton method as the subroutine. We also rely on the commercial solver Mosek for SDPs.

For our first experiment we consider a random SDP with a planted solution. More precisely, we take
a matrix X0 ∈ S50, X0 ⪰ 0 of rank r ∈ {4, 7, 12}, and generate a random SDP for which X0 is
an optimal solution. To do so, we generate m := τ(r) random constraints that are satisfied at X0,
and then find a cost matrix C in the normal cone of X0. We generate 100 random SDPs for each r
We solve these SDPs with the Burer-Monteiro method, using different values of p (the rank of Y )
and random initializations. The initial points are matrices with i.i.d. normalized Gaussian entries.
Figure 1 shows the percentage of experiments solved correctly for each value of r and p. We regard
an experiment as “correct” if the criticality conditions from (4) are satisfied.

Figure 1 illustrates that there is a sharp phase transition at the Barvinok-Pataki bound p = r. Above
the Barvinok-Pataki bound, the Burer-Monteiro method solves most instances. Beneath the Barvinok-
Pataki bound, it is not just that our techniques stop working, but that the method itself usually
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Figure 1: Performance of the BM method for random SDPs with a planted solution of rank r.

fails. Note that previous work [5, 30] required p to be larger than 3r/
√
2. However, we see from

experiments that the phase transition is much sharper than this. Observe that, even for p ≥ r, the
number of experiments solved is always below 100%. Nonetheless, the number of bad instances
seems to get smaller for larger values of p. This agrees with our result from Theorem 5.

For the second experiment we fix the parameters n := 50, m := 28, and p := r := 7. Among
the 100 random SDPs considered in Figure 1, we take an instance for which the Burer-Monteiro
problem performed badly. We then perturb this seemingly bad SDP by adding varying amounts of
noise σ. For each noise level we solve 70 random experiments, in which both the perturbations and
the initializations are random. The perturbations consist in adding to each matrix a random matrix
with i.i.d. Gaussian entries scaled by the noise level. Figure 2 summarizes the results obtained.

(a) Fraction of SDPs solved (b) Iteration progress

Figure 2: Performance of the BM method after perturbing a “bad” SDP with different levels of noise.

Figure 2a shows the percentage of instances for which the Burer-Monteiro method succeeded for each
noise level. The percentage is with respect to the random perturbation and the random initialization.
For the unperturbed problem (σ=0) the method succeeds only for 52% of the random initializations.
This percentage increases as we add noise. For σ = 0.2 the method succeeds 87% of the time.
Figure 2b shows the progress of the algorithm for the cases σ = 0 and σ = 0.2. The progress is
measured in terms of the residual of the criticality conditions. The figure shows the mean and standard
deviation of the residual for each iteration of ALM.

Figures 2a and 2b illustrate the advantages of smoothing a badly behaved SDP. Theorem 9 predicts
that the complexity of the algorithm is proportional to σ−d for some exponent d. So for a fixed
number of iterations N , we should set the noise level proportional to N−1/d. However, our bounds
were shown for the algorithm from Theorem 4. We do not know if they also apply to ALM.
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7 Discussion

We study the Burer-Monteiro method for solving the problems (SDP) and (SDPls). We provide the
first polynomial time guarantees, using a smoothed analysis setting. Previous analyses for (SDP) did
not provide end-to-end guarantees and made structural assumptions on the problem instance, while
previous work for (SDPls) relied on the RIP condition, a strong assumption.

The main technical novelty of this paper is the use of volumes of tubular neighborhoods of varieties
for deriving concentration bounds. This allows our results to hold even as p approaches the Barvinok-
Pataki bound arbitrarily close. Although the Barvinok-Pataki bound is optimal for general SDPs,
there are better bounds for some special classes of SDPs. An important open question is whether our
results could be extended to allow for smaller values of p in those special classes.

The Burer-Monteiro method is not a single algorithm, but a family of algorithms, one for each local
optimization method for solving (BM). Similarly, our guarantees in Theorems 1 and 2 apply for any
local method with 2nd order guarantees. The only method we are aware that provably computes
AFAC points of (BM) efficiently is the one in Theorem 4. It would be interesting to extend our results
to classical optimization methods, such as ALM, which have robust implementations.
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